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Abstract

Protein signalling networks play a key role in cellular function, and their
dysregulation is central to many diseases, including cancer. Recent advances in
biochemical technology have begun to allow high-throughput, data-driven studies
of signalling. In this thesis, we investigate multivariate statistical methods, rooted
in sparse graphical models, aimed at probing questions in cancer signalling.

First, we propose a Bayesian variable selection method for identifying subsets
of proteins that jointly influence an output of interest, such as drug response. An-
cillary biological information is incorporated into inference using informative prior
distributions. Prior information is selected and weighted in an automated manner
using an empirical Bayes formulation. We present examples of informative pathway-
and network-based priors, and illustrate the proposed method on both synthetic and
drug response data.

Second, we use dynamic Bayesian networks to perform structure learning of
context-specific signalling network topology from proteomic time-course data. We
exploit a connection between variable selection and network structure learning to
efficiently carry out exact inference. Existing biology is incorporated using informa-
tive network priors, weighted automatically by an empirical Bayes approach. The
overall approach is computationally efficient and essentially free of user-set param-
eters. We show results from an empirical investigation, comparing the approach to
several existing methods, and from an application to breast cancer cell line data. Hy-
potheses are generated regarding novel signalling links, some of which are validated
by independent experiments.

Third, we describe a network-based clustering approach for the discovery of
cancer subtypes that differ in terms of subtype-specific signalling network structure.
Model-based clustering is combined with penalised likelihood estimation of undi-
rected graphical models to allow simultaneous learning of cluster assignments and
cluster-specific network structure. Results are shown from an empirical investiga-
tion comparing several penalisation regimes, and an application to breast cancer
proteomic data.
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Chapter 1

Introduction

In recent years significant advances have been made in biochemical technology and

techniques, resulting in an increasing availability of high-throughput data in molec-

ular and cell biology. Examples of such technologies include DNA microarrays and

high-throughput sequencing for transcriptomic and genomic data, and protein mi-

croarrays, mass spectrometry and flow cytometry for proteomic data. The avail-

ability of such data has motivated and driven a shift towards a ‘systems’ approach

to biology instead of a more traditional reductionist approach. The reductionist

approach focusses on the identification of individual molecular components and the

study of their functions. However, cell behaviour arises from and is regulated by

components such as genes and proteins acting in concert. Obtaining an understand-

ing of this complex interplay and resulting functionality characterises the systems

approach [Ideker et al., 2001; Kitano, 2002; Ideker and Lauffenburger, 2003]. The

approach is multi-disciplinary, combining biology with other fields such as mathe-

matics, statistics, physics, engineering and computer science.

Biological networks are widely used to represent and visualise interplay be-

tween molecular components and are integral to the systems approach. Networks

(or graphs; we use both terms interchangeably throughout this thesis) consist of a

set of nodes, representing molecular components such as genes or proteins, and a set

of (directed or undirected) edges which represent relationships or interplay between

the components. Examples include gene regulatory networks [Hecker et al., 2009]

and protein signalling networks [Yarden and Sliwkowski, 2001; Sachs et al., 2005];

the latter is the focus in this thesis. Discovery of the structure of these networks

(i.e. the location of the edges) and the nature of the interactions represented by the

edges (i.e. mechanisms and dynamics), in specific contexts, is an important goal in

molecular biology. For example, investigating biological networks in disease states,
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such as cancer, can help in the discovery of processes that cause and sustain the

disease, and can guide therapeutics [Pe’er and Hacohen, 2011].

Proteins play a key role in most cellular functions. Signalling is an important

cellular process, which ultimately leads to cellular responses such as cell proliferation

and apoptosis (programmed cell death). The nodes in protein signalling networks

represent signalling proteins and edges represent interactions between proteins that

result in the signal being transduced through the cell. Protein signalling pathways

and networks have complex structures with combinatorial nonlinear interactions,

cross-talk between pathways and feedback mechanisms [Citri and Yarden, 2006;

Rubbi et al., 2011]. Thus, in order to obtain a proper understanding of context-

specific signalling processes, it is necessary to take a systems network approach

rather than studying components in isolation. The development of high-throughput

proteomics means that data is now available that enables many components to be

investigated simultaneously [see e.g. Sachs et al., 2005]. Further details of protein

synthesis, protein signalling and signalling networks are provided in Section 2.1 and

details of several protein assays are provided in Section 2.2.

Cancer is a prevalent disease; it was the cause of 28% of all deaths in the

UK in 2009 [Cancer Research UK, 2012]. It is a genetic disease, with multiple

DNA mutations resulting in dysregulation of cellular processes such as proliferation

and apoptosis, ultimately leading to the transformation of a normal cell into a

cancerous cell. Mutated, cancer-causing genes often code for signalling proteins, and

so it is aberrant signalling that often causes the dysregulation in cellular processes.

Indeed, aberrant signalling is heavily implicated in the six functional capabilities

that are acquired during tumour development and are regarded as ‘hallmarks’ of

cancer [Hanahan and Weinberg, 2000]; these are, self-sufficiency in growth signals,

insensitivity to growth-inhibitory signals, evasion of apoptosis, limitless replicative

potential, sustained angiogenesis, and tissue invasion and metastasis. Recently, two

further potential hallmarks were added to the original six [Hanahan and Weinberg,

2011]; deregulating cellular energetics and avoiding immune destruction. Further

details regarding protein signalling and cancer are provided in Section 2.1.3.

The key role that protein signalling plays in cancer formation and progression

has implications for cancer therapy. Chemotherapy and radiotherapy are traditional

cancer therapies that work by causing damage to cancer cells that inhibits cell di-

vision and induces apoptosis. However, the side-effects of these treatments can be

severe due to healthy cells also being affected (for example, chemotherapy drugs

target any rapidly dividing cells, not just tumour cells). Targeted cancer therapies

are drugs that inhibit tumour growth by interfering with specific molecules that
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are involved in cell processes that are dysregulated in cancer, such as proliferation,

apoptosis and angiogenesis. Signalling proteins are a common target for these thera-

pies (specific examples are provided in Section 2.1.4) and so knowledge of signalling

networks and mechanisms is important for identifying novel therapeutic targets.

Since these therapies focus on specific molecules that play a role in carcinogenesis,

they may be more effective than the more traditional approaches and may result in

fewer side effects.

Classification of cancers is traditionally based on factors such as histopatho-

logical type, tumour grade and tumour stage. As the molecular biology of cancer

becomes better understood, classifications based on molecular characteristics of tu-

mours are being developed [Perou et al., 2000; Sørlie et al., 2001; TCGA-Network,

2011]. For example, Perou et al. [2000] used gene expression data to classify breast

cancer tumours into four subtypes (basal, luminal, ErbB2 positive and normal),

which were later refined into five subtypes that can be used as prognostic markers

for overall and relapse-free survival [Sørlie et al., 2001]. Cancer subtypes reflect the

remarkable levels of molecular heterogeneity in cancer. This heterogeneity results

in diverse responses to therapies across cancer patients; a drug that works for one

patient may not work for another. This has driven the surge in interest in person-

alised therapies that tailor treatment regimes to the molecular characteristics of a

patient’s tumour [Majewski and Bernards, 2011]. The identification of molecular

biomarkers or signatures that are predictive of response to a targeted therapy is a

key goal for personalised medicine. Signalling proteins are potential sources of such

predictive biomarkers due to their important role in cellular processes and the fact

that many therapies target them. An example of such a biomarker is the HER2

receptor protein in breast cancer; see Section 2.1.4 for further details.

Along with the developments in experimental technology discussed above,

continual improvements in computing power have enabled computationally-intensive

simulations and statistical inference using increasingly complex mathematical and

statistical models. A model is a simplification of the underlying system that captures

features and relationships that are of interest and explain the observed data. Models

vary in their levels of abstractness. Ordinary differential equations have been used

to directly model biochemical reaction kinetics in signalling pathways [Schoeberl

et al., 2002; Chen et al., 2009; Wang et al., 2009a]. Such models provide a rea-

sonably realistic representation of the underlying mechanisms and can be used for

simulation and predictions, leading to novel insights and generation of hypotheses

for further consideration. For example, perturbing a component in the model could

aid in prediction of response to a certain drug treatment. However, these models are
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complex with many parameters and are generally not solvable analytically, resulting

in their restriction to relatively small systems for both computational and statisti-

cal reasons. Also, the network structures are usually assumed to be known, with

modelling focusing on the actual mechanisms involved in interactions. In contrast,

more abstract, high level models, for example Boolean models or continuous, linear

models, are often analytically tractable with fewer parameters, allowing larger sys-

tems to be modelled and network structures themselves to be inferred. While these

models may not be as realistic or as predictively accurate, hypotheses can still be

formed regarding network structure; this is the approach we take in this thesis, using

continuous linear models. Once the structure is known, more detailed modelling can

be used to investigate the underlying mechanisms between certain components.

Statistical models take variability into account via probability distributions.

Variation in the data can either be systematic, due to an underlying signal in the

system, or can be stochastic, due to measurement noise, variability within the bio-

chemical cellular processes themselves [Ray, 2010], or unmodelled mechanisms and

components in the system. Unlike deterministic models such as ordinary differential

equations, statistical models take account of stochastic variation in the data, which

can help to elucidate the true underlying interactions and mechanisms. Statistical

inference can be used to select appropriate models, often employing a trade-off be-

tween model fit and model complexity that helps to avoid overfitting of the model

to the data. This is particularly important for the majority of high-throughput

data, which is of high dimensionality, but small sample size (the ‘large p, small n’

paradigm). The growing interest in biological networks has resulted in much interest

in multivariate statistical methods, and in particular, graphical models.

Graphical models [Pearl, 1988; Lauritzen, 1996] are a class of statistical mod-

els in which a graph is used to represent probabilistic relationships between multiple

interacting components. The nodes correspond to random variables for entities of

interest (e.g. protein activation levels) and the edge structure describes statistical

dependencies between the variables. Thus, the graph structure provides informa-

tion about the joint probability distribution over all variables. Given data for the

variables under study, statistical inference can be performed to determine the graph

structure that best explains dependencies contained in the data. This is often a

challenging problem for several reasons, including paucity of data, noisy data, com-

binatorial and nonlinear interactions, vast numbers of possible graph structures, and

unobserved variables that impact interpretation of results. Graphical models will

be introduced fully in Section 2.3.4 and background information on structure learn-

ing of graphical models will be given in Sections 2.3.5 and 2.3.6. Graph structure
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learning is also known as network inference and we use both terms interchangeably

throughout the thesis.

This thesis concerns the learning of sparse graphical model structure from

high-throughput proteomic data, with a focus on protein signalling networks in

cancer. Graphical model structure learning has received much attention in the

past decade, but most applications have focussed on gene regulatory networks, due

primarily to the abundance of DNA microarray data. Since protein signalling plays a

major regulatory role in the functionality of cells, with aberrant signalling implicated

in cancer, and since signalling proteins are potential cancer therapeutic targets, it

is also important to study molecular networks at the signalling level. We focus

on structure learning of networks that are sparse; that is, networks with a small

number of edges. This emphasis on sparse networks is important for several reasons.

First, sparse network models have fewer parameters and so help to avoid statistical

overfitting. Second, sparse networks are easier to interpret and thereby facilitate

hypothesis generation. Third, the true underlying network structures are often

sparse. This is thought to be the case for protein signalling networks due to the

highly specific enzymatic reactions involved in signalling interactions [Beard and

Qian, 2008].

Graphical model structure learning is used in this thesis to probe important

questions in cancer signalling that have potential implications for cancer therapy.

In Chapter 3 we consider the problem of identifying subsets of signalling proteins

(i.e. protein signatures) that are predictive of drug response. This is a variable

selection problem, but can also be framed as a graphical model structure learning

problem (see Section 2.3.5.2). Chapters 4 and 5 both consider structure learning

of protein signalling networks in cancer; Chapter 4 considers structure learning of

signalling networks for individual cancer cell lines and Chapter 5 considers cancer

subtype discovery and simultaneous structure learning of subtype-specific networks.

The multivariate statistical and computational approaches we employ to address

these problems incorporate a range of methods and models (in addition to directed

and undirected graphical models). These include: Bayesian inference, frequentist

(penalised) maximum likelihood inference, empirical Bayes approaches, linear re-

gression models, Bayesian model selection and model averaging, variable selection,

expectation-maximisation, and clustering. Background information for all these

methods and models, and background on graphical model structure learning and

structure learning in general will be given in Section 2.3.

Chapter 3 describes a Bayesian variable selection approach for identifying

subsets of signalling proteins that jointly influence a biological response of interest.
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Bayesian variable selection methods have been widely used for such inference prob-

lems [Lee et al., 2003; Jensen et al., 2007; Mukherjee et al., 2009; Ai-Jun and Xin-

Yuan, 2010; Li and Zhang, 2010; Yeung et al., 2011]. An ever increasing amount of

ancillary biological information is available, such as signalling pathway and network

structures, that could be incorporated into inference to improve results. Bayesian

approaches allow for such incorporation via biologically informative prior distribu-

tions, yet it is not always clear how information should be selected or weighted

relative to primary data. In the proposed approach, empirical Bayes is used to

automatically select and weight prior information in an objective manner. We de-

velop informative pathway- and network-based priors and demonstrate on synthetic

response data that the approach can aid prior elicitation and guard against misspec-

ification of priors. In addition, the continuous linear model employed, together with

sparsity constraints, results in a fast, exact procedure with very few user-set param-

eters, yet capable of capturing interplay between molecular players. An application

of the approach is made to cancer drug response data.

Chapter 4 describes a graph structure learning approach, using directed

graphical models known as dynamic Bayesian networks (DBNs), and applies the

approach to learn a signalling network for an individual breast cancer cell line from

proteomic time series data. DBNs have previously been used to infer gene regula-

tory networks from time series data [Husmeier, 2003; Perrin et al., 2003; Kim et al.,

2003; Zou and Conzen, 2005; Grzegorczyk et al., 2008; Grzegorczyk and Husmeier,

2011a; Rau et al., 2010; Robinson and Hartemink, 2010; Li et al., 2011]. As dis-

cussed above, the investigation of signalling networks in specific contexts, such as

cancer, is an important problem. Yet, multivariate data-driven characterisations of

context-specific signalling networks remains a challenging and open problem. In-

deed, such multivariate data has only recently been made available as a result of

advances in experimental proteomics [see e.g. Sachs et al., 2005; Sheehan et al.,

2005]. The approach carries out inference within an exact framework and incorpo-

rates existing biology using an informative network prior, weighted automatically

and objectively, relative to primary data, by empirical Bayes. This again results in a

computationally efficient, exact method, with very few user-set parameters. Results

on simulated data place the approach favourably relative to other existing structure

learning approaches, and the network inferred from breast cancer proteomic data is

used to generate hypotheses regarding novel context-specific signalling links, which

are validated in independent experiments.

Chapter 5 describes an approach that combines network structure learning

with clustering, allowing for the discovery of cancer subtypes that differ in terms of

6



subtype-specific signalling network structure. Clustering approaches are often un-

able to, or often make assumptions that preclude, the modelling of cluster-specific

network structure. Hence, if differences exist between clusters at the network level,

these approaches may not be able to recover the correct clustering (or network

structures). The proposed network-based clustering approach exploits recent re-

sults in penalised likelihood estimation of undirected graphical models [Friedman

et al., 2008] and combines this with model-based clustering [McLachlan and Bas-

ford, 1987; Fraley and Raftery, 1998; McLachlan and Peel, 2000; Fraley and Raftery,

2002] to permit simultaneous estimation of cluster assignments and cluster-specific

networks. We perform an empirical investigation comparing several specific pe-

nalisation regimes, presenting results on both simulated data and high-throughput

breast cancer protein signalling data. Our findings allow for some general recom-

mendations to be made regarding penalisation regime and also demonstrate that

network-based clustering can provide improved performance relative to clustering

methods that disregard cluster-specific network structures.

The novel contributions of the thesis are as follows:

� Chapter 3:

– We describe an empirical Bayes approach to automatically select and

weight biologically informative priors in Bayesian variable selection, and

develop examples of such priors based on pathway and network structure

information.

– We present an empirical investigation of variable selection with informa-

tive priors, selected and weighted by empirical Bayes. Results are shown

on both synthetic and drug response data, and comparisons are made to

alternative methods.

� Chapter 4:

– We perform exact inference of DBN structure by exploiting a connection

between DBN structure learning and variable selection. In particular,

posterior edge scores are calculated using exact Bayesian model averag-

ing. Empirical Bayes weighting of prior information is also carried out

within the exact framework, along with relevant diagnostics.

– We present an empirical investigation of the described structure learning

approach. Results are shown on both simulated data and data from a

synthetically constructed network in yeast [Cantone et al., 2009]. The

7



utility of prior information is assessed and comparisons are made to sev-

eral other existing structure learning approaches for time series data.

– We apply the approach to proteomic time series data from a breast can-

cer cell line. This contributes to the small number of recent studies in

the literature concerning structure learning of cancer protein signalling

networks [Guha et al., 2008; Mukherjee and Speed, 2008; Ciaccio et al.,

2010; Bender et al., 2010]. We generate testable hypotheses regarding

novel signalling links, which are then subsequently validated in indepen-

dent experiments (carried out by Gordon Mills’ lab at MD Anderson

Cancer Center, Houston). To the best of our knowledge, this is the first

application of DBN structure learning to protein signalling time series

data, and the first application of structure learning to protein signalling

networks in cancer that results in independently validated hypotheses.

� Chapter 5:

– We describe a network-based clustering approach that permits simultane-

ous estimation of cluster assignments and cluster-specific networks. The

approach is similar to the one proposed by Zhou et al. [2009], but while

they focus on clustering in combination with variable selection, our focus

is on simultaneous clustering and network structure learning. In addi-

tion, we propose a more general form for the penalisation term than that

in Zhou et al. [2009].

– We present an empirical investigation comparing several specific penal-

isation regimes, using both simulated data and high-throughput breast

cancer protein signalling data. General recommendations regarding pe-

nalisation regime are proposed based on the results.

– The application to breast cancer data leads to the biologically interesting

finding that heterogeneity between cancer subtypes at a transcriptional

level is also reflected at the level of signalling network structure.

The thesis is organised as follows:

In Chapter 2 background information relevant to the thesis is provided. This covers

biology and experimental approaches relevant to the applications, and methodolog-

ical background. Chapter 3 presents a Bayesian variable selection method incor-

porating pathway- and network-based prior information, selected and weighted in

an automatic, objective manner using an empirical Bayes formulation. The method

is applied to discover subsets of signalling proteins that influence drug response.
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In Chapter 4 context-specific structure learning of a signalling network in a breast

cancer cell line is performed using a dynamic Bayesian network approach. The re-

sults lead to the generation of hypotheses regarding novel signalling links and their

subsequent independent validation. Chapter 5 presents a study where clustering

and network structure learning is combined, allowing for the simultaneous discovery

of cancer subtypes and subtype-specific signalling network structure. Chapters 3-5

each end with a discussion of methods, results and directions for future work that

are specific to the individual Chapter. Chapter 6 presents a general discussion con-

taining points relevant to the thesis as a whole.
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Chapter 2

Background

In this Chapter, we describe the background material relevant to this thesis. The

focus of this thesis is the inference of sparse graphical model structure, where the

graph structure represents protein signalling networks in cancer cells, or dependen-

cies between signalling components and a response of interest. Section 2.1 outlines

the biological process of protein signalling and its importance in cancer biology. Sec-

tion 2.2 describes the various experimental techniques and technologies available for

assaying signalling proteins, and Section 2.3 provides background on the statistical

models and methods employed in the subsequent Chapters.

2.1 Biological background

2.1.1 Protein synthesis

Cells are the basic building blocks of living organisms. Prokaryotes, such as bacteria,

are organisms that do not have cell nuclei or other complex cell structures and are

mostly unicellular. In contrast, eukaryotes contain cell nuclei and other membrane

enclosed entities such as mitochondria. All multicellular animals and plants, and

some unicellular organisms such as yeast are eukaryotes. Proteins are integral to

the majority of processes that occur within cells, and thus have a key role in all

living organisms. Examples of protein function in cellular processes include, acting

as enzymes for metabolic reactions, playing a part in forming and maintaining cell

structure, aiding cell motility, and communicating inter- and intra-cellular signals.

Proteins are compounds consisting of linear polymer chains, which are built

from a sequence of amino acids. These sequences define the structure and function

of each type of protein in the cell, and are determined by genes. Genes are func-

tional segments of DNA that code for proteins. Deoxyribonucleic acid (DNA) is
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Figure 2.1: Protein synthesis and genetic regulation. Proteins are synthesised
from DNA via production of mRNA. Synthesised proteins can directly or indirectly
regulate gene expression. See text for details.

contained in the cell nucleus (in eukaryotes) and is a double-helix consisting of two

long polymers composed of nucleotides adenine (A), guanine (G), cytosine (C) and

thymine (T). The sequence of nucleotides are genetic instructions for development

and functioning of the organism, carried out through production of proteins. All

cells contain the same DNA, but the amount of each protein (protein expression)

varies. This enables formation of cells of differing types and control of the processes

within these cells.

The synthesis of proteins from DNA occurs via the production of ribonu-

cleic acid (RNA), as stated by the central dogma of molecular biology. The main

steps involved are transcription, splicing and translation as shown in Figure 2.1. In

transcription, a protein called RNA polymerase copies the information contained

in a gene into messenger RNA (mRNA), using the DNA sequence as a blueprint.

Once transcribed the mRNA is usually modified before it can be translated into

protein. An example of such a modification is RNA splicing, which removes sections

of the RNA. The removed sections are known as introns and the remaining sections,

known as exons, are spliced together. In translation, the spliced mRNA is synthe-

sised into a protein by components of the cell known as ribosomes (usually found

in the cytoplasm). Ribosomes read the mRNA sequence in triplets of nucleotides

called codons, which specify amino acids to add to a growing peptide chain. Once

translation is complete the protein folds into a complex three-dimensional structure.

The expression of genes (i.e. production of functional gene products) is highly

regulated to control the amounts of protein produced, with regulation occurring in

all steps of the process described above. One of the key ways gene expression

is regulated is at the transcriptional level by transcription factors. Transcription
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factors are proteins that attach to the promoter region of a gene and activate or

inhibit expression by promoting or blocking the recruitment of RNA polymerase.

This gives rise to the notion of gene regulatory networks (GRNs). If a protein

produced by an activated gene is a transcription factor, it can enter the nucleus and

activate or inhibit expression of other genes. Thus, there is a regulatory relationship

between the gene that codes for the transcription factor and the genes that the

transcription factor binds to. This can be described by a network where nodes

are genes and edges represent the regulatory relationships between them. However,

regulatory relationships are often not direct; for example, a transcription factor

may need to undergo a post-translational modification before being able to bind to

a gene, or a gene may code for a protein that indirectly influences gene expression

via its role in a signalling pathway or via it forming a complex with a transcription

factor. GRNs are used to represent these indirect relationships also.

There is a substantial body of literature concerning structure learning of

GRNs from gene expression data [see e.g. Bansal et al., 2007; Hecker et al., 2009, and

references therein]. Due to widespread availability of high-throughput technology

capable of performing genome-wide measurements, such as DNA microarrays and,

more recently, RNA-sequencing, these network inference methods typically use data

at the mRNA level, rather than the protein level. While mRNA levels may be

correlated with total protein levels (although this has been shown to not always

be the case [Greenbaum et al., 2003]), post-translational modifications (PTMs) of

proteins cannot be detected at the genomic level. PTMs are chemical modifications

of the translated protein that can change the function of a protein or regulate its

activity. Indeed, the number of distinct proteins in a cell is substantially more

numerous than the number of genes. This complexity of the proteome is partly

contributed to PTMs, with RNA splicing being another key process by which distinct

proteins are synthesised from a single gene. PTMs are known to play a key role in

cellular function and are also implicated in development and persistence of disease,

as we shall discuss below. Thus, directly measuring and studying proteins and their

PTMs can provide important insights into cellular processes and their dysregulation

in disease, that would be hidden in genomic level studies. Examples of PTMs include

those that attach certain chemical groups to specific amino acid residues, such as

phosphates or acetates, or those that make structural changes to the protein, for

example cleavage by a protease. Below we consider phosphorylation (the addition

of phosphate groups), one of the most common PTMs [Khoury et al., 2011], and

the role it plays in intracellular signal transduction, in particular in the context of

cancer.
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2.1.2 Protein signalling

Protein signalling (also referred to as signal transduction) is the mechanism by which

proteins on the cell membrane receive external signals and transduce them into the

cell, where proteins communicate to process the signal and often transmit it to the

cell nucleus to ultimately achieve a cellular response such as cell proliferation. In

this way, cells are able to communicate with each other and adapt to their external

environment. We now outline in more detail the mechanisms involved, using the epi-

dermal growth factor (EGF) signalling pathway (also known as the ErbB pathway)

as an illustration. The EGF signalling pathway is known to often be dysregulated in

cancer cells; we discuss how dysregulation of signalling is central to carcinogenesis

below and here focus on signalling mechanisms in a normal cell. A schematic of the

EGF pathway is shown in Figure 2.2.

Central to protein signalling pathways are protein kinases. Protein kinases

are enzymes that remove a high-energy phosphate group from ATP and transfer

it to specific amino acids in other proteins, a process called phosphorylation (see

Figure 2.3). The phosphate group is usually attached to one of three amino acids;

serine, threonine or tyrosine. Serine/threonine kinases act on both serine and thre-

onine residues and are the most common type of kinase, while tyrosine kinases act

on tyrosine residues. Phosphorylation of a protein leads to a conformational change

in its structure, causing it to become ‘activated’. It is a reversible event; proteins

can be ‘deactivated’ through removal of phosphate groups by enzymes called phos-

phatases. This mechanism allows signals to be transmitted through the cell with

high levels of specificity and precision.

Signal transduction begins with the activation of a protein on the cell mem-

brane, known as a receptor. In the majority of cases, activation occurs through

binding of an extracellular ligand to the receptor. The ErbB receptors are a family

of four receptor tyrosine kinases (RTKs), a specific type of transmembrane recep-

tor. ErbB1 (EGFR; epidermal growth factor receptor), the first of the four ErbB

family RTKs to be discovered, can be activated by several ligands, including EGF

(see Figure 2.2). Growth factors are substances that stimulate cellular proliferation.

ErbB1 receptors consist of an extracellular ligand-binding domain, a transmembrane

domain and an intracellular protein tyrosine kinase domain. Binding of a ligand to

ErbB1 enables formation of a homodimer with other bound ErbB1 receptors. This

brings pairs of receptors into close proximity with one another, allowing the intra-

cellular kinase domain of each receptor to phosphorylate the other receptor. This

is known as autophosphorylation or transphosphorylation and leads to a conforma-

tional change that results in ‘activation’ of the receptors, i.e. the signal has now been
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Figure 2.2: The EGF (ErbB) signalling pathway. (a) Ligands bind to cell
surface receptors, leading to their activation. (b) Activated receptors transmit the
signal to adaptor proteins which form a bridge between the receptor and various
signalling pathways. These pathways consist of kinases that transmit the signal
down to the cell nucleus via cascades of phosphorylations, resulting in activation of
a transcription factor and therefore regulation of gene expression. (c) This results in
changes in various cellular functions, such as growth and differentiation. Reprinted
by permission from Macmillan Publishers Ltd: Molecular Cell Biology [Yarden and
Sliwkowski, 2001], copyright (2001).
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transduced to within the cell. As well as forming homodimers with other ErbB1

receptors, heterodimers with other members of the ErbB receptor family can also

be formed. Indeed, ErbB2 (also known as HER2) does not have an extracellular

ligand binding domain and is activated by forming heterodimers with other family

members and homodimers with other ErbB2 receptors. ErbB3 has no intracellular

kinase domain and so must also form heterodimers. Finally, ErbB4 is more similar

to ErbB1 having both extracellular ligand binding and intracellular kinase domains.

In some cases, activation of a receptor by a ligand has a direct causal effect on

the behaviour of the cell, or an indirect effect via a simple signal transduction mech-

anism. For example, activation of the Notch receptor causes its intracellular domain

to be released from the cell membrane. The Notch fragment can then migrate to

the cell nucleus where it acts as a TF, causing a change in gene expression and thus

a change in cell behaviour due to different proteins being produced. However, in

many cases, the signal transduction mechanism is much more complex, involving

protein-protein interactions (physical binding of two or more proteins) and cascades

of protein phosphorylations; this is the case for EGF signalling. Phosphorylation of

RTKs creates binding sites for proteins with a SH2 1 domain. An example of such a

protein is Grb2, which also has a SH3 domain. Grb2 then binds, via its SH3 domain,

to a protein called Sos, bringing Sos to the cell membrane where protein Ras is lo-

cated. Proteins such as Grb2, which function as bridges between two other proteins

(here, the RTK and Sos), are called adaptor proteins. Sos can then interact with

and induce activation of Ras, a key intracellular signal transducer that transmits

the signal to several pathways, including the MAPK/Erk and Akt pathways. These

pathways involve signalling cascades of kinases. For example, in the MAPK/Erk

pathway (see Figure 2.2), activation of Ras brings the serine/threonine kinase Raf

to the cell membrane and binds to it, leading to its activation. The activated ki-

nase Raf then phosphorylates the kinase MEK, which in turn phosphorylates the

kinase MAPK (also known as Erk). In these kinase cascades, phosphorylation of a

kinase leads to conformational changes and its functional activation, enabling it to

phosphorylate and activate the next kinase in the pathway. Phosphorylated MAPK

can then translocate to the nucleus, where it phosphorylates TFs, regulating their

activity. In this way, the signal is passed down through the cell and into the cell

nucleus, resulting in changes in gene expression and therefore regulation of cellular

processes such as cell growth, differentiation and apoptosis.

It is important to note that, in addition to regulating gene expression, protein

1Protein (and protein domain) names are usually referred to using abbreviations. For example,
HER2 stands for Human Epidermal growth factor Receptor 2, and SH2 stands for Src Homology
2. We use the abbreviated forms in this thesis.
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signalling can also affect cell behaviour in other, more direct ways. For example,

the intracellular serine/threonine kinase Akt phosphorylates the protein Bad, which

plays a role in promoting apoptosis; phosphorylation inhibits its pro-apoptotic effect.

Further details of protein signalling in general can be found in Alberts et al.

[2008, Chapter 15] and Weinberg [2006, Chapters 5 & 6], and of signalling in the

ErbB network in Yarden and Sliwkowski [2001].

2.1.3 Protein signalling and cancer

Cancer is a genetic disease; many carcinogens (cancer-causing agents) cause alter-

ations to DNA sequences. These alterations range from small single point mutations

to larger aberrations such as deletions, insertions or translocations. Most mutations

occur in somatic (body) cells and so, unlike germline mutations, are not passed

on to offspring which can lead to a hereditary predisposition to developing cancer.

However, somatic mutations can be passed on to new cells in the process of cell

division. Cells have defense mechanisms such as DNA repair to correct mutations

before cell division occurs, or if the DNA is unable to be repaired, apoptosis destroys

the cell to prevent persistence of mutations in new cells. Evasion of these defense

mechanisms and alterations in cell proliferation and differentiation processes can

lead to carcinogenesis.

There are two main types of genes in which mutations can lead to develop-

ment of cancer; oncogenes and tumour suppressor genes. Oncogenes are mutated

genes that cause over-expression or an increase in activity of the genes protein

product, which leads to enhanced cell proliferation and cell survival. The normal,

unmutated version of an oncogene is referred to as a proto-oncogene. Tumour sup-

pressor genes are inactivated by mutation and code for proteins that inhibit cell

proliferation or promote apoptosis. Thus, inactivation of these genes again results

in uncontrolled cell proliferation.

As described above, protein signalling pathways play a crucial role in most

cellular functions, including cell proliferation, differentiation and apoptosis. Dys-

regulation of signalling pathways is implicated in most, if not all, of the alterations

in cell physiology that lead to carcinogenesis, described by Hanahan and Weinberg

[2000, 2011] and outlined in the Introduction. Oncogenes often code for proteins in-

volved in mitogenic signalling pathways such as the EGF pathway; that is, signalling

pathways that result in cell proliferation.

An example of how a genetic mutation results in aberrant signalling and

therefore development of cancer is given by the ErbB2 oncogene, and its protein

product, the ErbB2 (HER2) receptor in the EGF pathway in breast carcinomas.
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The ErbB2 gene was found to be amplified (i.e. replication of the section of DNA

containing the gene results in extra copies of the gene) in approximately a third of

breast tumours [Slamon et al., 1987]. This amplification leads to overexpression of

the RTK HER2. As described above, HER2 does not require binding of a ligand to

allow dimerisation; it is in a constitutively active conformation and so is free to bind

with other HER2 receptors or other RTKs in the EGFR family. Heterodimers con-

taining HER2 are formed preferentially and generate stronger intracellular signals

than other combinations [Yarden and Sliwkowski, 2001]. Therefore, overexpression

of HER2 leads to constitutive stimulation of Akt and MAPK pathways, conferring

a growth advantage to the tumour cells (due to enhanced cell survival and cell pro-

liferation). Breast cancers with an amplified ErbB2 gene are associated with short

survival times and therefore poor prognosis [Slamon et al., 1987; Sørlie et al., 2001].

However, prognosis has been improved due to targeted therapies, which we discuss

further below. Further details of the mechanisms involved in HER2 overexpression

in breast cancer can be found in Emde et al. [2011].

In addition to mutations that dysregulate a signalling pathway through over-

expression of a receptor, mutations can also affect other intracellular signalling trans-

ducers. An example of this type of mutation is given by the Abl oncogene in CML

(chronic myelogenous leukemia). Abl codes for a nuclear tyrosine kinase that plays a

role in apoptosis. The mutated version of Abl arises due to chromosomal transloca-

tion of the Abl gene to within the Bcr gene, resulting in a new fusion gene, Bcr-Abl.

This fusion gene codes for a fusion protein, located in the cytoplasm rather than the

nucleus, with constitutive activation of the Abl tyrosine kinase. The result is aber-

rant kinase signalling that affects the cell cycle, leading to uncontrolled proliferation

of white blood cells (i.e. leukemia). Targeted therapies have also been developed

for this mutation.

Further details regarding oncogenic signalling pathways can be found in

Weinberg [2006, Chapters 5 & 6].

2.1.4 Targeted cancer therapy

We introduced targeted cancer therapy and the move towards stratified and per-

sonalised medicine in the Introduction. Recall that targeted therapies are drugs

that target specific molecules involved in tumour formation and progression, and

so interfering with these molecules can block the growth of cancer cells. Many of

these targets are signalling proteins, which we focus on here and give some specific

examples.

The first molecular target for cancer therapy was the estrogen receptor (ER),
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an intracellular receptor that activates when bound by the hormone estrogen. Ap-

proximately 75% of breast cancers are dependent on ER for proliferation. Activated

ER can usually be found in the cell nucleus, where it acts as a transcription factor,

regulating genes that control cell proliferation. In the 1970s a drug called Tamoxifen

was approved for use against breast cancer. Tamoxifen is a competitive antagonist;

that is, it competes with estrogen for binding of ER and binding does not lead to

activation of ER. Therefore, it can prevent estrogen from binding and activating

ER and thereby blocks cancer cell growth. However, it was not until the 1990s that

analysis of clinical trial results demonstrated that Tamoxifen only provides benefits

in ER positive early breast cancer tumours [EBCTCG (Early Breast Cancer Trial-

ists’ Collaborative Group), 1998]. Tamoxifen is an effective targeted breast cancer

adjuvant therapy and has also been used as a preventive treatment [Jordan, 2006].

Trastuzumab (market name Herceptin) is a monoclonal antibody that binds

selectively to the HER2 receptor and is used to treat breast cancer. Approximately

a third of breast cancers are HER2 positive; that is, they overexpress the HER2

receptor (see above for details of aberrant HER2 signalling). The mechanism of

action of Trastuzumab is not completely understood. Possibilities include the pre-

vention of HER2 activation and therefore a reduction in the downstream signalling

that leads to uncontrolled cell proliferation, antibody-dependent cell cytotoxicity

(ADCC; binding of Trastuzumab to HER2 induces an immune response that at-

tacks the cell), suppression of tumour angiogenesis (growth of new blood vessels), or

removal of HER2 from the cell surface. Laboratory tests are performed on tumour

samples to determine if it is HER2 positive, and will therefore respond to treatment

with Trastuzumab. It was approved in 1998 and was one of the first treatments to

be applied selectively based on molecular characteristics of tumours. When com-

bined with chemotherapy, treatment with Trastuzumab results in improved survival

and response rates. However, it can have severe side effects such as heart disease

and resistence to the drug is usually developed within one year of commencement

of treatment. Further details regarding trastuzumab can be found in Ménard et al.

[2003]; Emde et al. [2011] and references therein.

An important class of drugs are those that inhibit the kinase activity of

intracellular signalling proteins. An example of such a drug is the small molecule

inhibitor Imatinib (market name Glivec or Gleevec) used to treat CML by binding to

the Bcr-Abl fusion protein that is constitutively active in CML (as described above).

Kinase inhibitors have high specificity for certain kinases and bind to the catalytic

kinase domain, which blocks the binding of ATP or the substrate (or both), thereby

preventing phosphorylation of the kinases downstream target (see Figure 2.3). For
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Figure 2.3: Protein kinases and mechanism of action of kinase inhibitors.
Left: Protein kinases have a catalytic kinase domain that transfers a phosphate
group from ATP to specific amino acids on protein substrates; a process called
phosphorylation. This leads to ‘activation’ of the substrate and, in this way, a signal
is transduced through the cell. Right: Kinase inhibitors block kinase signalling by
binding to the kinase domain, which prevents binding of ATP or the substrate (or
both) and therefore blocks phosphorylation of the substrate.

example, Imatinib binds to the ATP binding site of Abl. Imatinib has transformed

CML treatment, improving five year survival rates from 30% to approximately 90%.

Kinase inhibitors are used in Chapters 3 and 4. In Chapter 3 an Akt inhibitor

is used in the application of the variable selection approach to drug response data.

In Chapter 4 Akt and Mek inhibitors are used to validate hypotheses generated

from inference of signalling networks. In order to investigate whether a kinase

inhibitor has the desired effect, it is necessary to monitor the targets of the kinase.

For example, in the Raf-Mek-Erk cascade, a Mek inhibitor does not reduce the

phosphorylation level of Mek, but the reduction in Mek’s enzymatic activity should

lead to a reduction in the phosphorylation level of Erk.

Many emerging targeted therapies are currently in clinical trials; for example,

an overview for breast cancer is given by Alvarez et al. [2010].

2.1.5 Protein signalling networks

We have described above how signalling plays a key role in development and pro-

gression of cancer, and as a result, successful targeted therapies that interfere with

specific signalling proteins have been developed. Therefore, it is important to study

cells, both normal and cancerous, at the signalling network level. In particular,
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investigating phosphorylation of proteins can aid the discovery of new drug targets

and cancer biomarkers [Yu et al., 2007].

As described in the Introduction, signalling networks have complex structures

and mechanisms. Therefore, multivariate approaches capable of modelling multiple

interacting components are required in order to obtain a more complete understand-

ing of normal signalling processes and their dysregulation in cancer. For example,

consider structure learning of signalling networks. Interactions between signalling

proteins were traditionally discovered by focussing on a single protein and perform-

ing multiple experiments to determine its upstream regulators and downstream tar-

gets (an example of such a discovery is the well-studied interaction between kinases

Akt and GSK3; Akt phosphorylates GSK3 [Brazil and Hemmings, 2001]). Advances

in high-throughput proteomics and the resulting multivariate data, together with

advances in computing, have rendered feasible structure learning with multivariate

models [Sachs et al., 2005; Mukherjee and Speed, 2008; Bender et al., 2010], and

in specific contexts such as cancer, where signalling networks are thought to be

‘rewired’ [Pawson and Warner, 2007; Yuan and Cantley, 2008].

The protein signalling networks described above, and illustrated in Fig-

ure 2.2, contain several types of mechanisms, including protein-protein interactions

and phosphorylation. In this thesis, we consider only phosphorylation signalling.

This means that edges in the phosphorylation signalling network may not represent

direct causal mechanisms. For example, an edge from a receptor to an upstream

kinase (e.g. Raf) would be an indirect interaction via unobserved adaptor proteins

(e.g. Grb2). Moreover, the signalling networks we consider do not contain any

spatial information which may play an important part in signalling; for example,

migration of an activated protein from the cytoplasm into the nucleus, or internal-

isation of a receptor. However, this simplified representation can still be useful for

many analyses as we demonstrate in Chapters 3-5 where such signalling networks

are used as prior information and as the object of inference.

It is worth emphasising that the phosphorylation signalling networks consid-

ered here are not the same as protein-protein interaction networks (PPI networks),

which also receive significant attention in the literature. Protein-protein interaction

networks mostly focus on protein interactions where two or more proteins physically

bind to form a complex. Phosphorylation and PPI networks are, however, related.

For example, phosphorylation of a protein may be required before a protein-protein

interaction can occur [Shaywitz et al., 2002]; this is the case for interactions between

RTKs and adaptor proteins as described above.
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2.2 Experimental background

In this section, we give a brief overview of several protein assays that can be used

to probe protein phosphorylation. Such analyses are challenging due to the low

abundance of phosphoproteins, low stoichiometries, and highly dynamic phospho-

rylation process. In recent years, several high-throughput approaches have been

developed, although we note that these technologies are not yet on the same scale

as DNA microarray and next generation sequencing technologies. We focus mainly

on reverse phase protein arrays, which provide the data for our applications in

Chapters 4 and 5.

2.2.1 Western blot

A Western blot [Burnette, 1981], also called a protein immunoblot, is used to detect

the amount of specific proteins (at phosphoform and isoform level, if desired) in a

sample. The procedure is as follows: Cells are lysed to release the proteins. The pro-

teins are then separated according to their molecular weight by gel electrophoresis,

usually SDS-PAGE (Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis).

This process uses an electric field to obtain separation. Proteins are then transferred

from the gel to a special membrane, while retaining the same pattern of separation

as on the gel; this is the ‘blotting’ part of the procedure. The membrane is probed

for a protein of interest using antibodies. A primary antibody binds to the protein

(ideally with high specificity) and then a secondary antibody is applied which binds

to the primary antibody. The secondary antibody is labelled with a reporter en-

zyme, resulting in production of luminescence in proportion to the amount of protein

bound by the primary antibody. This luminescence can then be ‘photographed’.

Western blots are widely-used to assess phosphorylation states of proteins.

They have reasonably good sensitivity and specificity, but require a relatively large

amount of sample and significant human labour effort. Hence, they are not par-

ticularly suitable for large-scale proteomic analyses. Western blots are used in

Chapter 4 to validate hypotheses generated from our statistical data analysis (see

Figure 4.9(c)).

2.2.2 ELISA

Enzyme-linked immunosorbent assay (ELISA; [Engvall and Perlmann, 1971]) can

also be used to determine the amount of (phospho)protein present in a sample.

Here, we describe the ‘Sandwich’ ELISA method. A microplate containing a num-

ber of wells (often 96) is coated with a capture antibody specific to the protein of
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interest (but not specific to the phosphoform of interest). The sample (e.g. cell

lysate) containing the protein of interest is added to the plate, resulting in bind-

ing of the protein to the capture antibody. A detection antibody specific to the

protein phosphoform of interest is added, and then a secondary antibody with re-

porter enzyme is used, as in the Western blot assay, to determine the amount of

phosphoprotein in the sample.

The results of ELISA are more easily quantifiable than for Western blot and

the approach has higher specificity and sensitivity (due to the use of two antibodies).

However, it is still not a high-throughput method. It is widely used in clinical

settings, for example to perform HIV screening tests.

2.2.3 Mass spectrometry

Advancements in mass spectrometry (MS) technology and techniques over the last

decade have enabled its use for high-throughput phosphoproteomic analyses. There

are numerous alternative MS procedures and it is a very active field of research.

Since MS data is not used in this thesis, we give only a very brief and general

overview. Further details of mass spectrometry techniques and their application to

(oncogenic) protein signalling can be found in Nita-Lazar et al. [2008]; Harsha and

Pandey [2010]; Choudhary and Mann [2010].

The general MS procedure is as follows: Proteins are isolated from cell lysate

and may also be separated by gel electrophoresis. They are then degraded into pep-

tides; MS can be performed on whole proteins, but is then less sensitive. The pep-

tides enter the mass spectrometer and are separated, vapourised and then ionised.

The ions are then separated according to their mass-to-charge ratio, detected and

quantified, resulting in a mass spectrum showing intensities against ratios. Proteins

can then be identified using database matching algorithms. Quantitative MS tech-

niques such as SILAC (stable isotope labelling by amino acids in cell culture) can

be used to obtain relative abundances of proteins in different samples.

In the past, MS approaches have focussed on unbiased discovery of pro-

tein phosphorylation sites and their quantification. More recently, targeted MS

approaches have been used to, for example, quantify temporal dynamics in specific

signalling pathways [Wolf-Yadlin et al., 2007], and has helped to improve repro-

ducibility of MS results.

Probing phosphoproteins by MS is challenging due to their often low abun-

dance relative to non-phosphorylated proteins. Enrichment methods are usually

employed to help identify the phosphoproteins. The technology is capable of detect-

ing thousands of phosphorylation sites in a single experiment.
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2.2.4 Flow cytometry

Flow cytometry [Herzenberg et al., 2002; Perez and Nolan, 2002] can measure the

abundance of phosphoproteins on a single-cell level, in a high-throughput manner.

A laser beam is aimed at a hydrodynamically focussed stream of liquid. Cells are

passed through this stream, causing a scattering of the light beam. Fluorescent

chemicals in the cell, attached to antibodies specific to certain phosphoproteins, are

excited by the laser beam and emit light. The scattered and fluorescent light is

measured by detectors allowing information to be obtained about the cell, such as

abundance of phosphoproteins.

Flow cytometry can obtain thousands of samples (measurements from thou-

sands of cells) in seconds and is also capable of sorting a heterogeneous mixture of

cells in a technique called FACS (fluorescence-activated cell sorting). In contrast to

experiments using lysed cells, cells are not destroyed during analysis by flow cytom-

etry. Another advantage of flow cytometry is that variability on a single-cell level

can be observed. Non-single-cell approaches assume that behaviour of cells can be

captured from the population average (lysed cells). However, stochasticity at the

single-cell level may be important in determining cell behaviour.

The number of phosphoproteins that can be measured simultaneously is,

however, limited. This is due to spectral overlap between fluorescent markers, mean-

ing that in practice, only up to ten proteins can be measured. Background noise

(fluorescence) can also cause problems.

In Sachs et al. [2005] flow cytometry was used to measure 11 phosphoproteins

and phospholipids in thousands of individual immune system cells, and the data was

used to infer a signalling network. We use this data in simulations in Chapter 3. Flow

cytometry is also used in clinical settings to diagnose blood cancers, for example.

2.2.5 Reverse phase protein arrays

Reverse phase protein arrays (RPPAs), first introduced in 2001 [Paweletz et al.,

2001], are a high-throughput technology capable of quantitative measurement of

(phosphorylated) protein levels in thousands of biological samples simultaneously.

The experimental procedure uses antibodies to detect proteins, and in this respect

it is similar to Western blots and ELISA. The essence of the procedure is illustrated

in Figure 2.4 and outlined below.

Cells are lysed and the solution is robotically spotted onto a nitrocellulose

coated slide. The microarray slide contains many spots in a grid allowing for many

samples to be immobilised and tested simultaneously, usually in replicate and using
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PROTEIN MICROARRAY FORMATS

Protein microarray formats can be divided into two major
classes: forward phase arrays and reverse phase arrays
(RPAs).1 In the forward phase array format, the analyte(s) of
interest is captured from the solution phase by a capture
molecule, usually an antibody, that is immobilized on a sub-
stratum and acts as bait molecule (1, 2) (Fig. 1). In a forward
phase array, each spot contains one type of immobilized
antibody or bait protein. Each array is incubated with one test
sample such as a cellular lysate or serum sample representing
a specific treatment condition, and multiple analytes from that
sample are measured simultaneously. In contrast, the RPA
format immobilizes an individual complex test sample in each
array spot such that an array is comprised of hundreds of
different patient samples or cellular lysates. In the RPA format,
each array is incubated with one detection protein (i.e. anti-
body), and a single analyte end point is measured and directly
compared across multiple samples (17, 24, 26–29) (Fig. 1).
Probing multiple arrays spotted with the same lysate concom-
itantly with different phosphospecific antibodies provides the

effect of generating a multiplex readout. Efforts are ongoing in
our laboratory to multiplex the arrays even further through the
use of dual color infrared dye-labeled antibodies as well as
quantum dots. Using these technologies, it is hoped that
multiple analytes can be measured on the same spot on the
same array (30, 31). The utility of reverse phase protein mi-
croarrays lies in their ability to provide a map of known cell
signaling proteins. Identification of critical nodes, or interac-
tions, within the network is a potential starting point for drug
development and/or the design of individual therapy regimens
(21, 22). The array format is also amenable to extremely
sensitive analyte detection (Fig. 2) with detection levels ap-
proaching attogram amounts of a given protein and variances
of less than 10% (1, 32). Detection ranges could be substan-
tially lower in a complex mixture such as a cellular lysate;
however, the sensitivity of the RPAs is such that low abun-
dance phosphorylated isoforms can still be measured from a
spotted lysate amount of less than 10 cell equivalents. This
level of sensitivity combined with analytical robustness is
critical if the starting input material is only a few hundred cells
from a biopsy specimen.

The reverse phase protein array has demonstrated a unique
ability to analyze signaling pathways using small numbers of
cultured cells or cells isolated by laser capture microdissec-
tion from human tissue procured during clinical trials (17, 24,
26, 27). Using this approach, microdissected pure cell popu-
lations are taken from human biopsy specimens, and a protein
lysate is arrayed onto nitrocellulose-coated slides (Fig. 3). Key
technological components of this method offer unique advan-
tages over tissue arrays (33) or antibody arrays (34, 35). First
the RPA can use denatured lysates so that antigen retrieval,
which is a large limitation for tissue arrays, is not problematic.
Protein microarrays can also consist of non-denatured lysates
derived directly from microdissected tissue cells so that pro-
tein-protein, protein-DNA, and/or protein-RNA complexes
can be detected and characterized. Each patient sample is
printed on the array in serial dilutions, providing an internal
standard. When an internal reference standard of known and
fixed amounts of the analyte are applied to the same array, a
direct and quantitative measurement of the phosphorylated
end point can be attained within the linear dynamic range of
the assay. Finally RPAs do not require direct labeling of the
patient sample as a readout for the assay, which provides a
marked improvement in reproducibility, sensitivity, and ro-
bustness of the assay over other techniques (36).

The RPA platform has been used to explore a variety of
signaling pathways involved in malignant progression and
tumor biology (17, 26–29, 37). For example, in a study of
prostate tissue, pathway profiling of microdissected cells from
normal, stroma, and prostate tumors revealed the preliminary
finding that activation of protein kinase C � is down-modu-
lated in prostate cancer progression (26). If validated, this
finding could have profound effects on the rationale behind
some current therapies (38) and illustrates the importance of1 The abbreviation used is: RPA, reverse phase array.

FIG. 1. Classes of protein microarray technology. Forward phase
arrays (top) immobilize a bait molecule such as an antibody designed
to capture specific analytes with a mixture of test sample proteins.
The bound analytes are detected by a second sandwich antibody or
by labeling the analyte directly (upper right). Reverse phase arrays
immobilize the test sample analytes (e.g. lysate from laser capture
microdissected cells) on the solid phase. An analyte-specific ligand
(e.g. antibody; lower left) is applied in solution phase. Bound antibod-
ies are detected by secondary tagging and signal amplification (lower
right).

Reverse Phase Arrays for Molecular Network Analysis

Molecular & Cellular Proteomics 4.4 347

Figure 2.4: Protein microarrays. (a) Forward phase protein array. Protein
antibodies are immobilised onto the slide which capture specific (phospho)proteins of
interest (analytes) from cell lysate (a single sample). The analytes are detected using
a sandwich antibody (as in ELISA), together with a labelled secondary antibody,
or the analyte can be labelled directly to allow detection. (b) Reverse phase protein
array. Cell lysates (multiple samples) are spotted onto the microarray slide, which
is then probed with a single (phospho)protein specific primary antibody. A labelled
secondary antibody is used to detect the primary antibody. Multiple slides can be
used, each probed with different antibodies, to detect different proteins of interest.
Figure reproduced from Sheehan et al. [2005].
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dilution series (we explain dilution series further below). The array is then incubated

with a primary antibody that binds specifically to the phosphoprotein of interest.

This antibody is then detected using a labelled secondary antibody (as in ELISA

and Western blot) and signal amplification. The emitted signal is quantified using a

software package. Full details of RPPA protocol can be found in Tibes et al. [2006]

and Hennessy et al. [2010]. If multiple microarray slides are spotted simultaneously

with the same samples, each slide can be probed with a different antibody, thereby

providing readouts for multiple samples and multiple proteins [see e.g. Sheehan

et al., 2005].

The samples are spotted onto the array in dilution series. Protein and phos-

phoprotein concentrations can vary greatly, so accurate measurements over a wide

dynamic range are required. The dynamic range of measurements is extended by

diluting each sample several times and spotting onto the array at each dilution

step. Hence, if the protein concentration in the original undiluted sample is near

saturation, it can still be detected in the diluted samples. Dilution series also aid

the accurate quantification of protein concentrations. Quantification is usually car-

ried out using response curves, that relate the observed signal intensities to the

(phospho)protein concentrations. The fact that a single antibody is used for the

whole slide motivates the use of a single response curve for all samples on the slide.

For the RPPA data used in this thesis, a logistic model was used for the response

curve (R package ‘SuperCurve’ developed by the Department of Bioinfomatics and

Computational Biology in MD Anderson Cancer Center [Hu et al., 2007]).

There are two main types of protein microarrays, of which RPPAs are one.

‘Reverse phase’ refers to the fact that the cell lysate is immobilised on the slide

and the array is probed with an antibody, which is a reversal of the procedure for

antibody arrays, the other type of protein microarray. Antibody arrays are also

referred to as forward phase protein arrays. For the antibody array, antibodies

are immobilised onto the slide which capture proteins of interest from cell lysate.

Each array spot contains a single type of antibody and the array is incubated with

one sample only, providing readouts for multiple proteins from one sample (see

Figure 2.4).

RPPAs are an emerging technology that enable measurements for a single

(phospho)protein of interest to be obtained for hundreds to thousands of samples

in a fast, automated, quantitative and economical manner. Multiple arrays can be

used to probe for multiple (phospho)proteins; tens of proteins are often measured in

the same experiment, providing an advantage over flow cytometry. The technique is

also highly sensitive, requiring very small amounts of sample to enable detection of
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analytes; only 103 cells are required for an RPPA experiment, compared with 108 for

mass spectrometry and 105 for Western blotting. Therefore, while mass spectrome-

try is a promising approach, RPPA is currently more sensitive and cost-effective. An

advantage of RPPAs over antibody arrays is that either fewer antibodies are required

or samples do not need to be directly labelled to allow detection of the analyte of in-

terest. This can improve robustness and reproducibility of results. Also, RPPAs can

use denatured lysates (proteins in the lysate have lost their three-dimensional con-

formation) which can allow antibodies to bind that previously would not have been

able to do so, providing an advantage over tissue microarrays (another reverse-phase

assay).

The main limitation of RPPAs is specificity of primary and secondary an-

tibodies. The signal from a microarray spot could be due to cross-reactivity from

unspecific binding and it is not possible to determine if this is the case from the

RPPA results themselves. Therefore antibodies have to be carefully validated by

Western blotting prior to their use in RPPA assays. Hennessy et al. [2010] is an

example of such a validation study. The number of available validated antibodies is

continuously growing.

RPPAs have been used in many studies to investigate cancer cell signalling,

both in cancer cell lines [Tibes et al., 2006] and in primary tumour samples [Sheehan

et al., 2005]. These studies include the profiling and comparison of active signalling

pathways in different contexts; for example, between primary and metastatic tu-

mours [Sheehan et al., 2005] or between cancer subtypes [Boyd et al., 2008], the

identification of signalling biomarkers that are predictive of response to certain anti-

cancer agents [Boyd et al., 2008], the identification of optimal drug combinations

[Iadevaia et al., 2010] and structure learning of signalling networks [Bender et al.,

2010]. For further studies see, for example, Spurrier et al. [2008]; Hu et al. [2007]

and references therein. RPPAs have promising utility in the development of per-

sonalised therapies; using RPPAs to investigate and compare signalling profiles in

patient tumour cells and normal cells, and to monitor changes in phosphorylation

through time, both pre- and post-treatment, could provide information that guides

the discovery and application of targeted therapies. Indeed, RPPAs are currently

involved in several clinical trials [Mueller et al., 2010].

In Chapter 4, RPPA data for 20 phosphoproteins from a breast cancer cell

line are used for structure learning of a signalling network, and in Chapter 5 RPPA

data for 39 phosphoproteins across 43 breast cancer cell lines covering two breast

cancer subtypes are used for clustering and network structure learning.
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2.3 Methodological background

This section begins by reviewing the linear regression model, which is a core com-

ponent of all the approaches proposed in the following Chapters. Both frequentist

maximum likelihood and Bayesian approaches to inference for the linear model are

outlined and compared. Inference of graphical model structure is often cast as a

model selection problem and this is the route we take in the work here. A general

overview of model selection and model averaging, including standard methods, is

given in Section 2.3.2. We describe the specific case of variable selection in regres-

sion models in Section 2.3.3. In Section 2.3.4 we define and describe some technical

details regarding directed and undirected graphical models. Methods for structure

learning of graphical models are detailed in Sections 2.3.5 and 2.3.6. Several alterna-

tive methods for structure learning of molecular networks, in addition to those based

on graphical models, have been proposed in the literature. We give a brief overview

of some of these approaches in Section 2.3.7. Section 2.3.8 provides background

information on empirical Bayes methods and clustering techniques are considered

in Section 2.3.9.

2.3.1 Linear regression model

Due to its simplicity, interpretability and applicability, the linear regression model

is arguably the most widely used statistical model in data analysis. Interactions

between signalling components are complex and non-linear in nature, and so a linear

model is not likely to be the most accurate representation of the underlying process.

However, as we shall see below, using a Gaussian linear model can result in closed

form expressions for high dimensional integrals and thereby provides significant

computation gains.

The linear regression model assumes that a response variable Y is a linear

combination of p predictor variables X1, . . .Xp,

Y = β0 +
p

∑
j=1

βjXj + ε (2.1)

where {βj} are unknown regression coefficients and ε is a zero-mean noise term. The

predictor variables Xj are often taken to be observed (experimentally measured)

values of variables under study. For example, Y could represent drug response and

Xj phosphorylation levels of cellular proteins. Alternatively, the predictor variables

could also be transformations of measured entities (e.g. log-transform) or basis

expansions. For example, if we initially have one predictor variable X, we could take
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Xj =X
j for j = 1, . . . , p, resulting in p predictor variables with the dependence of Y

on X given by a polynomial of degree p. In what follows, unless stated otherwise,

predictor variables correspond directly to observed values of the variables under

study.

Given a dataset of n samples, let variables Yi and Xij denote the response

and j’th predictor in sample i respectively. Then

Y = Xβ + ε (2.2)

where Y = (Y1, . . . , Yn)
T, X is the n × (p + 1) design matrix with row i given by

(1,Xi1, . . . ,Xip), β = (β1, . . . , βp)
T and ε = (ε1, . . . , εn)

T. We make the standard

assumption that ε ∼ N (0, σ2In) where N denotes a Normal distribution, In is the

n × n identity matrix and σ2 is unknown variance. The linear regression inference

problem is to determine the regression coefficients β from the data (X,Y). The

inferred coefficients can then be used for prediction on new data and to assess the

relative importance of individual predictors in influencing the response. Below we

describe frequentist maximum likelihood and Bayesian approaches to inference for

the linear model.

2.3.1.1 Frequentist maximum likelihood inference approach

In a frequentist formulation parameters Θ = (β, σ2) are treated as fixed and un-

known, while the observed response data Y is regarded as a single realisation of

a repeatable process (with parameters Θ). We note that, in regression, predictor

data X is regarded as fixed and known. Probability statements are interpreted as

the limiting relative frequency as the number of repeats goes to infinity. Parameter

estimation is based on the likelihood function,

L(Θ ∣ Y,X) = p(Y ∣ X,Θ) (2.3)

= N (Y ∣ Xβ, σ2I) (2.4)

The likelihood is the probability of observing the data given parameters Θ

(and predictor values X), and is a function of Θ, but not a probability density

function with respect to Θ. A standard approach to obtain parameter estimates

is by maximising the likelihood; that is, by selecting the parameters that give the

observed data the highest probability. This estimate is known as the maximum
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likelihood estimate (MLE) and we denote it by Θ̂MLE,

Θ̂MLE = max
Θ

L(Θ ∣ Y,X). (2.5)

For the Gaussian linear regression model we have

β̂MLE = (XTX)
−1

XTY σ̂2MLE =
1

n
∥Y −Xβ̂MLE∥

2

2
. (2.6)

where ∥⋅∥2 is the Euclidean norm. We note that β̂MLE is the same as the least

squares estimate for β and that σ̂2MLE is a biased estimator. The unbiased estimator

s2 = n
n−p−1 σ̂

2
MLE is often used. Since these estimates are based on a single realisa-

tion of the data-generating process, estimation uncertainty is based on hypothetical

data that could have been observed. In practice this is achieved using the sampling

distribution of the MLE to perform hypothesis tests and obtain confidence inter-

vals; in regression the sampling distributions are β̂MLE ∼ N (β, σ2 (XTX)
−1

) and

(n − p − 1)s2 ∼ χ2
n−p−1.

2.3.1.2 Bayesian inference approach

A Bayesian analysis of the linear model was first presented by Lindley and Smith

[1972]. In the Bayesian approach, the parameters Θ are unknown, but are regarded

as random variables. Therefore, unlike in the frequentist approach, probability

statements can be made regarding the parameters themselves. In particular, the

distribution over Θ given the observed data is of interest, p(Θ ∣ Y,X). By Bayes’

theorem we have,

p(Θ ∣ Y,X) =
p(Y ∣ X,Θ)p(Θ)

p(Y ∣ X)
(2.7)

∝ p(Y ∣ X,Θ)p(Θ) (2.8)

where p(Y ∣ X,Θ) is the likelihood (2.3) and p(Θ) is a prior distribution over pa-

rameters, assigning probabilities to Θ before observing any response data 2. In the

Bayesian framework, probability is interpreted as ‘degree of belief’ and the prior dis-

tribution allows subjective prior beliefs to enter the analysis. Thus, Bayes’ theorem

combines, in a coherent manner, information about parameters from prior beliefs

(the prior distribution) with information from the observed data (the likelihood),

2We note that technically we should write the prior as p(Θ ∣X), and some prior formulations do
indeed depend on the predictor data. However, for notational simplicity we suppress this possible
dependence.
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to form the posterior distribution p(Θ ∣ Y,X). Since the posterior is a density, it

provides more information about Θ than a single point estimate (such as the MLE)

and allows uncertainty to be intuitively quantified (e.g. with credible intervals),

based on the actual observed data. This is in contrast to the frequentist approach,

where confidence intervals are based on hypothetical datasets that could have been

observed.

One of the challenges of the Bayesian approach is specifying the prior dis-

tribution. While at large sample sizes a (reasonably defined) prior will have a

small influence on the posterior, this is not the case at small sample sizes. One

school of thought in the Bayesian community is that priors should be objective or

‘non-informative’. That is, they should, in some sense, play a minimal role in the

posterior. Such priors can be hard to define, but one approach is to use a so-called

Jeffreys priors, named after Harold Jeffreys [Jeffreys, 1961], which are invariant to

reparameterisation of the parameter space (Bayesian inferences are, in general, not

invariant to such transformations, unlike the MLE). For example, if we assume that

σ2 is known in the linear regression model (2.2), and we take the prior for β to be

flat (i.e uniform; this is a Jeffreys prior), p(β ∣X, σ2) ∝ 1, then by (2.8) the posterior

is proportional to the likelihood,

p(β ∣ Y,X, σ2) ∝ p(Y ∣ X,Θ). (2.9)

Hence it is clear that, under this non-informative flat prior formulation, the max-

imum a posteriori (MAP) estimate for β (the mode of the posterior) coincides

with the MLE. Moreover, it can be shown that the posterior has distribution

N (β̂MLE, σ
2 (XTX)

−1
) [see e.g. Gelman et al., 2003]. So the variance of the poste-

rior is the same as the variance of the MLE. This demonstrates that the frequentist

MLE and Bayesian approaches result in essentially the same inferences in this case;

the main difference is in the interpretation of interval estimates. We note that the

flat prior is improper (the integral over parameter space is infinite). However, in

many cases (as here) an improper prior does not lead to an improper posterior.

Bayes’ theorem enables the posterior to be easily found up to proportionality

(2.8). However, the normalising constant p(Y ∣ X) in (2.7) is required to calculate

actual posterior probabilities and make inferences (other than finding the MAP es-

timate). Except for special cases, this normalising constant, which can be expressed

as an integral,

p(Y ∣ X) = ∫ p(Y ∣ X,Θ)p(Θ)dΘ (2.10)

is not obtainable in closed form. These special cases are where the prior is conjugate;
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that is, the prior has the same parametric form as the posterior [see e.g. Bernardo

and Smith, 1994]. When the prior is not conjugate and the integral above cannot be

evaluated numerically, computational methods are needed to sample from the poste-

rior and calculate posterior probabilities of interest. Conjugate priors therefore offer

substantial computational gains. We refer the interested reader to Bolstad [2010] for

details of methods in computational Bayesian statistics. We briefly mention Markov

chain Monte Carlo methods in Section 2.3.3 below.

A conjugate prior choice for the Gaussian linear model is a normal inverse-

gamma (NIG) distribution; a Gaussian prior for β∣σ2 and an inverse-gamma prior

for σ2,

p(β, σ2) = p(β ∣ σ2)p(σ2)

= N (β ∣ m, σ2V) IG(σ2 ∣ a, b) (2.11)

The inverse-gamma distribution IG(σ2 ∣ a, b) is parameterised as

p(σ2) =
ba

Γ(a)
(σ2)

−(a+1)
exp(−

b

σ2
) . (2.12)

where a, b > 0 and Γ(a) is the Gamma function. We denote the NIG distribution by

NIG(m,V, a, b). The parameters of a prior distribution are referred to as hyper-

parameters. Since the prior is conjugate, applying Bayes’ theorem (2.7) results in a

NIG posterior [see e.g. Denison et al., 2002],

p(β, σ2 ∣ Y,X) = NIG(m∗,V∗, a∗, b∗) (2.13)

where

m∗
= (V−1

+XTX)
−1

(V−1m +XTY) (2.14)

V∗
= (V−1

+XTX)
−1

(2.15)

a∗ = a +
n

2
(2.16)

b∗ = b +
1

2
(mTV−1m +YTY − (m∗

)
T
(V∗

)
−1

m∗
) . (2.17)

The posterior distribution over parameters can be used to obtain a posterior

predictive distribution for new data (Y ′,X′),

p(Y ′
∣ X′,Y,X) = ∫ p(Y ′

∣ X′,β, σ2)p(β, σ2 ∣ Y,X)dβdσ2 (2.18)
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where the first term in the integrand is distributed as N(X′β, σ2I) and the second

is the posterior. Since the posterior is a density, the parameters can be marginalised

(integrated) out. This has advantages over simply plugging a point estimate for the

parameters (e.g. the MLE) into p(Y′ ∣X′,β, σ2), because no information is lost and

it takes parameter uncertainty into account. For the NIG prior, the posterior pre-

dictive distribution (2.18) has a Student distribution with mean X′m∗ [see Denison

et al., 2002].

2.3.2 Model selection and averaging

Selection of an appropriate model is a trade-off between fit to (training) data and

predictive capability on independent (test) data. A model with higher complexity

(more parameters) will have an improved fit to data, but will not necessarily provide

better predictions because the model may be overfitting the data. We illustrate this

point with an example in linear regression. Suppose the true underlying relationship

between the response Y and a predictor variable X is a cubic polynomial. However,

the model we consider is a polynomial with degree k. That is, (2.1) with Xj = X
j

for j = 1, . . . , k. Here, k can be interpreted as model complexity, with larger k

producing a model with higher complexity (more parameters). This model is fitted

to training data, using least squares (i.e. the MLE), for various values of k, and

predictive capability is then assessed on independent test data. Figure 2.5 shows

average training data error and average test data error, as a function of k. Training

data and test data error are given by the sum of squared error loss (SSE), where

SSE(β̂,X,Y) = ∥Y −Xβ̂∥
2

2
(2.19)

and β̂ is estimated on the training data (other loss functions could also be used). As

k (model complexity) increases, the model fits the training data increasingly well.

However, if k gets too large the model is unable to generalise to new data, resulting

in large test data error. Equally, if k is too small, the model does not have enough

flexibility to give a reasonable approximation of the underlying function, resulting

in large train data and test data error.

In order to select a model that has a good fit to data, but does not overfit, the

principle of Occam’s razor can be applied. This says that if two models fit the data

equally well, the least complex model should be favoured. Parsimonious models can

also be preferable as they enable easier interpretation of results.

The space of models depends on context. Variable selection, or feature se-

lection, is a model selection problem in regression, in which a model corresponds
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Figure 2.5: Model fit, model complexity and predictive capability. Polyno-
mials of degree k, for k = 1, . . . ,10, were fitted to training data (generated using a
cubic polynomial). Fitted models were then used to make predictions on indepen-
dent test data. Average training data error and average test data error are shown
as a function of k (model complexity). (Average values taken over 100 train/test
dataset pairs, each with sample size n = 50).

to a subset of predictors and we wish to determine which subset of predictors best

explains the response. We discuss variable selection further in Section 2.3.3 below

and apply it in Chapter 3 to discover proteins that influence drug response. In

Chapter 4, the space of models consists of protein signalling network structures.

Network structure learning can be performed by selecting the model (network) that

is best supported by the data (see Section 2.3.5).

In order to select a model, a scoring function is required to assign each model

a score (that takes fit to data and model complexity into account), and a method

is needed to search over the model space (if the space is too large for exhaustive

enumeration). We consider the latter in the context of variable selection in Sec-

tion 2.3.3 and consider methods of scoring models below. Non-Bayesian methods

are briefly outlined, before focussing on Bayesian model selection, which we use in

Chapters 3 and 4.

2.3.2.1 Non-Bayesian scoring methods

The Akaike Information Criterion (AIC) [Akaike, 1974] is one means of selecting a

model from a finite set of models M= {M}. It is defined as follows,

AIC(M) = −2l(Θ̂MLE(M)) + 2d(M) (2.20)

33



where l(Θ̂MLE(M)) is the log-likelihood evaluated at the MLE for model M and

d(M) is the number of parameters in model M . The likelihood term assesses fit to

data, while the second term is a complexity penalty that helps to prevent overfitting.

The chosen model is the one that minimises (2.20). AIC has its routes in information

theory; asymptotically, it is a measure of the information lost, as quantified by

Kullback-Leibler divergence, when using a given model instead of the true model.

A corrected version of AIC, called AICc, takes sample size into account, and for

least squares regression, minimising AIC is equivalent to minimising Mallows’ Cp

statistic [Mallows, 1973]. See Claeskens and Hjort [2008] for further details.

Another widely-used method is multifold cross-validation (CV), which we

outline in the context of least squares linear regression. If the dataset (X,Y) under

study contains enough data, it can be split into a training set and testing set to

enable assessment of model performance. However, this is often not the case, moti-

vating the use of multifold cross-validation. The data is partitioned into S subsets

of (roughly) equal size. We denote these subsets by (X(s),Y(s)) for s = 1, . . . , S.

The algorithm consists of S iterations. In iteration s, the model is trained (using

least squares/MLE) on all data save that in subset (X(s),Y(s)) (training data). We

denote the resulting parameter estimates by Θ̂
(−s)

. The predictive performance of

the estimate is then assessed on the held-out data subset (X(s),Y(s)) (test data)

using a loss function. This is repeated S times, allowing each subset to play the role

of test data. For linear regression, using the sum of squared error loss (2.19) results

in the following CV score,

CV =
S

∑
s=1

SSE(β̂
(−s)

,X(s),Y(s)) . (2.21)

To perform model selection, CV scores are calculated for each model M and the

model with lowest CV score is chosen. The case S = n is known as leave-one-out-

cross-validation (LOOCV); in iteration s, estimation is performed using all data

samples except sample s. Multifold CV can be computationally expensive as estima-

tion is performed S times for each model. We shall use multifold CV in Chapters 3-5

to assess predictive capability of models and to select tuning parameters.

We note that multifold CV can also be used within a Bayesian framework.

Instead of using point estimates for parameters (such as the MLE) to make predic-

tions on test data, the expected value of the posterior predictive distribution (2.18)

can be used. This takes parameter uncertainty into account and, if conjugate priors

are used, can be calculated in closed-form.

Penalised likelihood-based approaches can also be used to simultaneously
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perform parameter estimation and model selection. We discuss these further in

Section 2.3.3.

2.3.2.2 Bayesian model selection

Bayesian model selection is based on the posterior distribution over models P (M ∣Y),

where Y denotes data (for regression all distributions are also conditional on X). In

addition to this being a natural approach, the use of posterior probabilities can be

formally motivated in a decision theory framework. If it is assumed that the model

spaceM contains the true model, then for a 0-1 loss function (with zero loss obtained

only on selection of the true model), selecting the model with highest posterior

probability is equivalent to minimising the expected posterior loss [Bernardo and

Smith, 1994]. The assumption that the model space contains the true model is

almost certainly incorrect. However, it is hoped that at least one of the models

provides a reasonable approximation to the truth, and the posterior probabilities

can still be interpreted as the relative evidence in favour of a model [Wasserman,

2000].

By Bayes’ theorem, the posterior probability of model M is given by

P (M ∣ Y) =
p(Y ∣M)P (M)

p(Y)
(2.22)

where p(Y ∣M) is the marginal likelihood and p(M) is a prior distribution over the

model space (‘model prior’). We consider the marginal likelihood further below. The

prior p(M) can either be chosen to be objective, by using a flat prior for example,

or can be used to incorporate prior beliefs, based on existing domain knowledge.

We take the latter approach in Chapters 3 and 4.

The marginal likelihood is the probability of observing the data under a given

model, and can be obtained by integrating out parameters Θ,

p(Y ∣M) = ∫ p(Y ∣M,Θ)p(Θ ∣M)dΘ (2.23)

where the integrand is a product of the likelihood and prior over parameters. This

marginalisation enables inference to take parameter uncertainty into account, which

is in contrast to the model selection approaches described above, where the MLE is

used.

The AIC model selection approach (2.20) uses a complexity penalty to avoid

overfitting. In the Bayesian framework, complexity is automatically taken into ac-

count through the marginal likelihood. This penalisation occurs because a more
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Figure 2.6: Illustration of Occam’s razor effect of marginal likelihood. The
horizontal axis represents the space of possible datasets and the vertical axis is
the marginal likelihood. The marginal likelihood distribution p(Y ∣M) is shown
for two models M1 and M2, with M2 more complex than M1 (i.e. M2 has more
parameters). The simpler model M1 can make a limited range of predictions, while
the more complex model M2 can predict a greater variety of datasets, resulting in a
more diffuse marginal likelihood p(Y ∣M2). As a result, if the observed data lies in
the region denoted by A, the simpler model will have a larger marginal likelihood.
(Figure adapted from Mackay [1995] and Denison et al. [2002].)

complex model has a larger (higher dimensional) parameter space and so is capable

of predicting a greater variety of datasets. This is illustrated in Figure 2.6, where

two models M1 and M2 are considered, with M2 more complex than M1. In the

scenario depicted, the simpler model M1 can only predict a subset of the datasets

that M2 can predict. Thus, M2 has a more diffuse marginal likelihood p(Y ∣M2)

than M1 (since both must integrate to one over the space of datasets). This means

that if the observed dataset is supported by both M1 and M2, the simpler model will

have a larger marginal likelihood. A more detailed explanation of this automatic

Occam’s razor effect can be found in Mackay [1995].

If conjugate parameter priors p(Θ ∣ M) are used, the marginal likelihood

integral (2.23) can be found exactly in closed-form. This has computational ad-

vantages over asymptotic approximate methods for calculating marginal likelihoods

(for example, Laplace’s method), especially when many models are under consid-

eration. Details of approximate methods can be found in Kass and Raftery [1995]

and references therein.

Competing models can be compared using posterior odds ratios. The poste-
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rior odds in favour of model Mi and against model Mj are given by

P (Mi ∣ Y)

P (Mj ∣ Y)
=
p(Y ∣Mi)

p(Y ∣Mj)
⋅
P (Mi)

P (Mj)
. (2.24)

That is, a product of the marginal likelihood ratio and prior odds ratio. The

marginal likelihood ratio is known as the Bayes factor in favour of Mi and against

Mj . The Bayes factor can be interpreted as the ratio between posterior odds and

prior odds and is a measure of how much the prior odds in favour of Mi have been

increased (or decreased) after observing data. If the prior over model space P (M) is

flat, then using the Bayes factor to select a model is equivalent to finding the model

with highest posterior probability. Interpretations of Bayes factor values have been

proposed by Jeffreys [1961] and modified by Kass and Raftery [1995]. We note

that Bayes factors can be ill-defined when using improper or diffuse parameter pri-

ors. Further information on inference with Bayes factors can be found in Kass and

Raftery [1995].

The Bayesian information criterion (BIC) or Schwarz criterion [Schwarz,

1978] is a model scoring method similar in spirit to AIC. It is defined as

BIC(M) = −2l(Θ̂MLE(M)) + log(n)d(M) (2.25)

where l(Θ̂MLE(M)) is the log-likelihood evaluated at the MLE for model M and

d(M) is the number of parameters in model M . BIC provides an approximation to

the (log) marginal likelihood p(Y ∣M), with equivalence holding asymptotically as

n → ∞. Hence, when the integral in (2.23) is intractable, BIC provides an efficient

method for calculating an approximation, and, under a flat prior on model space,

it can be used to find the model with largest posterior probability. The complexity

penalty in BIC is larger than that in AIC, and so leads to sparser models. While it is

asymptotically consistent for model selection (unlike AIC), it may not perform well

at small sample sizes, and it makes implicit assumptions regarding the parameter

prior. BIC also has an information-theoretic interpretation in terms of minimum

description length [see e.g. Hastie et al., 2003].

2.3.2.3 Bayesian model averaging

As described above, Bayesian model selection aims to find the ‘best’ model M∗

from a finite set of modelsM, where ‘best’ is defined as the model which maximises

posterior probability; that is, M∗ = argmaxM∈MP (M ∣ Y). M∗ is often referred to

as the MAP (maximum a posteriori) model. At large sample sizes, the posterior
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Figure 2.7: Model uncertainty. The horizontal axis represents the space of models
M and the vertical axis shows posterior probability P (M ∣Y) of model M given data
Y. Two posterior distributions are shown. The solid line is the posterior arising
from a dataset with a large number of samples n; the distribution has a single sharp
peak around the best model M∗. The dashed line is the posterior from a dataset
with small n; the distribution is diffuse with many models having high scores. In
this setting there is more uncertainty regarding the best structure.

distribution P (M ∣ Y) is likely to have a single well-defined peak at M∗, and M∗

will be the model that best describes the data. However, at the small sample sizes

that are typical of molecular data, the posterior is likely to be diffuse (Figure 2.7

illustrates this scenario). In this case, the single MAP model M∗ may not be a

good representation of the information contained in the entire posterior; there may

be other models with posterior scores close to that of the MAP model, yet these

models may display different features to M∗. Moreover, M∗ will not necessarily be

the model that best describes the data.

Bayesian model averaging is an intuitive way to address the issue described

above. It allows inferences to be made using information from across the entire

posterior distribution (not just the MAP model) and thereby takes model uncer-

tainty into account. In particular, posterior probabilities for features of interest can

be calculated by averaging over the space of models, weighting each model by its

posterior probability. Then, a feature that appears in M∗ but not in any other high

scoring model will receive a low posterior score. A toy example in linear regression

illustrates this point. Suppose our model space consists of two models M1 and M2,

where M1 says that response Y is independent of all predictor variables, and model
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M2 has Y dependent on predictor X1 = (X11, . . . ,Xn1). So we have

M1 ∶ Yi = β0 + εi (2.26)

M2 ∶ Yi = β0 + β1Xi1 + εi (2.27)

where εi ∼ N(0, σ2). Suppose the feature of interest is whether the response is

dependent on predictor X1. If M2 has a higher posterior score than M1, one could

conclude that this dependence does indeed exist, but if we have P (M2 ∣Y,X) = 0.51

and P (M1 ∣ Y,X) = 0.49 then M1 is almost as probable as M2. Averaging over the

two models tells us that the posterior probability of the dependence existing is 0.51,

which reflects the uncertainty associated with this feature.

In general, the posterior probability of a feature of interest ζ can be calculated

as follows. For example, as seen in the regression example above, it could be the

existence of a dependence between response and a certain predictor. Let 1M(ζ) be

an indicator function, evaluating to unity if and only if model M contains feature

ζ. Then the posterior probability of ζ can be written as the posterior expectation

of 1M(ζ),

P (ζ ∣ Y) = E [1M(ζ)]P (M ∣Y) (2.28)

= ∑
M

1M(ζ)P (M ∣ Y ). (2.29)

That is, the sum of the posterior probabilities of those models that contain feature ζ.

It can be shown that averaging over all models in this way provides better predictive

capability over using any single model [Madigan and Raftery, 1994].

One of the main challenges in implementing Bayesian model averaging is due

to computational constraints. The space of modelsM can be very large, precluding

explicit enumeration of the sum over graph space in (2.29) and also calculation of

the normalising constant p(Y) in (2.22), which can also be expressed as a sum over

the graph space,

p(Y) = ∑
M

P (Y ∣M)P (M). (2.30)

Therefore, while it is easy to calculate the posterior score of a model up to pro-

portionality (if conjugate parameter priors are used to give a closed-form marginal

likelihood), it is difficult to calculate the absolute probabilities when the model space

is large. Methods to deal with this issue include placing restrictions on the model

space and summing over a subset of models, or using Markov chain Monte Carlo

to obtain samples from the posterior distribution which can be used to approxi-
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mate posterior probabilities of interest (2.29). We discuss this approach further in

Section 2.3.3.

Bayesian model averaging takes both model uncertainty and parameter un-

certainty into account (the latter through the marginal likelihood), while also al-

lowing prior information to be incorporated into inference in a coherent manner.

Other non-Bayesian model averaging approaches are available. For example, AIC

scores can be used to assign weights to each model and obtain a weighted aver-

age parameter estimate [see e.g. Claeskens and Hjort, 2008]. Bootstrapping [Efron

and Tibshirani, 1993] and, in particular, bagging (bootstrap aggregating) [Breiman,

1996] methods also have a model averaging flavour. Unlike the Bayesian approach,

these methods calculate a point parameter estimate (e.g. MLE) under each model,

rather than averaging over parameter space, and they are not as easily interpretable

because the model weights do not have an intuitive probabilistic interpretation.

Further details on model selection and model averaging can be found in

Claeskens and Hjort [2008], and reviews focussing on Bayesian methods are provided

by Hoeting et al. [1999] and Wasserman [2000].

2.3.3 Variable selection in the linear model

Variable selection, also known as feature selection, is a specific form of model se-

lection most frequently used with supervised learning problems. Variable selection

in the linear regression model with p predictor variables (see (2.2)) aims to select a

subset of the predictor variables that best explains variation in the response variable.

Here, the space of models consists of all possible subsets of the predictor variables.

There are several reasons why performing variable selection may be useful.

First, it can help to ameliorate the effects of overfitting and therefore improve pre-

diction accuracy over using all p predictors. In settings where p > n, which is often

the case for the types of molecular data considered here, the MLE (2.6) can not be

found using all p predictors because XTX is not invertible. This means some form

of dimensionality reduction or regularisation is required; variable selection is one

way to achieve this. Second, it can increase interpretability of results by obtaining

a smaller set of predictors, each of which play a significant role in explaining the

response. This can help to generate hypotheses for testing in follow-up experiments.

The assumption that many of the predictors do not have a substantial influence on

the response can be a reasonable one in many settings. Third, performing variable

selection in a Bayesian framework, with model averaging, can improve robustness

of results due to model and parameter uncertainty being taken into account.

We assume from here on that the predictors and response have been stan-
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p 5 10 25 50 100 500 1000
∣Γ∣ 32 1024 ≈ 107 ≈ 1015 ≈ 1030 ≈ 10150 ≈ 10301

Table 2.1: Number of models ∣Γ∣ for varying number of predictors p.

dardised to have zero mean, unit variance across the n samples. This means that

we can drop the intercept term β0 from the model. Thus the design matrix X for

all p predictors is now of size n × p.

An inclusion indicator vector γ = (γ1, . . . , γp)
T
∈ {0,1}p specifies which pre-

dictors are contained in the model. That is, predictor j is included in the model if

and only if γj = 1. We use γ to denote both the inclusion indicator vector and the

model it specifies; γ takes the place of M in Section 2.3.2 above, and we let Γ denote

the model space. We let ∣γ∣ = ∑j γj be the number of non-zeros in γ (i.e. the number

of predictors in the model) and Xγ be the n× ∣γ∣ matrix obtained by removing from

X those columns j for which γj = 0. Similarly, for regression coefficient vector β,

βγ is obtained from β by removing components βj for which γj = 0.

Given model γ we have the reduced linear model

Y = Xγβγ + ε. (2.31)

All equations in Sections 2.3.1 and 2.3.2 still apply here, with X, β and M replaced

by Xγ , βγ and γ respectively. In particular all the model scoring methods described

above can be applied in the variable selection setting.

2.3.3.1 Greedy search methods

For p potential predictors there are 2p possible models. Hence the number of models

grows exponentially with p, precluding an exhaustive search of the model space Γ

for all but small p; Table 2.1 shows the size of the model space for various values of

p. When an exhaustive search is not possible, search algorithms can be used to find

high scoring models.

One of the most common search methods is forward stepwise selection. This

starts with the empty model containing no predictors, and then adds the single

predictor that leads to the most improvement in the chosen scoring criterion. This

process continues, adding one predictor at a time, until a stopping rule terminates

the algorithm (e.g. no improvement in score can be achieved by adding any single

predictor). Backwards stepwise selection is a similar approach which starts with

the full model containing all predictors and removes one predictor at a time. These

greedy algorithms are relatively fast but are not guaranteed to find the highest
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scoring model since the additions/deletions at each step are only locally optimal.

Results are also dependent on the scoring criteria and stopping rule.

These heuristic algorithms are generally used with non-Bayesian scoring

methods. We discuss Bayesian variable selection below, giving some details fur-

ther to those provided on Bayesian model selection and averaging in Section 2.3.2.

2.3.3.2 Bayesian variable selection

The posterior distribution over models is given by Bayes’ theorem in (2.22), which

we reproduce here (up to proportionality) using our variable selection notation,

P (γ ∣ Y,X) ∝ p(Y ∣ γ,Xγ)P (γ). (2.32)

Placing a conjugateNIG(m,V, a, b) prior (2.11) on parameters Θγ = (βγ , σ
2)

yields a closed-form expression for the marginal likelihood integral (2.23) [see e.g.

Denison et al., 2002],

p(Y ∣ γ,Xγ) =
∣V∗∣

1
2 baΓ(a∗)

∣V∣
1
2 π

n
2 Γ(a)

(b∗)−a
∗

(2.33)

where V∗, a∗ and b∗ are given in (2.14)-(2.17) (with X replaced by Xγ).

There is a significant body of research investigating parameter prior specifica-

tion for Bayesian variable selection in the linear model, and in particular, the choice

of hyperparameters in the NIG prior. We first discuss the Gaussian prior for βγ .

There are two popular choices for V, the prior covariance of βγ ; V = cI∣γ∣ [George

and McCulloch, 1997; Raftery et al., 1997; Li and Zhang, 2010] and V = c (XT
γXγ)

−1

[George and McCulloch, 1997; Smith and Kohn, 1996; Raftery et al., 1997; Lee et al.,

2003; Nott and Green, 2004], where c > 0. The former renders the components of β

conditionally independent given γ, while the latter results in Zellner’s g-prior [Zell-

ner, 1986], which uses the predictor data to introduce prior dependence between

components in an intuitive manner (it is proportional to the variance of the MLE

for βγ). We use the latter formulation in Chapters 3 and 4 and provide further

details in Section 3.2.1. The most common choice for m, the prior mean of βγ , is

m = 0. This is a neutral choice reflecting indifference between positive and negative

values of regression coefficients; we use m = 0 in our analyses. Using the MLE for

βγ has also been proposed [Kohn et al., 2001], resulting in a prior that depends

on the response data Y. Priors with dependence on the data can no longer be

considered as Bayesian in the strictest sense and are referred to as empirical Bayes

priors (see Section 2.3.8). We now turn our attention to the hyperparameters a, b
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of the inverse-gamma prior for σ2. Several heuristic methods have been proposed

to set a and b based on data considerations [George and McCulloch, 1997; Raftery

et al., 1997; Chipman et al., 2001]. However, the choice can be avoided by using

p(σ2 ∣ γ) ∝ σ−2, the limit of the inverse-gamma prior as a, b → 0 [Smith and Kohn,

1996; Nott and Green, 2004]. The resulting prior is non-informative and improper,

but still yields a proper posterior. We use this limiting case in Chapters 3 and 4.

Calculating the posterior distribution over models (2.32) requires specifying

the model prior P (γ). A common choice of prior assumes that the a priori in-

clusion probabilities P (γj) are independent and Bernoulli distributed with success

parameter πj .

P (γ) =
p

∏
j=1

π
γj
j (1 − πj)

1−γj . (2.34)

The prior is also often simplified to have πj = π, resulting in a single hyperparameter.

This hyperparameter may be a user-defined constant or may itself have a Beta prior

[Nott and Green, 2004]. In the former case, taking π = 1
2 results in a flat prior

over Γ, a popular default non-informative choice [George and McCulloch, 1997;

Smith and Kohn, 1996], or small values are often chosen to promote parsimonious

models [George and McCulloch, 1997; Lee et al., 2003] (it could be argued that

this is not necessary due to the marginal likelihood already penalising complex

models). Another option is to use an empirical Bayes approach to set π in an

objective data-driven manner, as described in George and Foster [2000]. Empirical

Bayes approaches are discussed in Section 2.3.8. We do not use this standard prior

formulation in Chapter 3, but exploit domain knowledge in the form of protein

signalling networks to specify a biologically informative model prior.

While greedy search methods can be used to find models with high posterior

probabilities (easily calculated up to proportionality using (2.32)), a preferable ap-

proach is to take model uncertainty into account by model averaging. In particular,

averaging over the entire space of models enables calculation of posterior inclusion

probabilities for each individual predictor,

P (γj = 1 ∣ Y,X) = ∑
γ∶γj=1

P (γ ∣ Y,X). (2.35)

This is a special case of (2.29) with ζ as the feature ‘γj = 1’. These inclusion proba-

bilities are a measure of the importance of each individual predictor in determining

the response.

When p is too large to enumerate the entire posterior over models, Markov

chain Monte Carlo (MCMC) [Robert and Casella, 2004] can be used to sample
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from the posterior. The essence of this approach is to construct and simulate from a

Markov chain with state space Γ and stationary distribution P (γ ∣Y,X). Simulating

the chain for a sufficiently large number of iterations allows samples to be drawn from

the posterior distribution. These samples, which we denote by γ(1), . . . , γ(T ), can

then be used to calculate asymptotically valid estimates for the posterior expectation

E [φ(γ)]P (γ ∣Y,X) of any function φ(γ),

Ê [φ(γ)]P (γ ∣Y,X) =
1

T

T

∑
t=1
φ(γ(t)). (2.36)

In particular, from (2.28), we see that taking φ(γ) to be the indicator function

1γ(γj = 1) yields an estimate for the inclusion probabilities,

P̂ (γj = 1 ∣ Y,X) =
1

T

T

∑
t=1
1γ(t)(γ

(t)
j = 1). (2.37)

One approach to construct and simulate from such a Markov chain is the

popular ‘Markov chain Monte Carlo model composition’ (MC3) method proposed by

Madigan et al. [1995] for model selection with graphical models (see Section 2.3.5),

and subsequently adapted for variable selection in linear regression models by Raftery

et al. [1997]. MC3 uses a Metropolis-Hastings sampler; in each iteration a model

is drawn from the ‘neighbourhood’ of the current model according to a proposal

distribution, and then accepted or rejected according to an ‘acceptance probability’,

which is defined in such a way as to ensure convergence of the chain to the posterior.

In the variable selection case the neighbourhood of a given model consists of any

model that can be obtained from the given model by adding or removing a predictor.

See Raftery et al. [1997] for full details. Assessing convergence of MCMC algorithms

is well-known to be a non-trivial problem. Many diagnostics verify necessary, but

not sufficient conditions for convergence.

Alternatives to the above MC3 approach include the Occam’s window method

proposed by Madigan and Raftery [1994] which averages over a subset of models by

eliminating those with low posterior probabilities and those that are unnecessarily

complex, and the stochastic search variable selection (SSVS) method of George

and McCulloch [1993]. SSVS is similar to MC3, but does not completely remove

predictors from the model. Instead, predictors are assigned coefficients with very

small values and MCMC is used to sample from the joint space of models and

parameters. In Chapter 3 we calculate exact inclusion probabilities by restricting

the size of the model space; an approach similar in spirit to Occam’s window.

The posterior predictive distribution p(Y ′ ∣X′,Y,X, γ) for new data (Y ′,X′)
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given in (2.18) can be combined with model averaging to calculate the expected value

of Y ′, taking model uncertainty into account,

E [Y ′
∣ X′,Y,X] = ∑

γ

E [Y ′
∣ X′,Y,X, γ]P (γ ∣ Y,X) (2.38)

where E [Y ′ ∣ X′,Y,X, γ] = X′m∗ when a conjugate NIG parameter prior is used.

An overview of Bayesian variable selection, including prior specification and

details of computational aspects can be found in Chipman et al. [2001] and Clyde

and George [2004]. Bayesian variable selection methods have been applied to address

various questions in molecular biology (see Chapter 3 for references).

2.3.3.3 Shrinkage methods

The variable selection approaches outlined above all work by either including or

excluding predictors in a model, and searching (or averaging) over model space.

An alternative is shrinkage methods, which regularise the problem by shrinking

regression coefficients β towards zero. This discourages complex models because

models that overfit tend to have larger coefficients. Shrinkage is achieved through

minimisation of a penalised negative log-likelihood (penalised sum of squares), with

a penalty on the magnitude of the coefficients,

l(β) = ∥Y −Xβ∥
2
2 + λp(β) (2.39)

where p(β) is the penalty term and λ ≥ 0 is a tuning parameter controlling the

amount of shrinkage. Minimising (2.39) is equivalent to minimising ∥Y −Xβ∥
2
2

subject to the constraint p(β) ≤ t (where t depends on λ). The tuning parameter is

often set using cross-validation or BIC.

Ridge regression is a popular approach that uses an L2 penalty, p(β) = ∥β∥
2
2 =

∑
p
j=1 β

2
j , and shrinks each coefficient in proportion to its magnitude. However, it

does not shrink coefficients to be exactly zero, so while it regularises the problem and

allows estimation in small sample size settings, it does not perform variable selection

as such. To obtain a subset of predictors, absolute coefficients can be thresholded.

Lasso (least absolute shrinkage and selection operator) regression [Tibshirani,

1996] is similar in spirit to ridge regression but simultaneously performs shrinkage

and variable selection. It uses an L1 penalty instead of the L2 penalty used in

ridge regression, p(β) = ∥β∥1 = ∑
p
j=1 ∣βj ∣. This has the effect of shrinking some

coefficients to exactly zero, with the sparsity of the inferred model controlled by

λ (or t). Figure 2.8 illustrates, for p = 2, why the lasso has this effect while ridge
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Figure 2.8: Estimation picture for the lasso (left) and ridge regression
(right). For two predictors (p = 2), contours are shown for the residual sum of
squares ∑ni=1(Y −Xiβ)2 and the shaded areas are constraint regions p(β) ≤ t where
p(β) = ∣β1∣ + ∣β2∣ for lasso and p(β) = β21 + β

2
2 for ridge regression. (Figure adapted

from Tibshirani [1996]).

regression does not. Contours of the residual sum of squares ∥Y −Xβ∥
2
2 are elliptical

and centred at the (unpenalised) MLE β̂MLE, and the constraint region p(β) ≤ t is

a diamond for lasso and a disk for ridge regression. The solution to (2.39) is the

first place where the contours hit the constraint region. For lasso, this can happen

at a corner, resulting in a zero coefficient.

As noted by Tibshirani [1996], the lasso estimate for β can also be interpreted

as the Bayesian MAP estimate (that is, the mode of the posterior distribution

p(β ∣Y,X); see (2.7)) under independent Laplace priors on the individual coefficients

βj . Indeed, fully Bayesian analyses for the lasso have been proposed in the literature

[Park and Casella, 2008]. While Bayesian approaches can provide some advantages

(e.g. intuitive estimates of uncertainty and taking uncertainty into account), they

are generally computationally expensive. This is in contrast to the lasso regression

problem, which can be solved very efficiently using a slightly modified version of the

least angle regression (LARS) algorithm [Efron et al., 2004].

LARS is similar to forward stepwise selection (see Section 2.3.3.1), but does

not completely add predictors into the model. It begins by adding to the model the

predictor most correlated with the response. Coefficients of included predictors are

moved towards the least squares estimate, until a predictor not in the model has

higher correlation with the residual. This predictor is then added to the model.

An alternative efficient method for solving the lasso regression problem is

46



with a coordinate descent approach [Friedman et al., 2007, 2010]. This approach

minimises the penalised negative log-likelihood (2.39) one parameter (i.e. one com-

ponent of β) at a time, whilst keeping all other parameters fixed.

Lasso-based variable selection has also been used to probe questions in molec-

ular cancer biology. For example, Li and Li [2008] use lasso regression to identify

genes that are related to survival time from glioblastoma (the most common primary

malignant brain tumour).

2.3.4 Graphical models

In this Section we give a brief overview of graphical models. Full technical details can

be found in Pearl [1988]; Lauritzen [1996]; Jordan [2004] and Koller and Friedman

[2009].

As described in the Introduction, graphical models are a class of statistical

models that use a graph-based representation to intuitively and compactly describe

probabilistic relationships between multiple interacting components. They consist

of a graph G = (V,E), in which each node (or vertex) in V corresponds to a ran-

dom variable of interest (describing phosphorylation level of a protein, for example)

and the edges E represent dependencies between these variables. Formally, the

graph structure encodes conditional independence statements regarding the vari-

ables. There are two main types of graphical models, Bayesian networks (BNs) and

Markov random fields (MRFs) (also called Markov networks), and we use both types

in this thesis. Bayesian networks are directed graphical models, whereas Markov ran-

dom fields have undirected edges. Below we describe each type, and in particular,

the conditional independencies they encode, and explain the relationship between

them.

2.3.4.1 Bayesian networks

BNs are directed acyclic graphs (DAGs). That is, the edges between nodes are

directed and they do not form directed cycles. Figure 2.9 shows an example of a BN

with five nodes, X1, . . . ,X5, and five edges. Note that the same notation is used to

represent the node and the associated random variable. Before proceeding we define

some graph terminology. If a directed edge exists from node Xi to node Xj , then

Xi is called a parent of Xj , and Xj is called a child of Xi (e.g. in Figure 2.9, X1 is

a parent of X2). Similarly, if a directed path exists between node Xi and node Xj ,

then Xi is called an ancestor of Xj , and Xj is called a descendant of Xi (e.g. in

Figure 2.9, X4 is a descendant of X1).
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Figure 2.9: Example of a 5-node Bayesian network (BN). The edge structure
of the BN enables the joint distribution over all variables X1, . . . ,X5 to be factorised
into a product of local conditional distributions (see (2.40) and (2.41)).

The graph structure implies the following ‘local Markov property’: Each

variable is conditionally independent of its non-descendants given its parents. Im-

portantly, this enables us to factorise the global joint distribution over all variables

X1, . . . ,Xp (the likelihood) into a product of local conditional distributions, with

each variable dependent only on its parents,

p(X1, . . . ,Xp ∣G,Θ) =

p

∏
j=1

p(Xj ∣XπG(j), θj) (2.40)

where πG(j) ⊆ {1, . . . , p} is an index set for the parents of node Xj , XπG(j) =

{Xk∣k ∈ πG(j)} is a corresponding data set including only those variables in πG(j),

and θj ⊆ Θ are parameters for the local conditional distribution for Xj . For example,

for our toy BN in Figure 2.9 we obtain the following factorisation (parameters have

been suppressed here),

p(X1, . . . ,X5 ∣G) = p(X1)p(X2 ∣X1)p(X3 ∣X1)p(X4 ∣X3,X2)p(X5 ∣X3). (2.41)

We note that the local Markov property conditional independence statements are

not the only independencies implied by the graph structure. The notion of graphical

separation between (sets of) nodes in the graph can be used to determine global con-

ditional independences. In BNs this is known as d-separation (directed separation);

if A,B,C are three sets of nodes in G and A and B are d-separated given C, then A

and B are conditionally independent given C [see e.g. Koller and Friedman, 2009,

for full details].

To fully specify the BN and how exactly the variables depend on each other,
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it is necessary to specify the functional form of the local conditional distributions

and associated parameters, which are then sufficient to fully determine the global

joint distribution via (2.40). The factorisation enables the joint distribution to be

modelled with far fewer parameters than would be required if modelled directly, and

so helps to avoid overfitting. Common choices for the local conditional distributions

are multinomial for a discrete variable and Gaussian for a continuous variable. In

the discrete case, there are only a finite number of possibilities for the values of

each variable. This means a local conditional distribution can be fully represented

by a table that specifies probabilities for values of a variable given each possible

combination of values for its parent variables. In the continuous case there is no

such tabular representation; a variable depends on its parent variables through the

mean of the Gaussian distribution. For example, for our toy BN in Figure 2.9 a

conditional could be p(X4 ∣X2,X3, θ4) = N(X4 ∣β2X2+β3X3, σ
2
4) for some parameters

β2, β3, σ
2
4. We focus on continuous variables and Gaussian distributions throughout

this thesis.

The correspondence between graph structures and conditional independence

statements implied by the graph is not one-to-one; different graph structures can

represent the same set of conditional independence assertions. Such graphs are said

to be equivalent. Verma and Pearl [1990] derived the following useful characterisa-

tion for equivalent BNs: two BNs are equivalent if and only if they have the same

skeleton and the same v-structures. The skeleton of a graph is the undirected graph

obtained by converting all directed edges to undirected edges, while a v-structure is

a set of three nodes X1,X2,X3 such that X1 and X2 are parents of X3 and there is

no edge between X1 and X2. For example, Figure 2.10 shows four 3-node BNs, all

with the same skeleton structure. The first three graphs (a,b and c) do not contain

a v-structure, while the fourth graph (d) does. Hence, it follows from the above

characterisation that the first three graphs are equivalent and the fourth graph is

not equivalent to any of the others. This can also be seen directly by factorising the

joint distribution into a product of local distributions using (2.40); these factorisa-

tions are shown in Figure 2.10. Following an application of Bayes’ theorem we see

that the first three graphs result in an identical factorisation, and this factorisation

differs from that for the fourth graph. The space of graph structures can be parti-

tioned into equivalence classes; disjoint subsets where all graphs in the same subset

are equivalent [Chickering, 1995]. An equivalence class can be represented by a com-

pleted partially directed acyclic graph (CPDAG), an acyclic graph with directed and

undirected edges, where a directed edge from Xj to Xk means all BN structures in

the equivalence class have that directed edge, while an undirected between Xj and
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Figure 2.10: Equivalence of BNs. Four 3-node BNs are shown, each with the
same skeleton structure. Below each graph the factorisation of the joint distribution
implied by the graph structure is given (see (2.40)). Applying Bayes’ theorem to
the factorisation in (b) and (c), we see that BNs (a), (b) and (c) are equivalent
(describe the same independencies), whereas BN (d) describes a different set of
independencies.
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Figure 2.11: CPDAG for the equivalence class containing the BN in Fig-
ure 2.9.

Xk means some BN structures in the equivalence class have a directed edge from

Xj to Xk and others have it in the opposite direction from Xk to Xj . Figure 2.11

shows the CPDAG representation for the equivalence class containing the example

BN in Figure 2.9. This equivalence between BNs has implications for the inference

of graph structure from data and for the interpretation of edges in the graph as

representing causal relationships; we discuss this further below.

2.3.4.2 Markov random fields and Gaussian graphical models

MRFs are undirected graphical models that, like BNs, describe conditional indepen-

dencies between variables. Figure 2.12 shows an example of a MRF with five nodes

and six edges. To describe the independencies we’ll need the following terminology.

Two nodes that are connected by an edge in G are said to be adjacent or neighbours

in G. If A,B,C are three sets of nodes in G, then C separates A and B if any path

between a node in A and a node in B contains a node in C (this is analogous to the

notion of d-separation for BNs). The graph structure encodes the following three

Markov properties, which can be shown to be equivalent (under mild conditions)

[see e.g. Koller and Friedman, 2009]. Examples of each, relating to Figure 2.12, are

given in parentheses, with á denoting independence.

� Pairwise Markov property : Any two non-adjacent variables are conditionally

independent given all other variables. (X1 áX4 ∣X2,X3,X5.)

� Local Markov property : A variable is conditionally independent of all other

variables given its neighbours. (X4 áX1,X5 ∣X2,X3.)

� Global Markov property : Any two sets of variables A,B are conditionally in-
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dependent given a set of variables that separate A and B. (A = {X1} ,B =

{X4,X5} ,C = {X2,X3}: A á B ∣C.)

In the case where the joint distribution over all variables (X1, . . . ,Xp) takes

a multivariate Gaussian distribution, MRFs are referred to as Gaussian MRFs or

Gaussian graphical models (GGMs) [Dempster, 1972; Speed and Kiiveri, 1986; Rue

and Held, 2005]. We use the latter label throughout this thesis, but note that the

former is perhaps a more precise description. There is a direct relationship between

the structure of a GGM and the covariance matrix of the Gaussian distribution,

which we denote by Σ. Let Ω = Σ−1 be the inverse covariance matrix, also known

as the precision matrix, and let ρjk be the partial correlation coefficient between

variables Xj and Xk given all other variables. This is a measure of association

between Xj and Xk, after having removed the effects of all other variables. For

example, Xj and Xk could be highly correlated (i.e. have a Pearson correlation

coefficient of close to one), but the association may be explained away by both

of them depending on a third variable Xl. In this case, the partial correlation

ρjk would be less than the standard correlation as the effect of all other variables

(including Xl) has been taken into account. For variables that are jointly Gaussian

distributed, zero partial correlation ρjk = 0 is equivalent to conditional independence

of Xj and Xk given all other variables. Hence, from the pairwise Markov property

above we have ρjk = 0 if and only if no edge exists in G between Xj and Xk (i.e.

(j, k) ∉ E). Moreover, since ρjk has the following relationship with the precision

matrix Ω = (ωjk),

ρjk = −
ωjk

√
ωjjωkk

(2.42)

we find that non-zero (off-diagonal) entries in the precision matrix correspond to

edges in a GGM, that is ωjk ≠ 0 if and only if (j, k) ∈ E.

2.3.4.3 Relationship between Bayesian networks and Markov random

fields

BNs and MRFs do not necessarily describe the same independencies. Indeed, each

can encode conditional independence statements that the other cannot. However,

they are related and, since we use both BNs and MRFs in this thesis, we shall

outline some details of the relationship between them.

Given a BN graph structure G, a corresponding MRF structure G̃ can be

obtained by finding the moral graph of G. This is done by taking the skeleton

of G and then adding an undirected edge between nodes Xj and Xk if they are

both parents of the same node in G. The example MRF in Figure 2.12 is the
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Figure 2.12: Example of a 5-node Markov random field (MRF). Any pair of
adjacent nodes are conditionally independent given all other variables. This graph
structure is the moral graph of the BN in Figure 2.9.

moral graph of the example BN in Figure 2.9. All the independencies represented

by the moral graph G̃ are also represented by G, and G̃ is minimal in the sense

that this is no longer true if any edge from G̃ is removed. To illustrate this point,

suppose the edge between X2 and X3 in Figure 2.12 is removed. Then we would

have X2 á X3 ∣X1,X4, but this does not hold for the BN in Figure 2.9. However,

the addition of edges in the process of obtaining the moral graph, such as the edge

between X2 and X3 in Figure 2.12, means independence information is lost. While,

as just noted, the addition of such an edge is necessary so that G̃ is minimal, it

means there are independencies described by the BN G that are not described by

the MRF G̃. For example, in Figure 2.9 we have X2 á X3 ∣X1, but this does not

hold in Figure 2.12. In general, the MRF G̃ (the moral graph of G) encodes the

same conditional independencies as G if G̃ has the same skeleton as G (i.e. no edges

are added).

A BN structure G can also be obtained from a MRF structure G̃, although

the process is not as straight-forward. In brief, an ordering is placed on the nodes

so that directed edges can only go from Xj to Xk if Xj precedes Xk in the or-

dering. The edges in G̃ can then be converted to directed edges according to this

ordering. However, some additional edges may need to be added to avoid G having

independencies not described by G̃. Again, this addition of edges leads to a loss of

independence information. A BN exists that encodes the same independencies as

the MRF if and only if any cycles of greater than 3 nodes in the MRF contain a

‘shortcut’ (an edge between two non-adjacent nodes in the cycle).
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2.3.4.4 Inference and learning

There are three main tasks that can be performed using graphical models; inference,

parameter learning and structure learning [see e.g Koller and Friedman, 2009]. We

outline each of these in turn.

Inference: The graph structure and parameters are known, providing a complete

model for the relationships between variables. This can then be used to answer

queries. For example, finding the posterior distribution of some variables when

other variables are observed.

Parameter learning : The graph structure is known, describing the existence of de-

pendencies between variables, but the parameters are unknown and need to be

learned from data. For example, for Bayesian networks, the functional form of the

local conditionals are usually assumed to belong to some family of distributions, but

the parameters that fully specify the conditionals, and hence the nature of relation-

ships between variables, are learned from data. Both maximum likelihood methods

and Bayesian inference methods are often used for this purpose.

Structure learning : Also referred to as network inference, structure learning is the

process of learning the graph structure from data; that is, finding a graph structure

that describes the conditional independencies present in the data. This is the task

we perform in this thesis. Parameters of the underlying distributions are often also

considered as part of this process. Different approaches exist for BNs and MRFs;

we discuss some of these approaches in Sections 2.3.5 and 2.3.6.

2.3.4.5 Applications

Graphical models have been employed as a modelling tool in a wide range of applica-

tions. For example, BNs have been applied to molecular networks, and in particular

the inference of network structure [Friedman et al., 2000; Sachs et al., 2005] (we

apply BNs for this purpose in Chapter 4), information retrieval, risk management,

clinical decision support and forensic science [Pourret et al., 2008]. MRFs have been

applied to image processing and computer vision [Li, 2009], and to applications in

statistical physics using the Ising model (one of the earliest types of MRFs).

When systems under study contain variables that interact with a natural

directionality, for example a flow of information between variables, then BNs may

provide a better model than MRFs. Similarly, MRFs may be a better choice when

interactions are more symmetrical in nature. However, wider modelling choices

and inference or learning methods can also influence the choice of graphical model.

Indeed, in Chapter 5 we use undirected GGMs to model signalling networks (which
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have a clear natural directionality), because they naturally fit into the mixture

model-based framework we employ there and estimation of GGM structure can be

very computationally efficient.

2.3.5 Graph structure learning: Bayesian networks

Methods for learning the graph structure of Bayesian networks fall under two main

categories; constraint-based methods and score-based methods. We describe both

below, but focus mainly on score-based methods, which we shall use in Chapter 4.

The reader is also referred to Heckerman [1998] and Needham et al. [2007] for tuto-

rials on learning with BNs.

2.3.5.1 Constraint-based methods

Constraint-based methods use statistical tests to find conditional independencies in

the data. A BN structure (or, more precisely, an equivalence class of BN structures)

can then be constructed that reflects the inferred independencies. The algorithms

are based on the inductive causation (IC) algorithm by Pearl and Verma [1991]

and consist of three main steps. First, the skeleton (undirected graph) of the BN

structure is determined using independence tests of the form Xi á Xj ∣A where A

is a subset of other variables. If no A is found such that independence holds, then

an undirected edge is added between Xi and Xj . Restrictions are usually placed on

A to reduce the number of independence tests required, which would otherwise be

prohibitively large. For example, a constraint may be placed on the cardinality of

A. Second, triplets of nodes in the skeleton that could potentially form a v-structure

are considered. The independence tests carried out in the previous step can be used

to determine their existence, and edges are assigned directions accordingly. Third,

some of the remaining undirected edges in the graph can be assigned a direction

in cases where directionality is compelled due to the acyclicity constraint and the

fact that no further v-structures can be created (as this would contradict the second

step). This results in a CPDAG representation for the equivalence class.

There are several choices for the independence tests in the first step. Common

choices are Pearson’s χ2 test and mutual information tests (equivalent to a log-

likelihood ratio test) for discrete data, and Student’s t test, Fisher’s Z test and

mutual information tests (all three are based on partial correlation coefficients)

for continuous data [see e.g. Lehmann and Romano, 2008, for details of statistical

independence tests].

Constraint-based approaches are intuitive because they closely follow the
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conditional independence interpretation of a Bayesian network. Moreover, they can

be computationally efficient and some enjoy asymptotic guarantees [Kalisch and

Bühlmann, 2007]. However, in the challenging small sample size and noisy data

setting, it is by no means guaranteed that constraint-based methods perform well.

Since BNs are constructed from results of many independence tests (i.e. a multiple

hypothesis testing problem), the overall results can be sensitive to failures in these

tests.

Specific examples of constraint-based algorithms for BN structure learning

include the path consistency (PC) algorithm [Spirtes et al., 1993], grow-shrink (GS)

algorithm [Margaritis and Thrun, 2000] and incremental association Markov blanket

(IAMB) algorithm [Tsamardinos et al., 2003]. Such constraint-based methods have

been used to infer molecular networks, and in particular, gene regulatory networks,

with recent examples including Li et al. [2011] and Zhang et al. [2012].

2.3.5.2 Score-based methods

Score-based methods for BN structure learning use model selection criteria (see Sec-

tion 2.3.2) to score candidate graph structures given the observed data and searching

over the space of graphs to find those with high scores. We denote graph structures

by G and the graph space by G (instead of M andM respectively in Section 2.3.2),

and let X denote a n × p data matrix, where p is the number of variables (nodes in

the BN) and n is the sample size.

Scoring functions: Any of the scoring methods described in Section 2.3.2, tak-

ing fit to data and model complexity into account, can be applied to score BN

structures. The methods described were AIC, BIC, CV and Bayesian scoring. The

likelihood function for a BN p(X ∣ G,Θ) is given in (2.40) and factorises into a

product of local conditional distributions for each variable. This allows maximum

likelihood estimates for parameters (for a given graph G), required for AIC and BIC,

to be obtained by independently maximising each local distribution. We note that

the ‘Bayesian’ in ‘Bayesian network’ does not refer to the methodology of parame-

ter or structure learning for BNs; non-Bayesian approaches are equally applicable,

although the Bayesian scoring approach we now describe is widely-used.

The Bayesian score for a BN with graph structure G is given by its pos-

terior probability, given by Bayes’ theorem in (2.22) and reproduced here (up to

proportionality) using the graph notation,

P (G ∣ X) ∝ p(X ∣G)P (G). (2.43)
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Similarly, the marginal likelihood integral in (2.23) becomes

p(X ∣G) = ∫ p(X ∣G,Θ)p(Θ ∣G)dΘ. (2.44)

For continuous data, p(X ∣G) can be calculated with the widely-used ‘BGe’

score, proposed by Geiger and Heckerman [1994]. We give a brief outline of this

scoring metric here, and refer the interested reader to the reference for full details.

Each of the local conditionals in the factorised likelihood (2.40) is assumed to be a

linear Gaussian distribution, with mean of Xj dependent only on the values of its

parents,

p(Xj ∣XπG(j), θj) = N
⎛

⎝
Xj ∣mj +

j−1
∑
k=1

βjk(Xk −mk), σ
2
j

⎞

⎠
(2.45)

where mj is the unconditional mean of Xj , σ
2
j is conditional variance, and βjk are

coefficients reflecting the strength of the dependence between Xj and Xk. Hence we

have βjk ≠ 0 if and only if k ∈ πG (j). It is also assumed, without loss of generality,

that the variables are labelled so that πG (j) ⊆ {1, . . . , j − 1}. Each of these local

conditionals can be regarded as a linear model.

Linear Gaussian local conditional distributions of the form (2.45) result

in a joint multivariate Gaussian likelihood p(X1, . . . ,Xp ∣ G,Θ) with mean m =

(m1, . . . ,mp) and covariance Σ. The precision matrix Ω = Σ−1 can be found in

terms of the local conditional parameters βjk and σ2j using the following recursive

formula,

Ω(j) =
⎛

⎝

Ω(j − 1) + σ2jβjβ
T
j −σ2jβj

−σ2jβ
T
j σ2j

⎞

⎠
(2.46)

for j = 2, . . . , p, where βj = (βj1, . . . , βj,j−1)
T and Ω(1) = σ21. Ω(p) gives the precision

matrix for the multivariate Gaussian. For example, if we take the example BN given

in Figure 2.9 with linear Gaussian local conditionals of the form (2.45), then the joint

distribution p(X1, . . . ,X5 ∣G,Θ) is a multivariate Gaussian with precision matrix

Ω =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ21 + β
2
21σ

2
2 + β

2
31σ

2
3 −β21σ

2
2 −β31σ

2
3 0 0

−β21σ
2
2 σ22 + β

2
42σ

2
4 β42β43σ

2
4 −β42σ

2
4 0

−β31σ
2
3 β42β43σ

2
4 σ23 + β

2
43σ

2
4 + β

2
53σ

2
5 −β43σ

2
4 −β53σ

2
5

0 −β42σ
2
4 −β43σ

2
4 σ24 0

0 0 −β53σ
2
5 0 σ25

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Recall that the non-zero off-diagonal entries of a Gaussian precision matrix corre-

spond to edges in a GGM (see (2.42)). We see that the precision matrix above
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represents the example GGM structure in Figure 2.12, which is the moral graph for

the example BN.

Geiger and Heckerman [1994] first derive a marginal likelihood score p(X∣Gc)

for a ‘complete’ graph structure Gc consisting of all possible edges (βjk ≠ 0 for all

k < j). The parameter prior p(Θ ∣Gc) where Θ = (m,Ω) is taken to be a normal-

Wishart distribution. That is, m ∣ Ω ∼ N(µ0, νΩ
−1) with ν > 0, and Ω ∼ W(α,T0),

a Wishart distribution with α > p − 1 degrees of freedom and precision matrix T0.

Geiger and Heckerman [1994] suggest setting the hyperparameters µ0, ν, α,T0 using

a prior Gaussian BN specified by the user. This choice of prior is conjugate for the

multivariate Gaussian likelihood p(X ∣Gc,Θ), resulting in a closed form marginal

likelihood (2.44). We note that this closed form is only obtained when the data is

complete (no missing values).

Assumptions of prior parameter independence and parameter modularity are

made. Parameter independence means that the parameters θj of the local condi-

tional distributions are a priori independent (p(Θ ∣ G) = ∏
p
j=1 p(θj ∣ G)), and pa-

rameter modularity means that the prior over local parameters θj depends only on

parent variables (if for two graphs G1,G2 we have πG1(j) = πG2(j), then p(θj ∣G1) =

p(θj ∣G2)). Under these assumptions, the BGe score for any BN structure G can be

calculated in closed form using scores for complete graphs,

p(X ∣G) =

p

∏
j=1

p(X{j}∪πG(j) ∣Gc)

p(XπG(j) ∣Gc)
(2.47)

where XA for A ⊆ {1, . . . p} is the data X restricted to only those variables in A. In

Chapter 4 we shall use a scoring function that differs from, but is related to, the

BGe formulation described here.

A corresponding scoring metric has also been developed for discrete data, us-

ing multinomial likelihoods and Dirichlet priors. It was initially proposed by Buntine

[1991] and Cooper and Herskovits [1992], then further developed by Heckerman et al.

[1995]. The resulting scoring function is called the ‘BDe’ metric.

The Bayesian score (2.43) requires specification of a prior over graph space

P (G) (the ‘graph prior’ or ‘network prior’). A common choice is to simply use

a flat prior, so that all graphs are a priori equally plausible. More informative

choices have also been proposed; see Chapter 4, in which we shall use a biologically

informative prior, for further discussion. The network prior is usually defined to be

modular, which means that it factorises into a product of local priors for the parent

58



p 2 3 4 5 8 10
∣G∣ 3 25 543 29281 ≈ 7.8 × 1011 ≈ 4.2 × 1018

Table 2.2: Number of BN graph structures ∣G∣ for varying number of vari-
ables (nodes) p. Calculated using a recursive formula by Robinson [1973].

set of each variable,

p(G) =

p

∏
j=1

P (πG (j)). (2.48)

This property, together with the factorisation of the likelihood and parameter mod-

ularity, results in the posterior score being modular (also referred to as a decompos-

able score),

P (G ∣ X) ∝

p

∏
j=1

p(Xj ∣ πG (j))P (πG (j)) (2.49)

where Xj = (X1j , . . . ,Xnj)
T denotes data for variable j in the BN (column j of X)

and p(Xj ∣πG (j)) is the contribution of variable Xj and its parents to the marginal

likelihood p(X ∣G). The modular Bayesian score provides computational gains when

searching for the best scoring graph, which we discuss below.

Search methods: As was the case with variable selection, the size of the model

space precludes an exhaustive search for the highest scoring BN graph structure.

Indeed, the number of graphs grows super-exponentially with the number of vari-

ables (see Table 2.2), and this graph space search problem is known to be NP-hard

[Chickering et al., 1995]. Hence, heuristic search approaches are required.

One popular heuristic search algorithm is the greedy hill-climbing method,

which is a local search procedure [see e.g Heckerman et al., 1995]. At each step in

the search it considers the neighbourhood of the current graph G, which contains all

graphs that can be obtained from G by removing, adding or reversing the direction of

a single edge (and satisfy the acyclicity constraint). The graph in the neighbourhood

of G that results in the biggest improvement in the score is selected. The procedure

is iterated until no improvement in score is found. Since only single edge changes

are considered, if the score is modular, then the score of a proposed graph can be

efficiently calculated from the score of the current graph by recalculating only the

components of the score that are affected by the edge change. This method is a

generalised version of the K2 algorithm proposed by Cooper and Herskovits [1992]

in which an ordering over the nodes is assumed and edges are only added. These

algorithms are only guaranteed to find local maxima, but methods that have been

proposed to help overcome this include random restarts, tabu search and simulated
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annealing. See Koller and Friedman [2009] for further details and Chickering et al.

[1995] for a comparison of some of these methods. Friedman et al. [2000] combine the

greedy hill-climbing method with the sparse candidate algorithm [Friedman et al.,

1999]. This facilitates efficient learning by placing restrictions on the possible parents

for each variable and thereby reducing the size of the graph space.

When using the Bayesian posterior score (2.43), instead of searching for

the highest scoring (MAP) graph structure, model uncertainty can be taken into

account by performing Bayesian model averaging (see Section 2.29). This proceeds

analogously to the Bayesian variable selection approach described in Section 2.3.3.

In particular, posterior edge probabilities can be calculated by averaging over the

entire posterior distribution,

P (e = (j, k) ∣ X) = ∑
G∶e∈G

P (G ∣ X) (2.50)

where e = (j, k) denotes an edge from Xj to Xk and e ∈ G means edge e is contained

in graph G.

As described for Bayesian variable selection in Section 2.3.3.2, MCMC can

be used to sample from the posterior P (G ∣ X) and provide asymptotically valid

estimates for the posterior edge probabilities. The popular MC3 structure MCMC

approach [Madigan et al., 1995] also proceeds as described above, except the neigh-

bourhood of a graph G, as defined by Madigan et al. [1995], contains those acyclic

graphs that can be obtained from G by adding or removing an edge. Giudici and

Castelo [2003] extended the definition of the neighbourhood to include edge rever-

sals. These are the same local moves as used in the greedy search algorithms and

so the computational gains resulting from the modularity of the Bayesian score are

also experienced here. The main computational bottleneck in the MCMC algorithm

is the large number of acyclicity checks required to find the neighbourhoods.

An alternative MCMC approach, proposed by Friedman and Koller [2003],

searches over the space of orders rather than the space of BN graph structures. Given

a node ordering ≺, a graph G must satisfy the following statement: if k ∈ πG (j),

then Xk ≺ Xj . In words, for any given variable Xj , its parents must precede Xj in

the ordering. Therefore, any graph that is consistent with the order ≺ is guaran-

teed to be acyclic. This enables efficient calculation of summations over the whole

graph space when the posterior score is modular (see Friedman and Koller [2003]

for further details, and Chapter 4, where this efficiency is also exploited, but de-

rived from a different perspective). Since an ordering is not usually known a priori,

Friedman and Koller [2003] perform an MCMC search over the p! possible orders,
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resulting in samples from the posterior P (≺ ∣X), which can then be used to obtain

samples from P (G ∣ X). This MCMC method is shown to have better convergence

and mixing properties than MC3, but the joint prior distribution over graphs and

orders P (G,≺) introduces bias into results since graphs consistent with more orders

are favoured. Several methods have been proposed to ameliorate this bias: Ellis

and Wong [2008] have proposed an improvement to order space MCMC, based on

importance sampling; Eaton and Murphy [2007a] have combined the exact order-

space dynamic programming method of Koivisto [2006] with MCMC over BN graph

structures; and Grzegorczyk and Husmeier [2008] propose a new edge reversal move

for MCMC over graph structures that results in improved MCMC convergence and

mixing, but without the bias of order-space MCMC.

Causality: While it may seem natural to interpret the directed edges in an inferred

BN structure as causal interactions between variables (for example, protein Xj di-

rectly phosphorylates protein Xk), it is necessary to proceed with caution. Causal

interpretations of Bayesian networks, known as causal networks, have been proposed

in the literature [see e.g. Pearl and Verma, 1991]. In a causal network, parents of

a variable are regarded as its immediate causes and a causal Markov assumption

is assumed: given a variables immediate causes (parents), it is independent of its

earlier causes. Under this assumption, a causal network also satisfies the Markov

independencies of the corresponding Bayesian network. However, the converse does

not necessarily hold. As we saw in Section 2.3.4, graph structures can be equivalent

(represent the same independencies), and so if the scoring function assigns identical

scores to equivalent structures (a property known as score equivalence), it is not

possible to distinguish between equivalent structures based on the data alone (the

Bayesian BGe and BDe scores satisfy this property). As such, the best that can be

done is to determine the equivalence class of the true underlying graph structure

(i.e. the CPDAG representation). The only edges that can be given a causal inter-

pretation are those that are directed in the CPDAG (as these edges have the same

direction in all equivalent graph structures). Due to the importance of equivalence

classes, structure learning methods have been proposed that search over the space

of equivalence classes [Chickering, 2002].

Interventional data has been shown to be useful in elucidating directional-

ity of edges in Bayesian networks [Cooper and Yoo, 1999; Markowetz et al., 2005;

Eaton and Murphy, 2007b]. In an intervention, values of some variables are set by

an influence from outside the system (for example, by gene knockouts or protein

kinase inhibition), whereas observational data consists of passive measurements of
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variables. An intervention can break the symmetry within an equivalence class, re-

sulting in different scores being assigned to equivalent graph structures and thereby

allowing directionality to be determined.

However, in order to be able to make any causal deductions from the data,

it is necessary to assume that there are no hidden or latent variables that explain

away the dependence between observed variables. This assumption is very unlikely

to hold in the molecular biology domain due to the vast number of molecular play-

ers within a cell and the limited number of variables that can be measured in an

experiment. Hence, for any inferred edge from Xj to Xk, the possibility that this

dependence is indirect and occurs via an unobserved variable Xh cannot in general

be ruled out. We note that this effect of hidden variables on the interpretability of

results is not unique to Bayesian networks.

Benefits and limitations of BNs: Due to several attractive properties, BNs have

been widely-used to infer the structure of molecular networks such as gene regulatory

networks [Friedman et al., 2000] and protein signalling networks [Sachs et al., 2005]

(see Chapter 4 for further references). Some of the benefits of BNs are: they offer

an intuitive graphical representation; the probabilistic framework allows them to

handle noisy data; they can model combinatorial relationships between variables;

they can describe both direct (causal) interactions and indirect relationships that

involve unobserved variables; if a dependence exists between a pair of variables, an

edge is not inferred if this dependence is explained by other edges in the graph (for

example, in Figure 2.9, X1 and X4 may be highly correlated, but no edge exists

between them because the dependence is explained by an indirect relationship via

X2); and they are also capable of handling missing data and hidden variables in

a principled manner, although the marginal likelihood can no longer be found in

closed-form (methods for structure learning in this setting include the structural

EM algorithm proposed by Friedman [1998]).

However, BNs also suffer from a number of limitations, of which we consider

three here. First, the acyclicity constraint precludes the modeling of feedback loops,

which are known to play an important role in regulatory mechanisms within the cell.

For example, the graph structure in Figure 2.13(a) contains a feedback loop, but is

not a valid BN. Second, BNs are ‘static’ models that assume samples obtained in an

experiment are independent. Thus, they are not particularly suitable for analysing

time-resolved molecular datasets, that are now relatively common-place, especially

for gene expression data. Third, equivalence of BNs reduces the ability to determine

directionality of edges, as described above. These three limitations can be overcome
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Figure 2.13: Dynamic Bayesian networks. (a) A (static) graph structure con-
taining a feedback loop. This graph is not a Bayesian network (BN) because it does
not satisfy the acyclicity condition. (b) The graph structure in (a) can be ‘unrolled’
through time to give a dynamic Bayesian network (DBN) structure in which each
component is represented at multiple time points. DBNs are able to model feed-
back loops. (c) Due to the homogeneity of the graph structure through time, the
‘unrolled’ DBN in (b) can be ‘collapsed’ into two time slices representing adjacent
time points.

using dynamic Bayesian networks (DBNs) which we now describe. From here on,

BNs refers to static Bayesian networks.

Dynamic Bayesian networks (DBNs): DBNs extend BNs by incorporating an

explicit time element. They can be regarded as BNs “unrolled” through time, with

each variable now represented at multiple time points, as shown in Figure 2.13(b).

The feedback loop in Figure 2.13(a) can be modelled by the DBN since it no longer

creates a cycle. Further, when edges are restricted to be forwards in time only, the

network structure of a DBN is fully identifiable because there are no longer any

equivalent structures.

Let p denote number of variables under study and T denote number of time

points sampled. DBNs associate a random variable with each of the p components at

each time point. Let these pT variables be denoted by Xt
i and let Xt = (Xt

1, . . . ,X
t
p)

be the corresponding random vector at time t. Thus, the full, “unrolled” graph, with

each Xt
i explicitly represented as a vertex (Figure 2.13(b)) contains T time slices,

each with p nodes (p = 3 in Figure 2.13). To facilitate inference over large spaces of

candidate graph structures several simplifying assumptions are usually made when

DBNs are employed for structure learning of molecular networks [Murphy and Mian,

1999; Husmeier, 2003; Kim et al., 2003]. In particular, first-order Markov and sta-

tionarity assumptions are made: each variable at a given time is conditioned only

on variables at the previous time point, p(Xt ∣X1, . . . ,Xt−1) = p(Xt ∣Xt−1), with the
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conditional probability distribution being time independent. Moreover, this first-

order dependence may be sparse, with each component at time t depending on only

a subset of components at time t − 1. The sparsity pattern is described by the edge

structure of the network and the above assumptions result in this edge structure be-

ing homogeneous through time. This gives a model in which a directed acyclic graph

G, with two vertices for each protein, representing adjacent time points, is sufficient

to describe the pattern of dependence (the “collapsed DBN”; see Figure 2.13(c)).

In DBN structure learning, the edge set of the graph G is the object of inference.

The sparse, time-invariant dependence leads to a model with far fewer parameters

than a model with a full, time-varying dependence structure. We note that it is

a common assumption to assume that edges are only permitted forwards in time

[see e.g. Husmeier, 2003; Rau et al., 2010]. This guarantees acyclicity of the DBN,

removing the need for computationally expensive acyclicity checks during structure

learning. It also facilitates the exact inference approach used in Chapter 4.

The factorisation of the joint distribution over all data is similar to that for

a BN (2.40), except each variable now depends on its parents at the previous time

step,

p(X ∣G,Θ) =

p

∏
j=1

p(X1
j ∣ ψj)

T

∏
t=2
p(Xt

j ∣X
t−1
πG(j), θj) (2.51)

where X = (X1, . . . ,XT ) denotes the complete data, Xt
πG(j) = {Xt

k ∣ k ∈ πG (j)} is

time t data for the parents of variable j, and {θj} and {ψj} are parameters that

fully define the conditional distributions for Xt
j (t ≥ 2) and X1

j respectively.

Since the marginal p(X1
j ) does not depend on graph G, it will be omitted

from here on. In the interests of notational simplicity, we introduce the vector

X+
j = (X2

j , . . . ,X
T
j )

T
to denote all data for variable j in the “current” (second) time

slice of the “collapsed DBN” (Figure 2.13(c)) and X−
j = (X1

j , . . . ,X
T−1
j )

T
to denote

corresponding data in the “previous” (first) time slice. This allows us to remove the

product over time above and express the likelihood in the following simple form:

p(X ∣G,Θ) =

p

∏
j=1

p(X+
j ∣ X−

πG(j), θj) (2.52)

(up to a multiplicative constant that does not depend on graph G). Structure

learning proceeds as for BNs except the likelihood (2.40) is replaced by (2.52).

DBNs were first proposed for structure learning of gene regulatory networks

by Friedman et al. [1998] and Murphy and Mian [1999], and have been employed
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Figure 2.14: BN structure learning and variable selection. The variable
selection problem of selecting a subset of p predictors X1, . . . ,Xp that best explains
the response Y can be regarded as a BN structure learning problem. A subset of
predictors γ can be represented by a BN where γj = 1 if and only if Xj is a parent
of Y .

for this purpose many times since (see Chapter 4 for references). Further techni-

cal details of DBNs, including their relationship to state space models and hidden

Markov models can be found in Murphy [2002].

Bayesian networks and variable selection: The variable selection problem de-

scribed in Section 2.3.3 can be cast as a BN structure learning problem. The p

predictor variables X1, . . . ,Xp and response variable Y are represented as p + 1

nodes in a graph G, as shown in Figure 2.14. The variable selection problem is to

find a subset of predictors γ that best explains the response. A model γ can be

represented as a BN G where any edge must go from a predictor variable to the

response variable, and γj = 1 if and only if Xj is a parent of Y in G. Then, finding

the best model γ in the variable selection setting is equivalent to finding the best

BN graph structure G. We exploit this connection in Chapter 4.

2.3.6 Graph structure learning: Gaussian graphical models

In this section we consider structure learning methods for GGMs. For structure

learning methods for general MRFs, the interested reader is referred to Koller and

Friedman [2009].

Learning the structure of a GGM is equivalent to identifying the location

of non-zero elements in the precision matrix (for the joint multivariate Gaussian

distribution over all variables); see Section 2.3.4. There is a rich literature on sparse

precision matrix estimation in the context of Gaussian graphical models, with the

seminal ‘covariance selection’ paper by Dempster [1972] first proposing sparse esti-

mation by setting entries in the precision matrix to zero. Edwards [2000] provides a
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review of standard approaches, such as greedy stepwise backward selection, for iden-

tifying zero entries in the precision matrix. The general procedure for such methods

is as follows: First, the covariance matrix is estimated, usually using the unbiased

sample covariance matrix. This is then inverted and estimates for the partial cor-

relations ρjk are calculated using (2.42). Hypothesis tests are then applied to each

coefficient to identify those that are significantly different from zero, and thereby

find the structure of the GGM. The stepwise procedure has a couple of drawbacks;

multiple comparisons are not taken into account and it is computationally intensive.

Drton and Perlman [2004] addressed these issues by proposing a method that uses

a conservative confidence interval to select the model in a single step.

These standard approaches are only valid when the sample size n is larger

than the number of variables p. When n < p, as is typically the case for molecular

data, the sample covariance matrix is not positive definite and hence cannot be

inverted to find estimates for the partial correlations. In addition, the hypothesis

tests are based on asymptotics and so may be unreliable at small sample sizes.

Several methods have been proposed that enable stable estimates of the precision

matrix to be obtained in challenging ‘large p, small n’ settings. We outline a few

approaches below.

Schäfer and Strimmer [2005a] propose three related methods for estimating

the precision matrix, based on the Moore-Penrose pseudoinverse and bagging. In

particular, they find the best approach at small sample sizes is to use bagging to

obtain variance-reduced estimates of the covariance matrix, and then invert this

estimate using the pseudoinverse. In a subsequent study, Schäfer and Strimmer

[2005b] propose a shrinkage approach to obtain a regularised estimate of the covari-

ance matrix and demonstrated its superior performance in comparison to the bag-

ging/pseudoinverse approach. The shrinkage approach combines the unconstrained

unbiased sample covariance matrix estimator S, which will have a high variance

due to the large number of parameters that need estimating from small sample size

data, with a constrained estimator T that has lower variance, but is a more biased

estimate. They are combined in a weighted average to obtain a new, improved

estimator S∗,

S∗ = λT + (1 − λ)S (2.53)

where λ ∈ [0,1] is the shrinkage intensity, controlling the relative contribution of S

and the shrinkage target T , which they take to be a diagonal matrix with unequal

variances. This choice of target ensures that S∗ is positive-definite, allowing it to be

inverted to obtain partial correlations. An optimal shrinkage intensity, minimising

mean squared error, is obtained analytically using the Ledoit-Wolf Lemma [Ledoit
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and Wolf, 2003]. Once estimation of the partial correlations is complete, model

selection (identification of edges in the GGM) is carried out using an empirical

Bayes approach (see Section 2.3.8) combined with large-scale multiple testing.

Other recent approaches have focussed on using `1 penalisation to regularise

estimation of GGM structure. Meinshausen and Bühlmann [2006] use lasso regres-

sion (see Section 2.3.3) to perform neighbourhood selection for each node in the

graph. This approach sets a subset of regression coefficients to zero, and so auto-

matically performs model selection, with no additional hypothesis testing required.

A sparse precision matrix can subsequently be obtained via constrained maximum

likelihood estimation using the inferred sparse graph structure. Several authors,

including Friedman et al. [2008], have proposed maximum penalised likelihood es-

timators with an `1 penalty applied to the precision matrix. This approach simul-

taneously performs model selection and parameter estimation, and is the approach

we employ in Chapter 5, where further details can be found.

Bayesian approaches have also been proposed [Dobra et al., 2004; Jones et al.,

2005], which allow the posterior distribution over graph structures to be explored,

but are more computationally intensive than the shrinkage and penalised likelihood

approaches.

GGMs have many of the same attractive properties as BNs, including the

ability to distinguish direct interactions between observed variables from indirect

interactions. Since they are undirected models, they are, in contrast with BNs, able

to model feedback loops. However, the directionality of BNs can aid interpretation

of results, and BNs can model both discrete and continuous data.

GGMs have been applied for structure learning of molecular networks, al-

though they are not as widely used as BNs. Early work applied standard methods

to a small number of genes [Waddell and Kishino, 2000] or a small number of clus-

ters of genes [Toh and Horimoto, 2002] so that p < n and the sample covariance

matrix is invertible. More recent work has applied GGMs to gene expression data

with p > n, with many of the studies referenced above including such applications

[Schäfer and Strimmer, 2005a,b; Dobra et al., 2004; Jones et al., 2005; Banerjee

et al., 2008]. While gene regulatory networks are the main focus for applications,

GGMs have also been applied to protein signalling networks [Friedman et al., 2008]

and metabolic networks [Krumsiek et al., 2011].

2.3.7 Other structure learning methods

In this thesis we use graphical models (both DBNs and GGMs) to infer the structure

of protein signalling networks. However, many other structure learning methods
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have been proposed that are not based on graphical models. For completeness, we

briefly outline below some of the methods that are more prominent in the literature.

Reviews and comparisons of these (and other) methods can be found in Werhli et al.

[2006]; Bansal et al. [2007]; Markowetz and Spang [2007]; Cantone et al. [2009];

Hecker et al. [2009] and Altay and Emmert-Streib [2010].

2.3.7.1 Clustering

Clustering methods can be used to group together molecular components that dis-

play similar characteristics. They are a very popular approach for analysing and

visualising gene expression data [e.g. Eisen et al., 1998], with genes being grouped

together based on similarity in gene expression profiles, the idea being that genes in

the same cluster are likely to be functionally related. This notion is often referred to

as the guilt-by-association heuristic. It can loosely be regarded as a structure learn-

ing approach by placing an (undirected) edge between each pair of genes in the same

cluster, but since the resulting networks are fully connected, there is no distinction

between direct and indirect influences, and no indication of which associations are

strongest. We discuss clustering methods in more detail in Section 2.3.9 below.

2.3.7.2 Relevance networks

The relevance network approach to structure learning [Butte and Kohane, 2000] is

again based on the guilt-by-association heuristic. An edge is placed between a pair

of variables if they show a high level of association according to a similarity metric,

such as Pearson’s correlation coefficient or mutual information (MI). These similarity

measures are symmetric, resulting in undirected graph structures. Unlike Pearson

correlation, MI is applied to discrete data and, since it does not assume a linear

dependence between variables, can pick out nonlinear dependencies. It is a measure

of the degree of independence between two variables, with a value of zero implying

independence, and larger scores indicating a higher degree of dependence. Methods

of calculating MI include a histogram technique to discretise continuous data into

bins and thereby calculate probabilities, and Gaussian kernel density estimation.

Further information about MI can be found in Steuer et al. [2002].

Similarity scores are calculated for all pairs of variables, and those that exceed

a threshold have an undirected edge placed between them. However, since pairs of

components are considered in isolation from all other components, the approach

is unable to distinguish between direct and indirect influences. To remedy this,

a pruning step is usually employed, removing edges where the association can be
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better explained by an indirect influence.

Several methods, based on the MI relevance network approach, have been

proposed in the literature. They differ on the methods to calculate MI, obtain the

initial graph structure from the pairwise scores, and prune the graph. Two such ap-

proaches are ARACNe [algorithm for reconstruction of accurate cellular networks;

Basso et al., 2005] and CLR [context likelihood of relatedness; Faith et al., 2007].

Both of these methods, and the original relevance network method [Butte and Ko-

hane, 2000] were demonstrated on gene expression data. A comparison of these

MI-based methods can be found in Altay and Emmert-Streib [2010].

Unsurprisingly, relevance networks have an improved performance for struc-

ture learning over clustering [Bansal et al., 2007]. However, due to their ability

to directly model combinatorial relationships and conditional independencies in the

data, and therefore distinguish between direct and indirect interactions, graphical

models can perform better than relevance networks, as demonstrated by Werhli et al.

[2006]. Hartemink [2005] also show superior performance of DBNs over ARACNe

when applied to time series data. This is likely due to the fact that the MI-based

methods assume that samples are independent, which is not the case for time series

data.

2.3.7.3 Ordinary differential equations

Structure learning methods based on ordinary differential equations (ODEs) model

changes in a variable (e.g. expression level of a gene or phosphorylation level of

a protein) as a function of all other variables and of external perturbations that

affect some of the variables (e.g. gene knockouts or drug treatments). To help avoid

overfitting and to facilitate inference of parameters, a linear ODE is often used.

That is, each variable Xj , has an ODE of the following form,

Ẋj(t) =
p

∑
k=1

ajkXk + bjUj (2.54)

where Ẋj(t) is the rate of change of variable Xj at time t, and ajk and bj represent

the strength of influence on Ẋj(t) of variable Xk and perturbation Uj respectively.

The parameters ajk also encode the network structure; if ajk is non-zero a directed

edge exists in the graph from Xj to Xk. Hence the structure learning problem is to

identify the non-zero parameters ajk.

Gardner et al. [2003] proposed the ODE-based method NIR (network iden-

tification by multiple regression) for steady-state data. At steady-state we have
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Ẋj(t) = 0 which means (2.54) becomes a standard system of linear equations, with

unknown parameters ajk. The effect of the perturbations on each variable (i.e. bjUj)

is assumed to be known. NIR proceeds by making a network sparsity assumption,

which assumes that K < p variables influence any given variable; that is, there are

K non-zero ajk for each j. An exhaustive search is performed over all possible sub-

sets of K variables, and the subset resulting in least square parameter estimates

that best fit the data is chosen. Good performance of NIR has been demonstrated

when the majority of variables are affected by a perturbation [Gardner et al., 2003;

Bansal et al., 2007]. However, one limitation is that it requires knowledge of the

targets of perturbations in the first place, which may not always be known. Indeed,

once parameters have been learnt, the model can be used to predict targets of a

perturbation.

TSNI (time series network identification) is a method for time series data

proposed by Bansal et al. [2006]. No steady-state assumptions are made here, and

so the derivatives Ẋj(t) have to be estimated from the data. The targets of the

perturbations are assumed to be unknown and are inferred along with the graph

structure (parameters ajk). Interpolation and dimensionality reduction methods

(PCA) are used to regularise the problem and obtain parameter estimates. Although

it can be used to infer a whole graph structure, TSNI is mainly focussed on inferring

the perturbation target along with a local network structure around the target.

In contrast to the probabilistic approach provided by graphical models, these

ODE-based methods are deterministic. This means that they are arguably less well

placed to deal with the noise that is ubiquitous in molecular data. As discussed in

the Introduction, ODEs offer a rich modelling framework, with, for example, non-

linear ODEs based on biochemical reaction kinetics providing a reasonably realistic

mechanistic model for signal transduction pathways [Schoeberl et al., 2002; Chen

et al., 2009; Wang et al., 2009a]. However, such models require a large number of

parameters, leading to overfitting if estimated from small sample data, and more-

over, even if a large amount of data were available, parameter estimation and ODE

simulation is likely to be mathematically and computationally challenging. For these

reasons, in spite of their reduced ability to model realistic dynamic behaviour, linear

models are utilised. Linear ODE models have many similarities with linear Gaussian

BNs. Indeed, it is not difficult to incorporate linear ODEs within a DBN structure

learning framework [Li et al., 2011].
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2.3.7.4 Gaussian processes

One approach that does combine ODEs with non-linear models in a tractable manner

is the Gaussian processes approach by Äijö and Lähdesmäki [2009]. Here, a non-

parametric model is used, instead of a linear model, to relate the change in a variable

to all other variables. This avoids making strong assumptions regarding the form

of the regulatory function, which in this approach, is learned from the data using

Gaussian processes. Gaussian processes are stochastic processes that consist of a

collection of random variables and every finite subset of these random variables has a

joint Gaussian distribution. Here, they provide a non-parametric prior distribution

over regulatory functions. Unlike the linear ODE-based approaches outlined above,

noise is explicitly taken into account within the model and inference is carried out

within a Bayesian framework. Therefore, the procedure offers all the benefits of

Bayesian model selection (see Section 2.3.2). In particular, it takes model complexity

into account automatically via the marginal likelihood (which can be found in closed

form), it allows prior knowledge to be integrated into inference via the network

prior, and Bayesian model averaging takes model uncertainty into account. Äijö

and Lähdesmäki [2009] demonstrate their method on gene expression data with

favourable results.

2.3.8 Empirical Bayes

We consider again the Bayesian inference approach where we are interested in the

posterior distribution over parameters Θ given data Y, which by Bayes’ Theorem

is proportional to the product of the likelihood and parameter prior,

p(Θ ∣ Y, λ) ∝ p(Y ∣ Θ)p(Θ ∣ λ). (2.55)

Here, the prior distribution p(Θ ∣ λ) has its own parameters (hyperparameters),

which we denote by λ. For example, the NIG prior for the linear model in (2.11)

has hyperparameters m,V, a, b.

If λ is unknown, a fully Bayesian approach takes uncertainty in the hyper-

parameters into account by placing a prior p(λ) over λ and marginalising to give,

p(Θ ∣ Y) =
∫ p(Y ∣ Θ)p(Θ ∣ λ)p(λ)dλ

p(Y)
(2.56)

= ∫ p(Θ ∣ Y, λ)p(λ ∣ Y)dλ. (2.57)

The prior distribution over λ could in turn have its own unknown parameters, over
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which another prior could be placed. Specifying a model over several levels in this

way is known as hierarchical modelling. We assume here that the parameters for

p(λ) are known.

The empirical Bayes (EB) approach uses the data to estimate hyperparame-

ters. In particular, a point estimate for λ is obtained using the marginal distribution

of all the data,

p(Y ∣ λ) = ∫ p(Y ∣ Θ)p(Θ ∣ λ)dΘ. (2.58)

This point estimate, denoted λ̂, is usually obtained by maximum likelihood or

method of moments estimation. Here we consider the maximum marginal likeli-

hood approach,

λ̂ = max
λ

p(Y ∣ λ). (2.59)

This estimate for λ is then used in the posterior distribution p(Θ∣Y, λ̂) and Bayesian

inference proceeds as if λ were known. Therefore the EB approach replaces the

integral in (2.56) with a maximisation procedure, which can have computational

advantages. Since p(λ ∣ Y) ∝ p(Y ∣ λ)p(λ), the EB maximum marginal likelihood

estimate can be regarded as a MAP estimate of the posterior p(λ ∣ Y) under a flat

prior p(λ). Moreover, if the posterior p(λ ∣Y) is sharply peaked around λ̂, then the

integral (2.57) is approximately equal to p(Θ ∣ Y, λ̂), and so the fully Bayesian and

EB approaches give similar results in this case. The EB approach is also related to

James-Stein estimation [Stein, 1955]; see Carlin and Louis [2008] for details.

We illustrate the EB approach on a simple example, taken from Carlin and

Louis [2008]. Let p(Yj ∣ µj) = N(Yj ∣ µj , σ
2) for j = 1, . . . , p where σ2 is known and

let µj have prior p(µj ∣ λ) = N(λ, τ2) where τ2 is known. The (Yj , µj) pairs are

independent of each other. It can be shown that the marginal distributions p(Yj ∣λ)

are independent and distributed asN(Yj ∣λ,σ
2+τ2). The marginal likelihood p(Y∣λ),

where Y = (Y1, . . . , Yp), can then be maximised with respect to λ to give the EB

estimate λ̂ = Ȳ = 1
p ∑

p
j=1 Yj (i.e. the sample mean). This results in the posterior,

p(µj ∣ Yj , λ̂) = N(µj ∣ ωȲ + (1 − ω)Yj , (1 − ω)σ
2
) (2.60)

where ω = σ2/(σ2 + τ2). Therefore, the posterior mean for µj is ωȲ + (1 − ω)Yj ,

which depends on all the data and not just Yj ; information is ‘borrowed’ from all

components to estimate µj .

The EB approach described here is in fact a parametric EB approach [Mor-

ris, 1983] since the parameter prior has a parametric form. Non-parametric EB

approaches [Robbins, 1955], which we do not discuss here, also exist. Further de-
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tails about EB approaches can be found in Carlin and Louis [2008].

EB approaches have been used in several areas of statistics and bioinformat-

ics. Perhaps the most well-known application of EB in bioinformatics is for assessing

differential gene expression [Smyth, 2004], where as seen in the example above, in-

formation is borrowed across genes to help obtain more stable inferences for each

individual gene at small sample sizes. Other examples where EB has been used to

set hyperparameters include: Bayesian variable selection in the linear model [George

and Foster, 2000], the Bayesian Lasso [Park and Casella, 2008], structure learning

with Gaussian processes [Äijö and Lähdesmäki, 2009], and structure learning with

Gaussian graphical models [Schäfer and Strimmer, 2005a].

In Chapters 3 and 4 we use an EB approach to automatically set the model

prior hyperparameters that select and/or weight the prior information.

2.3.9 Clustering

Clustering is an unsupervised learning method, often used to analyse and visualise

high-dimensional data. The aim is to group data objects together into subsets

(clusters) so that those within the same cluster have a higher similarity with each

other than with those in other clusters. Importantly, it differs from supervised

classification, where class labels are known and the aim is to learn a model from the

labelled data that can then be used to classify new unlabelled data. In clustering,

there are no observed class labels.

Clustering is a popular approach for analysing gene expression data. In

molecular biology applications, clustering can be used to either group variables to-

gether [e.g. to find sets of co-regulated genes; Eisen et al., 1998; Toh and Horimoto,

2002], group samples together [e.g. to discover disease subtypes characterised by

similar gene expression patterns; Golub et al., 1999; Alizadeh et al., 2000], or to

simultaneously group both variables together and samples together [e.g. to find

subsets of genes with similar expression patterns in a subset of experimental condi-

tions; ‘bi-clustering’ methods; Alon et al., 1999; Madeira and Oliveira, 2004].

Below we outline some of the most widely-used clustering approaches, and

we do so in the context of clustering samples together. All the methods can also

be applied to cluster variables together. The reader is referred to Datta and Datta

[2003]; Thalamuthu et al. [2006]; Kerr et al. [2008] and de Souto et al. [2008] for

reviews and comparisons of various clustering methods, including those outlined

below.
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2.3.9.1 K-means

K-means uses squared Euclidean distance as a measure of similarity,

d(xi,xi′) = ∥xi − xi′∥
2
2 (2.61)

where xi is a p-dimensional data sample.

The number of clusters K is fixed in advance and the algorithm is initialised

by selecting K of the data samples to be the initial cluster means, denoted by

m1, . . . ,mK . Let C(i) ∈ {1, . . . ,K} denote the cluster assignment for sample i. The

algorithm then proceeds in an iterative fashion as follows,

1. Assign: Given current cluster means {m1, . . . ,mK}, assign each sample to

the closest cluster mean,

C(i) = argmin
k=1,...,K

d(xi,mk). (2.62)

2. Calculate means: Given current cluster assignment function C, recalculate

cluster means,

mk =
1

Nk
∑

i∶C(i)=k
xi (2.63)

where Nk is the number of samples currently assigned to cluster k.

3. Repeat: Iterate steps 1 and 2 until assignments remain constant.

The algorithm is trying to minimise the within-cluster sum-of-squares,

argmin
C

K

∑
k=1

∑
i∶C(i)=k

d(xi,mk) (2.64)

where mk is the cluster mean, as defined in Step 2 of the algorithm. However, it is

only guaranteed to find a local minimum, so performing multiple runs with random

initialisations is advisable. It can also be sensitive to noise and outliers in the data,

and requires the user to select the number of clusters.

Figure 2.15(a) shows an application of K-means to simulated data consisting

of two clusters, each with 50 samples. The method works well when clusters are

of a spherical shape and are clearly separated. When this is not the case, as in

Figure 2.15(b), K-means can fail.
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Figure 2.15: K-means and model-based clustering. (a) Results of K-means
clustering applied to simulated data consisting of two clusters, each with 50 two-
dimensional samples. Circles and crosses denote true cluster labels; red and blue
denote cluster assignments returned by K-means. Here the clusters have a clear
separation and have a relatively spherical shape. (b) K-means clustering applied to
simulated data with clusters that overlap and have an elliptical shape. (c) Model-
based clustering applied to the same data as in (b). Hard assignments are obtained
by assigning samples to the cluster with highest responsibility for that sample.

Applications of K-means in molecular biology include clustering of genes into

transcriptional regulatory subnetworks [Tavazoie, 1999] and discovery of subtypes

of gliomas based on gene expression signatures [Shai et al., 2003].

2.3.9.2 Hierarchical clustering

As the name suggests, hierarchical clustering forms a hierarchy, where at each level

in the hierarchy clusters are created by merging clusters at the previous level. This

hierarchy can be represented graphically in the form of a tree, known as a dendo-

gram.

In agglomerative hierarchical clustering, the algorithm begins with each data

sample in a cluster by itself. Then, the closest pair of clusters is merged into a single

cluster. This is repeated until only one cluster containing all samples exists. A less

popular method is divisive clustering, which starts with all samples in one cluster,

and then at each iteration splits a cluster into two. Closeness between two clusters

is often assessed using the average intercluster distance (i.e. the average of all

pairwise distances between samples, where the samples are in different clusters).

This is known as average-linkage clustering. The distance metric is chosen by the

user; results are not invariant to this choice.

The dendogram allows visualisation of global patterns in the data. Clusters

can be obtained by cutting the dendogram at a certain level, which is decided upon
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by the user. Higher levels in the dendogram represent the merging of clusters with

a larger intercluster dissimilarity (higher average intercluster distance). The idea is

to select a level where samples within clusters have a greater similarity with each

other than to samples in other clusters.

Like K-means, hierarchical clustering can be sensitive to noise and outliers

in the data. However, it does not require pre-specification of the number of clusters.

There have been many applications of hierarchical clustering, including the

clustering of genes into functional modules [Eisen et al., 1998], identification of

cancer types [Nielsen et al., 2002], and discovery of new cancer subtypes [Alizadeh

et al., 2000].

2.3.9.3 Model-based clustering

Model-based clustering [McLachlan and Basford, 1987; Fraley and Raftery, 1998;

McLachlan and Peel, 2000; Fraley and Raftery, 2002] with finite Gaussian mixture

models is a popular approach to clustering that, unlike the approaches above, is

rooted in an explicit statistical model. Each mixture component corresponds to a

cluster. Given data, the aim is to estimate the parameters of the mixture model

and calculate probabilities of samples belonging to each cluster (known as responsi-

bilities). Therefore, this method performs ‘soft’ clustering assignments; it does not

assign each sample to a single specific cluster as K-means and hierarchical clustering

do. However, ‘hard’ assignments can be obtained by assigning each sample to the

cluster (mixture component) with largest responsibility for that sample.

Let x1, . . . ,xn be a random sample from a finite Gaussian mixture distribu-

tion,

f(xi;Θ) =
K

∑
k=1

πkfk(xi ∣µk,Σk) (2.65)

where the mixing proportions πk satisfy 0 ≤ πk ≤ 1 and ∑Kk=1 πk = 1, fk is the p-

dimensional multivariate Gaussian density with component-specific mean µk and

covariance Σk, and Θ = {(πk,µk,Σk) ∶ k = 1, . . . ,K} is the set of all unknown pa-

rameters. The log-likelihood for the sample is given by

l(Θ) =
n

∑
i=1

log(
K

∑
k=1

πkfk(xi ∣µk,Σk)). (2.66)

Maximizing the log-likelihood is difficult due to its non-convexity. The

Expectation-Maximisation (EM) algorithm [Dempster et al., 1977] can be used to

obtain maximum likelihood estimates and calculate responsibilities. Let zi be a
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latent variable satisfying zi = k if sample xi belongs to cluster k. Then we have

P (zi = k) = πk and p(xi ∣ zi = k) = fk(xi ∣ µk,Σk). The log-likelihood for the com-

plete data {xi, zi}
n
i=1 is

lc(Θ) =
n

∑
i=1

log(πzi) + log (fzi (xi ∣µzi ,Σzi)). (2.67)

In the E-step of the EM algorithm, given current estimates of the parameters

Θ(t), we compute

Q(Θ ∣ Θ(t)) = E [lc(Θ) ∣ {xi}
n
i=1 ,Θ

(t)
]

=
n

∑
i=1

K

∑
k=1

τ
(t)
ik [log(πk) + log (fk (xi ∣µk,Σk))] (2.68)

where τ
(t)
ik is the posterior probability of sample xi belonging to cluster k (the

responsibility of cluster k for sample xi),

τ
(t)
ik =

π
(t)
k fk (xi ∣µ

(t)
k ,Σ

(t)
k )

∑
K
j=1 π

(t)
j fj (xi ∣µ

(t)
j ,Σ

(t)
j )

. (2.69)

In practice, in order to perform the M-step below, it is only necessary to calculate

the responsibilities. Therefore, the E step is carrying out a soft assignment based

on the current estimates for the parameters.

In the M-step Q(Θ∣Θ(t)) is maximised with respect to Θ to give the following

new estimates for the parameters Θ(t+1), based on the current responsibilities,

π
(t+1)
k =

∑
n
i=1 τ

(t)
ik

n
(2.70)

µ
(t+1)
k =

∑
n
i=1 τ

(t)
ik xi

∑
n
i=1 τ

(t)
ik

(2.71)

S
(t+1)
k =

∑
n
i=1 τ

(t)
ik (xi −µ

(t+1)
k ) (xi −µ

(t+1)
k )

T

∑
n
i=1 τ

(t)
ik

. (2.72)

The E and M steps are iterated until the change in the likelihood l(Θ(t)) is below

a threshold. It is only guaranteed to find a local maximum of l(Θ) so multiple

random intialisations are usually performed.

Like K-means, the number of clusters K needs to be set in advance by

the user. However, since this method is model-based, the problem of setting the
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number of clusters can be cast as a model selection problem, and so methods such

as information criteria (e.g. BIC) and likelihood-based cross-validation can be used

to set K.

Figure 2.15(c) shows an application of model-based clustering to the same

data as in Figure 2.15(b). We see that model-based clustering is successful in recov-

ering the true clusters where K-means was not, due to its ability to identify clusters

with an elliptical shape.

McLachlan et al. [2002] applied model-based clustering to cluster cancer tis-

sues using gene expression data. We apply model-based clustering in Chapter 5 to

cluster breast cancer cell lines on the basis of signalling network connectivity.
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Chapter 3

Integrating biological knowledge

into variable selection: an

empirical Bayes approach

3.1 Introduction

Ongoing advancements and cost reductions in biochemical technology are enabling

acquisition of ever richer datasets. As discussed in Chapter 1, in many settings, in

both basic biology and medical studies, it may be important to model the relation-

ship between assayed molecular entities, such as genes, proteins or metabolites, and

a biological response of interest.

Molecular players may act in concert to influence biological response: this has

motivated a need for multivariate methods capable of modelling such joint activity.

When sample sizes are small-to-moderate, as is often the case in molecular studies,

robust modelling of joint influences becomes especially challenging. However, often

it is likely that only a small number of players are critical in influencing the response

of interest. Then, the challenge is to identify appropriate variable subsets.

Statistical variable selection methods have been widely used in the bioinfor-

matics domain to discover subsets of influential molecular predictors. Both Bayesian

[Lee et al., 2003; Jensen et al., 2007; Mukherjee et al., 2009; Ai-Jun and Xin-Yuan,

2010; Li and Zhang, 2010; Yeung et al., 2011] and penalised likelihood approaches

[Li and Li, 2008; Wu et al., 2009] have been used in a diverse range of applications.

These include, the identification of sets of genes that can discriminate between can-

cer cells and normal cells, or between different (sub)types of cancer (based on gene

expression data) [Lee et al., 2003; Ai-Jun and Xin-Yuan, 2010]; inference of gene
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regulatory relationships from gene expression data [Jensen et al., 2007; Yeung et al.,

2011]; identification of DNA motifs that are associated with gene expression levels

[Li and Zhang, 2010]; identification of genes that are related to cancer survival rates

[Li and Li, 2008] and discovery of sets of signalling proteins that are predictive of

drug response [Mukherjee et al., 2009].

Bayesian approaches can facilitate the integration of ancillary information

regarding variables under study through prior probability distributions over predic-

tor subsets. Ongoing development of online tools and databases have meant that

such information is widely available, and depending on context, may include net-

works and pathway maps, public gene expression datasets, molecular interaction

databases, ontologies and so on. However, while the idea of incorporating such in-

formation into variable selection has a clear appeal, it is not always obvious what

information should be included nor how it should be weighted. Indeed, many ex-

isting Bayesian variable selection approaches do not attempt integrative analyses

exploiting such information and instead employ standard priors that do not specify

preferences for particular variables, but may, for example, encode a preference for

sparse models [Brown et al., 2002; Mukherjee et al., 2009]. Several Bayesian vari-

able selection studies have put forward simple approaches for incorporating prior

knowledge by independently assigning each variable a prior probability of being in-

cluded in the model [George and McCulloch, 1997; Chipman et al., 2001; Lee et al.,

2003; Ai-Jun and Xin-Yuan, 2010] (Bernoulli-distributed prior; see (2.34)). How-

ever, subjectively setting such hyperparameters for each variable may be difficult.

As a result, in practice, each variable is usually assigned the same prior probability.

Furthermore, prior independence may be a questionable assumption, since molecular

variables are unlikely to influence a response independently of one another.

We develop a variable selection procedure in which an empirical Bayes ap-

proach is used to objectively select between a choice of informative priors incorporat-

ing ancillary information (‘biologically informative priors’) and also to objectively

weight the contribution of the prior to the overall analysis. Empirical Bayes ap-

proaches have previously been used with Bayesian variable selection, but only to

set the success parameter π in the standard Bernoulli-distributed prior [George and

Foster, 2000]. A related, yet often more computationally intensive approach is to

perform a fully Bayesian analysis and marginalise out the hyperparameter. Such

an approach has also been applied to Bayesian variable selection (with Bernoulli-

distributed prior) [Nott and Green, 2004] and also in a structure learning setting

with biologically informative priors [Werhli and Husmeier, 2007].

The work presented here is motivated by questions concerning the relation-
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ship between signalling proteins and drug response in human cancers. In the pro-

tein signalling setting (as also in gene regulation) there is now much information

available, both in the literature and in diverse online resources, concerning relevant

pathways and networks. We therefore develop pathway- and network-based infor-

mative priors for this setting, applying the empirical Bayes method proposed to

automatically select and weight the prior and thence carry out variable selection.

The relationship between response and predictors is modelled using a contin-

uous, linear model with interaction terms. In this way we avoid data discretisation,

which can lose information, yet retain the ability to capture combinatorial interplay.

We take advantage of biochemically-motivated sparsity constraints to permit exact

inference, thereby avoiding the need for approximate approaches such as Markov

chain Monte Carlo (MCMC). This enables the calculation of exact probability scores

over which variables are likely to be influential. The overall procedure is compu-

tationally fast: empirical Bayes analysis and subsequent calculation of posterior

(inclusion) probabilities for 52 predictors via full model averaging required only 10

minutes (in MATLAB R2010a on a standard single-core personal computer; code

freely available at http://go.warwick.ac.uk/stevenhill/IBKVS). Moreover, the

overall procedure we put forward is simple from the user perspective, requiring very

few user-set parameters and no MCMC convergence diagnostics.

The remainder of this Chapter is organised as follows. In Section 3.2 we refer

to the background information given in Chapter 2 on Bayesian linear models and

Bayesian variable selection, and then describe the particular details of our Bayesian

variable selection approach. We describe in turn, a linear model including inter-

actions between predictors, exact computation of posterior inclusion probabilities,

biologically informative pathway-based priors, and empirical Bayes analysis to ob-

jectively select and weight prior information. In Section 3.3 we illustrate our method

on published single cell proteomic data [Sachs et al., 2005] with synthetic response

data, and on breast cancer proteomic and drug response data. In Section 3.4 we

conclude with a discussion of the merits and shortcomings of our work, make fur-

ther comparisons of our approach to those existing in the literature and highlight

directions for further work.

3.2 Methods

The reader is referred to Sections 2.3.1 and 2.3.3 for background information on

the Bayesian linear model and Bayesian variable selection respectively. The nota-

tion used in this Chapter also follows that used in the aforementioned sections (in
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particular, see Equations (2.2), (2.31) and surrounding text).

3.2.1 Bayesian linear model with interaction terms

We include interaction terms in the linear model, Y = Xγβγ + ε (see also (2.31)),

to enable combinatorial relationships between predictors included in model γ and

response Y to be captured. Let Xiγ be a 1 × ∣γ∣ vector denoting sample i data

for predictors included in model γ. Given model γ, response Yi depends in a non-

linear fashion on the included predictors Xiγ while remaining linear in the regression

parameters. In particular, the mean for Yi is a linear combination of included

predictors and all possible products of included predictors. For example, if ∣γ∣ = 3

with γ1 = γ2 = γ3 = 1, then the mean for variable Yi is a linear combination of the

three included predictors Xij (for j = 1,2,3), the three possible pairwise products

of included predictors XijXik and the product of all included predictors Xi1Xi2Xi3.

We extend the n× ∣γ∣ predictor (design) matrix Xγ and regression coefficient vector

βγ to include the interaction terms and corresponding coefficients respectively, and

we denote the extended versions by X̄γ and β̄γ . The likelihood now takes the form

p(Y ∣ γ, X̄γ , β̄γ , σ
2
) ∼ N (X̄γβ̄γ , σ

2I) . (3.1)

All columns in X̄γ are standardised to have zero mean and unit variance.

Recall from Section 2.3.3.2 that, in Bayesian variable selection, the object of

interest is the posterior distribution over models P (γ ∣ Y,X), which is given (up to

proportionality) by Bayes’ theorem in (2.32) and is also reproduced here,

P (γ ∣ Y,X) ∝ p(Y ∣ γ,Xγ)P (γ), (3.2)

where p(Y ∣γ,Xγ) is the marginal likelihood, and P (γ) is the model prior and is the

main focus of this Chapter. General background regarding the marginal likelihood,

including its ability to automatically control for model complexity, was given in

Section 2.3.2.2.

As discussed in Section 2.3.3.2, for the prior on parameters Θγ = (βγ , σ
2) we

take a limiting case of the conjugate NIG(m,V, a, b) prior (2.11), following Zellner

[1986]; Smith and Kohn [1996] and Nott and Green [2004]. Specifically, we take

m = 0, V = c (XT
γXγ)

−1
(Zellner’s g-prior) and a = b = 0. Hence, the prior for β̄γ

given γ and σ2 is given by

p(β̄γ ∣ γ, X̄γ , σ
2
) ∼ N (0, cσ2 (X̄T

γ X̄γ)
−1

) (3.3)
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and the prior for σ2 is p (σ2) ∝ σ−2.

Several approaches have been proposed in the literatue for setting the hyper-

parameter c in Zellner’s prior. For example, Smith and Kohn [1996] take a ‘large’

value of c = 100 so that the prior contains little information relative to the likelihood;

Liang et al. [2008] consider a fully-Bayes approach and place a prior distribution on

c; George and Foster [2000] set c using an empirical Bayes approach; and Gustafson

[2000]; Kohn et al. [2001]; Nott and Green [2004] set c equal to the sample size n.

We take the latter approach here, which yields a ‘unit information prior’ [Kass and

Wasserman, 1995] with the amount of information about the parameter equal to the

amount of information in one observation.

With these choices of prior, the closed form marginal likelihood in (2.33),

obtained by integrating out parameters, becomes

p(Y ∣ γ,Xγ) ∝ (1 + n)−
2∣γ∣−1

2 (YTY −
n

n + 1
YTX̄γ (X̄

T
γ X̄γ)

−1
X̄T
γY)

−n
2

. (3.4)

We note that, in contrast to the widely-used (non-limiting) NIG prior, this formula-

tion has no free hyperparameters and enjoys attractive invariance properties under

rescaling [Kohn et al., 2001].

Calculation of the marginal likelihood (3.4) requires inversion of a (2∣γ∣ − 1)×

(2∣γ∣ − 1) matrix X̄T
γ X̄γ , which could result in problems with matrix singularity when

sample size n is too small relative to ∣γ∣. In this work, due to a restriction on ∣γ∣

(discussed below), we do not encounter such matrix singularity issues.

3.2.2 Exact posterior inclusion probabilities

We are interested in calculating posterior inclusion probabilities for each predictor,

as given in (2.35) and reproduced here,

P (γj = 1 ∣ Y,X) = ∑
γ∶γj=1

P (γ ∣ Y,X). (3.5)

Inclusion probabilities are a measure of the importance of each individual predictor

in determining the response and are calculated by model averaging. Background

information on Bayesian model selection and model averaging can be found in Sec-

tions 2.3.2.2 and 2.3.2.3.

Instead of employing MCMC methods to sample from the posterior distri-

bution over the vast space of models (∣Γ∣ = 2p) and obtain asymptotically valid

estimates for inclusion probabilities (3.5), we calculate exact inclusion probabilities

by enforcing a restriction on the number of predictors that are allowed to be in-
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cluded in the model. That is, we only allow γ with ∣γ∣ ≤ dmax for some dmax ∈ N.

This gives

∣Γ∣ =
dmax

∑
d=0

(
p

d
). (3.6)

Thus, instead of being exponential in p, the model space Γ has polynomial size of

order pdmax , thereby allowing explicit calculation of posterior inclusion probabilities

via (3.5). We take dmax = 4, giving ∣Γ∣ = 294,204 for the p = 52 predictors in the

cancer drug response application below; the original size of Γ was of order 1015.

3.2.3 Biologically informative model priors

We now turn our attention to the model prior P (γ). As discussed in Section 2.3.3.2,

a common choice of prior assumes that the a priori inclusion probabilities are in-

dependent and have Bernoulli marginal distributions P (γj) with success parameter

π. These priors provide no information regarding specific predictors and do not

utilise domain knowledge. Employing predictor dependent hyperparameters πj en-

ables incorporation of prior knowledge that some predictors are more important

than others. However, utilising such a prior may be difficult in practice due to the

many hyperparameters that must be subjectively specified. We note also in this

formulation, prior inclusion probabilities are still independent.

In many molecular biology settings, there is much information available re-

garding predictors which may be used to construct biologically informative model

priors. This could be network and pathway structures, providing information on

relationships between predictors, or information from publicly available datasets.

However, it may not be obvious precisely how such information should be used and

it is usually possible to encode several different, apparently plausible priors. We

are therefore interested in investigating the question of how to choose between such

priors.

Suppose we have S priors to choose from, with each prior, indexed by s ∈

{1, . . . , S}, encoded by a function fs ∶ {0,1}p → R which scores a proposed model γ

according to the prior information. We take the overall prior to be of a form similar

to that used in Mukherjee et al. [2009],

P (γ ∣ s, λ) ∝ exp{λfs(γ)} (3.7)

where s is a hyperparameter (the ‘source parameter’) that selects amongst priors

and λ is a hyperparameter controlling the overall strength of the prior.

Here, we consider two simple pathway-based priors. Proteins can be organ-
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ised into pathways within the overall signalling network structure. These pathways

consist of signalling cascades in which proteins transduce signals from the cell mem-

brane down to the cell nucleus, ultimately leading to a cellular response. Therefore,

signalling pathways can be associated with particular cellular functions. For exam-

ple, the AKT/PI3K pathway is known to play a role in cell proliferation and apop-

tosis. The priors we consider capture information regarding two pathway-based

features, via functions f1 and f2 respectively: (i) the number of pathways repre-

sented by proteins included in a model and (ii) the intra-pathway distances between

proteins included in a model. Below we proceed to give details for each, making use

of the following notation. We let Ek ⊆ {1, . . . , p} denote the set of proteins contained

in pathway k, k ∈ {1, . . . ,K}, and we let Eγk = γ ∩ Ek be the set of proteins that are

both in model γ and in pathway k. We note that a protein is both allowed to be

a member of more than one pathway or to not be a member of any pathways. If

there is no prior information available, the pathway-based priors reduce to a flat

prior over model space. Figure 3.1 illustrates properties of the two priors.

3.2.3.1 Number of pathways (f1).

The first pathway-based feature encodes the notion that predictors that are influ-

ential in determining response may belong to a small number of pathways or, in

contrast, may be spread across many pathways. We encode this belief by a function

f1(γ) which counts the number of pathways represented in a model γ. Specifi-

cally, f1(γ) = max(0,Kγ − 1) where Kγ is the pathway count given by minA ∣A∣ for

A ⊆ {1, . . . ,K} satisfying

⋃
k∈A
E
γ
k =

K

⋃
k=1
E
γ
k . (3.8)

This definition prevents the empty model being a priori most probable and avoids

double counting (proteins that are members of multiple pathways are considered to

be a member of only one pathway for the purpose of calculating f1(γ), and this

single pathway is selected to minimise the pathway count; see Figure 3.1). If the

strength parameter λ is negative, the prior increasingly penalises models as number

of pathways increases, whereas a positive value results in a prior that prefers models

representing many pathways.

3.2.3.2 Intra-pathway distance (f2).

The second feature we consider is that variables which jointly influence the response

may either be close to each other in a network sense, or may in fact be far apart in the
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1 2 1 21 2

Figure 3.1: Properties of pathway-based priors. Priors are encoded by func-
tions f1(γ) (number of pathways) and f2(γ) (intra-pathway distance). Shaded com-
ponents are contained in model γ and shapes represent different pathways. (Note
that the pathway count and intra-pathway distance have a value of unity subtracted
from them to obtain f1(γ) and f2(γ). See Sections 3.2.3.1 and 3.2.3.2 for full de-
tails.) Top row: Comparisons of the scoring functions. Top left - γ1 has larger
intra-pathway distance than γ2; Top middle - distance is agnostic to number of
pathways; Top right - addition of a singleton has no effect on distance. Bottom
row: The root component in each network is in both pathways. However, f1(γ) is
defined so as to avoid double counting. Bottom left/middle - both the circle and
square pathways are required to obtain all components contained in γ, giving a
pathway count of 2 and a score f1(γ) = 1; Bottom right - taking the square pathway
only is sufficient to obtain all components in γ, giving a pathway count of 1 and a
score of f1(γ) = 0.
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network. This is done by a function f2(γ) which gives the average distance between

pairs of proteins that are both in γ and in the same pathway. Specifically, the

distance between two proteins j1 and j2, denoted d(j1, j2), is the number of edges in

the shortest (undirected) path between them. Then, we define f2(γ) = max(0,Dγ−1)

where Dγ is the average of all d(j1, j2) with j1, j2 ∈ E
γ
k for some k. In order for the

distance to be defined for any two proteins in a pathway, we assume that the network

topology for a pathway consists of a single connected component (in the undirected

sense). We term a protein included in γ as a singleton if there are no other included

proteins in the same pathway (i.e. protein j is a singleton if Eγk = {j} for some

k). For models that only contain singletons or the empty model we set Dγ = 0.

The function f2(γ) defined in this way satisfies a number of natural desiderata. It

is agnostic to ∣γ∣ and to the pathway count Kγ (see Figure 3.1). Also, it avoids

double counting and is indifferent between models including only singletons and

models with the smallest possible average distance of Dγ = 1. A negative strength

parameter λ results in a prior that penalises larger intra-pathway distances, while a

positive value encourages larger distances.

3.2.4 Empirical Bayes

We set the prior source parameter s and strength parameter λ in an objective

manner using empirical Bayes (see Section 2.3.8 for an introduction to empirical

Bayes methods). Specifically, we maximise the following marginal likelihood,

p(Y ∣ X, s, λ) = E [p(Y ∣ γ,Xγ)]P (γ ∣ s,λ)

= ∑
γ

p(Y ∣ γ,Xγ)P (γ ∣ s, λ). (3.9)

For a given choice of hyperparameters, calculation of the marginal likelihood

entails a summation over the model space. This can be calculated exactly by ex-

ploiting the model space restriction described above. The marginal likelihood score

is calculated over a grid of hyperparameter values and those resulting in the largest

score are used for variable selection.

3.2.5 Prediction

Given already observed data (X,Y), we can use the posterior predictive mean

E [Y ′ ∣ X′,X,Y] to predict the value of new response Y ′ from new predictor data
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X′. This entails averaging over models as shown in (2.38), which we reproduce here,

E [Y ′
∣ X′,X,Y] = ∑

γ

E [Y ′
∣ X′,X,Y, γ]P (γ ∣ Y,X) (3.10)

where the choice of parameter prior described in Section 3.2.1 gives

E [Y ′
∣ X′,X,Y, γ] =

n

n + 1
X̄′
γ (X̄

T
γ X̄γ)

−1
X̄T
γY (3.11)

and the model posterior P (γ ∣ Y,X) is calculated via (3.2), (3.4) and (3.7). Equa-

tion (3.11) can be used to predict the value of Y ′ under a single model, instead of

averaging over models; we use it below to make prediction with the MAP model.

3.3 Results

We first show an application of our proposed approach to synthetic response data

generated from a published study of cell signalling, and then further illustrate the

approach with an analysis of proteomic data and drug response from breast cancers.

3.3.1 Synthetic response data

In ongoing studies, such as that presented below, objective performance compar-

isons may be challenging, since we usually do not know which molecules are truly

influential in driving biological response. At the same time, in fully synthetic data

it can be difficult to mimic realistic correlations between variables within a pathway

or across a network. For this reason, we empirically assessed the methods proposed

using published single-cell, phosphoproteomic data [Sachs et al., 2005] obtained by

flow cytometry (see Section 2.2.4), with responses generated from that data. This

preserved pathway-related correlation structure between predictors but permitted

objective assessment. The dataset consists of p = 11 proteins and ntot = 853 sam-

ples.1

Figure 3.2 shows a network and pathway structure for the 11 proteins for

use with the biologically informative priors of the type described above. We used a

network structure based on the one given in Sachs et al. [2005] (which reflects current

knowledge of signalling interactions) and assigned the proteins into four pathways.

We considered two simulation models, γ∗1 and γ∗2 , each of which is a predictor

subset consisting of three proteins: PIP3, ERK1/2, p38 for Simulation 1, and Raf,

1The complete dataset from Sachs et al. [2005] contains data obtained under nine different con-
ditions, corresponding to different interventions. Here, we use the baseline dataset which contains
853 samples.
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Figure 3.2: Protein network and pathway structure for biologically infor-
mative priors in the synthetic response data study. Responses were generated
from published phosphoproteomic data [Sachs et al., 2005] consisting of 11 proteins
and 853 samples (baseline data only). Network structure shown here is based on
that given in Sachs et al. [2005]. Proteins were divided into four pathways, denoted
by node colours red, blue, green and yellow. The grey nodes are each members
of all four pathways. The square and octagonal proteins influence the response in
simulation models γ∗1 and γ∗2 respectively.
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Mek1/2, PKA for Simulation 2. In each case, the three proteins were chosen to

be favoured by a particular prior. γ∗1 is favoured by the intra-pathway distance

prior (s = 2) with positive λ; the proteins included in γ∗1 had a large average intra-

pathway distance (d(PIP3,ERK1/2)=4 and d(PIP3,p38)=3 (both undirected paths

via AKT and PKA), giving average distance of 3.5 and score of f2(γ
∗
1 ) = 2.5) and

incorporated a medium number of pathways (red and green pathways, giving score

of f1(γ
∗
1 ) = 1). γ∗2 is favoured by either the number of pathways prior (s = 1) with

negative λ or the intra-pathway distance prior (s = 2) with negative λ; the proteins

included in γ∗2 had both a small intra-pathway distance (distance between each pair

of proteins is unity, giving average distance of unity and score of f2(γ
∗
2 ) = 0) and

incorporated a small number of pathways (red pathway only, giving score of f1(γ
∗
2 ) =

0). Since, by construction, each model is favoured by a particular prior, we can test

the ability of the empirical Bayes approach to select appropriate hyperparameter

values. Response data Y were generated using (3.1); Y = A+BC + ε, where A,B,C

are the three influential variables, and ε is independent Gaussian noise.

We are especially interested in the small-sample regime that is often of in-

terest in molecular studies. We therefore subsampled (without replacement) n = 35

training data from the dataset (this matched the sample size of the drug response

study reported below), and assessed predictive ability on the remaining, held-out

data (ñ = ntot − n = 818).

Subsampling was repeated to give 5,000 training/test pairs, over which results

are reported below. At each iteration, only small-sample training data was used

for inference. The empirical Bayes method was employed to set prior source and

strength parameters (using training data only), with λ ∈ [−5,5] (this specification

permits a flat prior if empirical Bayes analysis supports neither prior). Posterior

inclusion probabilities were then calculated as described above.

We assessed performance by comparing the true underlying model γ∗ to the

model γτ obtained by thresholding posterior inclusion probabilities at level τ . γ∗

can be compared to γτ using the number of true positives (TPs) and number of

false positives (FPs). TPs are predictors included in γτ and also included in γ∗

(i.e. γ∗ ∩ γτ ), while FPs are predictors included in γτ but not included in γ∗ (i.e.

γτ /γ
∗). For results from each small-sample dataset, a receiver operating character-

istic (ROC) curve was constructed by plotting number of TPs against number of

FPs for varying thresholds τ . Figure 3.3 shows average ROC curves over the 5,000

iterations, together with area under the ROC curve (AUC). AUC is a summary of

the curve and provides a measure of variable selection accuracy, with higher scores

indicating better performance. The score is normalised to take a value between 0
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and 1. The Bayesian variable selection (BVS) method with empirical Bayes and

linear model with interaction terms (‘EB’) is compared with six other approaches:

(i) BVS with flat prior and linear model with interaction terms (‘flat +int’);

(ii) BVS with a prior that is incorrect with respect to the true, underlying model:

intra-pathway distance prior (f2) favouring small distances (λ = −5) for Sim-

ulation 1 and large distances (λ = 5) for Simulation 2 (‘incorrect’);

(iii) BVS with flat prior and linear model with no interaction terms (‘flat -int’);

(iv) penalised-likelihood lasso regression [Tibshirani, 1996] using a linear model

with pair-wise interaction terms (see Section 2.3.3.3 and below for further

details; ‘Lasso’);

(v) BVS with a Markov random field prior [Li and Zhang, 2010] and linear model

with interaction terms (Simulation 2 only, see below for further details; ‘MRF

prior’); and

(vi) absolute correlation coefficients between each predictor and response (‘corr’).

Recall from Section 2.3.3.3 that lasso regression performs variable selection by

placing an L1 penalty on the regression coefficients. This has the effect of shrinking

a subset of regression coefficients to exactly zero; the predictors with non-zero coef-

ficients are taken as the inferred model. Sparsity of the inferred model is controlled

by a tuning parameter, which we set by 5-fold cross-validation (see Section 2.3.2.1

for background information on cross-validation). This method results in a single in-

ferred model (i.e. point estimate). However, a full ROC curve can still be obtained

by thresholding absolute regression coefficients.

Markov random field priors have previously been used in Bayesian variable

selection to take network structure of predictors into account [Li and Zhang, 2010;

Stingo and Vannucci, 2011]. A Markov random field is an undirected graphical

model G = (V,E) in which vertices V represent variables (here, the predictors)

and edges E represent probabilistic relationships between them. Background in-

formation regarding graphical models and Markov random fields can be found in

Section 2.3.4. Let A = (ai,j) be a binary symmetric matrix with ai,j = 1 if and only

if edge (i, j) ∈ E. Then, the Markov random field prior is given by

P (γ ∣ λ) ∝ exp{λγTAγ} . (3.12)

This prior encourages selection of predictors whose neighbours in G are also included

in the model. The strength of this preference is controlled by a parameter λ ≥ 0. We
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apply this prior to Simulation 2, where the underlying true model contains predictors

that are neighbours in the network. We use a linear model with interaction terms and

set λ with empirical Bayes. The graph structure G is obtained from the structure

shown in Figure 3.2 by converting all directed edges to undirected edges.

We observe that, in both simulations, the automated empirical Bayes analy-

sis, with pathway-based priors, improves performance over the flat prior and provides

substantial gains over an incorrect prior. The empirical Bayes approach selected the

correct prior in 90% of iterations for Simulation 1 and 95% of iterations for Simula-

tion 2 (for Simulation 1 correct prior parameters were s = 2 with λ > 0, median value

of λ selected was λ = 3; for Simulation 2 correct prior parameters were s = 1 or s = 2

with λ < 0, median value of λ selected was λ = −5 for both s = 1 and s = 2). Since the

Lasso regression method does not incorporate prior information, it is unsurprising

that it is also outperformed by the empirical Bayes approach. However, in Simula-

tion 2 it does not perform at all well, with reduced performance compared to simply

looking at correlations between predictors. Intriguingly, the strength parameter λ

for the Markov random field prior was set to zero by empirical Bayes in 91% of

iterations in Simulation 2. Thus, its performance is almost identical to that of a flat

prior. We discuss this further in Section 3.4 below. Due to its inability to model

combinatorial interplay, the linear model without interaction terms is outperformed

by the linear model with interaction terms.

The failure of the incorrect prior illustrates the importance of prior elicita-

tion. Moreover, our results demonstrate that the proposed empirical Bayes approach

can select a suitable prior automatically, even under very small sample conditions

(here n = 35). If the data is not in agreement with a proposed prior, then it is

desirable that λ = 0 is selected by empirical Bayes, resulting in a flat prior. To test

this, we used the model in Simulation 2 with a prior that favoured models with

predictors from many pathways (i.e. number of pathways prior with λ restricted

to be non-negative). This prior does not reflect the true, underlying model, which

contains a small number of pathways. Empirical Bayes analysis successfully selected

λ = 0 in 98% of iterations.

For each dataset, we used the posterior predictive distribution ((3.10); calcu-

lated via exact model averaging) to predict responses for held-out test data. Mean

absolute predictive errors, obtained by averaging over all 5,000 train/test iterations,

are shown in Table 3.1 (‘MA’). The empirical Bayes approach with pathway-based

priors shows some improvement in predictive accuracy over a flat prior (and Markov

random field prior in Simulation 2), and substantial improvements over both the ‘in-

correct’ prior and a baseline linear model (without interaction terms) including all
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Figure 3.3: Synthetic response data, average ROC curves. Number of true
positives plotted against number of false positives for Simulations 1 and 2. Pro-
teomic data from Sachs et al. [2005] were used to create response data with true
underlying model known to favour a particular prior: Simulation 1 - distance prior
with positive λ; Simulation 2 - either distance prior or number of pathways prior
with negative λ. Average ROC curves are obtained from 5000 iterations. Legend -
‘EB’: Bayesian variable selection (BVS) using empirical Bayes to select and weight
prior automatically (and linear model with interaction terms); ‘flat +int’: BVS with
a flat prior (and linear model with interaction terms); ‘incorrect’: BVS with a wrong
prior with respect to true, underlying protein set (and linear model with interaction
terms; see main text for details); ‘flat -int’: BVS with flat prior and linear model
with no interaction terms; ‘Lasso’: Lasso linear regression with interaction terms
(curve produced by thresholding absolute regression coefficients, while marker ‘X’ is
single model obtained by taking only predictors with non-zero coefficients); ‘MRF
prior’: BVS with a Markov random field prior [Li and Zhang, 2010] (and linear
model with interaction terms); ‘corr’: absolute Pearson correlations between each
protein and response. Area under the (average) ROC curve (“AUC”) appears in
parentheses.
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11 predictors (i.e. no variable selection). Lasso regression offers the best predictive

performance, with slight gains over Bayesian variable selection with empirical Bayes

(we note that prediction used regression coefficients obtained by maximum penalised

likelihood estimation; the alternative of using Equation (3.11) with the single model

corresponding to non-zero coefficients gave very poor predictive accuracy, inferior to

the baseline linear approach; data not shown). We also found that model averaging

provided gains relative to prediction using the MAP model (and Equation (3.11)),

with a 5% and 7% decrease in error on average for Simulation 1 and Simulation 2

respectively (see Table 3.1, ‘MAP’).

The only user-set parameters in the proposed method are dmax (the max-

imum number of predictors allowed in a model), and the range of values for the

prior strength parameter λ to consider in the grid search optimisation in empirical

Bayes. We sought to check the sensitivity of our results to these parameters. As

described in ‘Methods’ above, we set dmax = 4 and considered λ ∈ [−5,5]. We com-

pared the posterior inclusion probabilities inferred from 50 iterations of Simulation

2 to those obtained using (i) an increased maximum number of included predictors

of dmax = 5; (ii) Markov chain Monte Carlo-based (MCMC) inference with no re-

striction on number of included predictors, and (iii) an increased range for the prior

strength λ ∈ [−10,10] (see Figure 3.4). We found very close agreement in all cases,

indicating that results reported do not depend on the sparsity restriction or the

chosen range for λ.

In simulation 2, the smallest value of λ = −5 was selected by empirical Bayes

in a majority of iterations. The true, underlying model has the minimum possible

number of pathways and intra-pathway distance. Hence, the strong (negative) prior

strength is appropriate because it causes the prior to heavily penalise any model

not satisfying these minima. Under the increased range for λ, the smallest value

(λ = −10) was still selected in these iterations, but results were almost identical.

This indicates that the prior was already having close to maximal influence at the

lower value of λ = −5.

3.3.2 Cancer drug response data

The ability to be able to predict an individual patient’s response to drug treatment,

based on molecular characteristics of cancer cells, is an important goal for person-

alised cancer medicine. Previous studies have attempted to make such predictions

from high-throughput molecular data. For example, Staunton et al. [2001] pre-

dict drug response from gene expression profiles and Boyd et al. [2008] attempt to

find protein biomarkers that are predictive of drug response from phosphoproteomic
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Figure 3.4: Synthetic response data; effect of sparsity restriction and range
of prior strength parameter. Results reported in Figure 3.3, for the empirical
Bayes approach, were obtained by exact model averaging with the number of pre-
dictors included in a model restricted to not exceed dmax = 4. Posterior inclusion
probabilities for 50 simulated datasets from Simulation 2 were compared with re-
sults obtained by exact model averaging with an increased maximum number of
included predictors of dmax = 5 (left) and using Markov chain Monte Carlo-based
model averaging with no sparsity restriction (centre). Sensitivity to the range of
prior strength parameter values considered by empirical Bayes was also assessed by
comparing the posterior inclusion probabilities obtained with λ ∈ [−5,5] to those
obtained with an increased range of λ ∈ [−10,10] (right).
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data. Indeed, signalling proteins have potential to be predictive biomarkers since, as

discussed in Section 2.1.3, aberrant signalling is heavily implicated in almost every

aspect of cancer biology and signalling proteins are targets for many emerging can-

cer therapies. Here, we apply the methods proposed to probing phosphoproteomic

influences on response to an anti-cancer agent, Triciribine.

Phosphoprotein abundance was assayed in a high-throughput manner us-

ing the KinetWorksTM system (Kinexus Inc, Vancouver, Canada; this is a high-

throughput version of protein immunoblotting, which is outlined in Section 2.2.1),

for 52 proteins related to epidermal growth factor (EGF) signalling, in each of 35

breast cancer cell lines (see Tables A.1 and A.2 for details). The EGFR signalling

network plays a central role in breast cancer biology (see Section 2.1) and the cell

lines used have previously been shown to retain much of the biological heterogeneity

of primary tumours [Neve et al., 2006]. GI50 (log transformed) was used to quan-

tify response to Triciribine for each of the 35 cell lines [Heiser et al., 2011]. GI50

is the concentration that causes 50% growth inhibition compared to a baseline. A

network (with a total of five pathways) was constructed using canonical signalling

pathway maps available at the online repository cellsignal.com (see Figure 3.5).

In particular, signalling pathway maps for the MEK/MAPK, PI3K/AKT, mTOR

and insulin receptor pathways were used. The network includes indirect edges via

components not included in our study and edges between protein phosphoforms and

isoforms. Edges marked as ‘tentative’ in the online repository were not included in

our network. Proteins were assigned into one or more of the following pathways,

denoted in Figure 3.5 by node colour: PI3K/AKT (red), MEK/MAPK (yellow),

JNK/JUN (blue), SRC/JAK-STAT (purple) and HSP27 (green). Proteins with no

network or pathway information available in the repository were left unconnected

and not assigned to a pathway (white nodes in Figure 3.5).

Figure 3.6 shows marginal likelihood scores arising from empirical Bayes.

This selects the intra-pathway distance prior (s = 2) with hyperparameter λ = 5

(i.e. a prior promoting larger distances). Due to the small sample size, we tested

robustness of this choice by running empirical Bayes with each data sample removed.

The same prior was selected in 86% of the iterations.

Figure 3.7 shows posterior inclusion probabilities obtained under three prior

regimes: empirical Bayes (intra-pathway distance prior with λ = 5), flat prior and an

“incorrect” prior that is not optimal according to the empirical Bayes analysis (num-

ber of pathways prior with λ = −5). Phospho-IR and phospho-RB(S259) stand out

in the empirical Bayes analysis. Triciribine targets AKT, which inhibits apoptotic

processes and is heavily implicated in cancer signalling [Yang et al., 2004]. IR (in-
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Figure 3.5: Network and pathway structure for biologically informative
priors in the cancer drug response data study. Network constructed using
information from cellsignal.com. Square nodes represent fully connected sub-
networks consisting of iso-forms and phospho-forms of the named protein (see Ta-
ble A.1). Node colouring represents pathway structure. Red, blue, yellow, green
and purple nodes denote 5 pathways. Orange nodes are in both the red and yellow
pathways. Light grey nodes are in all 5 pathways. Dark grey node is in all pathways
except the purple pathway. White nodes are not assigned to a pathway.
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Figure 3.6: Drug response data, empirical Bayes analysis. Parameters con-
trolling source of prior information and prior strength (s and λ respectively) were
set objectively using the data. Log marginal likelihood (calculated exactly up to a
constant) is plotted against λ for s = 1 (number of pathways prior) and s = 2 (intra-
pathway distance prior). Parameters were set to the values with maximal marginal
likelihood: s = 2 and λ = 5.

sulin receptor) is a tyrosine kinase receptor, known to stimulate the AKT pathway

[Burgering and Coffer, 2002], and it has been suggested that the RB/E2F pathway,

which is also known to play a role in cancer [Nevins, 2001], has an effect on AKT

activity via transcriptional regulation [Chaussepied and Ginsberg, 2004]. Hence, the

salience of IR and RB accords with known biology and drug mechanism. The MAP

model for each prior regime is highlighted in red in Figure 3.7. We note that these

models do not always contain the proteins with highest inclusion probabilities.

We performed Leave-One-Out-Cross-Validation (LOOCV), making predic-

tions for the held-out test sample using both posterior model averaging (3.10) and

the MAP model (3.11). The full variable selection approach, including selection

of hyperparameters with empirical Bayes, was carried out at each cross-validation

iteration. Table 3.2 shows mean absolute predictive errors, with comparisons made

as in the synthetic response data study above. For the ‘incorrect’ prior, the prior

source parameter not selected by empirical Bayes was used, along with the optimal

strength parameter λ for that prior. Mirroring the synthetic data results, we ob-

serve that prior elicitation with empirical Bayes provides a small increase in mean

predictive accuracy over a flat prior and an ‘incorrect’ prior, and Lasso regression

has lowest mean predictive error. We note, however, that due to the very small

sample size, differences in mean predictive error between these regimes are not con-

clusive. Yet, they all show a clear improvement over the baseline linear approach,

and model averaging results in an average 36% decrease in predictive error over us-
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EB prior Flat prior ‘Incorrect’ prior Lasso MRF prior Baseline linear
MA 0.85±0.12 0.86±0.11 0.93±0.15

0.77±0.09
0.86±0.11

1.00±0.14
MAP 1.00±0.16 1.26±0.17 1.22±0.17 1.26±0.17

Table 3.2: Drug response data, predictive errors from cross-validation.
Predictions using leave-one-out-cross-validation (see text for details). Results shown
are mean absolute predictive errors ± SEM for the following methods: ‘EB prior’:
Bayesian variable selection (BVS) with biologically informative pathway-based prior
with source and strength parameters set by empirical Bayes; ‘Flat prior’: BVS with a
flat prior; “Incorrect’ prior’: BVS with a wrong prior with respect to true, underlying
protein set (see text for details); ‘Lasso’: Lasso linear regression with interaction
terms; ‘MRF prior’: BVS with a Markov random field prior [Li and Zhang, 2010];
‘Baseline linear’: linear regression with all 11 predictors. All these methods included
interaction terms except ‘Baseline linear’. For BVS, predictions were made using
the posterior predictive distribution with exact model averaging (‘MA’) and using
the maximum a posteriori model (‘MAP’).

ing MAP models. The prior strength parameter for the Markov random field prior

was set to λ = 0 by empirical Bayes in every cross-validation iteration, resulting in

identical performance to the flat prior.

We again checked sensitivity of results to the restriction on the number of

predictors included in a model, dmax = 4. The results in Figure 3.7 were compared

with those obtained using an increased maximum number of included predictors of

dmax = 5 and using MCMC-based inference with no such restriction (see Figure 3.8).

The strong agreement between dmax = 4 and dmax = 5 suggests that the minor

differences observed between dmax = 4 and MCMC are a result of inherent Monte

Carlo error. We also see a close agreement between results in Figure 3.7a (using

λ ∈ [−5,5]) and those obtained by optimising over the increased range of λ ∈ [−10,10]

(see Figure 3.9). This shows that results reported do not depend on the sparsity

restriction or the range of values considered for the prior strength parameter.

3.4 Discussion

Model priors incorporating biological information can play an important role in

Bayesian variable selection, especially at the small sample sizes characteristic of

molecular studies. In applications where there are multiple sources of prior infor-

mation, or multiple possible prior specifications, the empirical Bayes approach we

put forward permits objective selection and weighting. We demonstrated, on syn-

thetic response data, that a biologically informative prior, with hyperparameters

set by empirical Bayes, can have benefits over both a flat prior and a subjectively
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Figure 3.8: Drug response data, effect of sparsity restriction. Posterior
inclusion probabilities in Figure 3.7 were obtained by exact model averaging with
the number of predictors included in a model restricted to not exceed dmax = 4.
These results were compared with results obtained by exact model averaging with
an increased maximum number of included predictors of dmax = 5 (left column) and
using Markov chain Monte Carlo-based model averaging with no sparsity restriction
(right column).
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Figure 3.9: Drug response data; sensitivity to range of prior strength pa-
rameter. Posterior inclusion probabilities reported in Figure 3.7a were obtained
using the proposed empirical Bayes approach, with prior strength parameter opti-
mised over the interval λ ∈ [−5,5]. These results are compared to those obtained
with an increased range of λ ∈ [−10,10].

formed prior which is incorrect with respect to the underlying system. Thus the ap-

proach can aid prior elicitation and has potential to significantly improve results by

guarding against the use of mis-specified priors. We also observed that, while lasso

regression can offer some improvement in predictive performance over the Bayesian

approaches, its accuracy in selecting the correct underlying model (i.e. variable

selection) can be poor, thereby affecting interpretability of results. The proposed

empirical Bayes approach offers clear gains in this respect. We have also shown an

application on cancer drug response data and obtained biologically plausible results.

We developed informative priors in the context of protein signalling based on

two high-level features derived from network information: the number of pathways

a subset of predictors incorporates and the intra-pathway distance between proteins

in a proposed model. This formulation used the entire network structure in an

intuitive way, removing the need to specify individual prior probabilities for each

variable and avoiding assumptions of prior independence between variables.

Our pathway-based priors form part of a growing literature on exploiting

existing domain knowledge to aid inference, especially in the small sample setting.

For example, recent variable selection studies also make use of graph structure within

a Bayesian Markov random field prior [Wei and Li, 2008; Li and Zhang, 2010; Monni

and Li, 2010] and within a non-Bayesian framework [Li and Li, 2008; Binder and

Schumacher, 2009; Slawski et al., 2010], essentially preferring models containing
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predictors that are neighbours in the graph. This is similar in spirit to the special

case of our prior where the network consists of a single pathway and short intra-

pathway distances are strongly preferred. We compared our pathway-based priors

to the Markov random field prior, but found that empirical Bayes frequently set the

prior strength parameter to zero, essentially preferring a flat prior. This is possibly

due to the parameterisation of the Markov random field prior, which is not agnostic

to the number of included predictors in the model ∣γ∣; addition of a predictor to a

model could lead to a substantial increase in the prior score. Indeed, it has previously

been noted that Markov random field priors can be unstable with the occurance of

phase transitions in ∣γ∣ [Li and Zhang, 2010]. Hence, the prior prefers less sparse

models, but these models do not agree well with the data, as more complex models

are penalised by the marginal likelihood. In contrast, our distance prior is based

on an average distance measure and so is somewhat indifferent to ∣γ∣. We note that

biologically informative priors have also been used for classification [Zhu et al., 2009;

Stingo and Vannucci, 2011; Guillemot et al., 2011] and network structure learning

[Bernard and Hartemink, 2005; Werhli and Husmeier, 2007; Mukherjee and Speed,

2008].

We used a continuous regression framework with interaction terms. While

discrete models are naturally capable of capturing non-linear interplay between com-

ponents, the discretisation process results in a loss of information. Continuous

models avoid this loss, but the response is usually assumed to depend linearly on

predictors. The product terms in our model provide the possibility of capturing

influences on the response of interest by interplay between predictors, including

higher-order interactions. Chipman [1996] and Jensen et al. [2007] have employed

a related approach allowing pairwise interactions only. We note that, under our

formulation, model complexity grows rapidly with number of included predictors.

However, complex models are naturally penalised by the marginal likelihood formu-

lation giving overall sparse, parsimonious models, yet allowing for complex interplay

via product terms.

We carried out variable selection using exact model averaging. This was

made possible by means of a sparsity restriction. Sparsity constraints have been

employed in previous work in Bayesian variable selection [Jiang, 2007; Mukherjee

et al., 2009] and also in the related setting of inference of gene regulatory networks

[Husmeier, 2003; Werhli and Husmeier, 2007]. The sparsity-constrained approach

proposed is attractive as it yields exact posterior probabilities and facilitates exact

empirical Bayes analysis. Sparsity is a reasonable assumption in settings where it is

likely that only a few predictors play a key role in influencing a response. In such

104



Linear model without interaction terms Linear model with interaction terms
dmax = 2 dmax = 3 dmax = 4 dmax = 5 dmax = 2 dmax = 3 dmax = 4 dmax = 5

p=30 0.1 1.1 8.7 9.5 0.4 4.7 38.6 374.6
p=60 0.5 10.5 114.3 - 1.8 39.4 661.6 -
p=120 2.8 116.3 - - 8.2 350.1 - -
p=500 150.3 - - - 238.7 - - -

Table 3.3: Illustrative computation times. Computation times (in seconds)
for proposed Bayesian variable selection procedure, using empirical Bayes to select
between two priors (S = 2) and to set the prior strength parameter λ (optimisation
performed over ten values of λ). Results shown for varying values of dmax (maximum
number of predictors allowed in a model) and p (total number of predictors), for
both a linear model without interaction terms and a linear model with interaction
terms. (Data and model priors generated using random numbers and results are
averages over three iterations. Computation performed on a standard single-core
personal computer; 1.6GHz, 2GB RAM. ‘-’ denotes a (p, dmax) regime where the
procedure failed due to insufficient memory.)

settings, and where data is of small-to-moderate dimensionality, our exact approach

is computationally efficient and deterministic with no requirement of MCMC conver-

gence diagnostics. This, together with empirical Bayes and the choice of parameter

priors, results in the overall approach having very few user-set parameters.

In applications of higher dimensionality, where the exact calculation is no

longer feasible, empirical Bayes can still be performed using an approximate condi-

tional marginal ‘likelihood’ approach as seen in George and Foster [2000] and Yuan

and Lin [2005]. This involves optimisation over the model space instead of averag-

ing. MCMC, with the selected hyperparameter values, can then be used to estimate

inclusion probabilities. Alternatively, a fully Bayes MCMC approach could be taken,

which places a prior on the hyperparameters and integrates them out [see e.g. Nott

and Green, 2004].

Illustrative computational times for our approach are shown in Table 3.3, for

four values of p (number of predictors) and four values of dmax (maximum number of

predictors allowed in a model). We also considered linear models with and without

interaction terms. Empirical Bayes was used to select between two priors (S = 2)

and to set the prior strength parameter (optimisation performed over ten values of

λ). The computation time scales as dmaxp
dmax for the model without interaction

terms and (2dmax−1)pdmax for the model with interaction terms. We see that the ap-

proach is fast on datasets of moderate dimensionality (∼100 variables) with dmax = 3.

We note that shortage of memory was the limiting factor on our machine. Com-

putational time could also be easily improved by using multiple cores to calculate

empirical Bayes marginal likelihood scores for multiple values of λ simultaneously.

We showed examples of automated selection between multiple sources of an-
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cillary information, but, rather than selecting a single source, the methods proposed

could be generalised to allow combinations of complementary information sources

as seen in Jensen et al. [2007]. While our priors were based on pathway and net-

work structure, the methods can also permit integration and weighting of publicly

available data, which while plentiful, can be of uncertain relevance to a given study.
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Chapter 4

Dynamic Bayesian networks

reveal novel signalling links in a

cancer cell line

4.1 Introduction

Protein signalling plays a central role in diverse cellular functions including pro-

liferation, apoptosis and differentiation. An emerging literature suggests that sig-

nalling networks may be ‘rewired’ in specific contexts, including cancer [Pawson and

Warner, 2007; Yuan and Cantley, 2008]. Indeed, signalling and aberrations thereof

are central to almost every aspect of cancer biology [Hanahan and Weinberg, 2000,

2011]. An introduction to protein signalling and cancer can be found in Section 2.1.

In Section 2.1.3 we described, using the ErbB2 oncogene as an example, how genetic

mutations can lead to dysregulated signalling. However, in general, the manner in

which genomic aberrations in specific cancers are manifested at the level of signalling

networks is not currently well understood.

Signalling is a multi-dimensional, dynamic process in which post-translational

protein modifications (e.g. phosphorylation) play a key role. Therefore, elucidat-

ing signalling networks in a data-driven manner, specific to a context of interest,

such as a cell line, cell type, tissue, or disease state, requires the ability to probe

post-translational modification states in multiple proteins through time and across

samples. However, proteomic analyses on this scale remain challenging. Several

high-throughput technologies are described in Section 2.2. Flow cytometry assays

yield large sample size, single-cell datasets [Sachs et al., 2005], but on account of

spectral overlap in fluorophores do not scale well to systems-level studies. Mass spec-
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trometry approaches are promising, but currently have limited sample throughput

and are often not sensitive enough to detect low abundant phosphoproteins.

At the same time, the modelling of signalling connectivity poses statistical

challenges. Noise, both intrinsic and experimental, is ubiquitous in this setting and

network components may interact in a complex, non-linear manner [Lauffenburger

and Linderman, 1993; Citri and Yarden, 2006; Rubbi et al., 2011]. In addition,

candidate networks may differ with respect to model dimension (i.e. network models

with more edges have a larger number of parameters). Analyses that do not account

for this run the risk of overfitting the model to the observed data, preferring networks

that are over-complex, yet not predictive. This makes the trade-off between fit-to-

data and model parsimony a crucial one in network modelling. An introductory

discussion of model complexity and model selection is given in Section 2.3.2.

In this Chapter we present a data-driven approach to the characterisation of

signalling networks (Figure 4.1). We exploit reverse-phase protein array technology

(see Section 2.2.5) to interrogate dynamic signalling responses in a defined set of

20 phosphoproteins, including members of MAPK, STAT and AKT pathways, in

a specific breast cancer cell line. The analysis is rooted in graphical models; in

particular, we use directed graphical models known as dynamic Bayesian networks

(DBNs). For background information on graphical models, including static Bayesian

networks (BNs) and DBNs, see Sections 2.3.4 and 2.3.5.2. Previous studies have

applied DBNs to gene expression time series data for structure learning of gene

regulatory networks [Husmeier, 2003; Perrin et al., 2003; Kim et al., 2003; Zou and

Conzen, 2005; Grzegorczyk et al., 2008; Grzegorczyk and Husmeier, 2011a; Rau

et al., 2010; Robinson and Hartemink, 2010; Li et al., 2011]. DBNs have so far not

been used for structure learning of protein signalling networks. This is in contrast to

static Bayesian networks, which have previously been employed to infer both gene

regulatory networks [Friedman et al., 2000; Hartemink et al., 2001; Friedman and

Koller, 2003; Tamada et al., 2003; Imoto et al., 2003; Werhli and Husmeier, 2007]

and protein signalling networks [Sachs et al., 2005; Werhli and Husmeier, 2007; Ellis

and Wong, 2008; Mukherjee and Speed, 2008; Guha et al., 2008; Ciaccio et al., 2010].

We carry out inference regarding network topology within a score-based

Bayesian framework (see Section 2.3.5.2), with existing biology incorporated via an

informative prior distribution on networks. Model averaging over network structures

is used to calculate posterior edge probabilities, which quantify evidence in favour

of links, through time, between network components. The calculations required for

model averaging are carried out exactly. This is done by exploiting a connection

between variable selection and network inference for DBNs [Murphy, 2002], echoing
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recent work in undirected graphical models [Meinshausen and Bühlmann, 2006].

Informative Bayesian priors on network topology have been applied in sev-

eral studies for inference of gene regulatory networks from a combination of gene

expression data and prior biological knowledge regarding network structure. This

knowledge can be either in the form of known interactions, curated from online

databases and the literature [Imoto et al., 2003; Froehlich et al., 2007], or in the

form of other data types such as transcription factor binding location data [Tamada

et al., 2003; Bernard and Hartemink, 2005; Werhli and Husmeier, 2007], which can

be used to generate a prior network. Informative network priors have also been

used to integrate protein signalling data with knowledge from databases and the

literature [Werhli and Husmeier, 2007; Mukherjee and Speed, 2008].

However, in biological applications it is not obvious how to set the weight

accorded to the network prior. Since network priors are often derived from known

signalling maps, which are in turn based on published studies on normal cells, this

issue is especially relevant in studying disease states like cancer, in which samples

may exhibit altered phenotypes from the normal case [Pawson and Warner, 2007;

Yuan and Cantley, 2008]. Then, it may be uncertain as to how relevant available

prior information is for a given study. Following the approach used in Chapter 3, we

use empirical Bayes to automatically weight the contribution of the network prior

relative to proteomic data. This is related to the approach proposed by Werhli and

Husmeier [2007] in which full Bayesian inference for the prior weighting is performed,

with a flat prior over hyperparameters, and Markov chain Monte Carlo is used to

sample from the joint posterior over networks and hyperparameters. We carry out

a simpler maximum marginal likelihood empirical Bayes analysis, but do so within

an exact framework that is computationally fast at the moderate data dimensions

that are typical of phosphoproteomic data. A related maximisation approach was

performed by Imoto et al. [2003], but instead of averaging over networks as the

empirical Bayes approach does, it aimed to maximise (via a heuristic search) the

joint posterior over networks and hyperparameters. In addition to empirical Bayes

hyperparameter selection, we put forward simple diagnostics to check sensitivity to

specification of the network prior.

As in Chapter 3, we avoid lossy thresholding of data and retain some ability

to capture combinatorial interplay through the use of interaction terms. We also

use the same variant of Bayesian parameter prior as used in Chapter 3 (Zellner’s

g-prior [Zellner, 1986]) to obtain a closed-form marginal likelihood score for the

networks. In contrast to the widely-used ‘BGe’ score [Geiger and Heckerman, 1994;

Friedman et al., 2000; Werhli and Husmeier, 2007] (see Section 2.3.5.2) this gives
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a formulation that is essentially free of user set parameters and invariant to data

rescaling. We explore the relationship between the two scoring methods further

in Section 4.4 below. Also, a discussion of the choice between continuous versus

discrete modelling can be found in Chapter 6.

A number of authors, including Sachs et al. [2005]; Ellis and Wong [2008]

and Bender et al. [2010], have used statistical approaches to explore signalling net-

work topology; the work presented in this Chapter is in this vein. However, we note

that statistical network inference approaches typically use discrete or linear models

and, as discussed in Chapter 1, these are a coarse approximation to the underlying

chemical kinetics. In contrast, there is a rich body of work on modelling signalling

using ordinary differential equations (ODEs) and related dynamical models [Schoe-

berl et al., 2002; Chen et al., 2009; Wang et al., 2009a]. When network topology

is known, ODEs offer a powerful modelling framework. Our work complements

ODE-based approaches by providing a tractable way to explore large spaces of can-

didate network topologies in a data-driven manner, and thereby generate hypotheses

regarding novel signalling links.

There are only a small number of recent studies in the literature that employ

statistical approaches for structure learning of protein signalling networks in cancer

[Guha et al., 2008; Mukherjee and Speed, 2008; Ciaccio et al., 2010; Bender et al.,

2010]. In particular, Bender et al. [2010] also propose a method for inference of

cancer signalling networks from reverse-phase protein array time-series data, after

external perturbation of network components. The present work is similar in spirit,

but differs methodologically in that it uses DBNs, Bayesian model averaging, and

network priors to incorporate existing biological knowledge.

Thus, we combine protein array technology with dynamic network infer-

ence to shed light on signalling networks in samples of interest. We apply these

approaches to the breast cancer cell line MDA-MB-468. MDA-MB-468 is an adeno-

carcinoma, originally from a 51-year old patient, belonging to the well-characterised

basal breast cancer subtype [Perou et al., 2000; Neve et al., 2006]; the line is EGFR

amplified and PTEN, RB1, SMAD4 and p53 mutant. We learn a network model

that is specific to this line, predicting a number of known and novel signalling links

which we validate using independent inhibition experiments.

The remainder of the Chapter is organised as follows. In Section 4.2 we begin

by referring to the relevant background information given in Chapter 2. We then

describe the particular details of the structure learning approach used here, including

the marginal likelihood score, network prior, exact model averaging for calculation

of posterior edge probabilities and empirical Bayes analysis for automatic weighting
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of prior information. In Section 4.3.1 we show results of the structure learning

approach on both simulated data and data from a synthetically constructed network

in yeast [Cantone et al., 2009]. The utility of prior information is investigated and

comparisons are made to several other existing structure learning approaches for

time series data. In Section 4.3.3 results on proteomic data from breast cancer

cell line MDA-MB-468 are shown, including robustness analyses and independent

validation experiments. The Chapter concludes with a discussion in Section 4.4.

4.2 Methods

The reader is referred to the following Sections for background information required

for this Chapter: Bayesian linear models (Section 2.3.1); BNs (Section 2.3.4.1); and

DBNs and score-based structure learning for BNs/DBNs (Section 2.3.5.2). The

notation used here also follows that used in these Sections.

All computations were carried out in MATLAB R2010a using software that is

freely available at http://go.warwick.ac.uk/stevenhill/DynamicNetworkInference.

4.2.1 Bayesian score

Recall from Section 2.3.5.2 that in a Bayesian score-based approach to DBN struc-

ture learning, we are interested in the posterior distribution over graphs G given

data X. This is given (up to proportionality) by Bayes’ theorem in (2.43) and is

also reproduced here,

P (G ∣ X) ∝ p(X ∣G)P (G) (4.1)

where p(X ∣G) is the marginal likelihood, and P (G) is a prior distribution over the

space of graphs G that allows for the incorporation of existing signalling biology into

inference. We call this the ‘network prior’ and discuss it further below. Therefore,

we can calculate (up to proportionality) posterior probability scores for each graph

structure, resulting from the integration of experimental data with existing domain

knowledge.

4.2.1.1 Marginal Likelihood

We make a number of simplifying assumptions for DBNs, following previous work

and as described in Section 2.3.5.2. Specifically, we make first-order Markov and

stationarity assumptions and assume that edges are only permitted forwards in time.

Recall that this allows the full “unrolled” graph structure (Figure 2.13(b)), in which

each random variable Xt
j (protein j at time t) is represented by an individual node
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in the graph, to be reduced to the “collapsed” structure consisting of just two time

slices representing adjacent time points (Figure 2.13(c)).

The above assumptions result in the likelihood given in (2.52), which we

reproduce here (up to a multiplicative constant that does not depend on graph G),

p(X ∣G,Θ) =

p

∏
j=1

T

∏
t=2
p(Xt

j ∣X
t−1
πG(j), θj) (4.2)

=

p

∏
j=1

p(X+
j ∣ X−

πG(j), θj) (4.3)

where X+
j = (X2

j , . . . ,X
T
j )

T
denotes all data for protein j in the second time slice

of the “collapsed DBN” and X−
πG(j) = (X1

πG(j), . . . ,X
T−1
πG(j))

T
denotes all data for

parents of variable j in the first time slice.

The marginal likelihood is obtained by integrating out model parameters

{θj} from the likelihood (4.3). This has the effect of accounting for model com-

plexity by penalizing complex models with many parameters and thereby helps to

avoid over-fitting of the model to the data (see Section 2.3.2.2). The condition-

als p(Xt
j ∣X

t−1
πG(j), θj) constituting the likelihood are taken to be Gaussian. These

describe the dependence of child nodes on their parents and can be thought of as

regression models, with parents and child corresponding to covariates and response

respectively. We take these “local” models to be linear-in-the-parameters, but al-

low dependence on products of parents as well as parents themselves (i.e. a linear

model with interaction terms as used in Chapter 3). The models are fully saturated,

including products of distinct parents up to all parents. For each protein j, let Bj

denote a n×(2∣πG(j)∣ −1) design matrix, with columns corresponding to each parent

of j, and products of distinct parents up to and including the product over all par-

ents, and where n is sample size. The sample size is the number of adjacent pairs

of time points in the data. That is, if we have m time courses each consisting of T

time points, then n =m(T − 1). Then we have

p(X+
j ∣ X−

πG(j), θj) = N(Bjβj , σ
2
j In) (4.4)

where In is the n × n identity matrix. We note that X+
j and each column of the

design matrix Bj are standardised to have zero mean and unit variance.

The regression coefficients, forming a vector βj , and variance σ2j , constitute

parameters θj . We use the same parameter priors as used for the Bayesian vari-

able selection study in Chapter 3. That is, following Zellner [1986]; Smith and

Kohn [1996]; and Nott and Green [2004], we use the reference prior p(σ2j ) ∝ σ−2j
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for variances and a Normal(0, nσ2j (Bj
TBj)

−1) prior (Zellner’s g-prior) for regression

coefficients. As noted in Chapter 3 this formulation has attractive invariance prop-

erties under rescaling of the data and, in contrast to the widely-used ‘BGe’ score

[Geiger and Heckerman, 1994] (see Section 2.3.5.2), has no free, user-set parameters.

Following Geiger and Heckerman [1994] we assume prior parameter indepen-

dence. This yields the following integral for the marginal likelihood,

p(X ∣G) = ∫ p(X ∣G,Θ)p(Θ ∣G) dΘ

∝

p

∏
j=1
∬ p(X+

j ∣ X−
πG(j),βj , σ

2
j )p(βj ∣G,σ

2
j )p(σ

2
j ) dβjdσ

2
j .

(4.5)

This is a product of integrals of the same form as those that yielded the marginal

likelihood for Bayesian variable selection in Chapter 3, given in (3.4). Therefore we

have the following closed-form marginal likelihood (multiplicative constants that do

not depend on G are omitted):

p(X ∣G) ∝

p

∏
j=1

(1 + n)−(2
∣πG(j)∣−1)/2

(X+
j
T
X+
j

−
n

n + 1
X+
j
T
Bj (B

T
j Bj)

−1
BT
j X+

j )
−n

2

.

(4.6)

As was the case for Bayesian variable selection in Chapter 3 (see Section 3.2.1), a

restriction on ∣πG(j)∣ (see Section 4.2.2 below) means we do not encounter problems

with inversion of BT
j Bj due to matrix singularity.

4.2.1.2 Network prior

The prior distribution P (G) captures existing knowledge concerning signalling net-

work structure. We follow Imoto et al. [2003]; Werhli and Husmeier [2007]; and

Mukherjee and Speed [2008] and use a prior of the form

P (G) ∝ exp(λf(G)) (4.7)

where λ is a strength parameter, weighting the contribution of the prior, and f(G) is

a real-valued function over graphs, scoring the degree to which graphs concord with

our prior beliefs. The objective selection of the strength parameter λ is described

below. A value of λ = 0 results in a flat prior over graph space and as λ → ∞,

the prior becomes sharply peaked around the graphs that give maximum values of

f(G).

We use available canonical signalling maps, obtained from online reposito-
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Figure 4.2: Network prior. Existing biology is captured and integrated during
modelling using a prior probability distribution on graphs P (G) ∝ exp(λf(G)),
with f(G) = − ∣E(G)/E∗∣ where E(G) is the set of edges contained in G and E∗

is a set of a priori expected edges. The graph shows edge set E∗. Edges represent
interactions through time. Each node also has a self-loop edge (i.e. an edge starting
and finishing at the same node, these are not displayed). The edge set includes
expected indirect edges which operate via components not included in our study.

ries (cellsignal.com, stke.sciencemag.org) and the literature [Oda et al., 2005;

Yarden and Sliwkowski, 2001], to obtain a set of edges we may expect to see in an

inferred network. The edge set includes indirect edges via components not included

in our study, edges between protein phosphoforms and isoforms, and self-loop edges

(i.e. edges starting and finishing at same node). We denote this set of a priori

expected edges by E∗. We let f(G) = − ∣E(G)/E∗∣ where E(G) is the set of edges

contained in G. That is, f(G) is the number of edges in G that are not included

in our expected edge set E∗. Therefore our prior does not actively promote any

particular edge, but rather penalises unusual edges.

The edge set E∗ is given in Figure 4.2 and includes links (i) from EGFR to

AKTs, MEK, JNK, p70, LKB1, p38, PI3K and STAT3/5; (ii) from MEK to ERK,

and from ERK to p70, p90 and TSC2; (iii) from mTOR, PDK1 and PI3K to AKTs,

and from AKTs to GSK3, mTOR, p70 and TSC2 [Manning et al., 2002]; (iv) from

PI3K to PDK1 and mTOR; (v) from LKB1 to AMPK [Shaw et al., 2004], and from

AMPK to mTOR [Hardie, 2004] and TSC2; (v) from mTOR, PDK1 and TSC2
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[Goncharova et al., 2002] to p70, and from p70 to EGFR; (vi) from cJun to JNK;

(vii) from mTOR to STAT3/5 [Yokogami et al., 2000] and from TSC2 to mTOR

[Inoki et al., 2002]; (viii) from PDK1 to p90 [Jensen et al., 1999], and from p90 and

GSK3 to TSC2.

The prior incorporates existing knowledge in a “soft” probabilistic manner

and does not restrict inferred edges to those included in the prior. This is an

important feature in the cancer setting since cancer-specific networks may differ from

the general biology upon which the prior is built. Empirical results investigating

robustness to prior specification are reported below (Figure 4.7).

4.2.2 Exact inference by variable selection

We are interested in calculating posterior probabilities of edges e = (a, b) in the

graph G. Note that a, b ∈ {1, . . . , p}, with a, b representing variables from the first

and second time slices of the “collapsed” DBN respectively. For simplicity, we use

e = (a, b) in what follows and leave the time associated with the vertices implicit.

The posterior probability of the edge is calculated by averaging over the space of all

possible graphs G, as given by (2.50) and reproduced here,

P (e ∣ X) = ∑
G∈G

1G(e)P (G ∣ X) (4.8)

where P (G ∣ X) is the posterior distribution over graphs and 1G(e) is an indicator

function evaluating to unity if and only if edge e is in graph G. For background

information on Bayesian model selection and model averaging, see Sections 2.3.2.2

and 2.3.2.3.

For DBNs with p vertices in each time slice, the size of the graph space is 2p
2
,

hence growing super-exponentially with p. This precludes explicit enumeration of

the sum in (4.8) for even small-to-moderate p. However, since the DBNs used here

have only edges forward in time and are therefore guaranteed to be acyclic, we can

exploit a connection between network inference and variable selection [Murphy, 2002]

for efficient and exact calculation of posterior edge probabilities, thereby increasing

confidence in results while avoiding the need for expensive convergence diagnostics.

We give full details below, but in brief, instead of averaging over full graphs G as in

(4.8), we consider the simpler problem of variable selection for each protein. That

is, for each protein j, we score subsets of potential parents π(j) ⊆ {1, . . . , p}. Model

averaging is then carried out in the variable selection sense, i.e. by averaging over

subsets of parents rather than over full graphs.

Specifically, for each “response” variable X+
j in the second time slice of the
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DBN, we calculate posterior scores for subsets π(j) ⊆ {1, . . . , p} of potential predic-

tors from the first time slice (‘parent sets’),

P (π(j) ∣ X−,X+
j ) ∝ p(X+

j ∣ X−, π(j))P (π(j) ∣ X−
)

= p(X+
j ∣ X−

π(j))P (π(j))
(4.9)

where X− = (X−
1 , . . . ,X

−
p) denotes all data in the first time slice and P (π(j)) is a

prior distribution over parent sets for variable j. The likelihood p(X+
j ∣X

−
j , π (j) , θj)

is as in (4.4) above, with parameter priors for βj and σ2j also as described above. In-

tegrating out parameters θj then results in the marginal likelihood p(X+
j ∣X

−, π (j)),

p(X+
j ∣ X−, π (j)) ∝(1 + n)−(2

∣π(j)∣−1)/2
(X+

j
T
X+
j

−
n

n + 1
X+
j
T
Bj (Bj

TBj)
−1

Bj
TX+

j )
−n

2

.
(4.10)

This is a marginal likelihood of the form that appears in Chapter 3 for Bayesian

variable selection. The parent sets π(j) play the same role here as the inclusion

indicator vector γ in (3.4).

We now discuss how model averaging in the variable selection sense can

be used to make inference about DBN structure. We perform model averaging to

calculate the posterior probability of a specific predictor variable X−
a being in the

model for response variable X+
b . In terms of the DBN framework, we can think of

this as an edge e = (a, b). Then we have,

P (e ∣ X−,X+
b ) = ∑

π(b)
1π(b)(a)P (π(b) ∣ X−,X+

b ) (4.11)

where the summation is over all possible parent sets for variable X+
b . If the network

prior P (G) factorises into a product of local priors over parents sets πG(j) for each

variable,

P (G) =

p

∏
j=1

P (πG(j)) (4.12)

(the network prior used here satisfies this property; see below) then posterior edge

probabilities calculated by averaging over parent sets (4.11) equal those calculated

by averaging over the (much larger) space of graphs (4.8). This is essentially due to

the modular form of the marginal likelihood in (4.6) and the guaranteed acyclicity

of the DBNs employed here. Indeed, this equivalence holds for any modular scor-

ing function and modular network prior used with DBNs (with edges only allowed

forwards in time), as we now demonstrate.
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If the marginal likelihood P (X ∣ G) has a modular form (as in (4.6)) and

the network prior P (G) satisfies (4.12), then the posterior over graphs P (G ∣ X) is

simply a product of posteriors over parent sets for each variable (4.9), as specified

by the edge structure of G:

P (G ∣ X) =
P (X ∣G)P (G)

∑G P (X ∣G)P (G)
(4.13)

=
∏
p
j=1 p(X

+
j ∣ X−

πG(j))P (πG(j))

∑πG(1) . . .∑πG(p)∏
p
j=1 p(X

+
j ∣ X−

πG(j)
)P (πG(j))

(4.14)

=

p

∏
j=1

p(X+
j ∣ X−

πG(j))P (πG(j))

∑πG(j) p(X
+
j ∣ X−

πG(j)
)P (πG(j))

(4.15)

=

p

∏
j=1

P (πG(j) ∣ X−,X+
j ). (4.16)

We can now observe that edge probabilities calculated via averaging over the full

graph space (4.8) equal those calculated from a variable selection approach (4.11).

In particular, for an edge e = (a, b),

P (e ∣ X) = ∑
G

1G(e)P (G ∣ X) (4.17)

= ∑
G

1G(e)
p

∏
j=1

P (πG(j) ∣ X−,X+
j ) (4.18)

= ∑
πG(1)

. . . ∑
πG(p)

1G(e)
p

∏
j=1

P (πG(j) ∣ X−,X+
j ) (4.19)

=
⎛

⎝
∑
π(b)

1π(b)(a)P (π(b) ∣ X−,X+
b )

⎞

⎠
∏

1<j<p
j≠b

⎛

⎝
∑
π(j)

P (π(j) ∣ X−,X+
j )

⎞

⎠
(4.20)

= ∑
π(b)

1π(b)(a)P (π(b) ∣ X−,X+
b ) (4.21)

= P (e ∣ X−,X+
b ) (4.22)

The prior used here satisfies the modular form of (4.12). The expected edge

set E∗ can be represented by p index sets π∗(j) ⊆ {1, . . . , p} for the parents of

each “response” variable X+
j . That is, π∗(j) = {k ∣ (k, j) ∈ E∗}. Then, (4.12) holds

if we define the prior over parent sets to be P (πG(j)) ∝ exp(λfj(πG(j))) where

fj(πG(j)) = − ∣πG(j)/π
∗(j)∣.

Note that, for each variable X+
j , the space of possible parent sets is of size 2p

(as opposed to 2p
2

for the full graph space). Hence it is much more computationally

efficient to calculate edge probabilities via (4.11) than (4.8). However, the problem
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is still exponential in p. Motivated by the fact that typically only a small number

of key upstream regulators are critical for any given signalling component [Beard

and Qian, 2008], and following related work in both gene regulation [Husmeier,

2003; Werhli and Husmeier, 2007] and protein signalling [Ellis and Wong, 2008],

we enforce a maximum in-degree constraint and only consider up to dmax proteins

jointly influencing a target. While, under this restriction, the full graph space

size still grows quicker than exponential in p, the space of parent sets becomes

polynomial in p. This enables exact calculation of edge probabilities via (4.11). For

all experiments reported below, we set dmax = 4. We investigate sensitivity of our

breast cancer proteomic data results to this constraint below (Figure 4.6).

The equivalence between posterior probabilities calculated via averaging over

the full graph space and those calculated via a variable selection approach does not

merely hold for single edge probabilities, but for any graph feature that can be

fully specified at a local parent set level. That is, equivalence holds if an indicator

function 1G(ζ), specifying whether graph G has a feature of interest ζ or not, can

be expressed as a product of local indicator functions over parent sets with features

ζj ,

1G(ζ) =
p

∏
j=1
1πG(j)(ζj). (4.23)

For example, for single edge probailities (4.8) we have ζ = e = (a, b), ζb = a and

ζj = ∅ for j ≠ b, where we define the convention that the indicator function always

evaluates to unity when the feature of interest is ∅. Features satisfying this local

factorisation include existence of sets of edges, non-existence of sets of edges and

in-degree related features. However, the equivalence does not extend to arbitrary

graph features. We also note that the equivalence does not hold for static BNs due

to the acyclicity constraint; independently inferring parent sets for each variable X+
j

leads to a loss of the global edge structure information required to detect cycles.

4.2.3 Empirical Bayes

The prior strength λ controls the relative contribution of prior and data. We set this

parameter using an objective, empirical Bayes approach (background information on

empirical Bayes approaches can be found in Section 2.3.8). Specifically, we maximise

the marginal likelihood

p(X ∣ λ) = E [p(X ∣G)]P (G ∣ λ)

= ∑
G

p(X ∣G)P (G ∣ λ). (4.24)
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Following similar arguments as above, (4.24) can be rewritten in terms of summa-

tions over parent sets π(j) as follows,

p (X ∣ λ) =∏
j
∑
π(j)

p (X+
j ∣ X−

π(j))P (π (j) ∣ λ) . (4.25)

This allows the marginal likelihood to be calculated efficiently within the exact

inference framework used here. The marginal likelihood score is calculated over a

grid of hyperparameter values and those resulting in the largest score are used in

the analysis.

4.3 Results

4.3.1 Simulation study

Objective assessment of network structure learning performance is a non-trivial

problem, since in the majority of applications the true underlying network structure

is unknown. For results on experimental data, one option is to compare predicted

links to those reported in the literature or appearing in online databases. However,

this can be inconclusive or misleading due to uncertainty in the literature itself, or

reported links may only apply to certain contexts. Moreover, the discovery of a

link that is not supported by existing evidence does not allow any conclusions to

be drawn; the link could be a novel discovery or could be a false positive. Another

option is to perform independent inhibition experiments to validate predictions (we

carry out such validations below), but this can only practically be done for a handful

of links, not for the entire inferred network.

An alternative approach is to simulate data from a known network struc-

ture, infer a new network from the data and compare this new network to the orig-

inal data-generating network. Thus, the data-generating graphs provided a “gold-

standard” against which to assess the analyses. We carry out such a simulation

study here.

Mirroring the protein signalling study below, we formed DBNs with 20 ver-

tices (corresponding to proteins) in each time slice, and simulated 4 complete time

courses of 8 time points each. We carried out inference as described above, and used

the same network prior as for the proteomic data below (Figure 4.2).

Data-generating graphs were created so as to agree only partially with the

prior used. This was done using a random, Erdös-Renyi-like approach. In particular,

an edge set E(G) for a data-generating graph G was created from the prior graph

edge set E∗ using a two-step process. First, edges contained in the prior edge set
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E∗ were removed at random, leaving only 20 of the original 74 edges. Second,

10 edges that were not originally in E∗ were added; these were chosen uniformly at

random. This process gave randomly generated graphs with 30 edges. For each such

randomly generated graph, 10 of the edges were not in the prior, while 54 of the

edges in the prior were not in the data-generating graph. This created a scenario

in which a non-trivial proportion of the prior graph used did not agree with the

data-generating graph.

Data were generated from a given graph by ancestral sampling (through

time), using a Gaussian model with interaction terms (see (4.4)). The zero-order

or bias term was always included, and the remaining terms were independently in-

cluded with probability 0.5 (subject to each parent in the graph being represented

by at least one term; this ensured that the data model was faithful to the graph).

This meant that some dependencies were strictly linear, while others included in-

teractions. Model regression coefficients were sampled from a uniform distribution

over [−1,−0.1] ∪ [0.1,1] and were independent of time. Root nodes (initial time

point) were also sampled from this uniform distribution and Gaussian noise was

set at a variance of 0.5. This can be thought of as simulating data from a sparse

vector autoregressive (VAR) model. For example, if protein j has two parents in

the data-generating graph, proteins k1 and k2, then for the initial time point t = 1,

we take X1
j ∼ Uniform([−1,−0.1] ∪ [0.1,1]) and for t ∈ {2, . . . ,8} we have

Xt
j = β0 + γ1β1X

t−1
k1 + γ2β2X

t−1
k2 + γ3β3X

t−1
k1 X

t−1
k2 + εjt (4.26)

where εjt ∼ N(0,0.5), regression coefficients βl ∼ Uniform([−1,−0.1] ∪ [0.1,1]) and

γl are independent Bernoulli random variables taking value one with probability 0.5,

thereby selecting which terms are included. Sampled γ’s are rejected if they are not

faithful to the graph: as an example, for the three protein illustration above, γ1 = 1

and γ2 = γ3 = 0 would be rejected as it would mean that, contrary to the graph,

protein k2 is not actually a parent of protein j.

We used exact network inference for DBNs as described above (using a model

with interaction terms and an informative network prior with strength parameter set

by empirical Bayes) to calculate posterior edge probabilities P (e ∣X). Thresholding

these probabilities at level τ produced edge set Eτ = {e ∣ P (e ∣ X) ≥ τ}, which was

compared to the true data-generating graph to calculate number of true positives

(correct edges called at threshold τ) and number of false positives (incorrect edges

called at threshold τ). A receiver operating characteristic (ROC) curve was created

by plotting number of true positives against number of false positives for varying
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threshold τ . Area under the ROC curve (AUC) provides a measure of network

inference accuracy with higher values indicating better performance.

We generated a total of 25 random graphs, as described above. Empiri-

cal Bayes setting of prior strength parameter resulted in an average value of λ =

3.54 ± 0.34 over the 25 experiments. Figure 4.3 shows average ROC curves and

average AUC values obtained. We also show results for: DBN inference without

interaction terms and/or using a flat prior over graph space (i.e. P (G) = constant),

a baseline correlational analysis (thresholded absolute correlation coefficients be-

tween variables at adjacent time points), variable selection via `1-penalised (lasso)

regression [Tibshirani, 1996] (see Section 2.3.3.3, implemented using Matlab pack-

age glmnet [Friedman et al., 2010]), and several previously proposed network infer-

ence approaches for time course data. These approaches are: a Gaussian graphi-

cal model approach using functional data analysis and shrinkage-based estimation

[Opgen-Rhein and Strimmer, 2006] (see Section 2.3.6, implemented using R package

GeneNet); a non-Bayesian approach for inferring DBNs [Lèbre, 2009] (implemented

using R package G1DBN); and a non-parametric Bayesian approach using Gaussian

processes [Äijö and Lähdesmäki, 2009] (see Section 2.3.7.4, implemented using Mat-

lab package gp4grn). (All Matlab and R packages were used with default settings).

All the above methods resulted in a set of edge scores (e.g. posterior edge prob-

abilities, absolute regression coefficients, absolute partial correlations) that were

thresholded to produce ROC curves. Since Gaussian graphical models are undi-

rected graphs, the inferred networks from this approach were compared with the

data-generating graph with edge direction information removed. We note the lasso

approach also provides a single graph (i.e. a point estimate) by selecting all those

edges with non-zero regression coefficients.

Mean AUCs (± SD) for DBN inference with an informative prior and flat

prior (and with interaction terms) were 0.93±0.03 and 0.84±0.05 respectively. The

baseline correlational analysis, Lasso and previously proposed network inference

approaches resulted in mean AUC values ranging from 0.54 to 0.75. Hence we

see that the network prior provides significant gains in sensitivity and specificity,

even though, by design of the simulation experiment, a non-trivial proportion of

information in the prior is not in agreement with the data-generating model. We

also note that, due to its inability to model combinatorial interplay, the proposed

DBN method without interaction terms is outperformed by the method including

interaction terms.
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Figure 4.3: Simulation study. (a) Average receiver operating characteristic (ROC)
curves. True positive rate (for network edges) plotted against false positive rate
across a range of thresholds. Simulated data were generated from known graph
structures by ancestral sampling. Graph structures were created to be in only par-
tial agreement with the network prior shown in Figure 4.2 (see text for full details
of simulation). Results shown are averages obtained from 25 iterations. Legend -
“DBN, network prior”: proposed DBN inference approach using a network prior,
weighted objectively by empirical Bayes; “DBN, flat prior”: proposed DBN infer-
ence approach using a flat prior over network space; “+int/-int”: with/without
interaction terms; “correlations”: absolute Pearson correlations between proteins at
adjacent time points; “Lasso”: `1-penalised regression (curve produced by thresh-
olding absolute regression coefficients, whilst marker ‘X’ is single graph obtained by
taking all non-zero coefficients to be edges); “GGM”: a Gaussian graphical model
approach for time series data; “DBN (non-Bayesian)”: a non-Bayesian method for
DBN inference; “Gaussian Processes”: a non-parametric Bayesian approach using
Gaussian processes. (b) Average area under the ROC curve (AUC). AUC provides a
measure of accuracy in network inference; higher values indicate better performance.
Results shown are mean AUC±SD over 25 iterations.

123



4.3.2 Synthetic yeast network study

The objectivity of simulation studies depends on how biologically realistic the data-

generating model is. In our simulations above, the data generating model is not

biologically realistic and also matches the inference model. While conclusions can

be made regarding, for example, the utility of incorporating prior information, per-

formance on this data is not likely to reflect performance on real data, and the

comparisons between methods are biased in favour of those that are based on the

data-generating model. Due to these limitations, simulation strategies that are

more realistic, for example based on systems of ODEs, can improve objectivity of

assessments and comparisons [Husmeier, 2003].

Recent work by Cantone et al. [2009] provides another approach for assess-

ing structure learning performance using biologically realistic data and a known

gold-standard network. A gene regulatory network was synthetically constructed

in the yeast Saccharomyces cerevisiae. This network, called the IRMA network, is

composed of five genes and six regulatory interactions (plus a protein-protein in-

teraction). These interactions include feedback mechanisms and the network was

designed so that the five genes are negligibly affected by genes not in the network.

Since the network is known, gene expression (mRNA) data obtained from the sys-

tem can be used to assess performance of structure learning algorithms; we apply

this approach here.

We use data from the “switch-off’ experiments [Cantone et al., 2009], which

consists of 18 time points (every 10 minutes up to 3 hours) and is averaged over four

replicates. As noted by Cantone et al. [2009], it is less likely that the protein-protein

interaction can be recovered from the mRNA level data, so we assess performance

based on the network with six edges. In order to investigate the effect of including

prior information, we formed prior networks that partially agree with the IRMA

network as follows. First, the prior edge set E∗ is taken to include the six edges in

the IRMA network and all self-loop edges. Second, three edges, chosen at random,

are added to E∗. Third, two edges in the IRMA network, chosen at random, are

removed from E∗. This results in prior networks containing seven edges (plus self-

loop edges), four of which are in the IRMA network, and the IRMA network contains

two edges that are not in the prior.

We applied exact network inference for DBNs as described above, using an

informative network prior (generated as just described) with strength parameter

set by empirical Bayes and linear model with interaction terms. Empirical Bayes

resulted in an average value of λ = 4.72 ± 3.75 over 25 different randomly generated

prior networks. As in the simulation study, posterior edge probabilities were used
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Method AUC

DBN, network prior, +int 0.82±0.04
DBN, flat prior, +int 0.75
DBN, network prior, -int 0.74±0.04
DBN, flat prior, -int 0.67
Correlations 0.39
Lasso 0.50
GGM 0.44
DBN (non-Bayesian) 0.43
Gaussian Processes 0.75

Table 4.1: Synthetic yeast network study. Inference methods and regimes as-
sessed on time series gene expression data generated from a 5-node synthetically
constructed gene regulatory network in yeast [“switch-off ” experiment data; Can-
tone et al., 2009]. The data-generating network is known, providing a gold-standard
against which performance can be assessed. Network priors were generated to be
in partial agreement with the true, underlying network structure (see text for de-
tails). Results shown are area under the ROC curve (AUC). Legend - “DBN, net-
work prior”: proposed DBN inference approach using a network prior, weighted
objectively by empirical Bayes; “DBN, flat prior”: proposed DBN inference ap-
proach using a flat prior over network space; “+int/-int”: with/without interaction
terms; “correlations”: absolute Pearson correlations between proteins at adjacent
time points; “Lasso”: `1-penalised regression; “GGM”: a Gaussian graphical model
approach for time series data; “DBN (non-Bayesian)”: a non-Bayesian method for
DBN inference; “Gaussian Processes”: a non-parametric Bayesian approach using
Gaussian processes. The regimes using a network prior are mean AUC±SD over 25
randomly generated prior network structures.
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to generate ROC curves and AUC scores. Table 4.1 shows AUC scores obtained

for the same methods and regimes considered above in the simulation study. AUC

scores for DBN inference with an informative prior and flat prior (and with interac-

tion terms) were 0.82±0.04 (mean±SD) and 0.75 respectively. As in the simulation

study above, we observe gains in accuracy through use of a network prior, even

though the prior is only in partial agreement with the true network. We also see

that inclusion of interaction terms provides an improvement in performance. The

Gaussian processes method performs comparably to the DBN approach described

in this Chapter, but is significantly more computationally intensive (for the five

gene network, 10 iterations of the DBN approach takes approximately 1.5 seconds,

compared to 160 seconds for the Gaussian processes method). The baseline correla-

tional analysis, Lasso, Gaussian graphical model and non-Bayesian DBN inference

approaches did not perform well, with AUC values ranging from 0.39 to 0.5 (i.e. no

improvement over a random classifier).

4.3.3 Network model for breast cancer cell line MDA-MB-468

We used DBNs to model network topology using a combination of reverse-phase

protein array (RPPA) phosphoproteomic data, from cell line MDA-MB-468, and

existing knowledge of signalling topology, incorporated using an informative prior

distribution over network structures. Time courses were carried out at eight time

points (5, 15, 30, 60, 90, 120, 180, 240 minutes) in triplicate, under four growth

conditions (0, 5, 10, 20ng/ml EGF), for 20 proteins (see Table A.3). For further

details of RPPA protocol, see Section A.2.1.

The prior strength parameter λ was set in an objective manner using an

empirical Bayes approach (Figure 4.4), resulting in a value of λ = 3. Using exact

model averaging over network space (as described above) we calculated probability

scores for each of the 400 possible edges between proteins. Figure 4.5a shows the

inferred network (all edges with probability p ≥ 0.4) with a corresponding heat map

depicting all 400 edge probabilities (Figure 4.5b). Inference accounts for both fit-

to-data and model complexity, and indeed the model learned is sparse (posterior

expected number of edges is ∼25). We note although PI3K is not presented as a

phosphoprotein, we include it based on its known regulatory role in tyrosine kinase

receptor signalling.

We discuss the inferred network further below. We first present an analysis

of robustness of the inferred network to the maximum in-degree constraint, prior

specification and perturbation of data points, followed by an empirical check of

predictive capability and model fit.
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Figure 4.4: Objective weighting of informative network prior. Empirical
Bayes marginal likelihood vs. prior strength λ. An informative prior on networks
was used to integrate proteomic data with existing knowledge of signalling topology
(derived from available signalling maps, see Figure 4.2 and text for details). Prior
strength λ was set by an empirical Bayes approach. This was done by empirically
maximising marginal likelihood p(data ∣ λ) as shown (in increments of 0.5); this
gave λ = 3, the value used in the analyses.
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Figure 4.5: Data-driven signalling topology in the breast cancer cell line
MDA-MB-468. (a) Receptor tyrosine kinase regulated signalling networks for
the cell line MDA-MB-468. Reverse-phase protein arrays were used to interrogate
the phosphoproteins shown, including key components of AKT, MAPK and STAT
pathways, through time. Dynamic Bayesian networks were used to integrate the data
with an objectively-weighted informative prior, derived from existing biology. Edges
represent probabilistic relationships between proteins, through time. Edge labels
indicate corresponding (posterior) probabilities (calculated exactly; edge thickness
proportional to probability; all edges with probability ≥0.4 shown; strikethroughs
“/” indicate edges not expected under the network prior; links indicate inferred
influence, which may be positive or negative, i.e. excitatory or inhibitory, sign of
edge not displayed; full list of proteins and associated antibodies given in Table A.3).
(b) Heatmap showing all 400 posterior edge probabilities.
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Figure 4.6: Effect of maximum in-degree constraint dmax. Results reported in
Figure 4.5 were obtained by exact inference with a maximum in-degree of dmax = 4.
These results were compared with results obtained by exact inference with maximum
in-degree increased to dmax = 5 (top), and by Markov chain Monte Carlo-based
inference without any in-degree restriction (bottom).

4.3.3.1 Robustness to maximum in-degree constraint

We compared the results reported in Figure 4.5, obtained by exact calculation with

maximum in-degree dmax = 4, with results obtained by (i) exact calculation with

maximum in-degree dmax = 5, and (ii) a MCMC-based analysis with no restriction

on in-degree. We found very close agreement between the regimes (Figure 4.6),

showing that results were not dependent on the sparsity restriction.

4.3.3.2 Robustness to prior specification

We investigated the robustness of results reported to changes in the prior strength

parameter λ (Figure 4.7a). This was done by comparing results over a range of λ
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Figure 4.7: Prior specification sensitivity analysis. (a) Sensitivity to prior
strength. To ensure robustness to specification of strength parameter λ, results
were compared over a range of values of λ plus the flat prior (i.e. λ = 0) and prior
only. Heatmap shows Pearson correlation coefficients (between all 400 posterior
edge probabilities) for all pairs of prior regimes. Posterior results were not sensitive
to precise value of λ and differed markedly from prior alone. (b) Sensitivity to prior
graph. To investigate robustness to changes in the prior graph the prior graph was
perturbed and results obtained compared to those reported. Correlation (as in (a)
above) is shown between results as a function of number of edge changes in the prior
graph (“Structural Hamming Distance”, larger values indicate a greater change to
the prior graph). Dashed red line and dotted green line show the correlation between
reported results (with λ = 3) and those obtained with a flat prior and prior only
respectively (as seen in (a)).
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values, plus prior alone (i.e. no data; with λ = 3 ) and data alone (i.e. flat prior).

Since the parameter is in the exponent, this covers a wide range of prior strength

regimes. Results are not sensitive to the precise value of λ: different regimes agree

well with each other, while differing somewhat from data alone and markedly from

prior alone. This shows that inference did not simply recapitulate the prior but

rather integrated prior and data.

We also investigated robustness to changes in the prior graph. This was done

by perturbing the prior graph and comparing inferred posterior edge probabilities

to those reported above (Figure 4.7b). Perturbations were made by making edge

removals and additions, keeping the total number of edges constant. The size of the

perturbation can be quantified by the number of edge differences from the original

prior graph (“structural hamming distance” or SHD). Results are robust to changes

in the prior graph: for example, changing one third of the edges (25 out of 74 edges;

SHD equal to 50), gave edge probabilities that showed a correlation of 0.88 ± 0.03

with those reported (mean Pearson correlation ± SD; calculated from 25 perturbed

prior graphs).

4.3.3.3 Robustness to data perturbation

We sought also to investigate the robustness of results reported to perturbation of

the data. We did so by removing parts of the data and replacing with the average

of adjacent time points. The data consists of four time series of eight time points

each. We removed data, for all 20 proteins simultaneously, from between 1 and

4 time-point/condition combinations: this corresponded to removing between 1/32

and 1/8 of the data. These deletions represent a non-trivial change to a small data

set. Figure 4.8a shows Pearson correlation coefficients between edge probabilties

reported above (from unperturbed data) and those inferred from perturbed data.

We observe good agreement between the edge probabilities, demonstrating that

results are not overly sensitive to changes to the data. For example, perturbing 1/8

of the data resulted in a correlation coefficient of 0.83 ± 0.05 (calculated from 25

perturbed datasets).

We also considered the case of completely removing all data at one of the eight

time points. This reduces the amount of data by almost 15% and also changes the

interval between sampled time points. Removing each of the six intermediate time

points in turn, we again compared results obtained to the edge probabilities reported

above. We found an average correlation coefficient of 0.81±0.06. This demonstrates

that the results reported are robust, even when 1/8 of the data is removed and time

intervals are substantially changed. Indeed, even when deleting two complete time
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Figure 4.8: (a) Sensitivity to data perturbation and (b) cross-validation.
(a) Data were removed, for each of the 20 proteins under study, from between 1
and 4 randomly selected time-point/condition combinations: this corresponded to
removing between 1/32 and 1/8 of the data. Deleted data were replaced with the
average of adjacent time ponts. Pearson correlation coefficients are shown between
edge probabilities inferred from perturbed data and those obtained from the original,
unperturbed data (Figure 4.5b). Results shown are over 25 iterations (except for
“1”, in which all possible deletions were carried out). (b) Predictive capability
was empirically assessed by leave-one-out-cross-validation. Results shown are mean
absolute predictive errors ±SEM for DBN network inference with interaction terms
in the linear model and either exact model averaging (‘DBN, +int, MA’) or using
the highest scoring graph (‘DBN, +int, MAP); DBN network inference without
interaction terms using exact model averaging (‘DBN, -int’); variable selection via `1-
penalised regression (‘Lasso’); a baseline auto-correlative analysis (‘self-edges only’);
and a baseline, non-sparse linear model, with each variable predicted from all others
(‘all edges, -int’).
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points (randomly selected), i.e. 1/4 of the data, we found reasonable agreement

with the results reported (correlation coefficient of 0.71 ± 0.08).

For both analyses above, the prior strength parameter was fixed to the value

used in the original analysis (λ=3).

4.3.3.4 Predictive capability and model fit

As an empirical check of model fit and predictive capability, we carried out leave-one-

out-cross-validation (LOOCV); see Section 2.3.2.1 for background information on

cross-validation. We note that in the present setting LOOCV cannot be expected to

guide detailed model choice or design. This is due to the fact that for small data sets

LOOCV alone is limited in its ability to choose between models or regimes. Rather,

our aim in using LOOCV was simply to highlight any egregious mismatch between

data and model. In the time-course setting it is also difficult to interpret LOOCV

results in terms of absolute error: rather we compared LOOCV error against baseline

analyses.

LOOCV was carried out using inferred posterior parent set probabilties (4.9).

At each iteration, one of the n samples was removed from the data and the exact

inference procedure described above used to learn the posterior distributions over

parent sets P (π(j) ∣ X−,X+
j ) from the remaining n − 1 training samples. Here,

we have denoted the training data for variable j by X− and X+
j and we denote

the corresponding held-out sample by Z− and Z+
j . Given the training data, the

posterior predictive mean E [Z+
j ∣ Z−,X−,X+

j ] can be used to predict the value of

held-out data Z+
j from Z−. This is identical to the prediction approach described in

Section 3.2.5. Using our current notation, (3.10) becomes

E [Z+
j ∣ Z−,X−,X+

j ] = ∑
π(j)

E [Z+
j ∣ Z−,X−,X+

j , π(j)]P (π(j) ∣ X−,X+
j ) (4.27)

and (3.11) becomes

E [Z+
j ∣ Z−,X−,X+

j , π(j)] =
n

n + 1
B̃j (Bj

TBj)
−1

Bj
TX+

j (4.28)

where Bj is the (n − 1) × (2∣π(j)∣ − 1) training data design matrix for variable j,

including products of parents, and B̃j is the corresponding 1 × (2∣π(j)∣ − 1) design

matrix for the held-out sample. Full network inference, including empirical Bayes

learning of the hyperparameter, is carried out at each cross-validation iteration.

Figure 4.8b shows these predictions compared with those from (i) the single

highest-scoring graph under the posterior distribution over DBN structures (this is
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the maximum a posteriori or MAP counterpart to the Bayesian model averaging

approach we propose); (ii) the proposed DBN inference method with a fully linear

regression model without interaction terms; (iii) an `1-penalised regression (Lasso)

approach in which parents are inferred via variable selection; (iv) a baseline autore-

gressive model in which each variable depends only on itself at the previous time

point; and (v) a baseline non-sparse linear model in which each protein depends on

all parents. For (i), (iii), (iv) and (v) predictions are made using Equation (4.28)

only. The proposed method shows lower LOOCV error relative to the baseline mod-

els and to the MAP model, and performs comparably to DBN inference with a fully

linear model and to Lasso regression.

4.3.3.5 Experimental validation

Many of the edges inferred recapitulate previously described (direct and indirect)

links (including MAPK → p90RSKp and AKT → p70S6Kp). A number of other

edges were unexpected, including signalling links which, to the best of our knowl-

edge, have not previously been reported. We experimentally tested some of these

predictions by inhibitor approaches. Edges were selected on the basis of posterior

probability, biological interest and availability of selective inhibitors by which to

carry out validation experiments.

The edge MAPKp → STAT3p(T727) appears with a high posterior proba-

bility of 0.98. This suggests the possibility of cross-talk between the MAPK and

JAK/STAT pathways. To investigate this link, we used a MEK inhibitor (MEKi)

and monitored the response of MAPKp and STAT3p(T727) through time (Fig-

ure 4.9a). Inhibition successfully reduced MAPK phosphorylation (paired t-test

p-value for 10uM MEKi, calculated over 8 time points, p = 5.0 × 10−4): since

MAPK is directly downstream of MEK, this showed that the inhibitor was effective.

Moreover, in line with model predictions, we observed a corresponding decrease

in STAT3p(T727) (p = 3.3 × 10−4). We note that the MEK to MAPK link does

not appear in the inferred model; the MEKi data reported here suggest this is a

false negative. We note also that these results do not imply that MAPK directly

regulates STAT3 in MDA-MB-468, since an indirect influence, via one or more in-

termediate players that are not measured, would be consistent with both the model

and the inhibition experiment (we return to the question of causal and mechanistic

interpretations in Chapter 6).

The network model predicts a previously described edge AKTp → p70S6Kp

and, of greater interest, two unexpected links AKTp →MEKp and AKTp → cJUNp.

The former suggests possible cross-talk between the AKT and MAPK pathways, and
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Figure 4.9: Validation of predictions by targeted inhibition and phospho-
protein monitoring in breast cancer cell line MDA-MB-468. (a) MAPK-
STAT3 cross-talk. Network modelling (Figure 4.5a) predicted a novel link between
phospho-MAPK (MAPKp) and STAT3p(T727) in the breast cancer cell line MDA-
MB-468. The hypothesis of MAPK-STAT3 cross-talk was tested by MEK inhibition:
this successfully reduced MAPK phosphorylation and resulted in a corresponding
decrease in STAT3p(T727) (RPPA data; MEK inhibitor GSK2B at 0uM (i.e. no in-
hibition), 0.625uM, 2.5uM, 10uM; measurements taken 0,5,15,30,60,90,120,180 min-
utes after EGF stimulation; average values over 3 replicates shown, error bars in-
dicate SEM). (b) AKTp → p70S6Kp, AKT-MAPK cross-talk and AKT-JNK/JUN
cross-talk. AKTp is linked to p70S6kp, MEKp and cJUNp. In line with these
model predictions, use of an AKT inhibitor reduced both p70S6K and MEK phos-
phorylation and increased JNK phosphorylation. (RPPA data; AKT inhibitor
GSK690693B at 0uM (i.e. no inhibition), 0.625uM, 2.5uM, 10uM; measurements
taken 0,5,15,30,60,90,120,180 minutes after EGF stimulation; average values over 3
replicates shown, error bars indicate SEM). (c) EGFR mediated JNK activation.
EGFRp → JNKp is predicted by the network model. Cells were subjected to EGF
stimulation; this resulted in activation of JNK (duplicate Western blots for p54 and
p46 JNK isoforms; MEK inhibitor U0126 at 5uM).
[Validation data from Mills Lab at MD Anderson Cancer Center, Houston].
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the latter suggests crosstalk between the AKT and JNK/JUN pathways. We tested

these links using an AKT inhibitor (AKTi; Figure 4.9b). Phosphorylation of p70S6K

was reduced by AKTi (paired t-test p-value for 10uM AKTi, calculated over 8 time

points, p = 5.0 × 10−3), validating the edge predicted (and verifying the effect of the

inhibitor). We also observe a clear decrease in MEKp levels (p = 1.8 × 10−3) and

an increase in JNKp levels (p = 0.047), providing independent evidence in favour of

the existence of cross-talk in both cases (JNK is known to be directly upstream of

cJUN). We note that we do not observe an effect on cJUN itself in the validation

experiments, only on JNK. This could be due to JNK and cJUN having different

rates of (de)phosphorylation and, in particular, how these rates relate to the time

scales of the experiment.

The observed differences in phosphorylation levels, between uninhibited and

inibited regimes, in the MEKi and AKTi validation data are consistent both through

time and between replicates at individual time points. Moreover, the time course

data is non-longitudinal due to the destruction of samples in the measurement pro-

cess. Therefore, this consistency is not simply a result of longitudinal correlation.

The inferred network contains several edges from EGFRp to downstream

proteins in several pathways. We tested one of these predictions; the edge EGFRp →

JNKp. We subjected the cell line to EGF stimulation and monitored JNK activation

by Western blotting. We found that JNK was activated upon EGF stimulation

(Figure 4.9c). The result was independent of MEK inhibition, suggesting that the

effect is not via the MAPK pathway.

Further to our analysis regarding robustness of results to prior specifica-

tion, Figure 4.10 shows the effects of prior strength and prior graph on each of the

five validated predictions in Figure 4.9. The edge probabilities for the unexpected,

novel edges (MAPKp→STAT3p(T), AKTp(T)→MEKp, AKTp(S)→cJUNp), which

are not contained in the prior, remain high (relative to the average probability for

edges not in the prior graph) across a wide range of prior strengths. In particular, the

edge probability for MAPKp→STAT3p(T) shows no decrease with increasing prior

strength, despite not being featured in the prior. The prior was not required for

prediction of these three edges, nor the expected edge AKTp(S)→p70S6Kp. How-

ever, the validated edge EGFRp→JNKp would not have been highlighted without

the prior. We observe also that edge probabilities for these links remain stable when

structural changes are made to the edge set of the prior.

To further assess the utility of our approach, we considered the ability of

the methods in Figure 4.8b to discover the five validated edges in Figure 4.9. We

found that only the MAP model from the proposed DBN approach contains all five
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Figure 4.10: Sensitivity of edge probabilities for validated links to prior
specification. (a) Sensitivity to prior strength. Posterior edge probabilities for
validated predictions (see Figure 4.9) are shown for a range of values of prior strength
parameter λ, plus the flat prior (λ = 0) and prior only. Also shown are average
posterior edge probabilities (± SD) for the following edge sets: (i) all edges contained
in the prior graph and (ii) all edges not contained in the prior graph. (b) Sensitivity
to prior graph. Prior graphs were perturbed as described in text. Posterior edge
probabilities for validated predictions are shown as a function of number of edge
changes to prior graph (“Structural Hamming Distance”). Also shown are average
posterior edge probabilities for the following edge sets: (i) all edges contained in the
unperturbed prior graph and (ii) all edges not contained in the unperturbed prior
graph. (Results reported are averages over 25 perturbed prior graphs; error bars
indicate SEM).
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edges. Yet, since this is a single graph, there are no edge weights to aid priori-

tisation of follow-up experiments. The DBN approach without interaction terms

fails to discover one of the edges (AKTp(S)→MEKp), the Lasso approach only finds

MAPKp→STAT3p(T), and the baseline linear model fails to find any of the edges

(to permit a fair comparison for each method edge probabilities (or absolute regres-

sion coefficients) were thresholded to give a number of edges equal to the network

reported in Figure 4.5a). However, we note that this assessment is biased since it is

possible that the other approaches discovered edges that would also be validated in

independent experiments, but were not found in our approach.

4.4 Discussion

In this Chapter, we brought together statistical network modelling and reverse-

phase protein array technology to enable a data-driven analysis of signalling network

topology. We combined ideas from graphical models, empirical Bayes and variable

selection to yield an integrative analysis that was computationally tractable and

essentially free of user-set parameters. Bayesian model averaging was used to calcu-

late posterior edge probabilities, quantifying evidence in favour of individual links,

and thereby aiding selection of specific links for experimental validation. Results

were shown on both simulated data and data from a synthetically constructed net-

work in yeast [Cantone et al., 2009]. These results demonstrated that the proposed

inference procedure performed favourably relative to several other structure learn-

ing approaches for time series data. An application to an individual breast cancer

cell line (MDA-MB-468) enabled generation of hypotheses regarding specific links,

which were subsequently validated in independent experiments.

Model averaging has previously been used to score edges in Bayesian net-

work modelling of molecular networks [Friedman et al., 2000; Husmeier, 2003; Ellis

and Wong, 2008; Mukherjee and Speed, 2008]. In addition to providing a measure

for the importance of individual edges, model averaging can help improve robust-

ness of results over simply taking the MAP model, especially at small-to-moderate

sample sizes (see Section 2.3.2.3). Indeed, we found that the model averaging ap-

proach offered an improved predictive capability over taking the MAP graph (see

Figure 4.8b).

Network inference in general, and model averaging in particular, are often

viewed as computationally burdensome. Certainly, this can often be the case (e.g.

for static BNs with many nodes). However, for the DBNs employed here, using

a variable selection approach as described above, network inference is relatively
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efficient. For datasets of moderate dimensionality this approach is arguably fast

enough for routine exploratory use. For example, empirical Bayes analysis and

inference of posterior edge probabilities for the 20 variables in our cancer study

took under 20 seconds (on a standard single-core personal computer).

We took account of known signalling biology by means of a prior distribution

on networks, weighted objectively using empirical Bayes. Prior information can aid

inference regarding network structures from limited data [Geier et al., 2007; Werhli

and Husmeier, 2007; Mukherjee and Speed, 2008]. Indeed, our results on simulated

data and on data from the synthetic yeast network also demonstrated that inclusion

of prior information, in the form of a network prior, can improve inference accuracy,

even when a non-trivial proportion of information in the prior is erroneous. The

use of a prior incorporates existing knowledge in a ‘soft’ probabilistic manner that

can be over-ridden by data. In contrast to hard constraints, this does not preclude

discovery of unexpected edges. Indeed, the network model yielded novel biological

predictions that were validated by targeted inhibition. We verified empirically that

results reported were not overly sensitive to prior specification or data perturbation.

Comparisons of predictive capability with baseline models suggested that the sparse

models learned were indeed predictive.

Approximate inference methods such as Markov chain Monte Carlo (MCMC)

[Robert and Casella, 2004] are often used for inference in BNs and DBNs [Madigan

et al., 1995; Friedman and Koller, 2003; Husmeier, 2003; Mukherjee and Speed, 2008;

Ellis and Wong, 2008; Grzegorczyk and Husmeier, 2008] (see also Section 2.3.5.2).

In contrast, we used a variable selection approach and sparsity constraints to calcu-

late posterior edge probabilities exactly, thereby removing Monte Carlo uncertainty

(and the need for associated diagnostics). The exact approach also facilitates the

empirical Bayes analysis. In high dimensions, where the exact approach becomes

intractable, the fully Bayesian MCMC approach proposed in Werhli and Husmeier

[2007] can be used to sample from the joint posterior over networks and hyperpa-

rameters. We note that the variable selection approach also provides benefits for

model averaging with MCMC-based inference since it factorises the problem and

also allows computations to be trivially run in parallel.

The exact model averaging approach is possible due to the guaranteed acyclic-

ity of DBNs with edges permitted forward in time only. Under a modular posterior

scoring function, summations over the entire graph space decompose into products of

summations over parent sets. Thus, posterior edge probabilities can be calculated by

model averaging in a variable selection sense. Such a decomposition has previously

been exploited in the context of (static) BN structure learning, when an ordering
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over nodes is assumed, which also guarentees acyclicity (node orders were intro-

duced in Section 2.3.5.2). Buntine [1991] first noted the decomposition and Cooper

and Herskovits [1992] proposed the K2 algorithm, which exploits the decomposition

(using maximisations instead of summations) to find the MAP BN structure un-

der a given ordering. The order MCMC method proposed by Friedman and Koller

[2003] and exact order-space method of Koivisto [2006] (see Section 2.3.5.2) use the

decomposition to perform model averaging under a given order, and consider the

whole space of orders. It is also used by Werhli and Husmeier [2007] to approximate

the normalisation constant of a network prior. We note that the restriction on edge

directionality in the DBNs considered here can be regarded as a known ordering

over nodes, in which all nodes in the second time slice appear after all nodes in the

first time slice, along with additional restrictions to preclude edges within a time

slice.

As discussed in Chapter 3, the parameter priors employed here (i.e. the g-

prior formulation for regression coefficients and improper reference prior for the vari-

ance) are a special (and limiting) case of the NIG prior described in Section 2.3.1.2.

The priors are placed on the parameters of the local conditionals (4.4), which is

in contrast to the widely-used BGe score (outlined in Section 2.3.5.2), where the

Normal-Wishart prior is placed on the parameters of the joint Gaussian distribu-

tion over all variables. However, the two formulations are closely related; a Wishart

prior on the precision matrix of the joint Gaussian is equivalent to a NIG prior on

the local conditionals, with hyperparameters determined by those of the Wishart

prior [see e.g. Dobra et al., 2004]. Further work is required to determine whether the

parameterisation of the (limiting) NIG prior used here is coherent in the sense that

it corresponds to a well-defined prior on the joint Gaussian distribution. We note

that this coherency is more relevant for BNs than for the DBNs used here, since

structure learning for DBNs reduces to independent variable selection problems with

the set of response variables (nodes in second time slice) being disjoint from the set

of predictor variables (nodes in first time slice). It is not necessary during inference

to consider the global network structure and so it is natural to only consider local

conditionals and local priors on those conditionals.

The DBN model in this work makes a widely-used assumption of homogene-

ity of parameters and network structure through time. However, these assumptions

are likely to be unrealistic for cellular protein signalling, e.g. in the event that

accumulating epigenetic alterations fundamentally alters the state of the cells and

thereby the underlying dynamical system. The softening of these homogeneity as-

sumptions can lead to a rapid increase in numbers of parameters and/or the size
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of graph space, resulting in statistical (and computational) challenges, especially

when the number of time points observed is small. Recently, non-homogeneous

DBN methods have been proposed in the literature that ameliorate these effects

[Robinson and Hartemink, 2010; Grzegorczyk and Husmeier, 2011b].

For several reasons, it is not expected or indeed possible, that data-driven

characterisations of signalling network structure can reveal the ‘correct’ context-

specific structure. These reasons, some of which we discuss further in Chapter 6,

include: paucity of data, random stochasticity in data, challenges in experimental

design such as selection of appropriate time points, possible low information level

in observational data (i.e. as opposed to interventional data), issues regarding the

interpretation of inferred links as being causal, information loss due to data discreti-

sation, biologically unrealistic models, and unidentifiability of models [Craciun and

Pantea, 2008; Oates and Mukherjee, 2012]. Therefore, results should be regarded

as a summary of the given dataset, that can be used to generate hypotheses for

independent validation.

In order to get an idea of the accuracy of our inferred breast cancer cell line

signalling network we performed a systematic comparison of the inferred network

structure (Figure 4.5(a)) with a network generated from independent, published

siRNA data [Lu et al., 2011]. Application of an siRNA (partially) knocks down a

specific gene and therefore prevents synthesis of the corresponding protein. The data

shows the effects of siRNAs, targeting specific proteins, on phosphorylation levels

of several signalling proteins. Large effects are evidence in favour of links between

the protein being targeted by siRNA and affected proteins. The intersection of

the siRNA dataset and our data allows a network with 135 possible edges to be

compared. A network with 50 edges is produced from the siRNA data. Of the

10 edges that appear in our inferred network, 7 are also in the siRNA network.

This agreement is more than would be expected by chance and is significant at the

5% level. However, the siRNA data does not provide a gold-standard reference for

systematic validation of inferred links due to only partial knockdowns of the target

and off-target effects.

We predicted and validated novel links, suggesting existence of cross-talk

between signalling pathways, and links that have been previously well documented.

Overall, our results suggest that statistical approaches, such as those presented

here, can usefully integrate proteomic data with existing knowledge to generate

hypotheses regarding context-specific signalling links; here, specific to an individual

breast cancer cell line. By applying these approaches to many individual cancers, we

could probe signalling heterogeneity across, and even within, cancer subtypes, and

141



thereby shed light on therapeutic heterogeneity. Thus the methods reported here

could help guide development of personalised cancer therapies in the future, that are

targeted to specific cancer subtypes or even individual cancers. However, the sheer

complexity of cancer signalling is daunting and so the present work is only a first

step in the direction of characterising signalling networks that are context-specific.
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Chapter 5

Network-based clustering with

mixtures of sparse Gaussian

graphical models

5.1 Introduction

Clustering of high-dimensional data has been the focus of much statistical research

over the past decade. The increasing prevalence of high-throughput biological data

has been an important motivation for such efforts. For example, clustering methods

have been applied to gene expression data to find sets of coregulated genes [Eisen

et al., 1998] and discover disease subtypes [Golub et al., 1999] (further references

can be found in Section 2.3.9). In this Chapter we focus on the latter application;

that is, to cluster a small-to-moderate number of high-dimensional samples (e.g.

tissue samples or cell lines) with the aim to discover disease subtypes. Numerous

clustering algorithms have been used in biological applications, notably for gene

expression data. The reader is referred to Section 2.3.9 for background information

on clustering and, in particular, on the following widely-used clustering methods: K-

means, hierarchical clustering and model-based clustering. As noted in Section 2.3.9,

model-based clustering [McLachlan and Basford, 1987; Fraley and Raftery, 1998;

McLachlan and Peel, 2000; Fraley and Raftery, 2002] with Gaussian mixture models

is a popular approach to clustering that is rooted in an explicit statistical model.

In this Chapter, we bring together clustering and structural inference for

graphical models. Background information on graphical models and graphical model

structure learning can be found in Sections 2.3.4-2.3.6. In particular, we develop

a model-based clustering approach with components defined by graphical models.
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This allows simultaneous recovery of cluster assignments and learning of cluster-

specific graphical model structure. Our work is of particular relevance to questions

concerning undiscovered heterogeneity at the level of network structure. Such ques-

tions arise in diverse molecular biology applications. The edge structure of biological

networks can differ depending on context, e.g. disease state or other subtype [Paw-

son and Warner, 2007; Yuan and Cantley, 2008], in ways that may have implications

for targeted and personalised therapies [Pe’er and Hacohen, 2011]. When such het-

erogeneity is well-understood, samples can be partitioned into suitable subsets prior

to network structure learning [Altay et al., 2011] (or other supervised network-based

approaches [Chuang et al., 2007]). However, molecular classifications that under-

pin such stratifications are in their infancy and often data may harbour hitherto

unknown subtypes. Moreover, if subtypes differ with respect to underlying net-

work structure, clustering and structural inference become related tasks: clustering

methods that do not model cluster-specific covariance structure (including K-means,

hierarchical clustering or model-based clustering with diagonal covariance matrices

[de Souto et al., 2008]), may be unable to discover the correct clustering, thereby

compromising also the ability to elucidate network structure.

A specific motivation for the work we present comes from the molecular

biology of cancer. Cancers show a remarkable degree of biological heterogeneity

[TCGA-Network, 2011] that has key therapeutic implications. The identification of

subsets of cancers that share underlying biology is of great interest in both basic and

translational cancer research, as it may suggest ways to rationally target therapies

to responsive sub-populations. As discussed in Chapter 1 and Section 2.1, biological

networks called signalling networks play a central role in cancer and it is components

of these networks that are targets for many new therapeutic agents. An attractive

idea is therefore to cluster cancer samples into groups that show evidence of shared

signalling network structure. Recently, biochemical assays that permit interrogation

of signalling proteins, post-translationally modified by phosphorylation on specific

sites, have reached a level of maturity [Hennessy et al., 2010; Ciaccio et al., 2010;

Bendall et al., 2011] that starts to allow such approaches to be pursued (see also

Section 2.2). We show an application to such data below.

As cluster-specific network models, we use sparse Gaussian graphical models.

Recall from Section 2.3.4.2 that these are multivariate Gaussian models in which

an undirected graph is used to represent conditional independence relationships

between variables, and that inferring the edge set of a Gaussian graphical model

is equivalent to identifying the location of non-zero entries in the precision matrix.

Background information regarding structure learning of sparse Gaussian graphical
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models (i.e sparse precision matrix estimation) can be found in Section 2.3.6. In

particular, maximum penalised likelihood estimators with an `1 penalty applied to

the precision matrix have been proposed by Yuan and Lin [2007]; Friedman et al.

[2008]; Rothman et al. [2008] and D’Aspremont et al. [2008]. Analogous to the

lasso (see Section 2.3.3.3), where sparse models are encouraged by shrinking some

regression coefficients to be exactly zero, the `1 penalty on the precision matrix

encourages sparsity by estimating some matrix entries as exactly zero. Since a

sparse precision matrix corresponds to a sparse Gaussian graphical model structure,

`1-penalised estimation is well-suited for inference of molecular networks, where

sparsity is often a valid assumption. Moreover, regularisation enables estimation in

the challenging ‘large p, small n’ regime that is ubiquitous in these settings, but

renders standard covariance estimators inapplicable or ill-behaved.

Our work adds to the literature in three main ways. First, the penalised

mixture-model formulation we propose extends previous work. Mukherjee and Hill

[2011] put forward a related ‘network clustering’ approach, but this is not rooted

in a formal statistical model and estimation is carried out using a heuristic, K-

means-like algorithm with ‘hard’ cluster assignments. We show empirically that

likelihood-based inference via an EM algorithm formulation confers benefits over this

approach. EM algorithms for penalised likelihoods have previously been proposed

for finite mixture of regression models [Khalili and Chen, 2007; Städler et al., 2010]

and for penalised model-based clustering [Pan and Shen, 2007; Zhou et al., 2009].

The approach in Zhou et al. [2009] is similar to the one here. However, our `1 penalty

takes a more general form, allowing also for dependence on mixing proportions at the

level of the full likelihood. We show that at smaller sample sizes in particular, the `1

penalty we propose offers substantial gains. Furthermore, while we are interested in

simultaneous clustering and cluster-specific network structure learning, Zhou et al.

[2009] focus on clustering in combination with variable selection.

Second, we present empirical results investigating the performance of pe-

nalisation regimes. A penalty parameter controls the extent to which sparsity is

encouraged in the precision matrix and corresponding graphical model. The choice

of method for setting the penalty parameter together with the different forms of

the `1 penalty itself result in several possible regimes that can be difficult to choose

between a priori. Our results show that the choice of regime can be influential and

suggest general recommendations.

Third, we present an application in cancer biology. We analyze data from

key signalling proteins, post-translationally modified by phosphorylation on specific

sites, in a panel of breast cancer cell lines. It remains unclear whether breast can-
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cers display substantive heterogeneity at the level of signalling network structure.

We find that `1-penalised network-based clustering recapitulates, from phosphopro-

teomic data alone, a biological classification that was previously established using

independent gene expression data [Perou et al., 2000; Sørlie et al., 2001]. Moreover,

clustering methods that do not take cluster-specific covariance structure into ac-

count fail to do so. This is a striking finding because it suggests that breast cancer

subtypes do indeed differ at the level of signalling network structure.

The remainder of this Chapter is organised as follows. In Section 5.2 we

introduce `1-penalised estimation for Gaussian graphical models and then go on

to describe the proposed mixture model. In Section 5.3.1 we present an empirical

comparison, on synthetic data, of several regimes for the `1 penalty term and tuning

parameter selection. This is followed in Section 5.3.2 by the application to breast

cancer data. In Section 5.4 we close with a discussion of our findings and suggest

areas for future work.

5.2 Methods

5.2.1 Penalised estimation of Gaussian graphical model structure

Let X = (X1, . . . ,Xp)
T denote a random vector having p-dimensional Gaussian den-

sity f(µ,Σ) with mean µ and covariance matrix Σ. A Gaussian graphical model

G = (V,E) describes conditional independence relationships between the random

variables X1, . . . ,Xp. Let Ω = Σ−1 denote the inverse covariance or precision ma-

trix. Then, as explained in Section 2.3.4.2, non-zero entries in Ω = (ωij) correspond

to edges in the graphical model, that is ωij ≠ 0 ⇐⇒ (i, j) ∈ E. Thus, inferring the

edge set of a Gaussian graphical model is equivalent to identifying the location of

non-zero entries in the precision matrix.

Suppose x1, . . . ,xn, with xi = (xi1, . . . , xip)
T is a random sample from f(µ,Σ).

Let x̄ = 1
n ∑

n
i=1 xi denote sample mean and Σ̂ = 1

n ∑
n
i=1 (xi − x̄)(xi − x̄)T sample co-

variance. The precision matrix Ω may be estimated by maximum likelihood. The

log-likelihood function is given, up to a constant, by

l(Ω) = log ∣Ω∣ − tr(ΩΣ̂) (5.1)

where ∣⋅∣ and tr(⋅) denote matrix determinant and trace respectively. The maximum

likelihood estimate is given by inverting the sample covariance matrix, Ω̂ = Σ̂
−1

.

However for n < p, Σ̂ is singular and so cannot be used to estimate Ω. Even when

n ≥ p, Ω̂ can be a poor estimator for large p and does not in general yield sparse
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precision matrices.

Sparse estimates can be encouraged by placing an `1 penalty on the entries

of the precision matrix Ω. This results in the following penalised log-likelihood:

lp(Ω) = log ∣Ω∣ − tr(ΩΣ̂) − λ ∥Ω∥1 (5.2)

where ∥Ω∥1 = ∑i,j ∣ωi,j ∣ is the elementwise `1 matrix norm and λ is a non-negative

tuning parameter controlling sparsity of the estimate. The maximum penalised

likelihood estimate is obtained by maximising (5.2) over symmetric, positive-definite

matrices. This is a convex optimisation problem and several procedures have been

proposed to obtain solutions. Yuan and Lin [2007] used the maxdet algorithm,

while D’Aspremont et al. [2008] proposed a more efficient semi-definite programming

algorithm using interior point optimisation. Rothman et al. [2008] offered a fast

approach employing Cholesky decomposition and the local quadratic approximation,

and Friedman et al. [2008] proposed the even faster graphical lasso algorithm, based

on the coordinate descent algorithm for the lasso (see Section 2.3.3.3). We use the

graphical lasso algorithm in our investigations and refer the interested reader to the

references for full details.

5.2.2 Mixture of penalised Gaussian graphical models

For background information on Gaussian mixture models and model-based cluster-

ing, see Section 2.3.9.3. Notation used below also follows that used in the afore-

mentioned Section. In particular, the log-likelihood for a random sample x1, . . . ,xn

from a finite Gaussian mixture distribution is given by (2.66), and is reproduced

here,

l(Θ) =
n

∑
i=1

log(
K

∑
k=1

πkfk(xi ∣µk,Σk)). (5.3)

where the mixing proportions πk satisfy 0 ≤ πk ≤ 1 and ∑Kk=1 πk = 1, fk is the p-

dimensional multivariate Gaussian density with component-specific mean µk and

covariance Σk, and Θ = {(πk,µk,Σk) ∶ k = 1, . . . ,K} is the set of all unknown pa-

rameters.

In model-based clustering each mixture component corresponds to a cluster.

In the present setting, since each cluster (or component) is Gaussian distributed

with a cluster-specific (unconstrained) covariance matrix, each cluster represents a

distinct Gaussian graphical model.

In the Gaussian mixture model with cluster-specific covariance matrices, the

number of parameters is of order Kp2. Estimation is more challenging than for a
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single precision matrix (or Gaussian graphical model) and so, as described above,

in settings where number of variables p is moderate-to-large in relation to sample

size n, overfitting and invalid covariance estimates are a concern. We employ an

`1 penalty on each of the K precision matrices to promote sparsity and ameliorate

these issues. Such `1 penalties have previously been proposed for clustering with

Gaussian graphical models [Zhou et al., 2009; Mukherjee and Hill, 2011].

We propose the following penalised log-likelihood,

lp(Θ) =
n

∑
i=1

log(
K

∑
k=1

πkfk (xi ∣µk,Σk)) −
n

2
pλ,γ(Θ) (5.4)

where the penalty term is given by

pλ,γ(Θ) = λ
K

∑
k=1

πγk ∥Ωk∥1 (5.5)

and γ is a binary parameter controlling the form of the penalty term. Setting γ = 0

results in the conventional penalty term, as used in Zhou et al. [2009], with no

dependence on the mixing proportions πk. Setting γ = 1 weights the penalty from

each cluster by its corresponding mixing proportion. While this form of penalty is

novel in this setting, an analogous penalty has been proposed by Khalili and Chen

[2007] and Städler et al. [2010] for `1-penalised finite mixture of regression models.

In this work, we empirically compare these two forms of penalty term for clustering

with, and estimation of, Gaussian graphical models.

5.2.3 Maximum penalised likelihood

As with the unpenalised log-likelihood (5.3), the penalised likelihood (5.4) can be

maximised using an EM algorithm, which we now describe. The EM algorithm

for the unpenalised likelihood was described in Section 2.3.9.3. Our algorithm is

similar to that of Zhou et al. [2009], but they consider only the γ = 0 regime and

also penalise the mean vectors to perform variable selection.

Let zi be a latent variable satisfying zi = k if observation xi belongs to cluster

k (the responsibility of cluster k for sample xi). Then we have P (zi = k) = πk and

p(xi ∣ zi = k) = fk(xi ∣ µk,Σk). The penalised log-likelihood for the complete data

{xi, zi}
n
i=1 is

lp,c(Θ) =
n

∑
i=1

log(πzi) + log (fzi (xi ∣µzi ,Σzi)) −
n

2
pλ,γ(Θ). (5.6)

In the E-step of the EM algorithm, given current estimates of the parameters
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Θ(t), we compute

Q(Θ ∣ Θ(t)) = E [lp,c(Θ) ∣ {xi}
n
i=1 ,Θ

(t)
]

=
n

∑
i=1

K

∑
k=1

τ
(t)
ik [log(πk) + log (fk (xi ∣µk,Σk))] −

n

2
pλ,γ(Θ) (5.7)

where τ
(t)
ik is the posterior probability of observation xi belonging to cluster k,

τ
(t)
ik =

π
(t)
k fk (xi ∣µ

(t)
k ,Σ

(t)
k )

∑
K
j=1 π

(t)
j fj (xi ∣µ

(t)
j ,Σ

(t)
j )

(5.8)

and can be thought of as a ‘soft’ cluster assignment.

In the M-step we seek to maximise Q(Θ ∣ Θ(t)) with respect to Θ to give

new estimates for the parameters Θ(t+1). When γ = 0 the mixture proportions πk do

not appear in the penalty term pλ,γ(Θ) and so we use the standard EM algorithm

update for unpenalised Gaussian mixture models, given in (2.70), and reproduced

here,

π
(t+1)
k =

∑
n
i=1 τ

(t)
ik

n
. (5.9)

For γ = 1, since πk appears in the penalty term, maximisation of Q(Θ ∣ Θ(t)) with

respect to πk is non-trivial. We follow Khalili and Chen [2007] and use the standard

update (5.9). If the standard update improves Q(Θ ∣ Θ(t)) then this is sufficient

to obtain (local) maxima of (5.4). An improvement is not guaranteed here, but as

found in Khalili and Chen [2007], the method works well in practice.

Since the penalty term is independent of µk, we again use the standard

update, given in (2.71), and reproduced here,

µ
(t+1)
k =

∑
n
i=1 τ

(t)
ik xi

∑
n
i=1 τ

(t)
ik

. (5.10)

The update for Σk, or equivalently Ωk, is given by

Ω
(t+1)
k = arg max

Ωk

[
n

∑
i=1
τ
(t)
ik (log ∣Ωk∣ − tr(ΩkS

(t)
k )) − nλ (π

(t+1)
k )

γ
∥Ωk∥1]

= arg max
Ωk

[log ∣Ωk∣ − tr(ΩkS
(t)
k ) − λ̃

(t)
k ∥Ωk∥1] (5.11)
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where

S
(t)
k =

∑
n
i=1 τ

(t)
ik (xi −µ

(t+1)
k ) (xi −µ

(t+1)
k )

T

∑
n
i=1 τ

(t)
ik

(5.12)

is the standard EM algorithm update for Σ (see also (2.72)) and

λ̃
(t)
k = nλ

(π
(t+1)
k )

γ

∑
n
i=1 τ

(t)
ik

. (5.13)

The optimisation problem in (5.11) is of the form of that in (5.2) with Σ̂ replaced

by S
(t)
k and a scaled tuning parameter λ̃

(t)
k . Hence we can use the efficient graphical

lasso algorithm [Friedman et al., 2008] to perform the optimisation.

From (5.9) we have

λ̃
(t)
k =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

λ

π
(t+1)
k

if γ = 0

λ if γ = 1
(5.14)

Hence, when γ = 0, λ̃
(t)
k is a cluster-specific parameter inversely proportional to

effective cluster sample size, whereas γ = 1 simply yields λ. We note that, even

though γ = 1 gives a cluster-specific tuning parameter in the penalised log-likelihood

(5.4) while γ = 0 does not, the converse is actually true for the EM algorithm updates

(5.11).

Our overall algorithm is as follows:

1. Initialise Θ(0): Randomly assign each observation xi into one of K clusters,

subject to a minimum cluster size nmin. Set π
(0)
k = nk/n where nk is the

number of observations assigned to cluster k, set µ
(0)
k to sample mean of

cluster k, and set Ω
(0)
k to the maximum penalised likelihood estimate for the

cluster k precision matrix (using (5.2)).

2. E-step: Calculate posterior probabilities (‘soft’ assignments) τ
(t)
ik using (5.8).

3. M-step: Calculate updated parameter estimates Θ(t+1) using (5.9)-(5.12).

4. Iterate or terminate: Increment t. Repeat steps 2 and 3, or stop if one of the

following criteria is satisfied:

� A maximum number of iterations T is reached; t > T .

� A minimum cluster size nmin is reached; ∑ni=1 τ
(t)
ik < nmin for some k.
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� Relative change in penalised log-likelihood is below a threshold δ;

∣lp(Θ)(t)/lp(Θ)(t−1) − 1∣ ≤ δ.

In all experiments below we set T = 100, nmin = 4 and δ = 10−4. Since the EM

algorithm may only find local maxima, we perform 25 random restarts and select

the one giving the highest penalised log-likelihood. ‘Hard’ cluster assignments are

obtained by assigning observations to the cluster k with largest probability τik.

5.2.4 Tuning parameter selection

Two approaches are commonly used to set the tuning parameter: multifold cross-

validation (CV) and criteria such as BIC. CV and BIC were introduced in Sec-

tions 2.3.2.1 and 2.3.2.2 respectively. In multifold CV, the data samples are parti-

tioned into S data subsets, denoted by X(s) for s = 1, . . . , S. Let

Θ̂
(−s)
λ = {(πkλ,µkλ,Σkλ) ∶ k = 1, . . . ,K} denote the penalised likelihood estimate, ob-

tained using tuning parameter λ and by application of the EM algorithm described

above to all data save that in subset X(s) (training data). Performance of this esti-

mate is assessed using the predictive log-likelihood; that is, Equation (5.3) applied

to subset X(s) (test data). This is repeated S times, allowing each subset to play

the role of test data. The CV score is

CV(λ) =
S

∑
s=1

∑
i∶xi∈X(s)

log(
K

∑
k=1

π̂
(−s)
kλ fk (xi ∣ µ̂

(−s)
kλ , Σ̂

(−s)
kλ )). (5.15)

Then we choose λ that maximises CV(λ), where the maximisation is performed

via a grid search. Finally, the selected value is used to learn penalised likelihood

estimates from all data.

In the larger sample case, an alternative to multifold CV is to partition the

data into two and perform a single train/test iteration, selecting λ that maximises

the predictive log-likelihood on the test data with penalised parameter estimates

from the training data.

We define the following BIC score for our penalised mixture model:

BIC(λ) = −2l(Θ̂λ) + dfλ log(n) (5.16)

where l(⋅) is the unpenalised log-likelihood (5.3), Θ̂λ is the penalised likelihood

estimate obtained with tuning parameter λ and dfλ is degrees of freedom. Yuan

and Lin [2007] proposed an estimate of the degrees of freedom for `1-penalised

precision matrix estimation, which generalises to our penalised Gaussian mixture
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model setting to give

dfλ =K(p + 1) − 1 +
K

∑
k=1

#{(j, j′) ∶ j ≤ j′, (ω̂kλ)jj′ ≠ 0}. (5.17)

where (ω̂kλ)jj′ is element (j, j′) in Ω̂kλ, the penalised likelihood estimate for the

cluster k precision matrix, using tuning parameter λ. Using a grid search, we choose

λ that minimises BIC(λ).

BIC is often preferred over CV as it is less computationally intensive. How-

ever, we note that, even BIC can be computationally expensive when used within

clustering since each λ value in the grid search requires a full application of EM-

based clustering. Hence, to reduce computation time, we also consider a heuristic,

approximate version of these approaches. The heuristic we propose relies on the

notion that the optimal tuning parameter value does not depend strongly on clus-

ter assignments but rather largely on general properties of the data (such as p and

n). The approach proceeds as follows. First, observations are randomly assigned to

clusters, producing K pseudo-clusters each with mean size n/K. Second, parameter

estimates are obtained for the pseudo-clusters. π̂k is taken to be the proportion of

samples in pseudo-cluster k and µ̂k is the sample mean of pseudo-cluster k. Then,

for varying λ, we obtain penalised estimates Ω̂kλ by optimising (5.2) for each pseudo-

cluster with the graphical lasso. This can be done efficiently using the glassopath

algorithm in R [Friedman et al., 2008] which obtains penalised estimates for all con-

sidered values of λ simultaneously. Third, using these estimates, CV (BIC) scores

are calculated and maximised (minimised) to select λ. These three steps are re-

peated multiple times and λ values obtained are averaged to produce a final value.

5.3 Results

5.3.1 Simulated data

In this section we apply the `1-penalised Gaussian graphical model clustering ap-

proach to simulated data. We consider a number of combinations of `1 penalty term

and tuning parameter scheme (as described in Section 5.2 above) and assess their

performance in carrying out three related tasks. First, recovery of correct cluster

assignments. Second, estimation of cluster-specific graphical model structure (i.e.

location of non-zero entries in cluster-specific precision matrices). Third, estima-

tion of cluster-specific precision matrices (i.e. estimation of matrix elements, not

just locations of non-zero entries). We note that this latter task is of less interest
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here since we are mainly concerned with clustering and inference of cluster-specific

network structure.

5.3.1.1 Data generation

In our simulation we considered p-dimensional data consisting of K = 2 clusters,

each with a known and distinct Gaussian graphical model structure (i.e. sparse

precision matrix). Sparse precision matrices were created using an approach based

on that used by Rothman et al. [2008] and Cai et al. [2011]. In particular, we created

a symmetric p × p matrix B1 with zeros everywhere except for p randomly chosen

pairs of symmetric, off-diagonal entries, which took value 0.5. A second matrix B2

was created from B1 by selecting half of the p non-zero symmetric pairs at random

and relocating them to new randomly chosen symmetric positions. We then set

Ωk = Bk + δkI, where δk is the minimal value such that Ωk is positive-definite with

condition number less than p. Finally, the precision matrices Ωk were standardised

to have unit diagonals. This resulted in cluster-specific Gaussian graphical models

each with p edges, half of which were shared by both network structures. Data were

generated from N (0,Ω1) and N ( α√
p1,Ω2) for clusters 1 and 2 respectively, where

1 is the vector of ones. The mean of cluster two is defined such that the parameter α

sets the Euclidean distance between the cluster means. In the experiments below we

consider p = 25,50,100 and cluster sample sizes of nk = 15,25,50,100,200. We set α =

3.5, resulting in individual component-wise means for cluster two of 0.70, 0.50 and

0.35 for p = 25,50 and 100 respectively. This reflects the challenging scenario where

clusters do not have substantial differences in mean values, but display heterogeneity

in network structure while also sharing some network structure across clusters.

5.3.1.2 Cluster assignment

We assessed ability to recover correct cluster assignments from 50 simulated datasets,

under the following four regimes for the penalty term pλ,γ(Θ) in (5.5): γ = 0 or 1

and λ set by BIC or a train/test scheme, maximising the predictive log-likelihood on

an independent test dataset with cluster sample size matching the training dataset.

These regimes are described fully above and summarised in Table 5.1. We also

compared with (i) K-means; (ii) standard non-penalised full-covariance Gaussian

mixture models estimated using EM algorithm; and (iii) ‘network clustering’, an

`1-penalised Gaussian graphical model clustering approach proposed by Mukherjee

and Hill [2011]. This is similar to the approach employed here but uses a heuristic,

K-means-like algorithm with ‘hard’ cluster assignments rather than a mixture-model
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Method Penalty term
Tuning

parameter
selection

Abbrev.

mixture of `1-penalised
Gaussian graphical
models with EM
(‘soft’ assignments)

pλ,γ(Θ) with γ = 0:

λ∑Kk=1 ∥Ωk∥1

Train/test T0

BIC B0

pλ,γ(Θ) with γ = 1:

λ∑Kk=1 πk ∥Ωk∥1

Train/test T1

BIC B1

`1-penalised Gaussian
graphical models
(‘hard’ assignments)
Mukherjee and Hill [2011]

λ∥Ωk∥1, k = 1, . . . ,K
Train/test Th

BIC Bh

λk∥Ωk∥1, k = 1, . . . ,K Analytic1 Ah

K-means n/a n/a KM

non-penalised Gaussian
mixture model with EM

n/a n/a NP

1following Banerjee et al. [2008] (see text for details)

Table 5.1: Clustering methods and regimes investigated, with correspond-
ing abbreviations.

formulation with EM algorithm. For (i) we used the kmeans function in the MAT-

LAB statistics toolbox with K=2 and 1000 random initialisations and for (iii) we

used MATLAB function network clustering [Mukherjee and Hill, 2011]. For (ii)

and (iii) we used the same stopping criteria as described in Methods above (namely,

T = 25, nmin = 4 and τ = 10−4) and again carried out 25 random restarts. Method

(iii) requires maximisation of K penalised log-likelihoods of form (5.2) above (one

for each cluster). For setting penalty parameters for this method, we considered

either a single tuning parameter λ shared across both clusters and set by BIC or

train/test, or cluster-specific tuning parameters λk, set analytically before each call

to the penalised estimator using the equation proposed by Banerjee et al. [2008,

Equation 3]. All computations were carried out in MATLAB R2010a, making an

external call to the R package glasso [Friedman et al., 2008]. Table 5.1 gives ab-

breviations for all methods and regimes investigated, which are used below and in

figures.

Figure 5.1 shows average tuning parameter values selected by each regime.

A grid search was used over values between 0.05 and 1.5, with increments of 0.05.

Since, for γ = 0, the EM algorithm update tuning parameters λ̃k in (5.11) differ from

λ, we also show λ̃k for these regimes. Using BIC to set the tuning parameter results

in higher values than with train/test and, as expected, λ values increase with p and
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decrease with nk.

Figure 5.2 shows Rand indices (with respect to the true cluster assignments)

obtained from clustering the simulated data. The Rand index [Rand, 1971] is a

measure of similarity between cluster assignments, taking values between 0 and 1,

where 0 indicates complete disagreement and 1 complete agreement. It is defined

as follows. Let X = {x1, . . . ,xn} be a set of n objects (here, p-dimensional samples).

Let U = {u1, . . . ,uKu} and V = {v1, . . . ,vKv} be partitions of X (i.e. ⋃
Ku
k=1 uk = X

and uk ∩ uk′ = ∅ for k ≠ k′, and likewise for V). Without loss of generality, let U

and V be the true clustering and inferred clustering respectively, with Ku and Kv

denoting number of clusters (in the simulation here and application below we have

Ku =Kv). Let a be the number of pairs of objects that are in the same cluster in U

and also in the same cluster in V. Let b be the number of pairs of objects that are

in different clusters in U and also in different clusters in V. Let c be the number of

pairs of objects that are in the same cluster in U but in different clusters in V, and

let d be the number of pairs of objects that are in different clusters in U but in the

same cluster in V. Then a+ b can be seen as the number of agreements and c+d as

number of disagreements. The Rand index is defined as a+b
a+b+c+d .

Box plots are shown over 50 simulated datasets for each (p,nk) regime. The

`1-penalised mixture model regimes with γ = 1 in the penalty term (T1/B1) consis-

tently provide the best clustering results. At the largest sample sizes both train/test

(T1) and BIC (B1) offer good clustering performance, with high Rand indices re-

ported. However, for smaller sample sizes, train/test outperforms BIC at the low-

est data dimensionality (p = 25), while the converse is true at higher dimensions

(p = 50,100). The non-mixture `1-penalised method (Th/Bh) also performs well,

but the corresponding mixture model approaches with γ = 1 (T1/B1) are, for the

most part, more effective at smaller sample sizes (see e.g. nk = 50, p = 50,100).

This difference in performance is likely due to a combination of both differences

in tuning parameter (Figure 5.1) and less accurate parameter estimation for the

non-mixture approaches because they do not take uncertainty of assignment into

account. Interestingly, the mixture model with conventional penalty term (γ = 0;

T0/B0) shows poor performance relative to γ = 1 except at larger sample sizes,

with consistently poor clustering accuracy for nk ≤ p. Similar performance is ob-

served for the non-mixture method with analytic tuning parameter selection (Ah).

The poor performance of these three regimes appears to be related to the fact that

they all use cluster-specific tuning parameters (λk for Ah and λ̃k within EM al-

gorithm for T0/B0), resulting in considerable differences in cluster-level penalties

(see Figure 5.1). We comment further on this finding in Section 5.4 below. Due to
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its inability to capture the cluster-specific covariance (network) structure, K-means

does not perform well, even at the largest sample size. Conventional non-penalised

mixture models did not yield valid covariance estimates for sample sizes nk ≤ p, and

for nk > p we only observe gains relative to K-means in the large sample p = 25,

nk = 200 case.

5.3.1.3 Estimation of graphical model structure

Figure 5.3 shows results for estimation of cluster-specific network structures for

the methods and regimes in Table 5.1. For K-means, clustering is followed by an

application, to each inferred cluster, of `1-penalised precision matrix estimation (see

(5.2)) with tuning parameter set by either BIC or train/test.

Ability to reconstruct cluster-specific networks is assessed by calculating the

true positive rate (TPR), false positive rate (FPR) and Matthews Correlation Co-

efficient (MCC),

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
(5.18)

MCC =
TP × TN − FP × FN

√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(5.19)

where TP , TN , FP and FN denote the number of true positives, true negatives,

false positives and false negatives (with respect to edges) respectively. MCC sum-

marises these four quantities into one score and is regarded as a balanced measure;

it takes values between -1 and 1, with higher values indicating better performance

(see e.g. Baldi et al. [2000] for further details). Since the convergence threshold in

the glasso algorithm is 10−4, we take entries ω̂ij in estimated precision matrices

to be non-zero if ∣ω̂ij ∣ > 10−3. Since cluster assignments can only be identified up

to permutation, in all cases labels were permuted to maximise agreement with true

cluster assignments before calculating these quantities.

Figure 5.3 shows TPR, FPR and MCC plotted against per-cluster sample

size nk. Due to selection of larger tuning parameter values, BIC discovers fewer

non-zeroes in the precision matrices than train/test, resulting in both fewer true

positives and false positives. Under MCC, BIC, with either the γ = 1 mixture model

(B1) or the non-mixture approach (Bh), leads to the best network reconstruction,

outperforming all other regimes (except at small sample sizes with p = 25).

In general, train/test is not competitive relative to BIC; at larger sample sizes

the best train/test regimes (T1/Th) are only comparable with the worst performing
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Figure 5.3: Simulated data; estimation of graphical model structure. True
Positive Rate (TPR), False Positive Rate (FPR) and Matthews Correlation Coeffi-
cient (MCC) are shown as a function of per-cluster sample size nk for the methods
and regimes in Table 5.1 and at data dimensions p = 25,50,100. K-means clustering
was followed by `1-penalised estimation of Gaussian graphical model structure with
penalty parameter set by train/test (‘KM+T’) or BIC (‘KM+B’). (Mean values
shown over 50 simulated datasets for each (p,nk) regime, error bars show standard
errors; non-penalised approach (NP) only shown for MCC and could not be used
for nk ≤ p due to small sample sizes resulting in invalid covariance estimates.)
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BIC regimes (B0/KM+B). We note that the non-penalised mixture approach (NP),

with sample size sufficiently large to provide valid covariance estimates, does not

yield sparse precision matrices (MCC scores are approximately zero).

5.3.1.4 Precision matrix estimation

We also assessed ability to accurately estimate underlying cluster-specific precision

matrices (i.e. values of the matrix elements rather than only locations of non-zeros).

Accuracy is assessed using the elementwise `1 norm, ∑Kk=1 ∥Ω̂k −Ωk∥1, with inferred

clusters matched to true clusters as described above. Results are shown in Fig-

ure 5.4. In contrast to clustering and Gaussian graphical model estimation, where

BIC regimes B1/Bh mainly provide the best performance, the train/test methods

T1/Th are mostly similar or better than B1/Bh for precision matrix estimation (the

exception being small nk, high p settings). Due to poor clustering performance, the

mixture model approach with γ = 0 does not perform well unless nk is sufficiently

large. Neither K-means clustering (followed by `1-penalised precision matrix estima-

tion), the penalised non-mixture approach with analytic tuning parameter selection

(Ah), nor the non-penalised approach (NP) perform well, even at the largest sample

size.

5.3.1.5 Approximate tuning parameter selection

We applied the heuristic method for setting the tuning parameter, described in

Methods above, to the overall best-performing mixture model approach (regime B1;

γ = 1, BIC). Figure 5.5 compares average λ values obtained using the heuristic

method with those resulting from the full approach; we also show average Rand

indices and computational timings. The λ values obtained via the heuristic scheme

are well-behaved in the sense that they increase with p and decrease for larger nk.

We observe some bias relative to the full approach as the values obtained from

the heuristic method are consistently higher. However, Rand indices remain in

reasonable agreement and the heuristic offers some substantial computational gains;

e.g. for p = 25 we see reduction of about 90% in computation time. This suggests

that the heuristic approach could be useful for fast, exploratory analyses.

5.3.2 Application to breast cancer data

We applied the methods described to proteomic data obtained from a panel of breast

cancer cell lines. Data consisted of p = 39 proteins, phosphorylated on specific sites,

collectively covering a broad range of signalling pathways (see Table A.4), assayed
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Figure 5.4: Simulated data; precision matrix estimation. Elementwise `1
matrix norm shown for the methods and regimes in Table 5.1 as a function of per-
cluster sample size nk and at data dimensions p = 25,50,100 (smaller values indicate
better agreement between true and inferred precision matrices). K-means clustering
was followed by `1-penalised estimation of Gaussian graphical model structure with
penalty parameter set by train/test (‘KM+T’) or BIC (‘KM+B’). Inset: zoomed
out version of main plot. (Mean matrix norm, normalised by p, over 50 simulated
datasets per (p,nk) regime, error bars show standard errors; non-penalised approach
(NP) could not be used for nk ≤ p due to invalid covariance estimates.)
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Figure 5.5: Simulated data; heuristic approach for tuning parameter se-
lection. (a) Boxplots over the tuning parameters selected by the heuristic method
(see text for details) under regime B1 (mixture model with γ = 1 and BIC) are
shown (blue boxes), together with the corresponding values obtained with the full,
non-approximate approach (red boxes). (b) Resulting Rand indices and (c) compu-
tational time required to set the parameter are also shown. (All results are over 50
simulated datasets for each (p,nk) regime).
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Method/Regime Rand index
Tuning parameter

λ λ̃1/λ1 λ̃2/λ2
CV0 0.49 (0.01) 0.10 (0.00) 0.25 (0.03) 2.29 (0.26)
B0 0.49 (0.00) 0.23 (0.03) 0.25 (0.03) 2.34 (0.28)
CV1 0.59 (0.08) 0.15 (0.02) - -
B1 0.94 (0.02) 0.31 (0.02) - -
CVh 0.54 (0.08) 0.14 (0.03) - -
Bh 0.77 (0.15) 0.34 (0.04) - -
Ah 0.50 (0.03) - 1.97 (0.15) 5.01 (1.33)
KM 0.61 (0.00) - - -

Table 5.2: Breast cancer data; clustering results. Rand indices with respect to
an independent biological classification of the samples (see text for details) are shown
for the methods and regimes in Table 5.1 (absent an independent test dataset, 6-
fold cross-validation was used instead of train/test; regimes T0,T1,Th are therefore
renamed CV0,CV1,CVh). Penalty parameter values are also shown. (Mean Rand
indices over 10 iterations, each with 100 random initialisations, standard deviations
given in parentheses; cluster-specific tuning parameter λ1 and EM algorithm update
parameter λ̃1 correspond to the largest cluster.)

using reverse-phase protein arrays (RPPA, see Section 2.2.5; further details of RPPA

protocol can be found in Section A.3.1). The n = 43 cell lines under study have been

shown to reflect much of the biological heterogeneity of primary tumors [Neve et al.,

2006] (see Table A.5). In biological applications it is often difficult to objectively

assess the correctness of cluster assignments. However, the cell lines we study have

been assigned, using independent gene expression data, into two biological categories

(“basal” and “luminal”) (see Neve et al. [2006], classification based on findings due

to Perou et al. [2000]; Sørlie et al. [2001], as described in Chapter 1). This enabled

us to compare clustering results to a known classification. To challenge the analysis,

three standard biomarkers (ER, PR and HER2) that are known to discriminate

between basal and luminal subtypes at the transcriptional level, were not included.

Table 5.2 reports Rand indices with respect to the known classification along

with tuning parameter values selected for the methods and regimes given in Ta-

ble 5.1. Since no independent validation dataset is available, 6-fold cross-validation

is used to set the tuning parameter (as described in Section 5.2.4), instead of a

single train/test iteration (we denote these regimes CV0, CV1 and CVh). To assess

robustness of results, 10 clustering iterations were performed, each with 100 random

restarts. The mixture of `1-penalised Gaussian graphical models with γ = 1 and BIC

(B1) is able to recapitulate the known labels and outperforms the other approaches.

Figure 5.6(a) shows, for the highest penalised likelihood result over 10 iterations

of regime B1, log odds in favour of basal subtype for each cell line; only one cell

line is incorrectly assigned. For comparison, the corresponding result for regime

CV1 (γ = 1 and cross-validation) is shown in Figure 5.6(b). Echoing the simula-
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tion results, BIC shows gains over cross-validation for both the mixture model with

γ = 1 (B1/CV1; see Figure 5.6(b)) and non-mixture approach (Bh/CVh), while the

mixture model approaches with γ = 0 (B0/CV0) show poor performance, with one

cluster again being penalised substantially more than the other. K-means does not

perform well. A mixture model with `1-penalised estimation but with a shared co-

variance matrix (i.e. identical network structure) for both mixture components also

failed to cluster the data successfully (mean Rand indices for BIC and CV methods

<0.55). These results suggest that penalised estimation itself is insufficient to dis-

cover the underlying subtypes and that taking cluster-specific covariance structure

into account is crucial. We note that the conventional unpenalised Gaussian graph-

ical model is not applicable here; due to high dimensionality relative to sample size,

it does not yield valid covariance estimates. We note also that the approximate ap-

proach for tuning parameter selection with regime B1 performed well with a mean

Rand index of 0.93 ± 0.02 and reduced the computation time by 83% relative to

the full approach. Figure 5.7 shows the estimated cluster-specific precision matri-

ces (i.e. network structures) resulting from regime B1 (for the clustering shown in

Figure 5.6(a)).

5.4 Discussion

We presented a study of model-based clustering with mixtures of `1-penalised Gaus-

sian graphical models. We found that performance is dependent on choice of penalty

term and method for setting the tuning parameter. Along with the standard `1

penalty (γ = 0 in (5.5)) we considered an alternative penalty term, following re-

cent work in penalised finite mixture of regression models [Khalili and Chen, 2007;

Städler et al., 2010], that is dependent on the mixing proportions πk (γ = 1 in (5.5)).

From our simulation study and application to breast cancer data, we draw some

broad conclusions and recommendations, as follows. The combination of the γ = 1

penalty term (incorporating mixing proportions), together with the BIC criterion

for selecting the tuning parameter (regime B1), appears to provide the most accu-

rate clustering and estimation of graphical model structure. The only exception is

in settings where both dimensionality and sample size are small; here, the smaller

tuning parameter values selected by train/test (or cross-validation) provide supe-

rior results (regimes T1/CV1). For estimation of the precision matrix itself (as

opposed to estimation of sparsity structure only), we again recommend the penalty

term with γ = 1 and find that the less sparse estimates provided by train/test (or

cross-validation) provide slight gains over BIC, except where dimensionality is large
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Figure 5.6: Breast cancer data; clustering result for (a) regime B1 (mixture
model with γ = 1 and BIC) and (b) regime CV1 (mixture model with γ = 1
and cross-validation). Red and green indicate cell lines independently classified
as basal and luminal respectively (see text for details); log odds in favour of basal
subtype are shown for each cell line. (Results shown for highest penalised likelihood
obtained over 10 iterations.)
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(a) ‘basal’

(b) ‘luminal’

Figure 5.7: Breast cancer data; cluster-specific precision matrices (net-
works) for the clustering shown in Figure 5.6(a) (obtained using regime
B1). (a) Precision matrix for the ‘basal’ cluster (cell lines with positive log odds in
Figure 5.6(a)). (b) Precision matrix for the ‘luminal’ cluster (cell lines with nega-
tive log odds in Figure 5.6(a)). (Red and blue indicate negative and positive values
respectively.)
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relative to sample size.

The deleterious effect of the standard `1 penalty term (γ = 0), at all but the

largest sample sizes, is intriguing. As described above, this is due to the fact that

the standard penalty term leads to cluster-specific penalties in the EM algorithm

update for the precision matrices. Indeed, we observed similar results when setting

cluster-specific penalties analytically in a non-mixture model setting (regime Ah).

These cluster-specific penalties are inversely proportional to the mixing proportions

πk: in itself this behavior seems intuitively appealing since clusters with small ef-

fective sample sizes are then more heavily regularised. However, we observed that a

substantially higher penalty is applied to one cluster over the other, indicating that

samples were mostly being assigned to the same cluster. This is likely due to the

‘unpopular’ cluster having a poor precision matrix estimate due to a large penalty.

We note that this behavior is not due to (lack of) EM algorithm convergence; the

penalised likelihood scores from these incorrect clusterings were higher than those

obtained using the true cluster labels.

The related non-mixture model approach proposed by Mukherjee and Hill

[2011] also performed well in our studies, but clustering results (both from simulated

and real data) indicate that a mixture model with EM algorithm (and γ = 1 in the

penalty term) offers more robust results.

Analysis of breast cancer proteomic data was able to successfully recapitulate

an established biological classification of the samples. It is important to note that the

basal/luminal breast cancer classification is based on differences in gene expression

profiles [Perou et al., 2000; Sørlie et al., 2001]. It remains an open question as to

whether such cancer subtypes differ substantively with respect to signalling network

structure. Our results suggest that basal and luminal breast cancer subtypes do

indeed display such heterogeneity; network-based clustering can recover the subtype

classification from phosphoproteomic data alone and, moreover, methods that did

not model cluster-specific graphical model structure failed to do so.

While our application focussed on protein signalling networks and cancer

subtypes, the approaches we discuss can be applied in other settings where unknown

clusters may differ with respect to underlying network structures; for example, gene

regulatory networks, social networks or image classification. We also note that while

for simplicity and tractability we focussed on the K = 2 clusters case, the methods

we discuss are immediately applicable to the general K-cluster case. Moreover, since

the approach we propose is model-based, established approaches for model selection

in clustering, including information criteria, train/test and cross-validation, can be

readily employed to select K.
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Our results demonstrate the necessity of some form of regularisation to enable

the use of Gaussian graphical models for clustering in settings of moderate-to-high

dimensionality; indeed, we see clear benefits of penalisation already in the p = 25

case. The `1-penalty is an attractive choice since it encourages sparsity at the level

of graphical model structure, and estimation with the graphical lasso algorithm

[Friedman et al., 2008] is particularly efficient, which is important in the cluster-

ing setting, where multiple iterations are required. Alternatives include shrinkage

estimators [Schäfer and Strimmer, 2005b] and Bayesian approaches [Dobra et al.,

2004; Jones et al., 2005]. However, it has been shown that the `1-penalised preci-

sion matrix estimator (5.2) is biased [Lam and Fan, 2009]. Alternative penalties

have been proposed in a regression setting to ameliorate this issue; for example,

the non-concave SCAD penalty [Fan and Li, 2001] and adaptive `1 penalty [Zou,

2006]. These penalties have recently also been applied to sparse precision matrix

estimation [Fan et al., 2009]. They are generally computationally more intensive,

but it remains an open question whether they improve clustering accuracy relative

to the `1 penalty considered here.

Graphical models based on direct acyclic graphs (DAGs) are frequently used

for network inference, especially in biological settings where directionality may be

meaningful (see Section 4.1). A natural extension to the ideas discussed here would

be to develop a clustering approach based on DAGs rather than undirected models.

There are several recent and attractive extensions to graphical Gaussian

model estimation that could be exploited to improve and extend the methods we

discuss. For example, the time-varying Gaussian graphical model approach of Zhou

et al. [2010] could be employed, or prior knowledge of network structure could be

taken into account [Anjum et al., 2009]; such information is abundantly available

in biological settings, as discussed in Chapter 3. The joint estimation method for

Gaussian graphical models proposed by Guo et al. [2011] explicitly models partial

agreement between network structures that correspond to a priori known clusters.

Such partial agreement could be incorporated in the current setting where clusters

are not known a priori.
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Chapter 6

Discussion and Outlook

Recent years have seen significant advances in high-throughput protocols that are

capable of interrogating many cellular signalling proteins at once. Protein signalling

plays an important role in the physiological functioning of cellular processes and

dysregulation in signalling can lead to carcinogenesis. Therefore, the analysis of

high-throughput proteomic data to investigate context-specific signalling networks

and mechanisms is an important goal in molecular biology and oncology. This thesis

aimed to facilitate such analyses by exploiting multivariate statistical approaches,

rooted in graphical models. In particular, we focussed on structure learning of sparse

graphical model structure. Below we give a brief summary of the thesis and then

go on to discuss points that are relevant to the thesis as a whole.

In Chapter 3 we described a Bayesian variable selection method for the dis-

covery of subsets of signalling proteins that jointly influence drug response. The

Bayesian method allows for the incorporation of ancillary biological information,

such as signalling pathway and network structures, via prior distributions. Prior

information was automatically weighted relative to primary data using an empirical

Bayes approach. We developed examples of informative pathway- and network-

based priors and applied the approach to synthetic response data. The results

demonstrated that empirical Bayes can aid prior elicitation and, in particular, help

guard against mis-specified priors. Moreover, for discovery of the influential pre-

dictor subset, the proposed approach performed favourably in comparison to an

alternative prior formulation and to penalised regression using the lasso. An appli-

cation was also made to cancer drug response data, obtaining biologically plausible

results. Overall the procedure is computationally efficient and has very few user-set

parameters. Moreover, since it eschews MCMC in favour of an exact formulation,

there is no inherent Monte Carlo error.
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In Chapter 4 we used DBNs to learn the structure of context-specific sig-

nalling networks from phosphoproteomic time series data. The approach calculates

posterior edge scores via exact Bayesian model averaging, by exploiting a connection

between DBN structure learning and variable selection, and by using biochemically

motivated sparsity constraints. Existing signalling biology is incorporated via an

informative network prior, weighted objectively relative to primary data by empir-

ical Bayes. Again, the overall approach is exact, fast and essentially free of user-

set parameters. We performed an empirical investigation, applying the described

approach to both simulated data and gene expression data generated from a syn-

thetically constructed network in yeast [Cantone et al., 2009]. The results showed

that incorporation of prior knowledge can aid inference, even when a non-trivial

proportion of information contained in the prior is erroneous. Moreover, the pro-

posed approach is observed to have favourable performance relative to several other

structure learning approaches. An application was made to a specific breast cancer

cell line (MDA-MB-468). The inferred network allowed cell-line specific hypotheses

to be generated regarding both previously reported and novel links. These links

were validated in independent inhibition experiments. Thus, results suggest that

the approach can usefully probe signalling network structure in specific contexts.

In Chapter 5 we described a network-based clustering method, combining

model-based clustering with `1-penalised GGM structure learning, to discover can-

cer subtypes that differ in terms of subtype specific network structure. Estimation

of cluster assignments and cluster-specific network structure is performed simulta-

neously. The described approach builds upon recent work by Zhou et al. [2009] and

Mukherjee and Hill [2011]. We performed an empirical investigation to compare sev-

eral specific penalisation regimes, including different forms for the penalisation term

and different methods to set the penalisation tuning parameter. Results were shown

on both simulated data and high-throughput breast cancer phosphoproteomic data

and allowed general recommendations to be made regarding penalisation regime.

The application to breast cancer data successfully recapitulated a known subtype

classification from phosphoproteomic data alone, even though the classification was

originally based on differences in gene expression profile. Moreover, methods that

do not take cluster-specific network structure into account fail to recover the sub-

types. This suggests that heterogeneity at the transcriptional level is reflected in a

substantive way at the signalling network level.

Throughout this thesis we used continuous linear models, following previous

work in Bayesian variable selection [Lee et al., 2003; Nott and Green, 2004; Ai-Jun

and Xin-Yuan, 2010] and graph structure learning [Grzegorczyk et al., 2008; Fried-
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man et al., 2008; Bender et al., 2010; Rau et al., 2010]. However, discretised data has

also previously been used in these settings [Mukherjee et al., 2009; Husmeier, 2003;

Sachs et al., 2005; Ellis and Wong, 2008; Guha et al., 2008]. Discrete models are of-

ten employed due to their natural ability to model nonlinear interactions. However,

data discretisation is usually lossy and, moreover, it can be difficult to determine ap-

propriate thresholds. To take the example of kinase activity in protein signalling, a

binarisation threshold might correspond to the level of protein abundance sufficient

to trigger kinase activity. However, this level depends on the proteins involved and

kinetic parameters that are usually unknown in practice, and in general may differ

from the marginal statistics (e.g. median or other percentiles) of the observed data

that are often used for discretisation. The number of discretisation levels can be in-

creased to reduce information loss, but this leads to an increase in model complexity.

Geier et al. [2007] demonstrated on data simulated from non-linear ODE models,

that linear Gaussian DBNs offer an improved performance over discrete DBNs. In

Chapters 3 and 4, we use continuous linear models, but retain the possibility of

capturing nonlinear interplay by including interaction terms.

As discussed in Section 2.3.5.2, inferred links between signalling proteins or

between a protein and response of interest can not in general be interpreted as

causal. Hidden or latent variables, when taken into account, may explain away the

inferred interaction. Further, for BN structure learning, it is not possible to de-

termine the directionality of some links due to the existence of equivalence classes.

Several methods have been proposed in the literature for structure learning of molec-

ular networks from interventional data [Cooper and Yoo, 1999; Pe’er et al., 2001;

Markowetz et al., 2005; Dojer et al., 2006; Eaton and Murphy, 2007b; Bender et al.,

2010; Luo and Zhao, 2011]. Comparative studies by Werhli et al. [2006] and Geier

et al. [2007] have demonstrated the utility of using interventional data and taking

the interventions into account in modelling. Interventions can break the symmetry

within an equivalence class, thereby aiding elucidation of edge directionality. They

can also help improve accuracy of inference by perturbing the state of the cell in

specific ways, allowing dynamics to be observed that may be informative for infer-

ence, but are not possible to observe from observational data alone. The breast

cancer data we consider in Chapter 4 is observational data (only global excitatory

perturbations are used to initiate signalling processes). Adapting the proposed DBN

inference approach to take account of interventions and applying the method to time

series phosphoproteomic data with interventions (such data is becoming increasingly

available) is likely to improve accuracy of results.

A vast number of protein species (including transcriptional and post-translational
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variants) may be involved in protein signalling. At present it is not possible to assay

any more than a small fraction of these players. Therefore, data-driven studies of

signalling confront a severe missing variable problem. As just discussed, this nec-

essarily limits the causal or mechanistic interpretation of results. For example, an

inferred edge from one protein to another, or from a protein to a response of inter-

est, may operate via one or more unmeasured intermediates. Statistical models that

permit the inclusion of unobserved, latent variables may help, but network infer-

ence with latent variables remains challenging [Knowles and Ghahramani, 2011]. We

note that the hidden variable issue applies also to validation by inhibition. Thus, the

novel links reported in Chapter 4 will require further work, including biochemistry

and dynamical modelling, to better understand the mechanisms involved.

As discussed in Chapter 1 and Section 4.1, the statistical models employed

in this thesis are not a realistic representation of the underlying biochemical mech-

anisms. However, the models are analytically tractable which in turn allows large

spaces of network structures to be explored. ODE models offer a powerful and

more realistic modelling framework, but typically the network structure is assumed

to be known. In principle, statistical network inference can be explicitly based on

biochemically plausible ODE models, but the model is then no longer solvable ana-

lytically. For example, for DBN structure learning in Chapter 4, the marginal like-

lihood would no longer be available in closed form and would have to be evaluated

using approximate methods. Therefore, due to severe computational constraints

such approaches are currently limited to investigating only a handful of hypoth-

esised networks [Xu et al., 2010] and not the large number of possible networks

we consider. As computational processing power continues to advance and ever

larger datasets become available, biologically realistic models are likely to become

more widely-used within network structure learning approaches. To exploit these

advances fully, new statistical and computational methods will also be needed.

Results obtained using the methods described in this thesis could be com-

bined with those obtained from alternative approaches, with the aim to improve the

overall reliability of results. This idea has been previously proposed in the context

of clustering [Swift et al., 2004] (‘consensus clustering’ method) and in the context

of signalling network structure learning [Prill et al., 2011] (‘crowdsourcing network

inference’).

We note that, while we apply our methods in the setting of cancer protein

signalling, they are also applicable to other molecular data types (e.g. gene microar-

ray data) and to biological contexts other than cancer. However, since regulation

occurs in the cell at many levels, including the genome, transcriptome, proteome
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and metabolome, to obtain a more complete understanding of cellular processes it

will be necessary to include as many of these levels as possible in inference. Integra-

tion of multiple datasets is a challenging research area that is receiving a growing

amount of attention. For example, methods have been proposed in the literature

that perform network structure learning from gene expression data, and incorpo-

rate other data types, such as genome-wide binding data, within a Bayesian prior

[Jensen et al., 2007; Yeung et al., 2011]. A recent example in the context of cancer

is a clustering method for discovery of subtypes based on both transcriptional data

and genetic copy number data [Yuan et al., 2011].

On the experimental side, advances continue to be made in technology that

allow larger or higher quality datasets to be produced. Significant advances in

recent years include RNA-sequencing for transcriptional data [Wang et al., 2009b]

and mass cytometry for measuring cellular components, such as phosphoproteins, at

the single-cell level [Bendall et al., 2011]. Mass cytometry is similar to flow cytomety

(see Section 2.2.4) but does not suffer from the issue with spectral overlap, allowing

more proteins to be measured simultaneously. An important area for future work

is that of experimental design. For example, phosphoproteomic time series data

typically consist of time points unevenly sampled through time, covering several

hours, as is the case for the breast cancer data used in Chapter 4. However, further

work is needed to guide and optimise choice of time points. Signalling activations

can be transient and can happen in a short space of time after stimulation of the

cell. Hence, rapidly sampled time points immediately after stimulation may improve

results. Another, important question concerns interventions. As discussed above,

interventions can improve results, but given a finite amount of time and resources,

it is not clear how to apportion efforts between proteins, time points, interventions

and biological samples. In addition, it is also unclear which interventions should

be performed to obtain data that is maximally informative with respect to network

topology. The optimal design of interventional experiments is an active area of

research [see e.g. He and Geng, 2008].

It is clear that there are many limitations associated with the methods and

data used in this thesis. Indeed, in Section 4.4 we gave several reasons why statistical

data-driven stucture learning approaches can not be expected to produce the true,

underlying structure, and should only be used as a hypothesis generating tool. We

further discussed some of these points above in this Section. However, as our results

have shown, these methods can still usefully interrogate proteomic data to probe

important questions in cancer signalling, with possible implications for personalised

cancer therapy.
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The translation of research findings into the clinic is the ultimate challenge for

personalised medicine. To date, success has been very limited. An improved under-

standing is needed of the high levels of molecular heterogeneity observed in cancer,

a key challenge being the identification of robust biomarkers or signatures that can

accurately predict patient response to particular therapeutic agents [Weigelt et al.,

2012]. Hence, there is still much work to be done before personalised cancer ther-

apy is truly a reality. Multivariate statistical approaches that are rooted in sparse

graphical models are likely to be able to play an important role in this work.
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Appendix A

Experimental data

A.1 Chapter 3 - Proteomics and drug response data

A.1.1 Proteomics

Cell lysates: For preparation of protein lysates cells were grown to 60-80% con-

fluency in appropriate media [Neve et al., 2006]. Cultures were placed on ice,

media aspirated and washed in ice cold PBS containing 1mM phenylmethylsul-

fonyl fluoride (PMSF) and then with a buffer containing 50mM HEPES (pH7.5),

150mM NaCl, 25mM b-glycerophsphate, 25mM NaF, 5mM EGTA, 1mM EDTA,

15mM pyrophosphate, 2mM sodium orthovanadate, 10mM sodium molybdate, le-

upeptin (10mg/ml), aprotinin (10mg/ml) and 1mM PMSF. Cells were extracted

in the same buffer containing 1%Nonidet-P40. Lysates were then clarified by cen-

trifugation and frozen at −80 ○C. Protein concentrations were determined using the

Bio-Rad protein assay kit. Phopshoproteome analysis was performed at Kinexus

(http://www.kinexus.ca/) on their KinetWorksTM platform.
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1 PDK1 (S244) 27 MNK1 (T209/T214)
2 S6 (S235) 28 MEK1 (S297)
3 ACC (S80) 29 MEK1 (T291)
4 Adducin-α (S726) 30 MEK1 (T385)
5 Adducin-γ (S693) 31 MEK1/2 (S217/S221)
6 BAD (S99) 32 MEK2 (T394)
7 BRCA1 (S1497) 33 MAPKAPK2 (T222)
8 CREB1 (S133) 34 MYPT1 (T696)
9 CDK1/2 (T14/Y15) 35 NR1 (S896)

10 CDK1/2 (T161/Y160) 36 p70S6K-α (T389)
11 ErbB2 (Y1248) 37 p70S6K-α (T421/S424)
12 eIF2B-ε (S540) 38 p85S6K-β (T444/S447)
13 Erk1 (T202/Y204) 39 PRK2 (T816)
14 FAK (S722) 40 AKT1 (S473)
15 FAK (S910) 41 AKT1 (T308) (S729)
16 FAK (Y397) 42 PKC-α (S657)
17 FAK (Y576) 43 PKC-α/β2 (T638/T641)
18 GSK3-α (S21) 44 PKC-ε
19 GSK3-β (S9) 45 PKC-ζ/ι (T410/T403)
20 HSP27 (S15) 46 PP1/Ca (T320)
21 Histone H3 (S10) 47 Raf1 (S259)
22 Histone H3 (S28) 48 RB (S259)
23 IR (Y999) 49 RB (S780)
24 JNK (T183/Y185) 50 RB (S807/S811)
25 mTOR (S2448) 51 SHC1 (Y349/Y350)
26 MEK3/6 (S189/S207) 52 SRC (Y529)

Table A.1: Phosphoproteins involved in our cancer drug response study.

1 600MPE 19 MCF7
2 AU-565 20 MDAMB134VII
3 BT-20 21 MDMB157
4 BT-474 22 MDAMB175
5 BT-483 23 MDAMB231
6 BT-549 24 MDAMB361
7 CAMA-1 25 MDAMB436
8 HCC1143 26 SK-BR-3
9 HCC1187 27 SUM149PT

10 HCC1500 28 SUM159PT
11 HCC1569 29 SUM185PT
12 HCC202 30 SUM225CWN
13 HCC38 31 SUM52PE
14 HCC70 32 T-47D
15 Hs587T 33 UACC-893
16 LY2 34 ZR-75-1
17 MCF10A 35 ZR-75-8
18 MCF12A

Table A.2: Breast cancer cell lines involved in our cancer drug response
study.

176



A.2 Chapter 4 - Proteomics and validation experiments

Short Name
Antibody Name Company Catalogue

(as used in main text)

AKTp(S) AKT pS473 Cell Signaling 9271

AKTp(T) AKT pT308 Cell Signaling 9275

AMPKp AMPK pT172 Cell Signaling 2535

cJUNp c-Jun pS73 Cell Signaling 9164

EGFRp EGFR pY1173 Millipore 05-483

GSK3p GSK3 pS21/9 Cell Signaling 9331

JNKp JNK pT183 Y185 Cell Signaling 9251

LKB1p LKB1 pS428 Cell Signaling 3051

MAPKp MAPK pT202 Y204 Cell Signaling 9101

MEK1/2p MEK 1/2 pS217 Cell Signaling 9121

mTORp mTOR pS2448 Cell Signaling 2971

p38p p38 pT180 Cell Signaling 9211

p70S6Kp p70S6K pT389 Cell Signaling 9205

p90RSKp p90RSK pT359 Cell Signaling 9344

PDK1p PDK1 pS241 Cell Signaling 3061

PI3K PI3K Epitomics 1683

STAT3p(T) STAT3 pT727 Cell Signaling 9134

STAT3p(Y) STAT3 pY705 Cell Signaling 9131

STAT5p STAT5 pY964 Cell Signaling 9351

TSC2p TSC2 pT1462 Cell Signaling 3611

Table A.3: Validated primary antibodies used in the MDA-MB-468 cell
line study.

A.2.1 Reverse phase protein arrays

Reverse phase protein array (RPPA) assays were carried out as previously described

[Tibes et al., 2006; Hennessy et al., 2010]. Breast cancer cell line MDA-MB-468 was

cultured in its optimal media to a logarithm growth phase. Time courses were car-

ried out at eight time points (5, 15, 30, 60, 90, 120, 180, 240 minutes) in triplicate,

under four growth conditions (0, 5, 10, 20ng/ml EGF). Cellular proteins were de-

natured by 1% SDS (with beta-mercaptoethanol) and diluted in five 2-fold serial

dilutions in dilution buffer (lysis buffer containing 1% SDS). Serial diluted lysates

were arrayed on nitrocellulose-coated FAST slides (Whatman, Inc) by Aushon 2470

Arrayer (Aushon BioSystems). Total 5808 array spots were arranged on each slide

including the spots corresponding to positive and negative controls prepared from

mixed cell lysates or dilution buffer, respectively.
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Each slide was probed with a validated primary antibody (Table A.3) plus a

biotin-conjugated secondary antibody. Only antibodies with a Pearson correlation

coefficient between RPPA and western blotting of greater than 0.7 were used in

reverse phase protein array study. Antibodies with a single or dominant band on

western blotting were further assessed by direct comparison to RPPA using cell lines

with differential protein expression or modulated with ligands/inhibitors or siRNA

for phospho- or structural proteins, respectively. Extensive validation data for the

antibodies used are presented in Hennessy et al. [2010].

The signal obtained was amplified using a DakoCytomation-catalysed sys-

tem (Dako) and visualised by DAB colorimetric reaction. The slides were scanned,

analysed, and quantified using a customised-software Microvigene (VigeneTech Inc.)

to generate spot intensity.

Each dilution curve was fitted with a logistic model (“Supercurve Fitting”

developed by the Department of Bioinfomatics and Computational Biology in MD

Anderson Cancer Center,

http://bioinformatics.mdanderson.org/OOMPA). This fits a single curve using

all the samples (i.e., dilution series) on a slide with the signal intensity as the re-

sponse variable and the dilution steps are independent variable. The fitted curve is

plotted with the signal intensities both observed and fitted - on the y-axis and the

log2-concentration of proteins on the x-axis for diagnostic purposes. The protein

concentrations of each set of slides were then normalised by median polish, which

was corrected across samples by the linear expression values using the median ex-

pression levels of all antibody experiments to calculate a loading correction factor

for each sample. Logged averages over RPPA triplicates (Figure A.1) were used for

all network analyses.

A.2.2 Validation experiments

A.2.2.1 RPPA (Figure 4.9a,b)

The breast cancer cell line MDA-MB-468 was seeded at 90% confluency in 96-well

plates at a density of 10,000 cells per well with 8% FBS-RPMI medium and allowed

to attach. Cells were depleted of serum for 12 hours prior to treatment with the MEK

inhibitor GSK2B (GlaxoSmithKline Inc.) at 10uM or AKT inhibitor GSK690693B

(GlaxoSmithKline Inc.) at 10uM for 4 hours in each case. Cells were stimulated

(EGF 20 ng/mL) prior to lysis in RPPA lysis buffer. Phosphoprotein profiling

was carried out 0,5,15,30,60,90,120,180 minutes after EGF stimulus using RPPA as

described above.
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A.2.2.2 Western blots (Figure 4.9c)

The breast cancer cell line MDA-MB-468 was seeded at 90% confluency in 8% FBS-

RPMI medium and allowed to attach. Cells were depleted of serum for 12 hours prior

to treatment with the MEK inhibitor UO126 (EMD Chemicals Inc., Gibbstown, NJ)

at 5uM for 4 hours. Cells were stimulated (EGF 20 ng/mL) for 15 minutes prior to

lysis in RPPA lysis buffer.
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Figure A.1: Time courses for MDA-MB-468. (Coloured lines are raw tripli-
cates; black lines are averages. (Time courses are standardised to have zero mean,
unit variance across all conditions for each protein).
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Figure A.1: Time courses for MDA-MB-468.

181



A.3 Chapter 5 - Proteomic data

Antibody Name Source Catalog Number

Phospho-4EBP1 (T37/46) Cell Signaling 9459
Phospho-4EBP1 (Ser65) Cell Signaling 9451
Phospho-Acetyl-CoA Carboxylase (Ser79) Cell Signaling 3661
Phospho-Akt (T308) Cell Signaling 9275
Phospho-Akt (S473) Cell Signaling 9271
Phospho-AMPK (T172) Cell Signaling 2535
Phospho-cJUN (S73) Cell Signaling 9164
Phospho-EGFR (Y1068) Cell Signaling 2234
Phospho-EGFR (Y992) Cell Signaling 2235
Phospho-FKHRL1 (S318/321) Cell Signaling 9465
Phospho-GSK3 alpha/belta (S21/9) Cell Signaling 9331
Phospho-JNK (T183/Y185) Cell Signaling 4671
Phospho-LKB1 (S428) Cell Signaling 3051
Phospho-MAPK (p44/42 ERK1/2)(T202/Y204) Cell Signaling 9101
Phospho-MEK1/2 (S217/221) Cell Signaling 9121
Phospho-mTOR (S2448) Cell Signaling 2971
Phospho-p38 MAPK (T180/Y182) Cell Signaling 9211
Phospho-p53 (S15) Cell Signaling 9284
Phospho-70S6K (T389) Cell Signaling 9205
Phospho-c-Myc (Thr58/Ser62) Cell Signaling 9401
Phospho-PDK1 (S241) Cell Signaling 3061
Phospho-PKC alpha (S657) Millipore 06-822
Phospho-Rb (S807/811) Cell Signaling 9308
Phospho-S6 Ribosomal Protein (S235/236) Cell Signaling 2211
Phospho-S6 Ribosomal Protein (S240/244) Cell Signaling 2215
Phospho-Src (Y416) Cell Signaling 2113
Phospho-Src (Y527) Cell Signaling 2105
Phospho-Stat3 (Y705) Cell Signaling 9131
Phospho-Stat3 (T727) Cell Signaling 9134
Phospho-Stat6 (Y641) Cell Signaling 9361
Phospho-TSC2 (T1462) Cell Signaling 3617
Phospho-BCL (T70) Cell Signaling 2871
Phospho-TAZ (S79) Santa Cruz sc-17610
Phospho-p90RSK (T359/S363) Cell Signaling 9344
Phospho-4EBP1 (S65) Cell Signaling 9456
Phospho-BAD (pS112) Cell Signaling 9291
Phospho-IGFR1 (Y1135) Cell Signaling 3024
Phospho-4EBP1 (T70) Cell Signaling 9455
Phospho-SGK (S78) Cell Signaling 3271

Table A.4: Phosphoproteins analysed in our breast cancer study.

A.3.1 Proteomics

Reverse phase protein array (RPPA) assays were carried out as previously described

[Tibes et al., 2006; Hennessy et al., 2010]. See also Section A.2.1 above.
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Cell line Subtype

BT20 basal
BT549 basal
HBL100 basal
HCC1143 basal
HCC1395 basal
HCC1500 basal
HCC1806 basal
HCC1937 basal
HCC1954 basal
HCC3153 basal
HCC38 basal
HCC70 basal
HS587T basal
MDAMB157 basal
MDAMB231 basal
MDAMB435 basal
MDAMB436 basal
MDAMB468 basal
SUM102 basal
SUM1315MO2 basal
SUM149 basal
SUM159PT basal

600MPE luminal
AU565 luminal
BT474 luminal
BT483 luminal
CAMA1 luminal
HCC1419 luminal
HCC1428 luminal
HCC202 luminal
HCC2185 luminal
HCC2218 luminal
LY2 luminal
MCF7 luminal
MDAMB361 luminal
MDAMB415 luminal
MDAMB453 luminal
SKBR3 luminal
T47D luminal
UACC812 luminal
UACC893 luminal
ZR7530 luminal
ZR75B luminal

Table A.5: Cell lines analysed in our breast cancer study.

183



Bibliography

Ai-Jun, Y. and Xin-Yuan, S. (2010). Bayesian variable selection for disease classifi-

cation using gene expression data. Bioinformatics, 26:215–222.
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Lèbre, S. (2009). Inferring dynamic genetic networks with low order independencies.

Stat. Appl. Genet. Mol. Biol., 8:9.

195



Ledoit, O. and Wolf, M. (2003). Improved estimation of the covariance matrix of

stock returns with an application to portfolio selection. J. Empir. Finance, 10:603

– 621.

Lee, K.E., Sha, N., Dougherty, E.R., Vannucci, M., and Mallick, B.K. (2003). Gene

selection: a Bayesian variable selection approach. Bioinformatics, 19:90–97.

Lehmann, E. and Romano, J. (2008). Testing Statistical Hypotheses. Springer, New

York, NY.

Li, C. and Li, H. (2008). Network-constrained regularization and variable selection

for analysis of genomic data. Bioinformatics, 24:1175–1182.

Li, F. and Zhang, N.R. (2010). Bayesian variable selection in structured high-

dimensional covariate spaces with applications in genomics . J. Am. Stat. Assoc.,

105:1202–1214.

Li, S.Z. (2009). Markov Random Field Modeling in Image Analysis. Springer-Verlag,

London.

Li, Z., Li, P., Krishnan, A., and Liu, J. (2011). Large-scale dynamic gene regula-

tory network inference combining differential equation models with local dynamic

Bayesian network analysis. Bioinformatics, 27:2686–2691.

Liang, F., Paulo, R., Molina, G., Clyde, M.A., and Berger, J.O. (2008). Mixtures

of g priors for Bayesian variable selection. J. Am. Stat. Assoc., 103:410–423.

Lindley, D.V. and Smith, A.F.M. (1972). Bayes estimates for the linear model (with

discussion). J. R. Stat. Soc. B, 34:1–41.

Lu, Y., et al. (2011). Kinome siRNA-phosphoproteomic screen identifies networks

regulating AKT signaling. Oncogene, 30:4567–4577.

Luo, R. and Zhao, H. (2011). Bayesian hierarchical modeling for signaling pathway

inference from single cell interventional data. Ann. Appl. Stat., 5:725–745.

Mackay, D.J.C. (1995). Probable networks and plausible predictions – a review

of practical Bayesian methods for supervised neural networks. Netw. Comput.

Neural. Syst., 6:469–505.

Madeira, S.C. and Oliveira, A.L. (2004). Biclustering algorithms for biological data

analysis: A survey. IEEE/ACM Trans. Comput. Biol. Bioinf., 1:24–45.

196



Madigan, D. and Raftery, A.E. (1994). Model selection and accounting for model

uncertainty in graphical models using Occam’s window. J. Am. Stat. Assoc.,

89:1535–1546.

Madigan, D., York, J., and Allard, D. (1995). Bayesian graphical models for discrete

data. Int. Stat. Rev, 63:215–232.

Majewski, I.J. and Bernards, R. (2011). Taming the dragon: Genomic biomarkers

to individualize the treatment of cancer. Nat. Med., 17:304–312.

Mallows, C.L. (1973). Some comments on Cp. Technometrics, 15:661–675.

Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J., and Cantley, L.C. (2002).

Identification of the tuberous sclerosis complex-2 tumor suppressor gene product

tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell,

10:151–162.

Margaritis, D. and Thrun, S. (2000). Bayesian network induction via local neighbor-

hoods. In Advances in Neural Information Processing Systems 12, pp. 505–511.

MIT Press.

Markowetz, F., Grossmann, S., and Spang, R. (2005). Probabilistic soft interventions

in conditional Gaussian networks. In Proceedings of the Eleventh International

Conference on Artificial Intelligence and Statistics, pp. 214–221.

Markowetz, F. and Spang, R. (2007). Inferring cellular networks - a review. BMC

Bioinf., 8:S5.

McLachlan, G.J. and Basford, K.E. (1987). Mixture Models: Inference and Appli-

cations to Clustering. Marcel Dekker.

McLachlan, G.J., Bean, R.W., and Peel, D. (2002). A mixture model-based approach

to the clustering of microarray expression data. Bioinformatics, 18:413–422.

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. John Wiley & Sons,

New York.
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