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Preface

Molecular biology and all the biomedical sciences are undergoing a true rev-
olution as a result of the emergence and growing impact of a series of new
disciplines/tools sharing the “-omics” suffix in their name. These include in par-
ticular genomics, transcriptomics, proteomics and metabolomics, devoted respec-
tively to the examination of the entire systems of genes, transcripts, proteins and
metabolites present in a given cell or tissue type.

The availability of these new, highly effective tools for biological exploration
is dramatically changing the way one performs research in at least two respects.
First, the amount of available experimental data is not a limiting factor any
more; on the contrary, there is a plethora of it. Given the research question, the
challenge has shifted towards identifying the relevant pieces of information and
making sense out of it (a “data mining” issue). Second, rather than focus on
components in isolation, we can now try to understand how biological systems
behave as a result of the integration and interaction between the individual com-
ponents that one can now monitor simultaneously (so called “systems biology”).

Taking advantage of this wealth of “genomic” information has become a con-
ditio sine qua non for whoever ambitions to remain competitive in molecular
biology and in the biomedical sciences in general. Machine learning naturally
appears as one of the main drivers of progress in this context, where most of the
targets of interest deal with complex structured objects: sequences, 2D and 3D
structures or interaction networks. At the same time bioinformatics and systems
biology have already induced significant new developments of general interest in
machine learning, for example in the context of learning with structured data,
graph inference, semi-supervised learning, system identification, and novel com-
binations of optimization and learning algorithms.

This book contains the scientific contributions presented at the Fifth Inter-
national Workshop on Machine Learning in Systems Biology (MLSB 2011), held
in Vienna, Austria, from July 20 to 21, 2011. The workshop was organized as an
official satellite meeting of the 19th Annual International Conference on Intelli-
gent Systems for Molecular Biology and the 10th European Conference on Com-
putational Biology (ISMB/ECCB 2011). The workshop was supported by the
PASCAL2 Network of Excellence, under the IST programme of European Union,
and by the City of Vienna. The aim of the workshop was to contribute to the
cross-fertilization between the research in machine learning methods and their
applications to systems biology (i.e., complex biological and medical questions)
by bringing together method developers and experimentalists. A non-exhaustive
list of the topics of interest to the workshop were:

Methods

– Machine Learning Algorithms
– Bayesian Methods



VI

– Data integration/fusion
– Feature/subspace selection
– Clustering
– Biclustering/association rules
– Kernel Methods
– Probabilistic inference
– Structured output prediction
– Systems identification
– Graph inference, completion, smoothing
– Semi-supervised learning

Applications

– Sequence Annotation
– Gene Expression and post-transcriptional regulation
– Inference of gene regulation networks
– Gene prediction and whole genome association studies
– Metabolic pathway modeling
– Signaling networks
– Systems biology approaches to biomarker identification
– Rational drug design methods
– Metabolic reconstruction
– Protein function and structure prediction
– Protein-protein interaction networks
– Synthetic biology

The technical program of the workshop consisted of invited lectures and oral pre-
sentations. Invited lectures were given by Eleazar Eskin, Magnus Rattray and
Robert Küffner. 20 oral presentations were given, with extended abstracts in-
cluded in this booklet, each reviewed by at least two reviewers. We would like to
thank all the people contributing to the technical programme, the scientific pro-
gram committee, Steven Leard from ISCB (local organization and registration)
and Jörg Wicker (website) for making the workshop possible.

July 2011 Stefan Kramer and Neil Lawrence
Program Chairs

MLSB 2011



Organization

Program Chairs

Stefan Kramer (TU München, Germany)
Neil Lawrence (The University of Sheffield, UK)

Program Committee
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Known and Unknown Confounding in Genetic

Studies

Eleazar Eskin

University of California, Los Angeles, USA

Abstract. Variation in human DNA sequences account for a significant

amount of genetic risk factors for common disease such as hyperten-

sion, diabetes, Alzheimer’s disease, and cancer. Identifying the human

sequence variation that makes up the genetic basis of common disease

will have a tremendous impact on medicine in many ways. Recent efforts

to identify these genetic factors through large scale association studies

which compare information on variation between a set of healthy and

diseased individuals have been remarkably successful. However, despite

the success of these initial studies, many challenges and open questions

remain on how to design and analyze the results of association studies.

As several recent studies have demonstrated, confounding factors such as

batch effects, population structure, and measurement errors can compli-

cate genetics analysis by causing many spurious associations. Yet little

is understood about how these confounding factors affect analyses and

how to correct for these factors. In this talk I will discuss several recently

developed methods based on linear mixed models for correcting for both

known and unknown confounding factors in genetic studies.
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Modeling Gene Expression Time-Series with

Bayesian Non-Parametrics

Magnus Rattray

The University of Sheffield, Sheffield, UK

Abstract. Bayesian non-parametric methods are a natural approach

to fitting models with continuous parameters or unbounded parame-

ter set cardinality. We are applying these methods to diverse models

of time-series gene expression data. Example applications include dif-

ferential equation models of transcriptional regulation, clustering data

sampled at uneven times and phylogenetic models of gene expression

change over evolutionary time. We use continuous-time Gaussian pro-

cesses to model the time-evolution of gene expression and protein ac-

tivation/concentration in time. Dirichlet processes can also be used to

model an unbounded set of Gaussian process models. I will present re-

sults where we apply these methods to gene expression time-course data

from embryonic development in Drosophila.

This is joint work with Neil Lawrence, Antti Honkela, Michalis Titsias

and James Hensman.
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Successful Strategies to Gene Regulatory

Network Inference

Robert Küffner

Ludwig-Maximilians-Universität München, Munich, Germany

Abstract. The inference of gene regulatory networks from mRNA ex-

pression data is characterized by the development of many different ap-

proaches with their specific performances, data requirements, and inher-

ent biases. Based on a recent community-wide challenge, the Dialogue

on Reverse Engineering Assessment and Methods (DREAM), the so far

largest assessment of inference approaches has been conducted. The ac-

curacy of predictions was evaluated against experimentally supported

interactions in the procaryote model organism E. coli, the eucaryote

model organism S. cerevisiae and in silico target systems. Over thirty

independently contributed methods were analyzed including well-known

approaches based on lasso, mutual information and Bayesian networks

but also a range of novel strategies. For instance, the novel algorithms

based on random forests and ANOVA outperformed established tools

significantly. Further analysis revealed not only which inference strate-

gies are particularly successful but also which kind of specific informa-

tion was utilized from the different types of experimental measurements.

At the same time, the performance of the individual approaches varied

in different network motifs or target systems. By integrating individual

predictions into community predictions the performance improved over-

all and became markedly more robust. This principle is known as the

wisdom of crowds: a solution derived from a community of independent

decision makers will be better, on average, than any individual solution.

Based on community predictions, we also constructed the first compre-

hensive gene regulatory model for the human pathogen Staphylococcus

aureus.
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Epistasis Detection in Subquadratic Time

Panagiotis Achlioptas1, Bernhard Schölkopf2, and Karsten M. Borgwardt3

1 University of Crete, Greece
2 Max Planck Institute for Intelligent Systems, Tübingen, Germany

3 Max Planck Institutes Tübingen, Germany

Abstract. Genome-wide association studies (GWAS) have not been
able to discover strong associations between many complex human dis-
eases and single genetic loci. Mapping these phenotypes to pairs of ge-
netic loci is hindered by the huge number of candidates leading to enor-
mous computational and statistical problems. In GWAS on single nu-
cleotide polymorphisms (SNPs), one has to consider in the order of 1010

to 1014 pairs, which is infeasible in practice. In this article, we give the
first algorithm for 2-locus genome-wide association studies subquadratic
in the number of SNPs n.
Core to this algorithm is the subquadratic lightbulb algorithm for detect-
ing pairs of highly correlated binary random variables [3]. This algorithm
differs in three aspects from epistasis detection: First, SNPs have typi-
cally three or more states and are not binary. Second, epistasis detection
is interested in the pairs of SNPs that maximally differ between cases
and controls, not SNP pairs correlated across the whole dataset. Third,
epistasis detection is based on differences in Pearson’s correlation coeffi-
cient, while Paturi et al. use a correlation score based on the probability
of two random variables being in the same state.
We overcome these three problems by proposing a lightbulb algorithm
that finds pairs of variables with maximum differences in correlation be-
tween cases and controls. We use Locality Sensitive Hashing [2] to bina-
rize SNPs and to get an approximation of Pearson’s correlation coefficient
via the lightbulb algorithm. Through our contributions, the favourable
subquadratic runtime of the lightbulb algorithm can be transferred to
the problem of epistasis detection.
The running time of our algorithm is data-dependent, but large exper-

iments over real genomic data suggest that it scales empirically as n
3
2 .

As a result, our algorithm can easily cope with n ∼ 107, i.e., it can ef-
ficiently search all pairs of SNPs in the human genome. A manuscript
describing our finding in full detail will be published at the 17th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining in San
Diego (KDD 2011) [1].
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A Study of Dynamic Time Warping for the

Inference of Gene Regulatory Relationships

Matthias Böck, Constanze Schmitt, and Stefan Kramer

Technische Universität München,
Institut für Informatik Lehrstuhl I12 - Bioinformatik,

Boltzmannstr. 3, 85748 Garching b. München, Germany
{matthias.boeck,constanze.schmitt,stefan.kramer}@in.tum.de
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Abstract. The paper assesses different variants ofDynamic Time Warp-

ing (DTW ) for the inference of gene regulatory relationships. Apart from
DTW on continuous time series, we present a novel angle-based dis-
cretization approach and a distance learning method that is combined
with DTW to find new gene interactions. A positive influence of the
distance optimization on the performance of the alignments of gene ex-
pression profiles could not yet be established. However, our results show
that discretization can be important to the outcome of the alignments.
The discretization is not only able to keep the important features of the
time series, it is also able to perform better than regular DTW on the
original data.

Keywords: Time series alignment, gene expression, Dynamic TimeWarp-
ing, discretization

1 Introduction

The analysis of time series data is still one of the most challenging fields and
occurs in many scientific disciplines. Steady state data can only give a snapshot of
the actual dynamics while time series allow to study the processes over time and
to capture the dependencies between the forces and protagonists. In this study
we are focusing on gene expression data and how to infer the interactions and
dependencies from it. We propose a slope based discretization of given microarray
data and a new alignment approach, combining the ideas of Dynamic Time

Warping (DTW ) with Stochastic Local Search (SLS). Building of alignments of
discretized profiles is supposed to be robust against noisy data and to overcome
the assumption of strictly linear relationships between two interacting genes.
A basic assumption for the alignment of time series is that co-regulated genes
also show similar expression behaviors over time and hence similar amplitudes
which can be aligned with suitable transformations. Testing and evaluation of
the approach has been done with two biological data sets from Pramila et al. [6]
and Tu et al. [8] following the cell cycles of S. cerevisiae. As a benchmark network
the protein-protein interaction network from the STRING database (v8.3) [4] is

6



2 Dynamic Time Warping for the Inference of Gene Regulatory Relationships

used. It is clear that the PPI network is only able to cover part of the gene
regulatory processes but still, observations on this level can provide insight into
the performance of the methods.

2 Method

Dynamic time warping (DTW ) was introduced in the 1960s [2] and has been
intensively used for speech recognition and other fields, like handwriting recog-
nition systems, gesture recognition, signal processing and gene expression time
series clustering [1]. The basic idea of this unsupervised learning approach is that
a suitable distance measure, which is most generally the Euclidean distance, al-
lows the algorithm to stretch (or compress) the time and expression rate axis to
find the most suitable fit of two given time series. The DTW algorithm will be
described briefly in the following. Consider two given sequences S = s1, ..., sn
and T = t1, ..., tm and a given distance function δ(si, tj) with 1 ≤ i ≤ n and
1 ≤ j ≤ m, DTW tries then to minimize with the given δ over all possible warp-
ing paths between the two given sequences based on the cumulative distance for
each path. This is solved by a recursive dynamic programming approach for each
i ∈ [1, ..., n] and j ∈ [1, ...,m]:

DTW (i, j) =































0 for i = j = 0

min











DTWi−1,j−1 + 2 · δ(si, tj)

DTWi−1,j + δ(si, tj)

DTWi,j−1 + δ(si, tj)

for i, j > 0

∞ otherwise

(1)

DTW [n,m] is the total distanceDTW (S, T ) and can be calculated inO(nm).
The traceback through the matrix D gives the optimal warping of the aligned
sequences.

We present in the following the framework for a discretized sequence align-
ment approach focusing on the analysis of gene expression time series. In contrast
to other existing methods the approach deals also with anti-correlated time se-
ries and uses a supervised method to infer a data specific distance matrix for
the alignment. The result is a scoring matrix for the pairwise distances between
the measured genes.

We use a list of 1129 cell cycle dependent genes, suggested by Rowicka et al.

[7], for the evaluation. Genes, for which no PPI data or probe sets in the mi-
croarray experiments exist, were discarded from our set. We use cubic smoothing
splines to interpolate the time series for missing values and smoothen out smaller
fluctuations from experimental or biological noise.

The discretization of each time series for each gene is done according to the
steepness of the expression change δ exp between two consecutive time steps.
This is done by calculating the angle: α= atan δ exp · 180

π
. The angles are then

7



Dynamic Time Warping for the Inference of Gene Regulatory Relationships 3

discretized into positive and negative (increasing or decreasing) integer values
according to a predefined threshold. Defining the threshold is done by dividing
the possible range for increases or decreases of 180 degrees into n subsectors,
with a range of 180

n
degrees each. Each of this sectors represents a possible range

of angles for the increase or decrease between two consecutive time points and
has assigned a discrete value. For n sectors the range of these values would be
[−n

2
,−n

2
+ 1, ..., n

2
− 1, n

2
].

A crucial point for the quality of the alignments is the choice of a suitable
distance matrix which defines the distances between the discretized values of
the time series. This motivates our supervised approach to use a set of already
known interacting genes I to infer the distance matrix δ. These gene pairs are
chosen randomly from the PPI data along with a further randomly chosen set
of not interacting genes N . The resulting δ should minimize the distance for I

and maximize the distance for N . Since DTW is not differentiable, we apply a
combination of Stochastic Local Search (SLS) and simulated annealing for the
stepwise improvement of δ. For a more detailed introduction to SLS, we refer
to the work of Hoos and Stützle [3].

We imposed three constraints on the step-wise altering of the distance matrix
δ to reduce the search space and to keep the basic distance structure between
different bins of angles: δ(i, j) = 0 for i = j, δ(i, j) = δ(j, i) and δ(i, j) <

δ(i, j − 1).
The resulting distance matrix is then used for the calculations of the align-

ments and the score defines the distance between each pair of genes. Additional
alignments are done for each comparison with flipped signs for one of the time
series to find anti-correlated pairs.

3 Evaluation

We compare the performance on the two biological data sets to the results with
simple correlation, MRNET (mutual information), DTW and DDTW (a mod-
ification of DTW which uses for the discretization the first derivative for each
point) [5]. DTWdisc applies our discretization method with different numbers
of sectors (n) and calculates the alignments with DTW . DTWSLS addition-
ally applies the distance optimization before the calculations. The evaluation is
done based on ROC curves and the AUC. Interactions are undirected and hence
only a two class problem considered, interaction predicted or not. We applied
to both data sets smoothing splines and did a z-score transformation before the
calculations. An excerpt of our results of AUC values is shown in Table 1.

cor MRNET DTW DDTW DTWdisc DTWSLS

Pramila et al. (961 genes) 0.59 0.58 0.5 0.46 0.61 (n=7) 0.58 (n=7)
Tu et al. (944 genes) 0.54 0.54 0.62 0.62 0.59 (n=5) 0.60 (n=5)

Table 1. Comparison of the AUC values for the different methods evaluated with PPI
data from STRING.

8



4 Dynamic Time Warping for the Inference of Gene Regulatory Relationships

In general, the different DTW approaches perform better than correlation or
MRNET, except for the case of regular DTW and DDTW on the Pramila et al.

data. The results of DTWdisc show that the discretization keeps the important
features and even with a small number of sectors performs well. The approach
of DTWSLS seems, to this date, not to be able to improve the distance measure
and achieves slightly smaller AUC values. The discretization method outperforms
DTW and DDTW on the Pramila et al. data and performs only slightly worse
on the other data set.

4 Conclusion

In the paper, we investigated several variants of Dynamic Time Warping for
the detection of gene regulatory relationships. While the supervised optimiza-
tion of the distance matrix did not lead to improvements, a novel discretization
approach seems, even with a small number of defined sectors, able to keep the
main features and appears as a suitable qualitative transformation for time se-
ries alignments. On the biological data sets, our approach seems to be more
stable compared to DTW and DDTW . In contrast to correlation-based meth-
ods, DTW is also able to infer the orientation of the time shift through the
traceback and hence able to hint at possible causalities. We intend to make
use of this information and further evaluate the robustness of the discretization
method compared to DTW and DDTW .
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A New Theoretical Angle to Semi-supervised
Output Kernel Regression for Protein-protein

Interaction Network Inference

Céline Brouard1, Florence d’Alché-Buc1, and Marie Szafranski2,1

1 IBISC, EA 4526, Université d’Évry Val d’Essonne, F–91025 Évry cedex, France
{celine.brouard, florence.dalche, marie.szafranski}@ibisc.fr

2 ÉNSIIE, F–91025 Évry cedex, France

1 Background

Recent years have witnessed a surge of interest for network inference in biologi-
cal networks. In silico prediction of protein-protein interaction (PPI) networks is
motivated by the cost and the difficulty to experimentally detect physical inter-
actions between proteins. The underlying hypothesis is that some input features
relative to the proteins provide valuable information about the presence or the
absence of a physical interaction. The main approaches devoted to this task fall
into two families: supervised approaches, which aim at building pairwise classi-
fiers able to predict if two proteins interact, from a dataset of labeled pairs of
proteins [1–5], and matrix completion approaches that fits into an unsupervised
setting with some constraints [6, 7] or directly into a semi-supervised framework
[8, 9].

Let us define O the set of descriptions of the proteins we are interested in. In
this paper, we have chosen to convert the binary pairwise classification task into
an output kernel learning task as in [3, 4]. This is made possible by noticing that
a Gram matrix KY`

on the training data O` can be defined from the adjacency
matrix using any kernel that encodes the proximities of proteins in the network
(for instance a diffusion kernel [10]). We assume that a positive definite kernel κy:
O×O → R underlies this Gram matrix such that ∀i, j ≤ `,KY`

(i, j) = κy(oi, oj).
Moreover, there exists an Hilbert space Fy, called the feature space, and a fea-
ture map y : O → Fy such that ∀(o, o′) ∈ O, κy(o, o′) = 〈y(o), y(o′)〉Fy .
The assumption underlying output kernel learning is that an approximation of
κy will provide valuable information about the proximity of proteins in terms
of nodes in the interaction graph. This approximation is built from the in-
ner product between the outputs of a single variable function h : O → Fy
: κ̂y(o, o′) = 〈h(o), h(o′)〉Fy . This allows one to reduce the problem of learning
from pairs to learning a single variable function with values in the output feature
space. This supervised regression task is referred to as Output Kernel Regres-
sion (OKR). Once the output kernel is learnt, a classifier fθ is defined from the
approximation κ̂y by thresholding its output values:

fθ(o, o′) = sgn(κ̂y(o, o′)− θ) .

10
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2 RKHS for vector-valued functions for supervised and
semi-supervised OKR

In the case of OKR, the function to be learnt is not real-valued but vector-valued
in the output Hilbert space. If we want to benefit from the theoretical framework
of Reproducing Hilbert Space theory (RKHS), well appropriate to regularization,
we need to turn to the proper RKHS theory, devoted to vector-valued functions,
which was introduced in [13] and developed in [14]. In this theory, kernels are
operator-valued and applied to vectors in the given output Hilbert space. While
being very powerful, this theory is still underused.

Supervised setting

In this work, the RKHS theory devoted to functions with values in a Hilbert
space provides us with a general framework for OKR. Let Fy be an Hilbert
space. Let S` = {(oi,yi)}`i=1 ⊆ O × Fy be a set of labeled examples, and H be
a RKHS with reproducing kernel Kx. We focus here on the to penalized least
square cost in the case of vector-valued functions:

argmin
h∈H

J(h) =
∑̀
i=1

‖h(oi)− yi‖2Fy
+ λ1‖h‖2H ,with λ1 > 0. (1)

Michelli & Pontil [14] have shown that the minimizer of this problem admits an
expansion ĥ(·) =

∑`
j=1Kx(oj , ·)cj , where the vectors cj ∈ Fy, j = {1, · · · , `},

satisfy the equations:

yj =
∑̀
i=1

Kx(oi, oj)ci + λ1cj . (2)

To benefit from this theory, we must define a suitable input operator-valued
kernel. OKR is extended to data described by some input scalar kernel. The
training input set is now defined by an input Gram matrixKX`

, which encodes for
the properties of the training objects O`. As in the output case, the coefficients
of the Gram matrix are supposed to be defined from a positive definite input
kernel function κx : O×O → R, with ∀i, j ≤ `,KX`

(i, j) = κx(oi, oj). We define
an operator-valued kernel Kx from this scalar kernel:

Kx(o, o′) = κx(o, o′)× IFy
, (3)

with IFy
, the identity matrix of size dim(Fy)×dim(Fy). The theorem from [13,

14] ensures that a RKHS can be built from it. Starting from the results existing
in the supervised case for the penalized least-square cost, we show that with this
choice of the operator-valued kernel, we can derive a closed-form solution.

Proposition 1. When Kx is defined by mapping (3), the solution of Prob-
lem (1) reads

C = Y`(KX`
+ λ1I`)−1 , (4)

where Y` = (y1, · · · ,y`), C = (c1, · · · , c`), and I` is the `× ` identity matrix.
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It is worth noting that we directly retrieve the extension of kernel ridge
regression to output kernels proposed by [15].

Semi-supervised setting

In biology, it is much easier to get a detailed description of the properties of a
protein compared to the cost of experimental methods used to detect physical
interactions between two proteins. To benefit from the usually large amount of
unlabeled data, we need to extend OKR to semi-supervised learning. A powerful
approach is based on graph-based regularization that forces the prediction func-
tion to be smooth on the graph describing similarities between inputs. Enforcing
smoothness of the function permits to propagate output labels over close inputs
as shown in [11, 12]. [12] have proposed to explicitly embed such ideas into the
framework of regularization within RKHS for real-valued functions.

Let S` = {(oi,yi)}`i=1 be a set of labeled examples and Su = {oi}`+ui=`+1 a set
of unlabeled examples. Let H be a RKHS with reproducing kernel Kx, and a
symmetric matrix W with positive values measuring the similarity of objects in
the input space. We consider the following optimization problem:

argmin
h∈H

J(h) =
∑̀
i=1

‖h(oi)−yi‖2Fy
+λ1‖h‖2H+λ2

`+u∑
i,j=1

Wij‖h(oi)−h(oj)‖2Fy
, (5)

with λ1 and λ2 > 0.

We state and prove a new representer theorem devoted to semi-supervised
learning in RKHS with vector-valued functions:

Theorem 1. The minimizer ĥ of the optimization problem (5) admits an ex-
pansion ĥ(·) =

∑`+u
j=1 Kx(oj , ·)cj , where the vectors cj ∈ Fy, j = {1, · · · , (`+u)}

satisfy the equations:

Vjyj = Vj

`+u∑
i=1

Kx(oi, oj)ci + λ1cj + 2λ2

`+u∑
i=1

Lij

`+u∑
m=1

Kx(om, oi)cm . (6)

The matrix Vj of dimension dim(Fy) × dim(Fy) is the identity matrix if j ≤ `
and the null matrix if ` < j ≤ (`+ u). L is the (`+u)×(`+u) Laplacian matrix,
given by L = D −W , where D is a diagonal matrix such that Dii =

∑`+u
j=1 Wij.

Using the operator-valued kernel defined previously leads us to define a new
model, expressed as a closed-form solution.

Proposition 2. When Kx is defined by mapping (3), the solution of Problem
(5) reads

C = Y`U(KX`+u
UTU + λ1I`+u + 2λ2KX`+u

L)−1, (7)
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where Y` = (y1, · · · ,y`), C = (c1, · · · , c`+u). U denotes a `× (`+u) matrix that
contains an identity matrix of size `×` on the left hand side and a zero matrix of
size `×u on the right hand side. KX`+u

is the Gram matrix of size (`+u)×(`+u)
associated to kernel κx. Finally, I`+u is the identity matrix of size (`+ u).

3 Experiments

We extensively studied the behavior of the provided models on transductive link
prediction using artificial data and a protein-protein interaction network dataset.

Synthetic networks We illustrate our method on synthetic networks in order
to measure the improvement brought by the semi-supervised method in extreme
cases (i.e. for low percentage of labeled proteins) when the input kernel is a very
good approximation of the output kernel. We produce the data by sampling ran-
dom graphs from a Erdős-Renyi law with different probabilities of presence of
edges. The input feature vectors have been obtained by applying Kernel PCA
on the diffusion kernel associated with the graph. Finally, we use the compo-
nents that capture 95% of the variance to define the input features. We observe
from the results obtained that the semi-supervised approach improves upon the
supervised one on Auc-Roc and Auc-Pr, especially for a small percentage of la-
beled data (up to 10%). Based on these results one can formulate the hypothesis
that supervised link prediction is harder in the case of more dense networks and
that the contribution of unlabeled data seems more helpful in this case. One can
also assume that using unlabeled data increases the AUCs for low percentage of
labeled data. But when enough information can be found in the labeled data,
semi-supervised learning does not improve the performance.

Protein-protein interaction network We illustrate our method on a PPI
network of the yeast Saccharomyces Cerevisiae composed of 984 proteins linked
by 2438 interactions. To reconstruct the PPI network, we deal with usual input
features that are gene expression data, phylogenetic profiles, protein localization
and protein interaction data derived from yeast two-hybrid (see for instance [2–6]
for a more complete description).

Table 1. Auc-roc and Auc-pr obtained for the reconstruction of the PPI network
from the gene expression data in the supervised and the semi-supervised settings. The
percentage values correspond to the proportions of labeled proteins.

Methods
Auc-roc Auc-pr

5% 10% 20% 5% 10% 20%

Supervised 76.9± 4.3 80.3± 0.9 82.1± 0.6 5.4± 1.6 7.1± 1.1 8.1± 0.7
Semi-supervised 79.6± 0.9 80.7± 1.0 81.9± 0.7 6.6± 1.1 7.6± 0.8 8.4± 0.5

We experimented with our method in the semi-supervised setting and com-
pared the results with those obtained in the supervised setting. For different

13



Semi-supervised Output Kernel Regression 5

values of `, that is the number of labeled proteins, we randomly sub-sampled a
training set of proteins and considered all the remaining proteins for the test set.
The interaction assumed to be known are those between two proteins from the
training set. We ran each experiment ten times and tuned the hyperparameters
by 5-fold cross-validation on the training set. Averaged and standard deviations
of the Auc-roc and Auc-pr values when using gene expression data as input fea-
tures are summarized in Table 1. It is worth noting that the semi-supervised
method reaches better performances when the number of labeled proteins is
small, which is usually the case in PPI network inference problems.
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Abstract. The protozoan parasite Trichomonas vaginalis is the causa-
tive agent of the most prevalent non-viral sexually transmitted disease
in humans. It possesses mitochondrion-related organelles, known as hy-
drogenosomes, that produce ATP under anaerobic conditions. To date
only 37 hydrogenosomal proteins have been identified. We sought to iden-
tify new hydrogenosomal proteins within the 59,672 open reading frames
(ORFs) of T. vaginalis, using a machine-learning approach. We applied
Näıve Bayes, Bayesian networks, SVM classifiers on a training set consist-
ing of all known hydrogenosomal and 576 non-hydrogenosomal proteins.
For each ORF 57 features that measure various evolutionary, genomic,
and biochemical traits of the proteins were taken into account. Ten high
scoring predictions were experimentally validated by in vivo localization
studies, yielding the identification of six new hydrogenosomal proteins.

1 Introduction

The parabasalian flagellate Trichomonas vaginalis, which infects the urogenital
tract of hundreds of millions of people annually, can produces ATP under anaer-
obic conditions due to its hydrogenosomes. Hydrogenosomes are mitochondrion-
like organelles that, unlike mitochondria, are devoid of a genome and translation
machinery, making the import of hundreds of nuclear-encoded proteins from the
cytosol mandatory. Hydrogenosomes share a common ancestor with the mito-
chondrion but their scattered distribution over the eukaryotic kingdoms (some
fungi, parabasalids, amoeboflagellates, ciliates and at least one animal) suggests
that the specialization of the organelle to the anaerobic lifestyle occurred sev-
eral times in independent lineages during evolution [1–4]. Understanding the
biochemistry and molecular evolution of hydrogenosomes is not only of medical
importance. The evolution of mitochondria is directly linked with the emergence
of eukaryotes, and comparative understanding of mitochondria and hydrogeno-
somes should shed light on the early evolutionary events in the endosymbiotic
theory [1, 3, 4].
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A first critical step towards studying hydrogenosome functions and further-
more analyzing its proteome in an evolutionary context is to generate the most
reliable set of proteins imported into the hydrogenosome. In contrast to mito-
chondria, little is known about the targeting mechanism, let alone the compo-
nents assembling the import machinery in hydrogenosomes. Import of precursors
is ATP-dependent and early in vitro analyses suggested that correct targeting
requires a hydrogenosomal targeting signal (HTS) on the N-terminus of the pro-
tein [5].

The genome of T. vaginalis contains 59,672 ORFs, 226 of which encode the
canonical HTS defined by Carlton and colleagues as follows: 5’ML[S|T|A]X{1-
15}R[N|F|E|XF], or 5’MSLX{1-15}R[N|F|XF] or 5’MLR[S|N|F] [5]. This value
is significantly lower than the 500 proteins expected to be found in the hy-
drogenosome [6]. Thus, other protein characteristics, besides an HTS, may serve
as potential targeting precursors to the hydrogenosomes. A recent localization
of two important hydrogenosomal proteins that lack HTS [7] supports this as-
sumption. Consequently, one can conclude that T. vaginalis encodes further
hydrogenosomal proteins, which have not been identified due to their lack of a
canonical HTS at their N-terminus.

Our study was aimed at identifying so far unrecognized proteins targeted to
the hydrogenosome independent of the canonical HTS. We applied various classi-
fication tools to perform an unbiased screening of the entire T. vaginalis genome
for potentially imported proteins. Individual proteins (high and low scoring) were
then tested for their localization in vivo to verify (or reject) the bioinformatics
predictions. Validated imported proteins were subsequently added to the posi-
tive learning set in a an additional learning phase to improve predictions. To the
best of our knowledge, this is the first attempt to use machine learning tools for
a genomic scale function predictions in T. vaginalis.

2 Classification

The training set of the first learning phase included the 37 experimentally vali-
dated imported proteins and 576 non-imported proteins that were chosen based
on their annotation, indicating a strict cytosolic localization. A total of 57 fea-
tures regarding the gene and protein sequence, protein function, evolutionary
relationships, the existence of an import signal, and GO annotation were com-
puted for each protein.

Three types of classifiers were used for the machine learning inference: (a)
Näıve Bayes; (b) Bayesian networks with different network structure search algo-
rithms: K2 search algorithm [8], and the tree augmented Bayes network (TAN)
search algorithm [9]; (c) SVM with two alternative kernels: polynomial and ra-
dial basis function (RBF). These learning schemes were subjected to an inner
feature selection procedure in order to identify the subset of the 57 features
that performs best with each classifier. The feature selection was performed by
applying a ”Wrapper” [10] using the BestFirst search algorithm, a greedy hill-
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climbing augmented with a backtracking facility. The machine learning analysis
was implemented using the open-source package WEKA version 3.7.0 [11].

The performance of all learning schemes was evaluated by the area under
the ROC (AUC). Ten-fold cross-validation was performed for choosing the best
performing classifier. In order to maintain the independence between the training
process and evaluation process, the features selection was performed separately
for each one of the ten folds. The best performing classifier went through an
additional step of feature selection and training, which was performed on the
entire training set. The resulting trained classifier was used to produce the import
scores for all T. vaginalis ORFs.

The unbalanced frequencies of imported and non-imported proteins included
in the learning set (about 1:20), might render an overestimated AUC [12]. In
order to provide comparable performance estimates despite the bias, the values
of area under precision recall curve (AUPR) were calculated as well, using AUC-
Calculator 0.2 [12]. The classification performance of the first phase was high,
with AUC value of 0.978 and AUPR value of 0.845.

Fig. 1. Results of the in vivo localization of TVAG 456770, TVAG 479680 and
TVAG 023840, together with the hydrogenosomal marker ASCT

3 Experimental Validations

We selected 14 proteins for experimental validation based on their predicted im-
port scores. Four out of these 14 received low scores, and were predicted not to
be localized to the hydrogenosome. The other ten were high-scoring proteins,
predicted to be localized to the hydrogenosome. Out of these ten predictions,
four include a canonical N-terminal import motif as described previously (Carl-
ton et al. 2007). For the experimental validations, all proteins were tagged using
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hemagglutinin (HA) at their C-terminus, and their import into the hydrogeno-
some was determined by cell subfractionation and subsequent western blot anal-
ysis. An additional verification was performed by an in situ immunolocalisation
(Fig. 1). Altogether, our predictions were correct in ten of these 14 proteins. All
four low scoring predictions were found not to localize to the hydrogenosome
(true negative). Out of the ten high scoring predictions, we localized six novel
proteins to the hydrogenosomes of T. vaginalis, two of which lack the canonical
N-terminal HTS (e.g., TVAG 479680 in Fig. 1).

We expect that as more hydrogenosomal proteins are discovered the per-
formances of the machine-learning prediction will improve, as new and more
pronounced patterns in the data are likely to emerge. Indeed, when including
the six proteins we had localized in vivo, the accuracy as calculated by the AUC
and AUPR measures has improved (AUC = 0.992; AUPR = 0.956). Our final
prediction scores provide fertile grounds for further research of the hydrogeno-
some and the parasites harbouring it.

References

[1] Müller, M.: The hydrogenosome. J. Gen. Microbiol. 139: 2879–2889 (1993)
[2] Finlay, B.J., Fenchel, T.: Hydrogenosomes in some anaerobic protozoa resemble

mitochondria. FEMS. Microbiol. Lett. 65: 311–314 (1989)
[3] Embley, T.M. and Martin, W.: Eukaryotic evolution, changes and challenges. Na-

ture. 440: 623–630 (2006)
[4] Hjort, K., Goldberg, A.V., Tsaousis, A.D., Hirt, R.P., Embley, T.M.: Diversity and

reductive evolution of mitochondria among microbial eukaryotes. Philos. Trans. R.
Soc. Lond. B. Biol. Sci. 365: 713–727 (2010)

[5] Carlton, J.M., Hirt, R.P., Silva, J.C., Delcher, A.L., Schatz, M., et al.: Draft genome
sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 315:
207–212 (2007)

[6] Shiflett, AM., Johnson, P.J.: Mitochondrion-related organelles in eukaryotic pro-
tists. Annu. Rev. Microbiol. 64: 409–429 (2010)

[7] Mentel, M., Zimorski, V., Haferkamp, P., Martin, W., Henze, K.: Protein import
into hydrogenosomes of Trichomonas vaginalis involves both N-terminal and internal
targeting signals: a case study of thioredoxin reductases Eukaryot. Cell. 7: 1750–1757
(2008)

[8] Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks from data. Mach. Learn. 9: 309–347 (1992)

[9] Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach.
Learn. 29: 131–163 (1997)

[10] Kohavi, R. and John, G.H.: Wrappers for feature subset selection. Artif. Intell.
97: 273–324 (1997)

[11] Witten, I.H. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Wit-
ten, I.H.(2009) The WEKA data mining software: an update. SIGKDD Explorations.
11: 10–18 (2009)

[12] Davis, J. and Goadrich, M.: The relationship between precision-recall and ROC
curves. Proceedings of the 23rd international conference on Machine learning: 233–
240 (2006)

18



An Empirical Analysis of Markov Blanket
Filters for Feature Selection on Microarray Data

David Dernoncourt1, Blaise Hanczar2, and Jean-Daniel Zucker1

1 INSERM, UMRS 872, Les Cordeliers, Eq. 7 Nutriomique,
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Abstract. Feature selection is an important step when building a clas-
sifier on microarray data. Over the large number of methods proposed,
Markov blanket filters are the theorically optimal solution to the feature
selection problem. However, existing sound algorithms have not been
tested on small sample microarray datasets, which represent the vast ma-
jority of microarray datasets. In this study we introduce a modified ver-
sion of Markov blanket algorithm IPC-MB, then we present results about
its performance on four small to medium sample microarray datasets.

Keywords: Markov blanket, variable selection, microarray

1 Introduction

Over the last years, advances in high-throughput technologies have allowed the
production of large gene expression datasets. Those data can be used, for in-
stance, to classify tumor types or to predict clinical outcome [1]. A particular
characteristic of gene expression data, such as microarray data, is that the num-
ber n of samples is very small (usually around 100) compared to the number m
of features (usually several thousands). This poses a challenge to classification
techniques, since too many features or redundant features can decrease accuracy
and increase the risk of overfitting and computation time of classifiers. Feature
selection is a solution to this problem, but much work remains to achieve robust
and optimal selection of genes.

Feature selection refers to the process of removing irrelevant or redundant
features, so as to retain informative features useful for classification. Feature
selection methods can be grouped in three categories: filter, wrapper and em-
bedded methods [2]. Wrapper methods interact with the classifier to select a
subset of features optimized specifically for this classifier. Embedded methods
are embedded within the classifier so that the feature selection process takes
place during the classifier’s construction. Wrapper and embedded methods are
thus computationally intensive and known to present a risk of overfitting. But
because they take the classifier into account they can result in good prediction
performances if the risk of overfitting is controlled. Filter methods select features
independently from the classifier. They are faster than wrapper and embedded
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methods, scale better to very high-dimensional datasets, and reduce the risk of
overfitting. But the lack of interaction with the classifier may reduce prediction
performances.

Filter methods can be further divided into univariate and multivariate meth-
ods. Univariate filter methods rank features according to a univariate statistic
such as t-test, χ2, correlation or information gain. Each feature is considered
separately, ignoring feature dependencies, which results in great speed and scal-
ability, but may select redundant features. Multivariate filter methods deal with
this issue by taking feature dependencies into account. Examples of such meth-
ods are Zuber and Strimmer’s shrinkage correlation-adjusted t-score (cat score),
Golub’s neighborhood analysis, correlation-based feature selection (CFS), min
redundancy – max relevance (MRMR), and Markov blanket filters [3].

Tsamardinos and Aliferis [4] pointed out that wrappers and filters cannot
provide a universally optimal solution to the feature selection problem, and that
this theorically optimal solution is, as Koller and Sahami [3] showed, the Markov
blanket (MB) of the class to predict T .

2 Markov Blanket Filters and the IPC-MB Algorithm

Let U be a set of features (genes), and T /∈ U the target variable of interest (the
class to predict). The Markov blanket MB(T ) of T is the smallest subset of U
that renders T statistically independent from all the remaining features:

T ⊥ S |MB(T ), ∀S ⊆ (U \MB(T )) . (1)

Less formally, the Markov blanket of T is the set containing all and only the
features necessary to predict T .

A number of algorithms were proposed to induce MB(T ): KS (Koller and
Sahami) [3], GS (Grow-Shrink), IAMB (Iterative Associative MB), and variants
(Fast-IAMB...), MMPC/MB (Max-Min Parents and Children/MB), HITON-
PC/MB and PCMB (parents and children based Markov boundary), but all of
these were either too computationally expensive or data-inefficient to be applied
on microarray data, or even unsound.

More recently, Fu [5] introduced a sound and efficient algorithm, IPC-MB
(Iterative Parents-Children based search of MB) while Aliferis and al. [6] pub-
lished an algorithmic framework, GLL-PC/MB (Generalized Local Learning -
Parents and Children / MB), describing the general steps an algorithm should
follow to efficiently and correctly learn Markov blankets, as well as improved
versions of HITON-PC/MB following this framework. To our knowledge, as of
today, none of those algorithms have been tested on microarray datasets consist-
ing of fewer than 200 samples, which is the case of the vast majority of studies
(only 1% of the microarray datasets of the Gene Expression Atlas contain such
a high number of samples). The aim of this work is to study how this kind of
algorithm performs on such small-sample microarray data. We chose to imple-
ment the IPC-MB algorithm because it is well described by Fu [5] and follows
the GLL framework.
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Like many other MB algorithms, IPC-MB is based on the Bayesian approach
of Markov blankets: MB(T ) is the union of parents, children and spouses of T
[5]. It can be divided into three phases:
1. Identify candidate parents and children (PCC

T ) (function “findCanPC”)
2. Remove false positives (descendants farther than children)
3. Identify spouses (co-parents)

We implemented a modified version of IPC-MB, IPC-MBUVR (IPC-MB with
uncached variable removal), containing a function findCanPCUVR modified so
that features identified as independent are removed immediately after the inde-
pendence test. In the initial algorithm those features were first cached and then
removed in bulk, which would allow two features strongly correlated to each
other to mutually eliminate themselves from the candidate parents and children
even if they were strongly correlated to the target variable. We also replaced
IPC-MB’s validity check for the conditional independence test by GLL’s max-k
parameter, which places an absolute limit on the cardinality of conditioning sets
in findCanPC.

3 Experimental Evaluation

To evaluate the algorithm, we used four publicly available microarray datasets,
related to colon cancer (Alon, n= 62,m= 2000), leukemia (Golub, n= 72,m=
7129), lung cancer (CAMDA, n = 203,m = 2000), and breast cancer (van de
Vijver, n=295,m=2000). Since we used the G-test to assess variable indepen-
dence, we discretized the variables into binary variables using R package mclust
before filtering them with IPC-MBUVR. Eleven other feature selection methods
were used: t score (as well as Welch and Wilcoxon), cat score, Golub’s criterion,
componentwise boosting [7], one-step recursive feature elimination (RFE) [8],
lasso [9], elastic net [10], and a correlation-based score and a fold change score
implemented in R package SlimPLS [11]. Performance of classifiers was used as
the measure of performance of feature selection algorithms. Six different general
purpose classifiers were used: LDA (linear discriminant analysis), DDA (diagonal
DA), kNN (k-nearest neighbors), SVM (support vector machine, with linear and
radial kernel) and random forest. Classification performance was estimated by a
10 fold cross-validation. Although we did not perform an internal cross-validation
to optimize filter parameters, we tried a number of different parameter values
and retained, as the final result, the 20th percentile of the average performance
over the classifiers (30th percentile for the Markov blanket filter).

Table 1 shows part of our experimental results. The Markov blanket filter
based on IPC-MBUVR performed well on microarray data with a bit more than
200 observations. This is consistent with the results previously obtained by Al-
iferis and al. [6] on a number of real and artificial datasets of such a sample size.
However, when applied to microarray data consisting of a smaller sample, the
Markov blanket filter eliminated too many variables to remain efficient.

IPC-MBUVR’s performance depends on the reliability of the multiple con-
ditional independence (CI) tests it performs. On datasets containing too few
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4 Markov Blanket Feature Selection on Microarray Data

Table 1. Error rate (%) of classifiers depending on filters and datasets. LDA: linear
discriminant analysis; SVM : support vector machine with radial kernel; kNN : k-nearest
neighbors; Avg : average on the three classifiers; IPC-MBUVR and findCanPCUVR: our
algorithms; dark background: best four average error rates for each dataset.

Filter
Colon cancer Leukemia Breast cancer Lung cancer

LDA SVM kNN Avg LDA SVM kNN Avg LDA SVM kNN Avg LDA SVM kNN Avg

findCanPCUVR 18.1 16.4 24.3 19.6 7.1 7.1 7.0 7.1 33.6 32.6 39.0 35.1 15.0 16.0 18.4 16.4

IPC-MBUVR 25.7 22.9 30.7 26.4 8.6 8.6 7.0 8.0 33.9 34.6 35.6 34.7 17.5 17.5 20.4 18.4

lasso 11.7 13.1 16.4 13.7 7.1 7.1 8.4 7.5 37.7 35.0 36.0 36.3 17.4 15.9 25.4 19.6

cat score 13.1 16.2 17.9 15.7 5.7 5.7 7.1 6.2 36.3 33.9 38.0 36.1 22.4 16.4 22.4 20.4

Welch 17.9 19.5 14.5 17.3 5.7 2.9 4.1 4.2 38.7 35.0 36.0 36.6 17.9 22.9 21.9 20.9

t-score 17.9 18.1 16.4 17.5 8.6 5.7 8.6 7.6 35.6 33.3 37.0 35.3 20.4 16.5 20.4 19.1

Golub 11.7 16.4 14.5 14.2 4.3 5.7 7.1 5.7 37.3 36.0 36.0 36.4 29.9 25.4 25.3 26.9

RFE 12.9 13.1 14.3 13.4 8.6 7.1 8.6 8.1 35.3 34.3 32.9 34.1 31.9 28.4 24.4 28.2

elastic net 11.7 16.2 17.9 15.2 11.4 12.7 12.7 12.3 36.6 34.3 37.7 36.2 20.9 21.4 21.8 21.4

fold-change 14.5 19.1 23.8 19.1 16.8 15.5 23.8 18.7 37.3 33.2 35.9 35.5 22.0 29.5 16.4 22.6

observations, the conditioning set (CS) has to remain small to preserve CI tests
reliability, and it is not possible anymore to find a proper compromise between
a CS small enough for a good CI test reliability and a CS large enough for a
good IPC-MBUVR accuracy. FindCanPCUVR alone performs better on such
datasets, probably because it performs far fewer (possibly inaccurate) CI tests
and because IPC-MBUVR detects spouses with CI tests based on CS of greater
cardinality (thus less reliable).

4 Conclusion

In this work we explored the potential of a sound and efficient Markov blanket
filter for use on small sample microarray datasets. Our results suggest that al-
though the Markov blanket filter is very efficient to filter microarray features
given a large enough sample, it is not able to compensate the information loss
caused by discretization when the sample size is too small. It is also penalized by
the decreased reliability of conditional independence tests in such a setting. We
are currently trying to improve IPC-MBUVR’s performance on small samples by
replacing the G-test with another CI test which wouldn’t require a complete dis-
cretization of data. As future work, we would also like to explore more precisely
the minimum sample size necessary for the Markov blanket filter to perform well.
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Abstract. A challenging and novel direction for feature selection re-
search in computational biology is the analysis of signature multiplicity.
In this work, we propose to investigate the effect of signature multiplicity
on feature importance scores derived from tree-based ensemble methods.
We show that looking at individual tree rankings in an ensemble could
highlight the existence of multiple signatures and we propose a simple
post-processing method based on clustering that can return smaller sig-
natures with better predictive performance than signatures derived from
the global tree ranking at almost no additional cost.

1 Introduction

Feature selection is an important aspect of many machine learning applications
in computational biology [4]. Traditionally, many standard feature selection al-
gorithms assume the existence of a single set of “optimal” features. However, in
reality, this need not necessarily be the case and there could be several, distinct
or overlapping, (minimal) subsets of features that might all explain the output of
interest equally well given a particular loss function. We will refer to these equiv-
alent minimal subsets as signatures, and the occurence of multiple signatures as
signature multiplicity [6]. This phenomenon arises naturally in the presence of
correlated or redundant features on a pairwise basis, but multiplicity can also
occur at the level of signatures of larger sizes. For some loss function, signature
multiplicity can be related to the existence of multiple markov boundaries for the
target variable [6]. The study of signature multiplicity, and its effect on feature
selection is at the moment only in its childhood, and so far studies have mainly
focused on the microarray domain [1,6].

As standard feature ranking methods are not designed to cope with multiple
signatures, they often interleave the features from the different signatures. Thus,
thresholding this ranking does not even ensure to give a single valid and/or
minimal signature. Furthermore, signature multiplicity might have a detrimental
effect on the stability of feature selection methods, as small perturbations on the
training set can result in large deviations regarding the ranking of features.

In this work, we investigate the impact of signature multiplicity on tree-based
ensemble methods and we propose a simple post-processing method based on
clustering to retrieve multiple signatures from the individual rankings provided
by individual trees in a randomized tree ensemble.
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2 Exploring individual tree rankings

Classification and regression trees are non-parametric supervised learning meth-
ods that learn an input-output model in the form of a tree, combining elementary
tests defined on the input features. Because of their high variance, they are typ-
ically exploited in the context of ensemble methods such as bagging or random
forests. A feature importance measure can be derived in different ways from a
tree. In this work, we restrict ourselves to the importance obtained by summing
the impurity reduction score at each tree node where this feature is used to
split3. These importance scores are then averaged over several trees to yield a
more stable score.

While one is often interested only in the global ranking obtained by aver-
aging the individual rankings, in the presence of multiple signatures, one can
reasonably expect that each tree in an ensemble will highlight a distinct signa-
ture. Indeed, since each tree is built greedily in a top-down fashion, the selection
of a feature, or group of features, in a tree branch will decrease the probability
to select redundant features at deeper nodes, which will favor the appearance of
features from only one signature in each tree. In addition, because of random-
ization, one can also expect the selected signature to be different from one tree
to another.

To check this hypothesis, we carried out experiments on the TIED dataset,
an artificial dataset, specifically designed to contain multiple signatures [5]. The
TIED dataset was generated from a bayesian network containing 1000 discrete
variables, including the four-valued target. By construction, each of the 72 signa-
tures contains 5 variables and belongs to {9}×{4, 8}×{11, 12, 13}×{18, 19, 20}×
{1, 2, 3, 10}. The upper left graph of Figure 1 shows a heatmap representing 1000
tree rankings obtained with bagging (x-axis) for the top 20 features (y-axis) in
the global ranking. Features are ranked top-down according to their global im-
portances and rankings have been ordered by hierarchical clustering (dendro-
gram not shown). This heatmap clearly highlights the existence of groups of
rankings each corresponding to one of the signatures. While the global rank-
ing introduces the redundant features by block (e.g., features 1,2,3, and 10 are
the top 4 features which are redundant by construction), each individual ranking
usually contains only one feature per group. We obtained similar results on other
artificial datasets.

3 Towards an automatic identification of signatures

Assuming that we are looking for K signatures, the analysis in the previous
section suggests a simple approach for retrieving the multiple signatures from
T feature importance vectors; Use any clustering algorithm (k-means in our
experiments) to determine K clusters of weight vectors. Then, average the weight
vectors in each of the clusters, and rank the features according to their average
weight. To evaluate the quality of a given signature, a model is rebuilt with any

3 A feature not appearing in a tree receives a zero importance.
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supervised learning method using the top m features in each cluster for increasing
values of m. When there are multiple signatures, we expect that the model
obtained from each cluster will be at least equally good as a model learned in
the same manner from the global ranking, i.e. the ranking obtained by averaging
over all trees, and not over the clustered ones. To determine the optimal value
of the number of clusters, we propose to proceed as follows: several values of K
are compared, and the one that maximizes the difference over all values of m
between the error obtained from the global ranking and the average error over
the clusters is considered as optimal.

We carried out experiments with this approach on the TIED dataset. T was
fixed to 1000, and the values explored for K were {2, 3, 5, 10, 15}. Features were
ranked using a bagged ensemble of trees and the evaluation was done using
ensembles of (100) totally randomized trees [2]. The latter method is not robust
to the introduction of irrelevant features and is thus appropriate to determine
minimal signatures. For the evaluation of signatures, we used 20 repetitions of a
90%-10% split of data in training and test, with the feature ranking computed
only on the training sample, so as to avoid any selection bias.

The bottom left graph of Figure 1 shows in red the evolution of the error with
the number of features m taken in their order in the global ensemble ranking,
and in green the average error over all cluster rankings, for the value of K = 15
selected as just described. Blue curves show for each value of m respectively the
minimal and maximal error obtained over all clusters. This graph shows that the
cluster signatures are all very good and much better than the global signature
for small values of m.

4 Experiments with microarray data

We have applied the same approach on several microarray datasets related to
two families of problems: biomarker discovery for disease classification and reg-
ulatory network inference [3]. We only report below the results obtained on one
representative problem. The graphs on the right in Figure 1 were obtained from
microarray data when trying to discover the regulators of gene tyrP of E. coli
using the same procedure and dataset as in [3]. The protocol was exactly the
same as for the experiments on the TIED dataset.

The heatmap clearly highlights the diversity and complexity of the signatures,
with for example the top feature from the global ranking not being used in many
single rankings. The optimal number of clusters as determined automatically is
here 5 and it leads to five signatures that are all (slightly) better than the global
one.

5 Conclusion and future works

The discovery of multiple signatures is a challenging topic in the context of fea-
ture selection. In this work, we investigate the effect of signature multiplicity on
tree-based feature rankings. We show that looking at individual tree rankings in
an ensemble could highlight the existence of multiple signatures and we propose
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Fig. 1. Results on artificial and real datasets

a simple post-processing method based on clustering that can return smaller
signatures with better predictive performance than signatures derived from the
global tree ranking at almost no additional cost. In future work, we would like
to explore alternative ways to extract multiple signatures from an ensemble of
randomized feature rankers (not restricted to trees) and determine a measure of
the multiplicity in a given dataset.
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1 Introduction

The elucidation of the topology of molecular networks remains a challenging
problem in systems biology and continues to be an active area of research.
Dynamic Bayesian networks (DBNs) [1] are probabilistic graphical models de-
scribing conditional independence relationships between variables, through time.
DBNs have previously been employed to infer gene regulatory networks (GRNs)
from time series data [2, 3].

A wealth of information regarding the structure of molecular networks is
widely available due to ongoing development of online tools and databases. Such
information can be a valuable resource when used to aid the inference process.
Following [4], we carry out network inference within a Bayesian framework, thus
enabling the incorporation of existing biology via an informative prior distribu-
tion on networks [3, 5]. The key question that we address here is how to weight
such prior knowledge against experimental data.

We propose an empirical Bayes approach to determine the weighting of exist-
ing biology objectively. Moreover, we use exact model averaging to both perform
empirical Bayes and calculate exact posterior edge scores. This results in a proce-
dure which is simple from the user perspective, requiring no user-set parameters
or MCMC convergence diagnostics. We also note that we use a continuous lin-
ear model with interaction terms. This avoids (lossy) data discretisation whilst
retaining the ability to capture combinatorial interplay.

We apply our method to simulated data and to cancer protein signalling
data. Inferred networks are used to generate testable hypotheses which can sub-
sequently be validated in further experiments. Whilst we carry out this process
in the setting of protein signalling networks, our proposed method can equally
be applied to other applications (such as GRNs).

2 Methods

2.1 Model

Let p denote number of variables under study and T number of time points
in the dataset. Let Xt

i be a random variable representing variable i at time
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Fig. 1. Schematic of a DBN.

point t and Xt =
(
Xt

1, . . . , X
t
p

)
be the corresponding random vector at time

t. Following previous authors we make first-order Markov and stationarity as-
sumptions [6, 2] and permit only edges forward in time [2, 3]. Then the DBN
consists of a graph G with two vertices for each variable, representing adjacent

time points, with associated random vectors denoted by X−i =
(
X1
i , . . . , X

T−1
i

)T
and X+

i =
(
X2
i , . . . , X

T
i

)T
(see Fig. 1). The edge structure describes conditional

independences between variables and is the object of inference here.
Under these assumptions we have the following likelihood:

p(X |G, {θi}) =

p∏
i=1

T∏
t=2

p(Xt
i |Xt−1

πG(i), θi) (1)

where X denotes the complete data, πG (i) ⊆ {1, . . . , p} is the set of parents of
variable i in graph G, Xt

πG(i) =
{
Xt
j | j ∈ πG (i)

}
is a corresponding data vector

and {θi} are parameters associated with the conditional distributions.
The conditionals constituting the likelihood (1) are taken to be Gaussian

with mean given by a linear combination of parents and all possible products of
parents. Then

p(X+
i |X

−
πG(i), θi) = N (Biβi, σ

2
i In) (2)

where Bi is a design matrix (with columns corresponding to parents of i and
products of parents) and n is sample size. If data consists of m time courses each
with T time points, then n = m(T − 1).

Following [7], we use the reference prior p(σ2
i ) ∝ σ−2i for variances and

take βi ∼ Normal(0, nσ2
i (Bi

TBi)
−1). Then, integrating out parameters gives

the closed-form marginal likelihood,

p(X|G) ∝
p∏

i=1

(1 + n)−(2|πG(i)|−1)/2

(
X+

i

T
X+

i −
n

n + 1
X+

i

T
Bi

(
Bi

TBi

)−1

Bi
TX+

i

)−n
2

This formulation has attractive invariance properties under rescaling of the data
and has no free user-set parameters.
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2.2 Exact Inference

We are interested in calculating posterior probabilities of edges e = (X−a , X
+
b )

in the graph G. The posterior probability of the edge is calculated by averaging
over the space of all possible graphs G [4],

P (e |X) =
∑
G∈G

1{e∈G}P (G |X). (3)

where P (G | X) is the posterior distribution over graphs and is given, up to
proportionality, by P (X | G)P (G), where P (X | G) is the marginal likelihood
above and P (G) is a prior probability distribution on graph structures G.

For DBNs with p variables the size of the graph space is 2p
2

, hence growing
super-exponentially with p. This precludes explicit enumeration of the sum in (3)
for even small-to-moderate p. However, for the DBNs used here, it is possible
to utilise a variable selection approach to efficiently calculate posterior edge
probabilities exactly, thereby increasing confidence in results whilst avoiding the
need for expensive convergence diagnostics. In particular, for each variable i,
we score subsets of potential parents π(i) ⊆ {1, . . . , p}. Model averaging is then
carried out by averaging over subsets of parents rather than over full graphs,

P (e |X−, X+
b ) =

∑
π(b)

1{a∈π(b)}P (π(b) |X−, X+
b ). (4)

If the network prior P (G) factorises into a product of local priors over parents
sets for each variable P (πG(i)), then posterior edge probabilities calculated by
averaging over parent sets (4) equal those calculated by averaging over the (much
larger) space of graphs (3). We note that, whilst this equivalence holds for edge
probabilities, it does not hold for arbitrary graph features. Following previous
work [2, 3], we restrict maximum number of parents to four. The size of the
space of parent sets then becomes polynomial in p, enabling exact calculation of
posterior edge probabilities via (4).

2.3 Network priors and empirical Bayes

We follow [5] and use a prior of the form P (G) ∝ exp(λf(G)), where λ is a pa-
rameter controlling the strength of the prior. Let E∗ be a set of a priori expected
edges, generated from existing domain knowledge. Then f(G) = − |E(G)\E∗|
where E(G) is the set of edges contained in G and |·| denotes set cardinality.
Therefore the prior does not actively promote any particular edge, but rather
penalizes graphs according to the number of edges that are not contained in the
prior graph.

The strength parameter λ is set using an objective, empirical Bayes approach
by empirically maximising the quantity p(X|λ) = E [p(X |G)]P (G | λ). This quan-
tity can be calculated exactly using the variable selection framework described
above.

31



4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proportion of false positives

P
ro

p
o

rt
io

n
 o

f 
tr

u
e

 p
o

s
it
iv

e
s

 

 

network prior, +int

flat prior, +int

network prior, −int

flat prior, −int

correlations

random

Fig. 2. Average ROC curves for simulation study. Legend - “network prior”: DBN in-
ference using an informative prior P (G), weighted objectively by empirical Bayes; “flat
prior”: DBN inference using a flat prior over graph space; “+int/-int”: with/without
interaction terms; “correlations”: absolute correlations between proteins at adjacent
time points.

3 Results

3.1 Simulation

A simulation study was carried out using 20 variables, 8 time points and 4 time
courses per variable. We first created 25 data-generating networks, using a ran-
dom, Erdös-Renyi-like approach configured to ensure that the networks differed
substantially from the prior graph used. Data were generated by ancestral sam-
pling, using a Gaussian model, with individual terms in the model included with
probability 0.5; this meant that some dependencies were strictly linear, whilst
others included interactions. Empirical Bayes setting of prior strength parameter
resulted in an average value of λ = 3.54 ± 0.34 over the 25 experiments. Fig. 2
shows average ROC curves for edges called at varying thresholds. We see that
an informative prior, weighted by empirical Bayes, provides significant gains in
sensitivity and specificity, even though a non-trivial proportion of information
in the prior is not in agreement with the data-generating model.

3.2 Cancer signalling

We have applied our method to two (unpublished) phospho-proteomic datasets
from different breast cancer cell lines. Both cell lines are of the same basal sub-
type. As in our simulation, the datasets consisted of 20 variables, 8 time points
and 4 time courses per variable. A prior network was formed from the literature
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and weighted using empirical Bayes. We found evidence of striking differences
in signaling network topology even though the cancers are closely related. We
predicted a number of novel signaling links, specific to the individual cancer cell
lines, which we are currently validating using independent experiments.

4 Conclusion

We have proposed an exact network inference method, free of user-set param-
eters, that integrates existing biology using informative network priors, objec-
tively weighted by an empirical Bayes approach. We have illustrated our method
on simulated data and applied it to protein signalling data. We note that whilst
ODEs are bio-chemically more realistic, the continuous linear model used here
leads to a computationally efficient procedure, allowing efficient exploration of
large graph spaces.
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Abstract. Two basic forms of analysis recur for gene expression time
series: removing inactive (quiet) genes from the study and determining
which genes are differentially expressed. Often these analysis stages are
applied disregarding the fact that the data is drawn from a time series. In
this paper we propose a simple model for accounting for the underlying
temporal nature of the data based on a Gaussian process. We present [6]
a simple approach for filtering quiet genes, or for the case of time series in
the form of expression ratios, quantifying differential expression. We as-
sess via ROC curves the rankings produced by our regression framework
and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both
simulated and experimental data showing that the proposed approach
considerably outperforms the current state of the art.

1 Introduction

Gene expression profiles give a snapshot of mRNA concentration levels as en-
coded by the genes of an organism under given experimental conditions. With
the decreasing cost of gene expression microarrays, long time-series experiments
have become commonplace, giving a far broader picture of the gene regulation
process. Such time series are often irregularly sampled and may involve differing
numbers of replicates at each time point. The experimental conditions under
which gene expression measurements are taken cannot be perfectly controlled
leading the signals of interest to be corrupted by noise, either of biological origin
or arising through the measurement process.

As opposed to methods targeted at static experiments (one timepoint), it
would seem sensible to consider methods that can account for the special nature
of time course data [1, 10, 11]. The analysis of gene expression microarray time-
series has benefited the genome-wide identification of direct targets of transcrip-
tion factors [4, 5] and the full reconstruction of gene regulatory networks [2]. A
comprehensive review on the motivations and methods of analysis of time-course
gene expression data can be found in [3].
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1.1 Testing for Differential Expression

A primary stage of analysis is to characterize the activity of each gene in an ex-
periment. Removing inactive or quiet genes (genes which show negligible changes
in mRNA concentration levels in response to treatments) allows the focus to
dwell on genes that have responded to treatment. Removing quiet genes will
often have benign effects later in the processing pipeline. However, mistaken re-
moval of profiles can clearly compromise any further downstream analysis. If the
temporal nature of the data is ignored, our ability to detect such phenomena
can be severely compromised.

This paper, as many other studies, uses data from a one-sample setup [1], in
which the control and treatment cases are directly hybridized on a microarray
and the measurements are normalized log fold-changes between the two output
channels of the microarray, so the goal is to test for a non-zero signal.

A recent significant contribution in regards to the estimation and ranking
of differential expression of time-series in a one-sample setup is a hierarchical
Bayesian model for the analysis of gene expression time-series (BATS) [1], which
offers fast computations through exact equations of Bayesian inference, while
making a number of prior biological assumptions to accomplish this. In BATS
each time-course profile is assumed to be generated from an underlying function,
which is expanded on an orthonormal basis (Legendre or Fourier), plus noise.
The number of bases and their coefficients, are estimated through analytic com-
putations in a fully Bayesian manner. Thus the global estimand for every gene
expression trajectory is the linear combination of some number of bases whose
coefficients are estimated by a posterior distribution. In addition, the BATS
framework allows for various types of non-Gaussian noise models to be used.

1.2 Gene Expression Analysis with Gaussian Processes

Gaussian processes(GP) [8] offer an easy to implement approach to quantifying
the true signal and noise embedded in a gene expression time-series, and thus
allow us to rank the differential expression of the gene profile. In this paper
we use the squared-exponential covariance function (or RBF kernel). Figure 1
illustrates an example of fitting a GP with an RBF kernel on an experimental
profile.

When using different types of models (e.g. with different number of hyper-
parameters), a Bayesian-standard way of comparing them is through Bayes fac-
tors [1, 9]

K =

∫
dθ1 p(y |x, θ1, H1) p(θ1 |H1)∫
dθ2 p(y |x, θ2, H2) p(θ2 |H2)

,

where H1 represents the hypothesis where the profile has a significant underlying
signal and thus it is truly differentially expressed, and for H2 is for no underlying
signal in the profile where the observed gene expression is just the effect of
random noise.
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Fig. 1. (a) A GP fitted on the centred profile of the gene Cyp1b1 (probeID 1416612 at
in the GSE10562 dataset) with different settings of the lengthscale hyperparameter ` 2.
Crosses are zero-mean hybridised gene expression in time (log2 ratios between treat-
ment and control), lines are mean predictions of the GP and shaded areas are the
point-wise mean plus/minus two standard deviations (95% confidence region). When
the mean function is constant as ` 2 →∞ (0 inverse lengthscale) then all of the observed
variance is attributed to noise (σ2

n). When the lengthscale is set to a local-optimum
large value (` 2 = 30), the mean function roughly fits the data-points and the observed
variance is equally explained by signal (σ2

f ) and noise (σ2
n). Additionally, the GP has a

high uncertainty in its predictive curve. When the lengthscale is set to a local-optimum
small value (` 2 = 15.6) then the mean function tightly fits the data-points with high
certainty. The interpretation from the covariance function in this case is that the pro-
file contains a minimal amount of noise and that most of the observed data variance
is explained by the underlying signal (σ2

f ). (b) The contour of the corresponding LML
function plotted through an exhaustive search of ` 2 and signal-to-noise-ratio (SNR)
values. The two main local-optima are indicated by green dots and a third local opti-
mum, that corresponds to the constant zero function, has a virtually flat vicinity in the
contour, which encompasses the whole lengthscale axis for very small values of SNR
(i.e. the lengthscale is trivial if SNR≈ 0).

Depending on the model H, these integrals may be intractable. In this paper
we present a simple approach to ranking the differential expression of a profile.
Instead, we approximate the Bayes factor with a log-ratio of marginal likelihoods

K ≈ log

(
p(y |x, θ2)

p(y |x, θ1)

)
,

with each likelihood being a function of different configurations of θ — the hy-
perparameters of the RBF kernel. We still maintain hypotheses H1 and H2 that
represent the same notions explained above, but in this case they differ sim-
ply by configurations of θ. Specifically, on H2 the hyperparameters are fixed to
θ2 = (∞, 0, var(y))> to encode a function constant in time (` 2 → ∞), with no
underlying signal (σ2

f = 0), which generates a time-series with a variance that

can be solely explained by noise (σ2
n = var(y)). Similarly, on H1 the hyperpa-

rameters θ1 are initialised to encode a function that fluctuates in accordance

36



4 Alfredo A. Kalaitzis and Neil D. Lawrence

to a typical significant profile (e.g. ` 2 = 20), with a distinct signal variance
that solely explains the observed time-series variance (σ2

f = var(y)) and with

no noise (σ2
n = 0). The log-marginal is then optimised, through scaled conjugate

gradients, with respect to the hyperparameters. The ranking score of a profile is
based on how likely H1 is in comparison to H2. This methodology is applied on
every expression profile in our datasets.

A Gaussian process with an RBF kernel makes the reasonable assumption
that the underlying signal in a profile is a smooth (infinitely differentiable) func-
tion. This property endows the GP with a large degree of flexibility in capturing
the underlying signals without imposing strong modeling assumptions (e.g. num-
ber of basis functions in BATS) but may also allow it to erroneously pick up
spurious patterns (false positives). For a GP approach on two-sample data (sep-
arate time-course profiles for each treatment), see the work in [9]. GP priors have
also been used for modeling transcriptional regulation [7].

2 Results and Conclusions

We assume that each gene expression profile can be categorized as either quiet or
differentially expressed. As a noisy ground truth, we use data from [4]. For that
study, the TSNI algorithm (time-series network identification) was developed to
infer the direct targets of TRP63. Furthermore, the direct targets inferred were
biologically confirmed by correlation with ChIP-Seq binding regions.

We apply standard GP regression and BATS on two in-silico datasets sim-
ulated by BATS and GPs (see Figures 2(a)(b)) and on the experimental data1,
where only the top 100 ranks of TSNI were labelled as truly differentially ex-
pressed in the ground truth (see Figure 2(c)). From the output of each model
a ranking of differential expression is produced and assessed with ROC curves
to quantify how well in accordance to the ground truth (BATS-sampled, GP-
sampled, experimental) the method performs.

The experimental data are much more complex and apparently the robust-
noise BATS variants now offer no increase in performance. Since the ground
truth focuses on the 100 most differentially expressed genes (according to TSNI)
with respect to the induction of the TRP63 transcription factor, these results
indicate that the proposed approach of ranking indeed highlights differentially
expressed genes and that it naturally displays an attractive degree of robustness
(similar AUC) against different kinds of noise.
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Fig. 2. One ROC curve for the GP method and three for BATS, using a different noise
model (subscript “G” for Gaussian, “T” for Student’s-t and “DE” for double expo-
nential marginal distributions of error), followed by the area under the corresponding
curve (AUC). (a) Data simulated by BATS, induced with Gaussian noise. Very simi-
lar results were acquired for simulated data induced with Student’s-t with 5 degrees of
freedom and 3 degrees of freedom. (b) On data simulated by GPs. (c) On experimental
data from [4].
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Abstract. RNA interference in combination with gene expression mea-
surements provides a useful tool not only for the identification of gene
function but also for the inference of gene-gene interactions. However,
learning the underlying network of a given biological process remains
a challenging task since the problem space increases exponentially with
network size and furthermore, the given data is in most cases noisy, in-
complete or both. We present a model which infers signaling networks
using a linear optimization program which can be solved efficiently even
for larger network sizes. The model can easily deal with double or multi-
ple knockdowns and integrate prior knowledge information. Using simu-
lated data we show that our model performs much better than random
guessing even for noisy or missing data. Furthermore, we outperform a
recently proposed method on simulated and on real biological data study-
ing the ERBB signaling where we could confirm several gene interactions
as well as identify potential new ones.

Keywords: Network Inference, Linear Optimization, Linear Program-
ming, RNAi Data

1 Introduction

Over the past years, RNA interference (RNAi) has been extensively used to
perform high-throughput, high-content knockdown experiments which allow the
functional characterization of genes in living cells. However, to study the behav-
ior of complex biological systems it is necessary to understand how genes interact
with each other in the underlying signaling network. Hence, the reconstruction
of networks from RNAi data is a challenging problem. One of the problems is the
exponentially increasing dimension space for increasing network elements. Thus,
a complete enumeration of the solution space is not feasible for many network
inference approaches when there are more than five to six genes [3, 4].
We formulate the network inference task as a linear optimization problem (LP)
which can be solved efficiently even for large network sizes. The input of our
method can be RNAi or any other gene perturbation data where the effects on
the remaining elements can be quantified for example using additional expression
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measurements. Ourfali et al. [5] proposed an integer programming formulation
for the explanation of knockout effects on gene expression levels and the infer-
ence of an integrated network of protein-protein and protein-DNA interactions.
In contrast to their method, our approach does not need a pre-given interaction
network and can infer the signaling network purely from data. Furthermore, our
LP model can easily handle incomplete data.

2 Linear Model for Network Inference

The model presented here is based on the assumption that after the knockdown
of a gene its descendant genes in the underlying network show a phenotypic
effect. Therefore, a protein a influences other proteins which are further down
in the network topology (i.e. b), if there exists a path from a to b. Furthermore,
we assume that the information flow within a network begins at one or several
source nodes S and it is then propagated down through the network until it
reaches one or several final nodes F . We classify all genes of a study whether
they are active or inactive after respective gene perturbations. Nodes are active,
if the sum of incoming edge weights from predecessor nodes are higher than a
pre-given threshold and inactive otherwise. We formulate the network inference
problem as an optimization problem which uses the observed data to find a net-
work topology that minimizes absolute edge weights wij ∈ R between node i
and j and fits the data best. The model is flexible since additional constraints
can be easily formulated and only little restrictions (for example self-regulating
edges are excluded) are requested on the network structures.

Given are n different genes, K different knockdowns of one or several genes
at the same time and observations xik ∈ R≥0 for i ∈ {1, . . . , n} genes and
k ∈ {1, . . . ,K} knockdowns. Gene i is active after knockdown k if xik ≥ δi and
inactive otherwise, with δi being calculated from the data.
The LP is defined as:

min z(w+
ji, w

−
ji, w

0
i , ξl) :=

(∑
i,j

(w+
ji + w−

ji) +
∑
i

w0
i + λ

∑
l

ξl

)
(1)

s.t. if xik ≥ δi and bik = 1 : w0
i +

∑
j ̸=i

(w+
ji − w−

ji)xjk ≥ δi − ξl (2)

if xik < δi and bik = 1 : w0
i +

∑
j ̸=i

(w+
ji − w−

ji)xjk ≤ 0 (3)

if i ∈ V \ S :
∑

j∈V,j ̸=i

(w+
ji + w−

ji) ≥ δi (4)

if i ∈ V \ F :
∑

j∈V,j ̸=i

(w+
ij + w−

ij) ≥ δi (5)

if wij is known to be ≥ m ∈ R : wji ≥ m, (6)
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where the optimization function z in equation 1 is minimized over three terms.
The first term accounts for the absolute edge weights wji = w+

ij + w−
ij with

w+

ij , w
−
ij ∈ R≥0 representing activating and deactivating interactions, respec-

tively. The second term optimizes offset variables w0

i ∈ R≥0 which denote the
baseline activity of the genes and the third term allows to deal with noisy data
by using slack variables ξl with ξl ∈ R≥0.
The information whether a gene has been silenced in a certain knockdown is
denoted with parameter bik being equal to zero and bik being equal to one
otherwise. Parameter λ ∈ R≥0 is defined as a non-negative penalty parameter
to control the introduction of slack variables and thus, the trade-off between
sparcity and connectedness of the network.
The constraints 2 and 3 specify the effects of the knockdowns. We assume that
the activity of each gene i is given by the addition of its baseline activity (w0

i )
and the activity of preceding genes (xjk with j ̸= i) multiplied with the corre-
sponding edge weights (w+

ji−w−
ji) after knockdown k. Thus, if gene i is observed

to be activated after the knockdown k, so xik ≥ δi (and it has not been silenced,
so bik = 1), the sum of the incoming information flow and its baseline activity
has to be greater or equal to δi − ξl and smaller or equal to zero otherwise (see
constraints 2 and 3).
The inequalities given in 4 and 5, respectively, force each node which is not a
start or end node to have at least one incoming and one outgoing edge, respec-
tively. Both constraints are necessary to avoid lose ends. By lose ends we mean
for example a node which is not a start node but has no incoming information
flow, or a node which is not an end node, but has no outgoing information flow.
The last constraint (6) exemplifies how already known interactions from all kinds
of biological prior knowledge can be integrated in the network inference model.

3 Results on Simulated Data and Real Data on ERBB

Signaling

3.1 Simulated Data

Assume a toy network topology to be given like in Figure 1 (a). Assuming single
knockdowns for each gene and a double-knockdown for gene 2 and 3 to be given,
we simulated 100 times data based on this network topology using uniform ran-
dom noise with U(0, sd) for sd = {0, . . . , 0.5}. Moreover, we simulated missing
data where at least one data point to maximally 80% are missing and noise has
been generated with U(0, 0.1). We solved the corresponding LPs using δ = 0.5,
λ = 1 and calculated the area under the ROC- (AU-ROC) and the PR-curve
(AU-PR). The resulting mean and standard deviation of AU-ROC= 0.96± 0.04
and AU-PR= 0.88 ± 0.11 for the noisy data and AU-ROC= 0.68 ± 0.11 and
AU-PR= 0.44 ± 0.15 for the missing data show, that we are each time much
better than random guessing values (AU-PR= 0.56, AU-ROC= 0.23 for three
class-problems like given here). Not surprisingly, the overall performance of the
model is decreasing the larger the noise and the more data points are missing
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Fig. 1. (a) Toy network topology with five nodes. Arrows indicate activation and be-
tween node 3 and 4 an inactivation is shown. (b) Imageplot representing inferred edges
(gene i influences gene j) for all genes of the ERBB signaling data. The edge weights
are coded in grey-scale with white corresponding to positive and black to negative
interactions.

(data not shown).
We compared the performance of our LP-model with a recently proposed net-
work inference method proposed by Froehlich et al. which is called deterministic
effects propagation networks (DEPNs) [2]. Results of the DEPNs for the noisy
data average to AU-ROC= 0.82 ± 0.02 and AU-PR= 0.7 ± 0.04, which clearly
demonstrates that we are highly outperforming their proposed method.

3.2 Real Data

We tested our model on a real biological problem using normalized data from lit-
erature [2] where 16 genes (ERBB1, ERBB2, p21, p27, Cyclin D1, CDK2, CDK4,
pAKT1, pERK1/2, pRB1, IGF1R, ERalpha, MYC, CDK6, Cyclin E1, ERBB3)
of the ERBB signaling network have been measured using 16 knockdowns (in-
cluding 3 double knockdowns) and MOCK (no stimulation). Each knockdown
has been repeated in 4 technical and 3 biological replicates. Reverse Phase Pro-
tein Array measurements have been carried out for 10 network intermediates,
each time before and twelve hours after EGF stimulation. We summarized repli-
cates using mean and solved the corresponding LP with λ = 4 and δi = MOCKi

at time=0 for each gene i.
Results are shown in Figure 1 (b) where the inferred edge weights are coded
in grey-scale with white indicating positive and black negative interactions,
respectively. The inferred gene interactions which are most interesting (and
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which have highest edge weights) are the activation of gene ERBB1 by ERBB2
(weight=2.8) and CDK2 by ERBB2 (weight=3.5). The most pronounced inacti-
vation is learned between gene pAKT and CDK2 (weight=-2.4). All three edges
have been already reported in literature and inferred using DEPNs [2].
Apart from the gene-interactions already inferred by Froehlich, we additionally
learned the activation of ERBB2 through ERBB1 (weight=3.4), which is not
surprising, since they are forming heterodimers [1]. Furthermore, our results
indicate that pERK1/2 is inactivating ERBB1 (weight=-2.1). Although this in-
teraction has not been explicitly reported in literature yet, Chen et al. showed
that the ERBB response is silenced by negative feedback from active ERK [1]
and thus, this is strongly supporting our results.

4 Discussion

We formulated the challenge of linear network inference as an LP, which can
be solved efficiently even for large-scale problems. The model is able to include
prior knowledge and can easily handle double or multiple gene knockdowns at the
same time. Moreover, the method presented here determines whether a gene-gene
interaction is activating or deactivating and both, discrete and continuous data
can be processed. We showed on simulated data that the model is able to deal
with missing and noisy data with performance significantly better than random
guessing as well as a recently published approach. Furthermore, using our method
on real biological data studying ERBB signaling we were able to confirm already
known interactions given in the literature and additionally, identify new ones.
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1 Introduction

We describe a statistical relational learning framework called Gaussian Logic
capable to work efficiently with combinations of relational and numerical data.
The framework assumes that, for a fixed relational structure, the numerical
data can be modelled by a multivariate normal distribution. We show how the
Gaussian Logic framework can be used to predict DNA-binding propensity of
proteins and to find motifs describing novel gene sets which are then used in
set-level classification of gene expression samples1.

2 A Probabilistic Framework

We address the situation where training examples have both structure and real
parameters. One example may e.g. describe a measurement of the expression of
several genes; here the structure would describe functional relations between the
genes and the parameters would describe their measured expressions. Note that
we allow different structures in different examples. In the genomic example, a
training set thus may consist of measurements pertaining to different gene sets,
each giving rise to a different structure of mutual relations between the genes.

To describe such training examples as well as learned models, we use a con-
ventional first-order logic language L whose alphabet contains a distinguished
set of constants {r1, r2, . . . rn} and variables {R1, R2, . . . Rm}. Any substitution
in our framework must map variables (other than) Ri only to terms (other than)
rj . The structure of an example is described by a (Herbrand) interpretation H,
in which the constants ri represent uninstantiated real parameters. The param-
eter values are then determined by a real vector θ. Thus each example is a pair
(H,θ). Examples are assumed to be sampled from the distribution

P (H,ΩH) =

∫

ΩH

fH (θ|H)P (H)dθ

which we want to learn (where ΩH ⊆ Rn). Here, P (H) is a discrete probability
distribution on the countable set of Herbrand interpretations of L. fH (θ|H)

1 A longer version of this paper appears at the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML
PKDD 2011) under the title: ”Gaussian Logic for Predictive Classification”.
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are the conditional densities of the parameter values. The advantage of this
definition is that it cleanly splits the possible-world probability into the discrete
part P (H) which can be modeled by state-of-the-art approaches such as Markov
Logic Networks (MLN’s) [3], and the continuous conditional densities fH (θ|H)
which we elaborate here. In particular, we assume that f (θ|H) = N (µH , ΣH),
i.e., θ is normally distributed with mean vector µH and covariance matrix ΣH .
The indexesH emphasize the dependence of the two parameters on the particular
Herbrand interpretation that is parameterized by θ.

To learn P (H,ΩH) from a sample E, we first discuss a strategy that sug-
gests itself readily. We could rely on existing methods (such as MLN’s) to learn
P (H) from the multi-set H of interpretations H occurring in E. Then, to obtain
f (θ|H) for each H ∈ H, we would estimate µH , ΣH from the multi-set Ω̂H

of parameter value vectors θ associated with H in the training sample E. The
problem of this approach is that, given a fixed size of the training sample, when
H is large, the multi-sets Ω̂H ,H ∈ H will be small, and thus the estimates of
µH , ΣH will be poor.

Our strategy is instead to discover Gaussian features of the training exam-
ples. A Gaussian feature is logic formula which, roughly said, extracts some of
the parameter values for each example into a vector such that this vector is ap-
proximately normally distributed across the training sample. For example, the
intentionally simplistic feature

∃G1, G2 expr(G1, R1) ∧ expr(G2, R2) ∧ regulates(G1, G2)

contains two standard FOL variables G1, G2 and two distinguished variables
R1, R2, and indicates that expressions of any two genes (G1, G2) in the regu-
lation relation are co-distributed normally. The corresponding mean vector and
covariance matrix are then estimated from all training examples whose structures
contain one or more pairs of such related genes. The learned features then act
as constraints on the target distribution P (H,ΩH). By choosing the number of
employed features, we are able to trade off between under- and over-constraining
the target distribution model.

In general, the problem of estimating parameters of Gaussian features is an
NP-hard problem. However, it is tractable for a class of features, conjunctive
tree-like features for which we have devised also an efficient feature construction
algorithm based on the feature-construction algorithm from [8]. It shares most
of the favourable properties of the original algorithm like detection of redundant
features.

3 Predictive Classification Applications

A straightforward application of the Gaussian-logic framework is in Bayesian
classification. We address a case study involving an important problem from bi-
ology: prediction of DNA-binding propensity of proteins. Several computational
approaches have been proposed for the prediction of DNA-binding function from
protein structure. It has been shown that electrostatic properties of proteins are
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good features for predictive classification (e.g. [1, 2]). A more recent approach is
the method of Szilágyi and Skolnick [9] who created a logistic regression classifier
based on 10 features also including electrostatic properties.

Here, we use Gaussian logic to create a model for capturing distributions of
positively charged amino acids in protein sequences. We split each protein into
consecutive non-overlapping windows, each containing lw amino acids (possibly
except for the last window which may contain less amino acids). For each window
of a protein P we compute the value a+i /lw where a+i is the number of positively
charged amino-acids in the window i. Then for each protein P we construct
an example eP = (HP ,θP ) where θP =

(

a+
1
/lw, a

+

2
/lw, . . . , a

+

nP
/lw

)

and HP =
w(1, r1), next(1, 2), . . . , next(nP − 1, nP ), w(nP , rP ). We constructed only one
feature Fnon = w(A,R1) for non-DNA-binding proteins since we do not expect
this class of proteins to be very homogeneous. For DNA-binding proteins, we
constructed a more complex model by selecting a set of features using a greedy
search algorithm. The greedy search algorithm optimized classification error on
training data. Classification was performed by comparing, for a tested protein,
the likelihood-ratio of the two models (DNA-binding and non-DNA-binding)
with a threshold selected on the training data. We estimated the accuracy of this
method using 10-fold cross-validation (always learning parameters and structure
of the models and selecting the threshold and window length lw using only the
data from training folds) on a dataset containing 138 DNA-binding proteins
(PD138 [9]) and 110 non-DNA-binding proteins (NB110 [1]). The estimated
accuracies (Gaussian Logic) are shown in Table 1. The method performs similarly
well as the method of Szilagyi et al. [9] (in fact, it outperforms it slightly but
the difference is rather negligible) but uses much less information. Next, we were
interested in the question whether the machinery of Gaussian logic actually
helped improve the predictive accuracy in our experiments or whether we could
obtain the same or better results using only the very simple feature F = w(A,R1)
also to model the DNA-binding proteins, thus ignoring any correlation between
charges of different parts of a protein (Baseline Gaussian Logic in Table 1).
Indeed, the machinery of Gaussian Logic appears to be helpful from these results.

Method Accuracy [%]

Szilágyi et al. 81.4
Baseline Gaussian logic 78.7
Gaussian logic 81.9

Table 1. Accuracies estimated by 10-fold cross-validation on PD138/NB110.

It is interesting how well the Gaussian-logic model performed considering the
fact that it used so little information (it completely ignored types of positively
charged amino acids and it also ignored negative amino acids). The model that
we presented here can be easily extended, e.g. by adding secondary-structure
information. The splitting into consecutive windows used here is rather artificial
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and it would be more natural to split the sequence into windows correspond-
ing to secondary-structure units (helices, sheets, coils). The features could then
distinguish between consecutive windows corresponding to different secondary-
structure units.

Next, we used Gaussian logic to search for novel definitions of gene sets with
high discriminative ability. This is useful in set-level classification methods for
prediction from gene-expression data [5]. Set-level methods are based on ag-
gregating values of gene expressions contained in pre-defined gene sets and then
using these aggregated values as features for classification. We constructed exam-
ples (HS ,θS) from gene-expression samples and KEGG pathways [7] as follows.
For each gene gi, we introduced a logical atom g(gi, ri) to capture its expres-
sion level. Then we added all relations extracted from KEGG as logical atoms
relation(gi, gj , relationType). We also added a numerical indicator of class-
label to each example as a logical atom label(±1) where +1 indicates a positive
example and −1 a negative example. Finally, for each gene-expression sample
S we constructed the vector of the gene-expression levels θS . Using our feature
construction algorithm we constructed a large set of tree-like features involving
exactly one atom label(L), at least one atom g(Gi, Ri) and relations expression,
repression, activation, inhibition, phosphorylation, dephosphorylation, state and
binding/association. After that we selected a subset of features according to the
correlation of the average expression of the involved genes with the class label,
which can be extracted from the estimated Gaussian-feature parameters.

Dataset GL FCF Dataset GL FCF

Collitis 80.0 89.4 Pheochromocytoma 64.0 56.0
Pleural Mesothieloma 94.4 92.6 Prostate cancer 85.0 80.0
Parkinson 1 52.7 54.5 Squamus cell carcinoma 95.5 88.6
Parkinson 2 66.7 63.9 Testicular seminoma 58.3 61.1

Parkinson 3 62.7 77.1 Wins 5 4

Table 2. Accuracies of set-level-based classifiers with Gaussian-logic features and FCF-
based features, estimated by leave-one-out cross-validation.

We have constructed features using a gene-expression dataset from [4] which
we did not use in the subsequent predictive classification experiments. We have
compared gene sets constructed by the outlined procedure with gene sets based
on so called fully-coupled fluxes (FCFs) which are biologically-motivated gene
sets used previously in the context of set-level classification [5]. We constructed
the same number of gene sets for our features as was the number of FCFs. The
accuracies of an SVM classifier (estimated by leave-one-out cross-validation) are
shown in Table 2. We can notice that the gene sets constructed using our novel
method performed equally well as the gene sets based on fully-coupled fluxes.
Interestingly, our gene sets contained about half the number of genes as compared
to FCFs and despite that they were able to perform equally well.
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Gaussian Logic for Predictive Classification 5

4 Conclusions and Future Work

We have introduced a novel relational learning system capable to work efficiently
with combinations of relational and numerical data. The experiments gave us
some very promising results, slightly outperforming methods based on features
hand-crafted by biologists using only automatically constructed Gaussian fea-
tures. Furthermore, there are other possible applications of Gaussian logic in
predictive classification settings which were not discussed in this paper. For ex-
ample, finding patterns that generally correspond to highly correlated sets (not
necessarily correlated with the class) of genes may have applications with group-
lasso based classification approaches [6].
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Abstract. Co-occurring genomic observations are increasingly available

in biomedical studies, providing complementary views to genome func-

tion. Integrative analysis of these data sources can reveal dependencies

and interactions that cannot be detected based on individual data sources.

Prior information of the application domain can guide the search for

novel multi-view biomarkers that have potential diagnostic, prognostic

and clinical relevance. We propose an integrative analysis framework

based on regularized probabilistic canonical correlation analysis with par-

ticular applications in cancer gene discovery and the analysis of human

intestinal microbiota.

Keywords: canonical correlation analysis, data integration, dependency
modeling, functional genomics

1 Introduction

Complementary genomic observations of gene- and micro-RNA expression, DNA
copy number, methylation status, and host-microbiome interactions are increas-
ingly available in biomedical studies public repositories such as the Cancer
Genome Atlas [1]. Analysis of statistical dependencies between different func-
tional layers of the genome allows the discovery of regularities and interactions
that are not seen in individual data sets. For instance, integrative analysis of
gene expression and copy number measurements can reveal cancer-associated
chromosomal regions with potential clinical relevance. Variants of probabilistic
canonical correlation analysis (CCA) [2] provide a robust framework for data
integration in functional genomics that can deal with the uncertainties associ-
ated with small sample sizes common in biomedical studies and provide tools to
guide dependency modeling through Bayesian priors [3]. We apply these models
to detect and characterize functionally active chromosomal changes in gastric
cancer and discuss other biomedically relevant extensions of the model.

2 Regularized dependency detection framework

Dependency between two data sources can be modeled by decomposing the ob-
servations into shared and data set specific components. Let us consider two sets
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of co-occurring genomic observations,X,Y . The shared effects are described by a
shared latent variable z whose manifestation in each data set is characterized by
linear transformations Wx and Wy, respectively. Independent data set-specific
effects are denoted by εx, εy. This gives the model

X ∼ Wxz+ εx

Y ∼ Wyz+ εy
(1)

In standard probabilistic CCA [2], the shared latent variable z follows stan-
dard multivariate normal distribution and the data-set specific effects are de-
scribed by multivariate Gaussians with covariance matrices Ψx and Ψy, respec-
tively. Biomedical screening studies often focus on particular types of regulation
and unconstrained models easily lead to overfitting with small sample size. We
incorporate domain-specific prior knowledge to focus on specific types of depen-
dency. For instance, imposing particular structure on the marginal covariances
could be used to data set specific prior information, and non-negativity con-
straints on W would focus on positive regulation. We show how constraining the
relation between Wx and Wy helps to model spatial dependencies in chromoso-
mally local gene neighborhoods [3].

3 Detecting functionally active DNA mutations

DNA alterations are a key mechanism in cancer development. An important task
in cancer studies is to distinguish so-called driver mutations from the less active
passengers. Driver mutations that affect expression levels of the associated genes
will contribute to dependencies between gene copy number and expression and
detecting such regions will reveal potential candidate genes for cancer studies.
Such dependencies are spatially constrained: probes with small chromosomal
distance are expected to show similar changes in both data sources. This is
encoded by requiring that the transformations Wx,Wy are similar. To enforce
this we use a symmetric prior Wx ∼ N(W,Σw), Wy ∼ N(W,Σw). Isotropic
covariance matrix Σw = σI, using σ to tune the similarity between Wx and Wy.
With σ → ∞ the transformations are uncoupled, yielding ordinary probabilistic
CCA. Comparisons to another extreme, σ → 0, which gives Wx = Wy confirm
that the regularized variant outperforms the unregularized model in cancer gene
discovery.

To prioritize cancer-associated chromosomal regions, dependency is quanti-
fied within each gene neighborghood with a sliding window approach over the
genome. The regions are sorted based on the dependency, which is quantified by

the ratio of shared vs. data set-specific effects Tr(WWT
)

Tr(Ψ)
, where W = [WxWy]

and Ψ is a block-diagonal matrix of the data set specific covariances Ψx, Ψy. A
fixed dimensionality (window size around each gene) yields dependency scores
that are directly comparable between the regions.

Figure 1A illustrates the dependencies across chromosome arm 17q in gastric
cancer [5]. Genome-wide analysis of the dependencies confirms the overall cancer
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gene detection performance of the model [3] and shows favorable performance
when compared to other recently proposed integrative approaches for cancer
gene discovery, including standard correlation- and regression-based alternatives
such as DR-Correlate [7] (manuscript in preparation). The model parameters
are directly interpretable: a ML-estimate of the shared latent variable z indi-
cates signal strength in each sample while W highlights probes that capture the
shared signal (Fig. 1B). The model can detect rare copy number events that are
manifested only in a subset of probes, which is an important property for cancer
studies.

Extensions of the model can be used to investigate cancer-associated changes
on micro-RNA and epigenetic regulation [4, 6], or associations between intestinal
microbiota and human physiology, which is of particular interest for understand-
ing cancer development in the gastrointestinal tract - a causal link between H.

Pylori infection and gastric cancer has been established but the role of microbial
changes in other types of cancer in gastrointestinal tract remain poorly charac-
terized.

4 Conclusion

Modeling of dependencies can reveal regularities and interactions that are not
seen in individual data sets. Regularized variants of probabilistic CCA provide
efficient tools to investigate statistical dependencies between complementary ge-
nomic observations and to guide dependency detection through Bayesian priors.
Implementations of dependency detection models and application tools are avail-
able through CRAN1 and BioConductor2.

Acknowledgments. This work has been partially funded by TEKES (grant
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Abstract. The inference of gene regulatory networks from time-series
data is an interesting and challenging task. The challenges arise due to
the extensive parameter space, non-identifiability and sloppiness of pa-
rameters and noisy data. Bayesian parameter estimation methods have
proven to work for this problem, as they provide distributions over pa-
rameters instead of point estimates. These distributions can be used to
perform Bayesian experimental design, which is essential because data
is limited and experiments are expensive. We implemented an efficient
sequential Bayesian experimental design framework based on maximum
entropy sampling on a high-dimensional non-linear ordinary differential
equations model for the inference of gene regulatory networks. As re-
sults we show that our method outperforms random experiments by a
high degree.

1 Challenges for the Inference of Gene Regulatory

Networks

Right from the beginning as the field of systems biology began to emerge, one
of the most interesting but also challenging topics was, and still is, the inference
of gene regulatory networks (GRNs). Although of high interest, this inference
is a difficult task due to several reasons. Firstly, the amount of data is limited
and additionally contains a lot of intrinsic and extrinsic noise. Secondly, for
increasing number of genes under consideration the number of possible gene
network topologies grows exponentially, i.e., the parameter space to be searched
is extensive. In general, in parameter estimation procedures one has also to
consider non-identifiability [10] and sloppiness [3] of parameters.

All these problems can successfully be addressed in a Bayesian context [8]
and several approaches and tools have been proposed (see e.g. [13]). Recently, we
applied a Bayesian parameter estimation procedure to an ordinary differential
equation (ODE) model for GRNs. We showed the reliability of our approach on
simulated data and outperformed the best submitted results on the DREAM2
Challenge #3 data [9]. The distributions of the parameters obtained in [9] still
need to be analyzed further to look whether and how different gene network
topologies may explain the data in a similar way. To distinguish between these

54



different topologies, new experiments have to be performed. Nevertheless, since
biological experiments need a lot of resources, experimental design is a crucial
step to obtain the most informative data for more reliable parameter values in
the next round of parameter estimation.

Most often classical experimental design [1] is used to perform optimal exper-
iments. However, it only works for linear problems and for non-linear models the
problem is linearized around a point estimate. Thus, not the whole parameter
distribution is considered. To reflect the whole distribution, Bayesian experimen-
tal design (BED) can be used [2]. Although, in the non-linear and non-Gaussian
case it is not analytically tractable and thus computationally demanding and
consequently it is a problem far from being solved. In the field of systems bi-
ology, several approaches have been proposed for BED. Steinke et al. [12] used
BED for the reconstruction of GRNs dealing with linear models and it is not
obvious how their method can be expanded to non-linear models. Kramer and
Radde [7] considered for the inference of dynamic network models only the steady
states of the underlying dynamic models and proposed the perturbation experi-
ment where the entropy of the posterior distribution over the model parameters
is minimized.

In contrast, we propose in this work an efficient framework for Bayesian ex-
perimental design being applicable to high-dimensional non-linear ODE models
for parameter estimation and consider the whole dynamic behavior and not only
the steady states. We show the pertinence of our method to an ODE model for
a five gene network.

2 Bayesian Experimental Design by means of Maximum

Entropy Sampling

To perform BED for parameter estimation purposes, one needs two main ingredi-
ents. The first one is the predictive distribution for future data d for experiments
e of interest. This we obtain with a model M(ω), dependent on the parameters
of interest ω. Together with a prior knowledge of ω, the predictive distribution
is

p(d | Me) =

∫

p(d | ω,Me)p(ω) dω.

The second ingredient is a utility function U(d, e) to make the decision which
experiment to perform next. The utility function depends on the experiments
we consider as possible experiments to be performed and on the data these
experiments will generate. Since, of course, this data is not known before the
experiment is performed, one chooses the experiment where the expected utility

EU(e) =

∫

U(d, e)p(d | Me) dd

is maximal. As utility function, the information

I(X) =

∫

f(x) ln
(

f(x)
)

dx = −Ent(X)
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of the new posterior distribution is used, where Ent(X) denotes the entropy
of X and f(·) denotes the density of the continuous random variable X. For
realistic biological models, i.e., non-linear models, BED has to be solved with
Markov chain Monte Carlo methods (MCMC). However, this is computationally
intractable, as triple integrals would have to be solved. To avoid this, Shewry and
Wynn [11] introduced maximum entropy sampling for BED. For many problems,
BED with triple integrals can be reformulated into a problem, where we want
to find the experiment e where Ent

(

p(d | ω,Me)
)

is maximal. To express this in
a different way, one can say, that the experiment has to be performed where we
have the most uncertainty in the dynamical behavior of the system.

Thus, our method takes into account the suggestion of Gutenkunst et al. [3]
to look more at the dynamical behavior of the system and less on the perfect
parameter estimates because of the universal property of sloppiness inherent in
a lot of non-linear ODE models describing biological effects.

3 Results for a 5 gene network

As a model M(ω) for gene regulatory networks we use non-linear differential
equations which are explained in detail in [9]. This ODE model does not only
provide parameter values for the connection of the underlying network but offers
detailed information about the dynamics of all gene products present. As exper-
iments e we took the measurement of additional time points of gene product
concentration for all genes, where we started first with two time points and per-
formed sequential experiments with 21 time points at the end. The probability
for data d is

p(d | ω,Me) = N
(

Me(ω), σ
)

where Me(ω) denotes the values of the data one would obtain, if the parameters
ω are the correct ones, i.e., the differential equations have to be numerically in-
tegrated. As entropy estimator we use a histogram-based estimator proposed by
Györfi and van den Meulen [4]. To get samples for the model parameters needed
for the calculation of Ent

(

p(d | ω,Me)
)

we use a population-based MCMC algo-
rithm [5] and sample from the distribution

p(ω) =
1√
2πσ2

5
∏

i=1

T
∏

τ=0

e−
1

2σ2

(

diτ−M(ω)

)2

where diτ is the measured data and T is the number of data points we have for
every gene. We set σ = 0.01. Furthermore, to speed up the sampling procedure of
the high-dimensional space, we used pMatlab and MatlabMPI [6] to parallelize
the sampling procedure. Population-based MCMC algorithms are ideal to do
so, because the communication between different subpopulations is very limited,
although not completely omitted. We run 20 chains split up in 4 subpopulations.

In Figure 1 the results are depicted. On the x-axis the round of the experiment
is denoted and on the y-axis one finds the information of the distribution p(ω).
We ran 10 independent runs of our experimental design procedure and plot
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Fig. 1. Results for an ODE model containing 46 parameters for gene network recon-
struction. For 10 independent runs the mean and the standard deviation is depicted.
The circled line represents the runs with the maximal amount of data available. The
diamond line represents random experiments and the squared line illustrates optimal
experiments.

the mean together with the standard deviation of these runs. The circled line
denotes the runs where we just sampled from the distribution p(ω), where all 21
data points were given and no experimental design was performed. This reflects
the maximal possible information contained in the data and thus in the model
parameters. The circled bars depicted for the other experiment rounds are just
shown for better comparison to the results of random and optimal experiments.
The squared line depicts the optimal experiments and the diamond one depicts
the random experiments. It can clearly be seen, that after performing 4 optimal
experiments the information in the parameters is as high as if all data points were
given, whereas for random experiments one has to add almost all data points to
obtain the same information content in the distribution of the parameters.

4 Discussion and Conclusion

An efficient method for sequential optimum Bayesian experimental design by
means of maximum entropy sampling was proposed and applied to a high-
dimensional non-linear ODE model for gene regulatory networks. We see that
it outperforms random experiments and works excellently for high-dimensional
non-linear models for the goal of parameter estimation. Moreover, it takes into
account that the whole dynamics of the system are captured properly and not
only the steady states of the ODE system.
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In the future it remains to test the method on real biological data and com-
pare it with the performance of other experimental design procedures. Further-
more, maximum entropy sampling needs to be applied to other experimental
design frameworks like perturbation experiments, e.g., gene knockouts or knock-
downs. Focusing in this work on the parameter estimation of the underlying
ODE model describing the gene regulatory network, we considered only a small
network. To deal with larger networks the MCMC sampling has to be sped up,
e.g., by using splines to approximate the dynamics of the system as was done
for parameter estimation in [9] to avoid numerical integration.
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Abstract. Discovering novel disease genes is challenging for diseases for 
which no prior knowledge is available. We have proposed a method that 
replaces prior knowledge about the biological process by experimental data. 
Our approach propagates the expression data over the protein-protein 
interaction network using distinct machine learning approaches. It relies on the 
assumption that strong candidate genes tend to be surrounded by many 
differentially expressed neighboring genes in a protein interaction network. 
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1   Introduction 

Discovering novel disease genes is challenging for diseases for which no prior 
knowledge - such as known disease genes or disease-related pathways - is available. 
Performing genetic studies frequently result in large lists of candidate genes of which 
only few can be followed up for further investigation. In the past couple of years, 
several gene prioritization methods have been proposed, such as Endeavour [1], 
SUSPECT [2], GeneWanderer [3], etc. They are using a guilt-by-association concept 
(candidate genes that are similar to the already confirmed disease genes are 
considered promising), and are therefore not applicable when little is known about the 
phenotype or when no confirmed disease genes are available beforehand. 

 
We have proposed a method that overcomes this limitation by replacing prior 

knowledge about the biological process by experimental data on differential gene 
expression between affected and healthy individuals [4]. At the core of the method are 
a protein interaction network and disease-specific expression data. Candidate genes 
are ranked based on the differential expression of their network neighborhood. Our 
method relies on the assumption that strong candidate genes tend to be surrounded by 
many differentially expressed neighboring genes in a protein interaction network. 
This allows the detection of a strong signal for a candidate even if its own differential 
expression value is too small to be detected by a standard analysis, as long as its 
interacting partners are highly differentially expressed.  
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Recently, we have proposed a prioritization method applying different machine 
learning approaches that identify promising candidate genes by determining whether a 
gene is surrounded by highly differentially expressed genes in a protein-protein 
interaction network [5] which we have made freely available to the community as a 
web server for gene prioritization [6].  

2 Methods 

We have applied different machine learning approaches to prioritize candidate 
genes based on network analysis of differential expression to determine whether a 
gene is surrounded by highly differentially expressed genes in a protein-protein 
interaction network: initially, we have applied a kernel method, namely the Laplacian 
exponential diffusion kernel, aggregating the differential expression of neighbors 
weighted as a function of distance [4]. In a recent study [5], we have proposed 
advanced machine learning algorithms: first, we have smoothed a candidate gene’s 
differential expression levels through kernel ridge regression [7-8]. Second, we have 
applied network diffusion by using the heat kernel algorithm [9] to our problem of 
disease candidate gene prioritization. Third, we have carried out network diffusion by 
applying the Arnoldi algorithm based on a Kyrlov Space method [10], approximating 
the Laplacian exponential diffusion kernel. Fourth, we have ranked the candidate 
genes by combining their differential expression levels with the average of the 
differential expression levels among their direct neighbors in a protein-protein 
interaction network (this straightforward approach for scoring candidates represents a 
naïve strategy for network analysis of differential expression). 
 

Finally, we have implemented further random walk approaches (such as HITS with 
priors and k-step Markov) and made this method freely available to the community as 
a web server for gene prioritization, namely PINTA [6]. In doing that, we provide a 
large variety of machine learning approaches for gene prioritization to the user.    

3 Evaluation 

To assess the performance of our implemented strategies, we have set up a 
benchmark on 40 publicly available data sets originated from Affymetrix chips on 
which mice with (simple) knockout genes were tested against controls. We have 
preprocessed and normalized each data set using RMA [11] and computed log2 ratios 
as differential expression levels for each gene in the network based on the expression 
in the knockout experiment versus the expression in the control for each data set. 
 

As the underlying network, we have applied a functional protein association 
network for mouse derived from STRING [12], a database of known and predicted 
protein-protein associations derived from heterogeneous data sources and different 
organisms including both physical interactions and functional associations. 
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For each data set we have selected a set of 100 candidate genes, including the 
knockout gene. For getting the candidates, we have chosen the knockout genes’ 
nearest 100 genes on the chromosome which we have then prioritized.  

 
Results were evaluated by retrieving the position of the knockout gene in the 

ranking list and by calculating the corresponding AUC value. Ideally, the knockout 
gene should appear in the top of the ranking list based on the hypothesis that this gene 
is causing all the disruption in the expression of the genes in the network.  

4 Results 

The performance was assessed against results obtained using a standard procedure 
in genetics (here: our baseline) that ranks candidate genes based solely on their 
differential expression levels. The aim was to show that our machine learning based 
approaches could outperform this standard procedure by ranking the knockout genes 
on higher ranking positions.  
 

 
Strategy Average ranking 

position 
(out of 100) 

AUC Error reduction 
relative to 
baseline 

Baseline: standard procedure in 
genetics 

17 83.7%   

Kernel ridge regression ranking 14 86.8% 19.0% 

Heat kernel ranking 8 92.3% 52.8% 

Arnoldi diffusion ranking 13 87.4% 22.7% 

Average expression ranking 12 88.0% 26.4% 

Table 1: Performance of distinct algorithms compared to our baseline using the 
STRING network and based on a benchmark consisting of 40 publicly available data 
sets on which mice with (simple) knockout genes were tested against controls. 

 
Table 1 presents an overview of the performance of the ranking strategies based on 

the benchmark as described above. Results show that our machine learning 
approaches clearly outperformed our baseline, and that the best results were obtained 
using the network diffusion based on the heat kernel algorithm leading to an average 
ranking position of 8 out of 100 genes, an AUC value of 92.3% and an error reduction 
of 52.8% relative to our baseline which ranked the knockout gene in average at 
position 17 with an AUC value of 83.7% [5].  
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5 Conclusion 

In this work, we have proposed a method that replaces prior knowledge about the 
biological process by experimental data, assuming that strong candidate genes tend to 
be surrounded by many differentially expressed neighboring genes in a protein 
interaction network. The results of our benchmark showed that we could identify 
promising candidate genes using network-based machine learning approaches even if 
no knowledge is available about the disease or phenotype.  
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Abstract. Comparing Gaussian and Student-t noise models for mi-
croarray data analysis provides substantial evidence that the appropriate
choice of noise distribution significantly affects data analysis and thus the
biological conclusions drawn from such an analysis. An investigation of
thirteen publicly available microarray experiments reveals that heavy-
tailed noise provides a by far better fit than a standard Gaussian for all
data sets. This observation was found independent of the chosen model
organism, measurement platform and data preprocessing. We may there-
fore conclude that non-parametric methods or approaches which allow for
heavy-tailed noise are preferred for reliably analysing microarray data.
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1 Introduction

The importance of microarrays for biological research triggered the development
of many analysis methods, such as t-tests, linear and probabilistic models which
commonly assume Gaussian noise. Giles and Kipling [4] provided justification
for this assumption by finding that microarray data follow a normal distribution.
Doubt has however been cast on the Gaussian assumption with investigations
having resulted in different findings. Hardin and Wilson [6] tested microarray
data for normality and concluded that it does not follow a normal distribution.
Evaluations by Novak et al. [8] revealed that approximately 5− 15% of the data
violate the Gaussian assumption. These conflicting findings suggest a detailed
investigation of the problem of including outliers properly in the analysis. Since
measurements are costly and we cannot rule out that biological effects cause over-
dispersion, outlying observations must be included in the analysis appropriately.

Using non-parametric statistics is the standard practice for avoiding Gaussian
assumptions (cf. [3, 7]). Such approaches suffer however from low power and thus
not providing significant findings, when analysing small sample sets [10]. In such
situations, robust parametric approaches, for example based on a Student-t noise
model [5] are suitable alternatives.

Statistical methods have gained considerable importance for machine learn-
ing approaches in the field of systems biology. High-throughput techniques,
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among them microarrays, provide some of the data which computational ap-
proaches in systems biology integrate into more complex models. Therefore, un-
derstanding the possible sources of noise becomes essential in order to handle
this type of data adequately.

In our work, we rely on a hierarchical Bayesian model to compare the good-
ness of fit of Gaussian and heavy tailed Student-t noise models in microarray
data analysis. We perform inference applying a hybrid Markov chain Monte Carlo
(MCMC) algorithm which ”jumps” between the Gaussian and the Student-t dis-
tribution and thus directly compares the models by Bayesian means. The pro-
posed application allows for a two step investigation: step one infers the most
probable noise model and step two compares analysis results of the “optimal”
noise distribution with a Gaussian alternative. This approach allows assessing
the implications of unsuitable noise distributions by comparing gene and Gene
Ontology (GO) term lists obtained with the different choices. We chose GOs as
an example for the propagation of errors when higher-order analyses are based
on incorrect gene lists. Our investigations, thus, yielded strong evidence that in-
appropriately chosen noise models will generate misleading leads for subsequent
biological research.

2 Results

Bayesian ANOVA model with adjustable noise: To investigate whether
Gaussian distributions can be used for microarray data analysis, we designed a
robust Bayesian ANOVAmodel. The ANOVAmodel is based on a linear relation-
ship between observations and the gene-wise mean expression values. To allow
inference over noise characteristics, we do not fix the likelihood function, but
design a model with variable noise by considering a finite class of distributions.
In order to consider a wide range of characteristics, we include the Gaussian
distribution and Student-t distributions with degrees of freedom ν between 1
(the extremely heavy-tailed Cauchy distribution) and a maximum νmax (which
is reasonably close to the Gaussian distribution).

To infer this complex model we implemented a hybrid MCMC sampler, con-
sisting of Gibbs, Metropolis-Hastings and Reversible Jump updates. As the
model’s hyperparameters direct the computational inference, we conducted a
detailed sensitivity analysis on artificial datasets to avoid choosing influential
hyperparameters (cf. [9]). Knowing the ground truth about the sample noise,
we could verify that the algorithm identified the best-fitting noise model accu-
rately and precisely. Using artificial and spike-in data, we could also show that
the algorithm’s sensitivity and specificity was at least comparable to commonly
applied methods (cf. [2]). Furthermore, we could demonstrate that the distance
between the included degrees of freedom ν of the considered Student-t models
would influence convergence behaviour of the Markov chains. Switching from a
larger to a smaller model grid size during run time instead of keeping it fixed
improved mixing of the chains.
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Table 1. Overview of data sets. Experiments are identified by their GEO ID
(CAMDA08 refers to the Endothelial Apoptosis contest data set, spike to the golden
spike experiment [2]), the preprocessing applied to the data (’Preproc.’), the posterior
mean degrees of freedom (’dfs’) ν we obtained for three different preprocessing meth-
ods (vsn, loess and quantile normalisation) and the noise dependencies of gene and GO
term lists (’diff./common’)

GEO ID Preproc. mean dfs (ν) diff./common diff./common

vsn loess quant. genes GO terms

GDS3216 MAS5.0 5 2 1 150/1176 78/111
GDS3225 MAS5.0 6 1 1 290/832 21/161
GDS1404 PathStat 14 1 1 136/1776 14/11
GDS1686 RMA 4 3 3 174/136 96/11
CAMDA 08 CLSS4.1 4 1 1 304/400 67/26
GDS1375 MAS5.0 3 1 1 3561/6861 316/160
GDS810 MAS5.0 4 1 1 135/72 51/9
GDS2960 RPG3.0 4 3 3 166/318 2/51
GDS3221 RMA 4 3 3 119/180 52/108
GDS3162 MAS5.0 4 1 1 446/797 66/112
GDS1555 MAS5.0 4 1 1 183/131 110/24
GDS2946 MAS5.0 5 2 2 157/146 306/14
GDS972 MAS5.0 5 1 1 163/369 71/94
spike MAS5.0 4 1 1 1748/401 -/-

Biological Consequences: For a systematic investigation, we chose the 13
data sets summarised in table 1, which cover a variety of experimental settings.
To assure that our findings are independent of a chosen normalisation method
(cf. [1]), we used three different preprocessing methods (vsn, loess, quantile) for
our investigations. Our assessment revealed the compelling result that heavy-
tailed Student-t distributions provide a better fit than the Gaussian for all the
data sets we analysed (cf. table 1). Depending on the normalisation, the optimal
degrees of freedom of the Student-t density were between 1 and 3 (loess, quantile)
or 4 and 14 (vsn).

In addition, our investigations showed that biological inference depends sub-
stantially on the chosen noise model. To quantify the implication of unsuitably
chosen noise distributions, we compared the lists of genes and Gene Ontology
(GO) terms inferred conditionally on the optimal Student-t model with gene and
GO term lists we obtained by relying on Gaussian noise. For vsn normalised data,
we found between 119 and 3561 genes and between 14 and 316 GO terms with
a noise model dependent assessment (cf. table 1). We chose Gene Ontologies as
an example for a higher-order biological analysis based on microarray data or
gene rankings inferred by models on the data. As already many top-ranked genes
differ between the results of the approaches with different noise, the discrepancy
is propagated when applying additional methods on the outcome of the models.

These numbers together with the overwhelming evidence we obtain for Student-
t noise models with small degrees of freedom suggest that the Gaussian noise

65



4 Posekany et al.

model leads to a large number of wrong assessments. Figure 1 shows that among
these problematic cases, we find both false positives and false negatives. We as-
sume that false positives occur, because the Gaussian distribution incorrectly
assigns differential expression due to one or a few far outlying measurements,
which the Student-t model can include more appropriately. Whereas false nega-
tives may result from grave overestimation of the variance by the Gaussian ap-
proach, while the Student-t distribution estimates a better-fitting error model.
As the noise behaviour of the spike-in data is similar to the biological data
sets, we can assume that the measurement process is partially responsible. How-
ever, there is no way to exclude the possibiblity that biological effects cause
the observed noise behaviour. Our findings therefore provide strong evidence
that Gaussian noise models are unsuitable for microarray data analysis, even if
according to Novak et al. [8] only 5− 15% of genes show outlying behaviour.
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Fig. 1. Marginal posterior probabilities of genes being differentially expressed for the
Gaussian and the robust noise model. The genes are ranked regarding the probabil-
ities obtained with Gaussian noise (black line), the dots mark posterior probabilities
obtained from the optimal Student-t noise model. Dots to the left of the line below the
cut-off 0.85 mark false positive genes which are misclassified by the Gaussian model.
Dots to the right of the line above the cut-off 0.85 are those which the Gaussian distri-
bution would have overlooked in these data sets (false negatives). The left figure shows
results for the GDS2946 data set, the right for the GDS3162 data set.

To compare the robust Student-t model with more general approaches, we
inferred differentially expressed genes with two non-parametric approaches: the
Kruskal-Wallis permutation test [7] and a non-parametric robust ANOVA [3]. In
agreement with previous investigations (cf. [10]), we find that non-parametric ap-
proaches fail in detecting significant findings in small sample scenarios. However,
if the non-parametric approach produces results, both non-parametric methods
agree better with the optimal Student-t noise model (76%− 86% shared genes)
than with the Gaussian approach (71%− 84% shared genes). We may therefore
conclude that non-parametric approaches are good choices for analysing microar-
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ray experiments with large sample numbers, with robust parametric methods
being a more generally applicable alternative.

3 Conclusion

An investigation of the robustness levels required for microarray data analysis
suggests that heavy tailed Student-t noise models or non-parametric methods
should be preferred over Gaussian noise distributions. The proposed evaluation
adopted a two stage strategy using a hierarchical Bayesian ANOVA model for
inference. We first inferred the optimal class of noise model, which in all cases re-
sulted to be a heavy-tailed Student-t density. A comparison of inferring biological
leads, once with the optimal noise model and another time with a Gaussian den-
sity, showed a strong dependency of inferred genes and Gene Ontology terms on
the chosen noise model. These findings showed not only that results differ when
deviating from the optimal noise, but also that these errors are propagated when
performing additional analyses. Furthermore, we found that inference results ob-
tained with optimal Student-t noise models are in good agreement with analysis
results obtained with robust non-parametric methods, as long as sample sizes
permit the application of the latter methods. We may therefore conclude that
microarray data analysis should avoid Gaussian noise assumptions and rather
rely on non-parametric (cf. [3, 7]) or robust parametric approaches (cf. [5, 9]).
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1 Introduction

The task of predicting in a protein-protein-interaction (PPI) network which pro-
teins are involved in certain diseases, such as cancer, has received a significant
amount of attention in the literature [1, 4]. Multiple approaches haven been pro-
posed, some based on graph algorithms, some on standard machine learning
approaches. Machine learning approaches such as Milenkovic et al.[5], Furney et
al. [1], Li et al. [4], Furney et al. [2] and Kar et al. [3] typically use a feature-
based representation of proteins as input, and their success depends strongly on
the relevance of the selected features. In earlier work it has been shown that the
Gene Ontology (GO) annotations of a protein have high relevance. For instance,
Li et al. [4] found predictive performance to depend only slightly on the chosen
machine learning method, but strongly on the chosen features, and among many
features considered, GO annotations turned out to be particularly important.

In previous work, when a protein p is to be classified as disease-related or
not, the GO annotations used for that prediction are usually those of p itself.
In this paper, we present a new type of GO-based features. These features are
based not on the GO annotation (“function”) of a single protein, but on pairs of
functions that occur on both sides of an edge in the PPI network. We call them
interaction-based features.

2 Interaction-based feature selection

A PPI network is a graph where nodes are proteins and an edge between two
nodes indicates that those two proteins are known to interact. In our application,
proteins in the training set are also labeled as cancer-related or not (supervised
learning). Additionally, each protein p is annotated with a vector FS(p) that
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indicates the functions that p has according to the Gene Ontology. Let F =
{f1, . . . , f|F |} be the set of all functions in GO. FS(p) is then an |F |-dimensional
vector with FSi(p) = 1 if protein p has function fi, and FSi(p) = 0 otherwise.

Several authors [1, 4] propose to use a χ2-based feature selection method to
select the most relevant GO terms. Let C and C̄ be the set of proteins that
are cancer-related (C) or not (C̄), and let, for each fi, Pi be the set of proteins
annotated with fi and P̄i the set of proteins not annotated with it. With a =
|C ∩ Pi|, b = |C ∩ P̄i|, c = |C̄ ∩ Pi| and d = |C̄ ∩ P̄i|, we have

χ2(fi) =
(ad− bc)2 ∗ (a+ b+ c+ d)
(a+ b)(c+ d)(b+ d)(a+ c)

(1)

Selecting individual discriminative functions based on equation 1 does not
consider the network topology and the way different functions interact with each
other in the network. Recent approach by Rahmani et al. [8] showed that consid-
ering Collaborative Functions: Pairs of functions that frequently interface with
each other in different interacting proteins, improves the prediction of proteins
functions. For the task of predicting cancer-related proteins, it is not impossible
that a function fi does not correlate itself with cancer-involvement, but when a
protein with function fi interacts with a protein with function fj , this interaction
may be an indication of the former protein being involved in a cancer.

To be able to take into account the information in the interactions, we here
define new features fij . These do not describe nodes, but directed edges between
nodes. Although edges in a PPI network are undirected, we can see them as
pairs of directed edges. A directed edge p → q is considered positive if p is a
cancer-related protein, and negative otherwise. By definition, fij(p → q) = 1 if
FSi(p) = 1 and FSj(q) = 1, and 0 otherwise. If C is the set of positive edges,
C̄ the set of negative edges, and for each feature fij , Pij is the set of edges for
which fij = 1 and P̄ij is the set of edges for which fij = 0, then the χ2 value of
fij can be defined exactly as above (substituting fij and Pij for fi and Pi in the
formulas for a, b, c, d and χ2). Intuitively, an fij with high χ2-value is relevant
for the class of the protein on the i-side.

The fij features describe edges, but we need instead features that describe
proteins. Therefore, we define features Fij as follows: Fij(p) =

∑
q fij(p → q)

if FSi(p) = 1, and Fij(p) = −1 otherwise. Note that by introducing −1 as
a separate value indicating that FSi(p) = 0, each Fij encodes implicitly the
corresponding fi feature.

In this work we compare how well cancer-involvement can be predicted from:
(1) a limited number of fi features, when those features are selected according to
their χ2 value as defined above, and (2) the same number of Fij features, when
those features are selected according to the following score, which combines the
overall relevance of fi, fj , and fij :

score(Fij) = χ2(fi) + χ2(fj) + χ2(fij).

In the following we will call the fi individual-based features, and the Fij interaction-
based features.
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3 Results

We evaluate our methods on the dataset used by Milenkovic et al. [5]. This
dataset is the union of three human PPI datasets: HPRD [6], BIOGRID [9] and
the dataset used by Radivojac et al. [7]. Milenkovic et al. provide details on the
construction of the integrated network; some statistical information is shown in
Table 1.

We divided the dataset into a training set containing 90%, and a test set
containing the remaining 10%, of the proteins. We used information in the train
set to select the K(= 100, 200, 300, 400, 500) highest scoring individual-based,
respectively interaction-based, features. Then, we described each protein in the
test set based on the selected features and finally, we applied the Naive Bayes
classifier for predicting cancer-related proteins.

Number of proteins 10,282

Average Degree 9.201

Min Degree 1

Max Degree 272

Number of Cancer Genes 939

Table 1. Statistical information of union of three human PPI datasets: HPRD [6],
BIOGRID [9] and Radivojac et al. [7].

Figure 1 compares our interaction-based features with the individual-based
features with respect to the Fmeasure, Precision and Recall metrics. Our pro-
posed method outperforms the individual-based method with 7.8%, on average,
with respect to Fmeasure. This confirms our assumption about the usefulness
of considering network interactions in feature selection. Table 2 lists five high-
ranked function pairs; it shows that the functions in these pairs are not neces-
sarily among the highest ranking functions with respect to their own χ2.

fi fj Rank(χ2(fi)) Rank(χ2(fj)) Rank(score(fi, fj))

GO-0005515 GO-0003700 5 6 1

GO-0005515 GO-0007165 5 46 2

GO-0060571 GO-0001656 175 17 3

GO-0060571 GO-0001823 175 105 4

GO-0060571 GO-0050768 175 170 5

Table 2. Five high-score interactive function pairs. Function members of interactive
pairs are not necessarily among the functions with high chi-score value.

What is interesting about Table 2 is that terms from two of the ontologies
used, namely Molecular Function as well as Biological Process, are selected using
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(a) Fmeasure (b) Precision (c) Recall

Fig. 1. Comparing interaction-based feature selection with protein-based feature se-
lection with respect to the Fmeasure, Precision and Recall metrics. Interaction-based
feature selection outperforms the protein-based method with 7.8%, on average, with
respect to Fmeasure.

our feature selection method. This is the case both for pairs of terms from the
same ontology, as well as for pairs of terms taken from both ontologies. More
explicitly, GO terms 5515 and 3700 relate to protein amino acid binding and
DNA binding transcription factor activity, and are hence related to cellular
replication (first entry in Table 2). Subsequent entries have slightly different
character though, such as relating protein binding (GO term 5515) to events
such as signal transduction (GO term 7165), and they are hence alerting to the
particular kinds of proteins that are often involved in cancer, namely kinases
(such as EGFR) involved in a large number of signaling processes in the cell.
It is interesting that GO terms 60571, and also 1823 and 1656 are returned by
our analysis, the former relating to morphogenesis of an epithelial fold, and the
latter two to different stages of kidney development. Hence, some of the terms
returned can also be seen as tissue-specific as well as organ-specific, and in this
way a more subtle differentiation of ontology annotations can be achieved than
by using single terms alone.

4 Conclusions

Earlier work showed that Gene Ontology annotations of a protein are relevant
for predicting whether it is involved in cancer. In this work we have shown that
predictive accuracy can be improved significantly by combining this information
with the information contained in the topology of a PPI network. Although
the combination of GO-based features and features based on network topology
has been considered before, the idea of attributing GO-based features to edges,
rather than nodes, is novel, and is shown here to substantially improve predictive
accuracy, and to identify functional interactions for which the involved functions
would not normally be found relevant by themselves.
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Abstract. Biomarker discovery from ’omics data is a challenging task
due to the high dimensionality of data and the relative scarcity of sam-
ples. Here we explore the potential of canonical correlation analysis, a
family of methods that finds correlated components in two views. In
particular we use the recently introduced technique of sparse canonical
correlation analysis that finds a projection directions that are primally
sparse in one of the views and dually sparse in the other view. Our ex-
periments show that the method is able to discover meaningful feature
combinations that may have use as biomarkers for tuberculosis.

1 Introduction

In biomarker discovery from ’omics data one’s aim is to find small sets of mea-
surements that correlate with the phenotype of interest, in many cases a disease.
Given the high-dimensionality and typically small sample size, one faces a chal-
lenging feature selection task, for which many approaches have been developed
over the years. In supervised feature selection, the aim typically is to pick a
small set of features that give a model with a high classifcation accuracy [2].
An alternative approach to crisp feature selection is to regularize the feature
weights by `1-norm, which favours models with a small set of features having a
non-negligible weight [8].

In this paper we consider unsupervised feature selection, where at learning
time we do not posses the class (diagnostic) labels, but the data comes in two
independent views, namely a proteomics expression profile, and a set of clinical
data (patient history, symptoms, etc.) of controls and cases in different stages of
tuberculosis. Machine learning from proteomics data has previously been shown
to result in accurate diagnostic predictions in tuberculosis [1].
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Our method is based on sparse canonical correlation analysis [4] that finds
paired combinations of features in the two views that have good correlation in
our data. In addition, to facilitate biomarker discovery, the method uses 1-norm
regularization of feature weights in one (proteomics) view, while the other view
is regularized in the dual representation, giving projection directions that are
defined by a small number of examples.

2 Sparse canonical correlation analysis

Canonical correlation analysis (CCA) is a family of statistical method designed
to situations where there are two available views (two independent sets of mea-
surements) of the same phenomenon, and the goal is to find latent variables that
explain the both views (’the generating model’) [5].

Given data in two views, Φa = (φa(xi)) and Φb = (φb(xi)), CCA aims to find
projection directions wa and wb that maximize the correlation of the projected
data xa = wT

a φa(x), and xb = wT
b φb(x) in the two views,

ρ =
wT

aCabwb

||wT
aCaawa||

∣∣∣∣wT
b Cbbwb

∣∣∣∣ =
αTKaKbβ√
αTK2

aαβ
TK2

bβ
(1)

where the first expression gives the primal representation with explicit feature
vectors, where Cab = ΦaΦ

T
b is the empirical covariance matrix of the views over

the sample. The second expression gives the dual view with implicit, kernelized
representation, with Ka = ΦT

aΦa and Kb = ΦT
b Φb

The basic formulation of CCA shares a property with principal component
analysis (PCA) in that the projection directions are non-sparse, typically putting
non-zero weight to all variables which hinders finding the most important vari-
ables. To overcome this problem, sparse variants of CCA have been developed
[4, 6, 7]. In particular in the approach of [4], primal sparsity—aiming to have a
small set of non-zero feature weights—is is applied to one of the views only while
dual sparsity—aiming to have a small set of contributing examples—is applied
to the other view. The SCCA optimization problem is given by

min
w,e

∣∣∣∣xTaw −Kbe
∣∣∣∣2 + µ ||w||1 + γ ||e||1 , s.t ||e||∞ = 1 (2)

where the first term of the objective aims to make the two views to align, the
second term penalizes the feature weights in the first view by 1-norm (imposing
sparsity), and the final term penalizes the dual variables by 1-norm, while the
constraint ||e||∞ = 1 ensures that at least one example will have non-zero dual
coefficient. The hyperparameters µ and γ control the balance between primal
and dual sparsity in the respective views.

For our biomarker application, the SCCA formulation is intuitively a good fit:
we want to find a small set of proteins that correlate with clinical measurements,
and ultimately with the diagnosis. The sparsity in the output view corresponds
to a kind of clustering in the space of clinical profiles: a small set of mutually
coherent samples are used for each model.
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3 Materials and methods

Data and preprocessing. The data consists of 412 samples with three compo-
nents: serum proteomics profiles measured by mass-spectrometry (270 variables),
clinical data (19 variables) and diagnostic classes (Active TB, Symptomatic con-
trol, Asymptomatic control). The proteomics and clinical variables were stan-
dardized by substracting the mean and dividing by standard deviation. Then,
the proteomics and clinical profiles were converted to unit length by dividing by
the euclidean norm of the feature vector.

Learning parameter setup. The SCCA algorithm requires two user-defined pa-
rameters as input: a set of seed examples for output components and a scaling
factor s = µ/γ controlling the balance between primal (input) and dual (out-
put) sparsity. We chose the seed examples by k-means clustering of the clinical
profiles and choosing the cluster centers as the seeds. The value k = 3 was used
for number of clusters. The scaling factor was kept as its default value (s = 1).

Randomization. Statistical significance of the results were estimated using ran-
domization tests. In randomization, a background data distribution consistent
the null hypothesis is generated by simulation, where the statistical connection
to be tested has been broken, but the data distribution is otherwise kept close to
the original data. We used randomization in two tasks: assessing the statistical
significance of the canonical correlation values and assessing the significance of
class enrichment in the score space of the model.

4 Results

The sparse canonical correlation analysis (2) extracted a model with correla-
tion coefficient of 0.79, which is statistically very significant (99.9% confidence
level) according to the randomization test where the input and output views
were randomly recoupled and the best sparse canonical correlation model was
computed for the randomized data. The randomization test effectively conducts
a hypothesis test where the null hypothesis is ”the two views are independently
generated”. Thus the high confidence level strongly indicates that the views are
not statistically independent. Note that the randomization setup used here also
automatically corrects for a possible multiple testing bias.

Figure 1 depicts the scatter plot of the data when the input (φa(x)) and out-
put (φb(x)) features of each data point ares projected to the respective SCCA
components xa = wT

a φa(x) (Proteomics score), and xb = wT
b φb(x) (Clinical

Profile Score). In addition, we have labeled the data points based on the diag-
nostic classes (Active, Symptomatic Control, Asymptomatic Control). By visual
inspection the clusters are relatively tight and do not overlap significantly, which
suggests that the SCCA model could have diagnostic value.

The statistical significance of the label enrichment was tested by randomizing
the labels of the data points whilst keeping the positions of the data points intact,
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Fig. 1. Sparse canonical correlation between proteomics and clinical profiles in three
classes (Active TB, Symptomatic Control, Asymptomatic Control). Ellipses denote the
mean and covariance of the class clusters.

and counting for how many points the nearest neighbor has the same class label.
All three class clusters were statistically very significant (p-value < 0.1%).

The model included 12 variables with non-negligible coeffients selected out of
271, whilst 13 out of 18 clinical variables had non-negligible coefficients. Compar-
ing to results of analyzing the same data with non-sparse CCA (1), we observed
similar level correlation, but with a high number of non-zero proteomics weights,
i.e. no feature selection effect (data not shown). Note that SCCA only enforces
primal sparsity among the input variables, which is seen in our results in that
significant feature selection effect is noticeable among the inputs but not among
the outputs.

5 Discussion and Future Work

We analysed a set of data consisting of mass spectrometry data of serum pro-
teome and clinical profiles. Our sparse canonical correlation analysis discovered
a model with statistically very significant canonical correlation, according to a
randomization test. Sparsity of the extracted model is shown by the fact that
less than 4% proteomics variables had non-negligible coefficients. The clustering
of three diagnostic classes was also found to be statistically significant, indicat-
ing that the set of proteomics variables indeed could function as biomarkers for
tuberculosis.
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Future work includes analysis of the proteomic features extracted by SCCA
to get biological insight on the model. In method development, we will study
the benefits of the SCCA approach over other biomarker discovery methods, in
particular, the relative performance of these methods compared to SVM with
recursive feature elimination [3], the LASSO regression methods i.e. sparse learn-
ing from single view containing all data [8] as well as the CCA methods [6, 7]
that are sparse in both views.
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Abstract. Self-Organising Maps (SOMs) are an unsupervised learning
mechanism chiefly used for dimensionality reduction in high-dimensional
data. This makes them particularly appropriate when dealing with gene
expression microarray data, where they are invaluable for exploratory
data analysis, such as cluster identification. The classical SOM approach
performs clustering in only one dimension. However, with multiple gene
expression chips describing different experimental conditions or individ-
uals, subspace clustering is far more adapted to detect patterns of co-
expressed genes present in only a subset of the samples. So far, Self-
Organising Maps have been very little employed in the biclustering con-
text. This paper describes a probabilistic extension of a SOM-Biclustering
approach by Cottrel et al. [4] and assesses its performance with regard
to both synthetic and biological data.

1 Introduction and Related Work

The analysis of gene expression data can benefit from biclustering approaches
by allowing to identify local patterns of gene expression. This can be especially
useful for detecting markers in different disease stages. Recently, many bicluster-
ing approaches, using several definitions of biclusters like constant, additive or
multiplicative biclusters, have been described. A survey of biclustering methods
is provided by Madeira et al. [9] and Prélic et al. [10]. SOMs, first introduced
by Kohonen [8], are especially useful for high-dimensional data as they are very
fast in computation, even without previous feature selection or filtering. They
have already been successfully used for gene expression data, e.g. by Golub et al.

[6] for the classification of cancer. But still, until now, few adaptations of Self-
Organising Maps to 2-dimensional data have been proposed and little is known
of their performance compared to standard biclustering-algorithms. This work’s
aim is to describe an extension of a SOM-based biclustering algorithm and eval-
uate its performance in comparison to some well-known biclustering algorithms.
It is based on an approach by Cottrel et al. [4], who use Correspondence Analysis
[1] on an input matrix to define a deterministic association of rows to columns
to obtain an extended input, which is afterwards used for a slightly adapted
SOM learning procedure. The proposed extension makes this association less
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2 SOM Biclustering of Gene Expression Data

deterministic by allowing the algorithm to choose between the top-k association
partners. In our opinion, taking only the maximum places a restriction on the
algorithm as genes may be upregulated in more samples, but not necessarily
in the same degree; taking the k-best generalizes the concept and thus allows
bigger biclusters in the subsequent backmapping. In the following section, both
the original Korresp algorithm and the extension are described.

1.1 The Korresp Algorithm

A Self-Organising Map is a usually two-dimensional grid of nodes (“cluster cen-
ters”), which each have an associated weight vector of the same dimension as
the input. During learning, an input vector x is randomly sampled and mapped
to the closest (in terms of a predefined distance metric) weight vector, the corre-
sponding grid node is called the best matching unit (BMU ). Node weights in the
BMU ’s neighbourhood are updated according to wj = wj + δ α(x-wj), α being
the learning rate and δ the neighbourhood radius in which updates are effected
(both α and δ decrease with time). The Korresp algorithm [4] uses a preprocess-
ing step based on Correspondance Analysis [1] to relate the two dimensions of
the input and then perform SOM learning on the extended input.
Basically, Korresp takes an input matrix of dimension m×n, and extends it to
(m + n) × (n + m) by first adjoining the most probable (according to Corre-
spondance Analysis) column cj|i (transposed) to each row ri and then doing
the reverse for columns . The extended input matrix consists of two types of
rows of the form (ri,cj|i

T ) and (ri|j,cj
T ). Learning is then done using the SOM-

algorithm [8] on input vectors alternately drawn from the first and second type.
Determination of the BMU is done with respect to ri in the first type, but the
neighbour updates use the whole weight vector; in the second row type, cj is
used for the matching to the SOM and equally, the whole vector for the neigh-
bourhood update.

1.2 Extension of the Korresp Algorithm

In an extension of the Korresp algorithm, we propose to use not only the maxi-
mum for input connection, but also non-unique measures like top-k. This allows
the algorithm to be more flexible in the learning phase by reconnecting the input
in every iteration (by sampling out of the top-k) and thus admit less restricted
patterns in the gene expression space.

2 Validation

2.1 Biological and Artificial Data

We studied the performance of SOM-based biclustering using the same test pro-
tocol as the comparative paper by Prélic et al. [10]. Validation is conducted
on both synthetic and biological data. While synthetic data makes verification
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SOM Biclustering of Gene Expression Data 3

easier and allows to test robustness against noise, biological data are used to
assess the biological relevance of biclustering results. Synthetic data are gener-
ated in the following way: artificially implanted biclusters are constant valued
and non-overlapping, and noise is added in increasing levels. A gene expression
data set by Gasch et al. [5] (2993 genes under 173 different stress conditions
in Saccharomyces cerevisiae) is used to perform gene set enrichment analysis as
provided in the Gene Ontology Consortium [3]. For each method, the percentage
of enriched biclusters is calculated. In both settings, biclusters are only evalu-
ated in the “gene dimension”, which has the advantage of available annotation
(a grouping of conditions is a lot more difficult to verify, at least in the biological
context) and also makes the approach comparable to one-dimensional clustering
algorithms like hierarchical clustering. Three well-known biclustering algorithms
were used for comparison along with the original Korresp algorithm [4]: BiMax
[10],the Iterative Signature Algorithm (ISA) et al. [7], Cheng and Church [2], all
were run with the advised parameter settings and the implementation was taken
from “The Biclustering Analysis Toolboox” BicAT by Prélic et al. [10].

3 Results

Fig. 1. Gene set-enrichment analysis based on “GO Biological Process” and evaluation
on the synthetic data set

The left-hand side of the figure describes the results of the evaluation on the
yeast data. Both Korresp and its extended version were run with a 10x10 grid,
for the extension, k was set to 5. Results of the extended Korresp are within
the range of the original algorithm. The right-hand side of the figure describes
to what extent results represent true biclusters, for the score calculation, see
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4 SOM Biclustering of Gene Expression Data

[10]. Both the original and extended Korresp (k=5) are run with three different
grid-shapes: a 3× 3, 5× 2 and 4× 3 grid (whose results are filtered to 10, which
corresponds to the number of implanted biclusters). Korresp performs well, the
extended version slightly less so, but both are dependent on the grid shape.
Hierarchical clustering (HCL10) also performs well in the artificial setting, as
the implanted biclusters are non-overlapping.

4 Conclusion

The application of Korresp and its extension and the comparison to other algo-
rithms shows that Korresp shows promising results even with standard settings.
It outperforms the Cheng and Church algorithm in the artificial setting and
performs well compared to the other algorithms. The use of SOMs for biclus-
tering seems to be worthwile and should be explored more deeply, as SOMs
also offer the advantage of short running times and the possibility of intuitive
visualization.
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4. M. Cottrell and P. Letrémy. Classification et analyse des correspondances au moyen

de l’ algorithme de kohonen: application à l’étude de données socio-économiques.
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1 Introduction

The phenotypes of a living cell are the result of networks of interaction between
molecules. Proteins are the class of cellular molecules responsible for the majority
of cellular function and the majority of proteins need to interact with others to
perform a function [1]. One of the central aims of systems biology is to explain
how these interactions give rise to complex phenotypes. Protein interactions
are gained and lost over evolutionary time and the results of these ‘re-wiring’
events are seen in the differences in protein interactions between species. Study
of the evolution of protein interactions is therefore essential for understanding
the emergence of complex behaviour in biological systems [2].

Machine learning methods have already been applied in some studies of the
evolution of protein interaction networks. A convenient conceptual framework
is given by the interaction tree [3–5], in which nodes represent potential inter-
actions between pairs of proteins and edges represent evolution between poten-
tial interactions, as shown in Fig. 1. This tree can be used as the basis for a
Bayesian network, with a binary state at each node corresponding to a present
or absent interaction. Then, given a suitable conditional probability function
relating evolution on the interaction tree to the probability of losing or gaining
an interaction, belief-propagation algorithms [6] can be used to calculate pos-
terior probabilities for the presence of an interaction at each node in the tree,
conditioned on the available data [3]. This allows the prediction of interaction
states for both ancestral [3] and unobserved present day [7] protein pairs. So
far, applications of interaction trees have used either uniform post-duplication
probabilities of loss and gain of interaction or a simple conditional probability
function based on protein sequence alone. Probabilities based on sequence evolu-
tion have proven successful in predicting interactions in the bZIP transcription
factor family, whose proteins dimerise using a simple coiled-coil interface [3].
However, it is not clear whether functions based on protein sequence alone will
successfully predict changes in more complex domain-domain interactions, or
whether a more detailed function is required, for example taking into account
the structure of the interface. This work focuses on defining a suitable condi-
tional probability function for such inference tasks in the context of interactions
between globular domains.
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Fig. 1. Protein interaction evolution: on the left is one branch of an interaction tree
showing evolution from an ancestral interaction to a child interaction, either of which
may be present or absent. This is equivalent to the diagram on the right in which we
consider evolution between two pairs of proteins, which may or may not interact in the
ancestral and child case.

2 Methods

We consider two protein families, between which we know that protein-protein
interactions are possible (i.e. protein X from family 1 has been observed to inter-
act with protein Y from family 2). These two families span a number of species
for which we have a species phylogeny. For each family we then construct a
gene phylogeny, which is reconciled with the species phylogeny in order to as-
sign ancestral genes to ancestral species. This allows us to identify every possible
interaction between proteins of each family in each ancestral species, along with
the evolutionary paths between possible interactions as shown in Fig. 1. We now
construct an interaction tree, in which nodes represent possible interactions and
edges the evolution between them. If we can then define a conditional probability
function that relates evolution on this tree to the probability of gain or loss of
interaction, the resulting structure is a Bayesian network that can be used to
predict both ancestral and present day interactions from the observed interac-
tion data. To define such a function we need to identify a measure of evolution
along a branch of the interaction tree that is related to the gain and loss of
interactions.

We consider three such measures of protein interaction evolution. Firstly, for
an interaction between two protein domains we define the interface as the set
of all residues from either domain that are within 4.5Å of a residue from the
other domain. Then for each protein domain we define an interaction face as all
residues in the interface belonging to that domain. Now we can define the first
measure, the interface distance,

Ddis(A, C) = E(A1, C1) + E(A2, C2), (1)

where E(i, j) is the distance between protein sequences i and j, restricted to the
relevant interaction face, under a Jones-Taylor-Thornton model of amino acid
substitution and proteins are labelled as in Fig. 1. This sequence based measure
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has been used successfully to predict interactions in a family of transcription
factors [3].

The second measure, the difference of face distances, is then defined as

Ddif(A, C) =
∣∣∣∣E(A1, C1)− E(A2, C2)
E(A1, C1) + E(A2, C2)

∣∣∣∣ . (2)

This measures the similarity in branch length of the two gene phylogeny branches
shown on the right hand side of Fig. 1. Use of this measure is motivated by
existing methods for predicting protein interactions that rely on similarity of
branch length as an indicator of interaction (e.g. [8]).

The final distance measure considered makes use of the complementary frac-
tion adapted from the SCOTCH [9] method for scoring docked protein models.
To calculate the complementary fraction, we first divide the 20 amino acids
into 4 groups; (GLY, ALA, VAL, LEU, ILE, MET, CYS, PHE, PRO, TRP,
TYR), (SER, THR, ASN, GLN), (LYS, ARG, HIS), (ASP, GLU). These are
the hydrophobic, polar, positively charged and negatively charged residues re-
spectively. We define two amino acids to be complementary if they are both
hydrophobic, both polar or one positively and one negatively charged. The com-
plementary fraction at an interface is then the fraction of contacting residue pairs
that are complementary, where we allow complementarity to be maintained by
nearby residues at the interface. Allowing nearby residues to account for com-
plementarity recognises the fact that the residues responsible for maintaining
an interaction can change during evolution. It has previously been shown that
true protein-protein interfaces have higher complementary fraction than decoys
[9], reflecting the ability of this measure to detect the effect of maintaining an
interaction on the residue-residue contacts at an interface. This motivates the
definition of our final distance measure,

Dcom(A, B) = F (C1, C2)− F (A1, A2), (3)

where F (i, j) is the complementary fraction at the interface between protein i
and protein j.

2.1 Test Data

In order to test the three measures’ abilities to predict changes of interaction
state, we require a test set of ancestor proteins and their extant child proteins,
as shown in Fig. 1, for which we know whether either pair interacted/interacts.
However, it is very difficult to construct a training set from any real world in-
teraction trees as it is not possible to observe ancestral interactions directly. To
circumvent this problem, we construct branches in which the parent and child
interaction nodes represent possible present-day interactions and the branch be-
tween them represents hypothetical evolution between these interactions.

To construct a set of these hypothetical branches, we start with a set of n
present-day protein pairs, for which we know that some interact and the rest do
not interact. We then construct a hypothetical branch from each pair to every
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other pair in turn, to generate a training set of n2 branches for which we know
the state of the ’ancestor’ and ’child’ interaction node.

For our initial training set, we use the interactions in the Saccharomyces
cerevisiae 20s proteasome as extracted from the x-ray crystal structure 1RYP.
This protein complex is composed of 28 subunits which consist of 14 unique
single-domain protein chains (each chain appears twice), giving 196 (142) possi-
ble interactions, which can be paired together to construct a set of 38,416 (1962)
hypothetical paths of interaction evolution. Each of the 196 possible interaction
nodes can then be assigned a state as follows: if a pair of proteins have a heavy
atom from each chain within 4.5Å of each other, we assign the corresponding in-
teraction node as present. All other interaction nodes are marked as absent. This
results in a large test set of interaction tree branches for which we know whether
the ancestral and child protein pairs interact. This test set has been chosen as
the proteasome structure is well studied and scenarios for the evolution of the
complex have been proposed. (e.g. [10])

3 Results

We test the ability of each measure to predict the interaction state of a pair of
proteins, given the interaction state of their ancestral proteins and the evolution
occurring between the pairs. We assume a simple threshold model for each mea-
sure to produce ROC curves, allowing comparison of the effectiveness of each in
predicting interaction gain or loss, as shown in Fig. 2. We find that Dcom outper-
forms the sequence based measures, as shown by the AUC statistics, particularly
in predicting gains of interaction.
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Fig. 2. ROC curves comparing the ability of the three measures to predict gains (left)
and losses (right) of interaction. See legend for Area Under Curve statistics.
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4 Conclusion

A measure of protein interaction evolution taking into account the structure of
the interface outperforms two sequence based methods in prediction of interac-
tion rewiring events in globular proteins. In further work, we have been able to
show that this relationship is generalisable over a non-redundant set of protein
complexes. This Dcom measure is therefore suitable to be used in the construction
of conditional probability functions for belief-propagation algorithms that can
infer ancestral protein interactions, integrate the available protein interaction
data and predict novel interactions.
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10. Gille, C., Goede, A., Schlöetelburg, C.: A comprehensive view on proteasomal
sequences: implications for the evolution of the proteasome. Journal of molecular
biology 326 (2003) 1437–1448

86



Identification of chemogenomic features from

drug-target interaction networks by sparse

canonical correspondence analysis

Yoshihiro Yamanishi1,2,3⋆, Edouard Pauwels1,2,3, Hiroto Saigo4, and Véronique
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Abstract. The identification of rules governing molecular recognition
between drug chemical substructures and protein functional sites is a
challenging issue at many stages of the drug development. In this study
we develop a novel method to extract sets of drug chemical substructures
and protein domains that govern drug-target interactions on a genome-
wide scale. This is made possible using sparse canonical correspondence
analysis (SCCA) for analyzing drug substructure profiles and protein do-
main profiles simultaneously. In the results we show the usefulness of the
extracted chemical substructures and protein domains for predicting new
drug-target interactions and addressing the problem of ligand specificity
in chemogenomics.

Keywords: chemogenomics, drug-target interaction network, feature
extraction, sparsity, canonical correspondence analysis

1 Introduction

Most drugs are small chemical compounds which interfere with the biological
behavior of their target proteins, therefore identification of interactions between
ligand compounds and target proteins is a key area in drug discovery. A tra-
ditional approach to analyze and predict ligand-protein interactions is docking,
but docking requires the information about protein 3D structures, which limits
its use on a genome-wide scale. The importance of chemogenomic approach is
growing fast in recent years [1], and a variety of statistical methods based on
chemical and genomic information have been proposed to predict drug-target
or more generally, ligand-protein interactions. Examples are support vector ma-
chine with pairwise kernels for ligand-protein pairs [2, 4], and the supervised
bipartite graph inference with distance learning [6].

Ligand-protein interactions are often due to common chemical structures (the
pharmacophore) that are usually shared by the ligands of a given protein. Ligand-
protein interactions are also due to functional sites of proteins (e.g., domains,

⋆ to whom correspondence should be addressed.
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2 Yamanishi et al

motifs). The relevant question is how to relate ligand chemical substructures
with protein functional sites in terms of ligand-protein interactions.

In this study we develop a novel method to extract sets of drug chemical
substructures and protein domains that govern drug-target interactions. We de-
velop an extension of the CCA algorithm by incorporating sparsity for easier
interpretation, which we call sparse canonical correspondence analysis (SCCA).
The originality of the proposed method is that it correlates protein domains to
chemical substructures expected to be present in their ligands, based on a learn-
ing dataset. In other words, the method identifies pharmacophores automatically,
explaining why a given molecule binds to a given protein domain.

2 Methods

2.1 Ordinary canonical correspondence analysis (OCCA)

We want to extract drug chemical substructures and protein domains which tend
to jointly appear in the interaction pairs of drugs and target proteins, and to
disappear in the other pairs. A possible statistical approach for achieving this
goal is the canonical correspondence analysis (CCA) [3].

Suppose that we have a set of nx drugs with p substructure features, a set of
ny target proteins with q domain features, and information about interactions
between the drug set and the target protein set. Note that nx 6= ny. Each drug is
represented by a p-dimensional feature vector x = (x1, · · · , xp)

T , and each target
protein is represented by a q-dimensional feature vector y = (y1, · · · , yq)

T .

Consider two linear combinations for drugs and proteins as ui = αT
xi

(i = 1, 2, · · · , nx) and vj = β
T
yj (j = 1, 2, · · · , ny), respectively, where α =

(α1, · · · , αp)
T and β = (β1, · · · , βq)

T are weight vectors. The goal of CCA is to
find α and β which maximize the following canonical correlation coefficient:

corr(u, v) =

∑

i,j I(xi,yj)α
T
xi · β

T
yj

√

∑

i dxi
(αTxi)2

√

∑

j dyj
(βT

yj)2
, (1)

where I(·, ·) is an indicator function which returns 1 if drug xi and protein yj

interact or 0 otherwise, dxi
(resp. dyj

) is the degree of xi (resp. yj),
∑

i ui = 0
(resp.

∑

j vj = 0) is assumed, and u (resp. v) is called canonical components for
x (resp. y). This maximization problem can be written as follows:

max{αTXTAY β} subject to ||α||
2

2
≤ 1, ||β||2

2
≤ 1, (2)

where ||·||2 is L2 norm, A is an nx×ny adjacency matrix A where element (A)ij is
equal to 1 (resp. 0) if drug xi and protein yj are connected (resp. disconnected),

and X denotes the nx × p matrix defined as X = [x1, · · · ,xnx
]
T
, and Y denotes

the ny × q matrix defined as Y =
[

y1, · · · ,yny

]T
.
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2.2 Sparse canonical correspondence analysis (SCCA)

In the OCCA, the weight vectors α and β are not unique if p exceeds nx or q

exceeds ny. In addition, it is difficult to interpret the results when there are many
non-zero elements in the weight vectors α and β. To impose the sparsity on α

and β for easier interpretation, we propose to consider the following optimization
problem with some additional L1 penalty terms:

max{αTXTAY β} subject to ||α||
2

2
≤ 1, ||β||2

2
≤ 1, ||α||1 ≤ c1

√
p, ||β||1 ≤ c2

√
q,

(3)
where || · ||1 is L1 norm (the sum of absolute values in the vector), c1 and c2
are parameters to control the sparsity and restricted to ranges 0 < c1 ≤ 1 and
0 < c2 ≤ 1. The sparse version of CCA is referred to as sparse CCA (SCCA).

The optimization problem in SCCA can be regarded as the problem of pe-
nalized matrix decomposition of the matrix Z = XTAY . Recently, a useful
algorithm for solving the penalized matrix decomposition (PMD) problem has
been proposed [5]. In order to obtain the solutions of SCCA, we propose to ap-
ply the PMD algorithm to the matrix Z = XTAY . Here the criterion (to be
maximized) is denoted as ρ = αTZβ and is referred to as the singular value.

In order to obtain multiple canonical components, we propose to iterate the
maximization of the above criterion repeatedly, each time using the Z matrix as
the residuals obtained by subtracting from the matrix the previous factors found
(deflation), that is, we recursively estimate the k-th weight vectors αk and βk

for k = 1, 2, · · · ,m. Substructures and domains with non-zero weights in each
component are considered important in terms of drug-target interactions.

Here we consider predicting new drug-target interactions, based on the ex-
tracted chemical substructures and protein domains. Suppose that we are given
a compound x and a protein y, and we want to predict unknown interactions
involving the compound and protein. We propose the following prediction score
for any given pair of compound x and protein y:

s(x,y) =

m
∑

k=1

ukρkvk =

m
∑

k=1

x
Tαkρkβ

T
k y, (4)

wherem is the number of canonical components and ρk is the k-th singular value.
If s(x,y) is higher than a threshold, compound x and protein y are predicted
to interact with each other.

3 Results and Discussion

Drug-target interactions were obtained from DrugBank, which led to build a
protein-drug dataset containing 4809 interactions involving 1554 proteins and
1862 drugs. Each drug was represented by an 881 dimensional binary vector
whose elements encode for the presence or absence of each PubChem substruc-
ture by 1 or 0, respectively. Each target protein was represented by a 876 di-
mensional binary vector whose elements encode for the presence or absence of
each of the retained PFAM domain by 1 or 0, respectively.
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The proposed SCCA method extracted 50 components, each of which con-
tains a limited number of chemical substructures and protein domains. Inter-
estingly, it successfully clusters protein domains that may be evolutionary un-
related, but that bind a common set of chemical substructures. Table 1 shows
some examples of extracted chemical substructures (SMILE-like format in Pub-
Chem) and protein domains (PFAM IDs), and high scoring drugs (DrugBank
IDs) and target proteins (UniProt IDs) in the first four canonical components
(CCs): CC1, CC2, CC3 and CC4.

Table 1. Examples of extracted sets of protein domains, drug chemical sub-

structures, and high scoring target proteins and drugs in canonical compo-

nents 1, 2, 3 and 4

Drug substructures CC1CC(O)CC1; CC1C(O)CCC1; saturated or aromatic carbon-only ring size 9; CC1C(C)CCC1; . . .
CC1 Protein domains PF02159 (Oestrogen receptor); PF02155 (Glucocorticoid receptor); PF00191 (Annexin); . . .

Drugs DB00443 (Betamethasone); DB00823 (Ethynodiol Diacetate); DB00663 (Flumethasone Pivalate)); . . .
Target proteins ESR1 HUMAN (Estrogen receptor); GCR HUMAN (Glucocorticoid receptor); . . .

Drug substructures SC1CC(S)CCC1; Sc1cc(S)ccc1; Sc1c(Cl)cccc1; SC1C(Cl)CCCC1; N-S-C:C; N-S; . . .
CC2 Protein domains PF00194 (Carbonic anhydrase); PF08403; PF02254; PF03493 (potassium channel);. . .

Drugs DB00562 (benzthiazide); DB00232 (Methyclothiazide); DB01324 (Polythiazide); . . .
Target proteins KCMA1 HUMAN (Calcium-activated potassium channel); CAH12 HUMAN (Carbonic anhydrase 12); . . .

Drug substructures C( H)(:C)(:C); C:C-C-C; C-C-C-C:C; C:C-C-C-C; C-C:C-C-C; C-C-C:C-C; . . .
CC3 Protein domains PPF00001 (transmembrane receptor); PF03491 (Serotonin neurotransmitter transporter); . . .

Drugs DB01654 (Thiorphan); DB00743 (gadobenic acid); DB03788 (GC-24); . . .
Target proteins TOP2A HUMAN (DNA topoisomerase); SC6A4 HUMAN (Sodium-dependent serotonin transporter); . . .

Drug substructures C( C)( C)( C)( C); C-C(C)(C)-C-C; unsaturated non-aromatic carbon-only ring size 6; . . .
CC4 Protein domains PF00105 (Zinc finger); PF00104; PF02159 (Oestrogen receptor); PF00191 (Annexin); . . .

Drugs DB00596 (halobetasol); DB01234 (Dexamethasone); DB00620 (Triamcinolone); . . .
Target proteins ESR1 HUMAN (Estrogen receptor); GCR HUMAN (Glucocorticoid receptor); . . .

For example, Annexin domains and two ligand-binding domains of estrogen-
receptors are all associated with some extracted chemical substructures in some
components. The method extracted and classified Annexin-specific substruc-
tures, estrogen-receptor specific substructures and common core substructures
into different components. We take the example of drug DB00823 (or PubChem
ID 9270) that binds the estrogen receptor but not the annexin domains, accord-
ing to the DrugBank database. The first 3 components where the estrogen recep-
tor has a high score are CC1, CC4, and CC12. All chemical substructures with
high scores in the CC1, CC4, and CC12 components are present in DB00823.
Figure 1 show that the high scoring substructures of the low order components
CC1 and CC4 allow to build the chemical scaffold of this drug, while those of
the higher order component CC12 encode chemical groups bound to this drug’s
molecular scaffold.

It is difficult to evaluate the performance of a feature extraction method in
a direct manner. However, if the extracted chemical substructures and proteins
domains are biologically meaningful and capture relevant information with re-
spect to protein-ligand interactions, one would expect that they present good
generalization properties. We tested the ability of the method to reconstruct
known drug-target interactions by performing the 5-fold cross-validation and
evaluating the AUC (area under the ROC curve) score. We compared the re-
construction performance with other possible drug-target interaction prediction
methods: nearest neighbor (NN), pairwise SVM (P-SVM), using the same data
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Fig. 1. An illustration of extracted drug chemical fragments. (A) Ethynodiol
diacetate (DB00823). (B) Part of the molecular structure of ethynodiol diacetate that
can be built using high scoring substructures of components CC1, CC4 and CC12. (C)
Some high scoring substructures of components CC1, CC4 and CC12 that can be used
to build the above partial structure.

descriptors, where all parameters in each method were optimized with AUC as
an objective function. The resulting AUC scores for NN, P-SVM, OCCA and
SCCA are 0.5892, 0.7504, 0.7377 and 0.7497, respectively. The accuracy of the
proposed SCCA method was better than or close to that of other methods. It
should be pointed out that NN, P-SVM and OCCA do not provide any biological
interpretation since they only predict interactions, and they do not extract any
information about important molecular features for these interactions.

The proposed method constitutes a contribution to the recent field of chemoge-
nomics that aims to connect the chemical space with the biological space, and
could be of interest in various ways in the drug development process.
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Abstract. In biology, there is often the need to prioritize large list of
candidate genes to further assay only the most promising candidate genes
with respect to a biological process of interest. In the recent years, many
computational approaches have been developed to tackle this problem
efficiently by merging multiple genomic data sources. We present a gene
prioritization method based on the use of kernel methods and prove
that it outperforms our previous method based on order statistics. In
addition, the method supports data integration over multiple related
species. We have also developed a web based interface termed ‘MerKator’
that implements this strategy and proposes candidate gene prioritization
for 5 species. Our cross-species approach has been benchmarked and case
studies demonstrate that human prioritizations can benefit from model
organism data.

1 Introduction

In modern biology, the use of high-throughput technologies allows researchers
and clinicians to quickly and efficiently screen the genome in order to identify
the genetic factors underlying a given disorder. However these techniques are
often generating large lists of candidate genes among which only one or a few
are actually associated to the disease of interest. Since the individual validation
of all these candidate genes is often too costly and time consuming, only the
most promising genes are experimentally assayed. This process is termed gene
prioritization and several methods have been developed in the last decade to
tackle that problem. Most of them combine genomic knowledge with pure ex-
perimental data to leverage the effect between reliability and novelty and rely
on the ‘guilt-by-association’ concept.

Although numerous existing approaches are restricted to integrating infor-
mation in a single species, people have recently started to collect evidence among
multiple species to facilitate the prioritization of candidate genes. Chen et al.
proposed ToppGene that performs human gene prioritization using human and
mouse data [3]. Hutz et al. have developed CANDID, an algorithm that com-
bines cross-species conservation measures and other genomic data sources to
rank candidate genes that are relevant to complex human diseases [4]. Liu et
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al. have investigated the effect of adjusting gene prioritization results through
cross-species comparison in Drosophila [5].

We introduce MerKator, whose main feature is the cross-species prioritiza-
tion through genomic data fusion over multiple data sources and multiple species.
This software is developed on the Endeavour data sources [1,10] and a kernel fu-
sion novelty detection methodology [2]. Our approach is different from previous
approaches since our cross-species integration scheme is not limited to a single
data source nor to a single species. At the contrary, MerKator can integrate 14
genomic data sources over 5 species (H. sapiens, R. norvegicus, M. musculus, D.
melanogaster and C. elegans). We also present a benchmark analysis, through
leave-one-out cross-validation, that shows the efficiency of the cross-species ap-
proach.

2 Methods

The inputs are genes from the main species (for instance human genes in our
benchmark). The first input of the method is a set of training genes that will
be used to model the biological process under study {T0,1, ..., T0,n0}. The second
input is a set of candidate genes to be prioritized {C0,1, ..., C0,m0}. The single
output is a ranking of these candidate genes from the most promising on top to
the less promising at the bottom (based on the final score fcs).

We use k species beside the main species. For each species i, we define the
prioritization problem as a MKL task, each kernel is a normalized linear kernel
and corresponds to a single genomic data source. The optimization task is then
solved using a one class SVM (1–SVM) algorithm [8,9] as described in De Bie
et al. [2]. Basically, the training genes are used to model the biological process
under study (i.e., to define the separating hyperplane), the candidate genes are
then scored based on their distance to this hyperplane.

The prioritization is performed independently for each species i using the ho-
mologous genes of the training and candidate genes (respectively {Ti,1, ..., Ti,ni

}
and {Ci,1, ..., Ci,mi

}) according to the HomoloGene database [7]. The species
specific scores (fi) are first normalized to be in the range of [0, +1] (with 0 being
the best). They are then integrated through a Noisy–Or like model [6]. This
is motivated by the fact that an excellent prioritization score obtained in one
species should be enough to obtain an overall excellent score.

The following section describes in more details the computation of the score
for a single candidate gene C0,1 since each candidate is scored independently.
We first denote hg() as the function that returns the HomoloGene score of two
given genes. We then define the strength of the homology (hi) as follows.

hi = min

{
hg(C0,1, Ci,1)
median(hg(T0,1, Ti,1), ..., hg(T0,n0 , Ti,ni

))
(1)
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The adj coefficient combines information from multiple species by a Noisy–Or
like model. Like for fi, a smaller adj value is better.

adj = {
k∏

i=1

(1− hi(1− fi))}
1
k (2)

Ultimately, the final score fcs is computed; f0 is the score for the main species.

fcs =
f0 ∗ (1 + adj)

2
. (3)

The kernel methods underlying MerKator are usually computationally in-
tensive. The complexity can be reduced by performing part of the computation
offline (i.e., kernel computation and decomposition). Similarly, kernel centering
is achieved on submatrices, which reduces the computing time while keeping the
estimation error reasonable.

3 Results

CS HSA HW HF HM HR END
50%

60%

70%

80%

90%

100%

A
U

C

 

 

Pathways

Diseases

Fig. 1. Benchmark results on 14 pathways and 28 diseases. The AUC is displayed for
the complete cross-species model (CS), the human only model (HSA), the two species
models (HW: human and worm, HF: human and fly, HM: human and mouse, HR:
human and rat), as well as for the order statistics based model (END).

As a proof of concept, we have benchmarked MerKator with 14 biologi-
cal pathways and 28 diseases using a leave-one-out cross-validation procedure
(described in [1]). The 14 pathway sets were derived from Gene Ontology and
contain a total of 99 genes, the 28 disease sets were derived from OMIM and
contain 487 genes. The cross-validation was performed using all possible data
sources (Gene Ontology was excluded for the pathway benchmark). A single pri-
oritization run results in a ranking of the candidate genes, including the position
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of the left-out gene. For a disease with n0 training genes, the result is a set of n0

rankings. Using a hard threshold on these rankings, it is then possible to com-
pute the sensitivity and specificity. Varying that threshold allows us to build a
complete Receiver Operating Characteristic (ROC) curve. The Area Under the
ROC Curve (AUC) is then used as an indicator of the performance.

For the pathway based benchmark, we obtained a global AUC of 86.87% for
the cross-species model, while the model based on human data alone obtains a
smaller AUC of 81.40%. In addition, the performance of every two species model
is lower than the performance of our cross-species model (HW, HF, HM, and HR
in Figure 1). These results do not entirely stand for the disease benchmark. In
fact, the performance of the human model is already very high (93,68%), which
makes improvement more difficult (93,34% for the cross-species model). This
might be because the human data contain explicit disease information, which
makes the identification of disease causing gene easier. In both cases, our kernel
based method outperforms our method based on order statistics (END). Alto-
gether, results indicate that our cross-species model is conceptually valid, and
that combining genomic data cross-species can enhance the gene prioritization
performance.

4 Conclusion

This paper presents MerKator, a software that combines cross-species infor-
mation and multiple genomic data sources to prioritize candidate genes. The
software is developed using the same databases adopted in Endeavour, but is
equipped with a kernel fusion technique and a cross-species integration model.
The issue of multiple species prioritization is complicated, which may involve
many factors. It is therefore difficult to make statistical hypothesis, or estimate
the data model for the final prioritization score. Our approach alternatively
avoids the assumption about the data model of prioritization scores and calcu-
lates it using support vector machines. The performance of kernel-based algo-
rithms is strongly affected by the selection of hyper-parameters, that should be
determined by cross-validation, which may not be always feasible for a software
oriented for biologists and medical researchers. The overall performance does
however not rely on a single kernel parameter, so even when the optimal param-
eter is not involved, the fusion procedure can still leverage among several near
optimal parameters and provides a near optimal result. For real applications,
the 1% difference of performance is not so critical to the end users; the speed of
solution is usually much preferred than the very optimality of the parameter or
the model.
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