
Compositional Temporal
Synthesis

Moshe Y. Vardi

Rice University



What Good is Model Checking?

Model Checking :

• Given: Program P , Specification ϕ.

• Task: Check that P |= ϕ

Success :

• Algorithmic methods: temporal specifications
and finite-state programs.

• Also: Certain classes of infinite-state programs

• Tools: SMV, SPIN, SLAM, etc.

• Impact on industrial design practices is increasing.

Problems :

• Designing P is hard and expensive.

• Redesigning P when P 6|= ϕ is hard and
expensive.

1



Automated Design

Basic Idea :

• Start from spec ϕ, design P such that P |= ϕ.

Advantage:

– No verification
– No re-design

• Derive P from ϕ algorithmically.

Advantage:

– No design

In essence : Declarative programming taken to
the limit.

2



Program Synthesis

The Basic Idea : Mechanical translation
of human-understandable task specifications
to a program that is known to meet the
specifications.

Deductive Approach (Green, 1969, Waldinger and
Lee, 1969, Manna and Waldinger, 1980)

• Prove realizability of function,
e.g., (∀x)(∃y)(Pre(x) → Post(x, y))

• Extract program from realizability proof.

Classical vs. Temporal Synthesis :

• Classical: Synthesize transformational programs

• Temporal: Synthesize programs for ongoing
computations (protocols, operating systems,
controllers, etc.)

3



Synthesis of Ongoing Programs

Specs: Temporal logic formulas

Early 1980s : Satisfiability approach
(Wolper, Clarke+Emerson, 1981)

• Given: ϕ

• Satisfiability: Construct M |= ϕ

• Synthesis: Extract P from M .

Example : always (odd → next ¬odd)∧
always (¬odd → next odd)

odd
-

� odd
�
�

�
�

�
�

�
�

4



Reactive Systems

Reactivity : Ongoing interaction with environment
(Harel+Pnueli, 1985), e.g., hardware, operating
systems, communication protocols, etc.

Example : Printer specification –
Ji - job i submitted, Pi - job i printed.

• Safety: two jobs are not printed together
always ¬(P1 ∧ P2)

• Liveness: every job is eventually printed
always

∧
2

j=1
(Ji → eventually Pi)

5



Satisfiability and Synthesis

Specification Satisfiable? Yes!

Model M : A single state where J1, J2, P1, and P2

are all false.

Extract program from M? No!

Why? Because M handles only one input
sequence.

• J1, J2: input variables, controlled by environment

• P1, P2: output variables, controlled by system

Desired : a system that is receptive to all input
sequences.

Conclusion : Satisfiability is inadequate for synthesis.

6



Realizability

I: input variables, O: output variables

Game:

• System: choose from 2O

• Env: choose from 2I

Infinite Play :
i0, i1, i2, . . .

00, 01, 02, . . .

Infinite Behavior : i0 ∪ o0, i1 ∪ o1, i2 ∪ o2, . . .

Win : behavior |= spec

Specifications : LTL formula on I ∪ O

Strategy : Function f : (2I)∗ → 2O

Realizability : Abadi+Lamport+Wolper, 1989
Dill, 1989, Pnueli+Rosner, 1989
Existence of winning strategy for system.

Synthesis : Pnueli+Rosner, 1989
Extraction of winning strategy for system.

7



Church’s Problem

Church, 1957: Realizability problem wrt specification
expressed in MSO (monadic second-order theory of
one successor function)

Büchi+Landweber, 1969:

• Realizability is decidable.

• If a winning strategy exists, then a finite-state
winning strategy exists.

• Realizability algorithm produces finite-state strategy.

Rabin, 1972: Simpler solution via Rabin tree
automata.

Question : LTL is subsumed by MSO, so what
did Pnueli and Rosner do?
Answer : better algorithms!

8



Post-1972 Developments

• Pnueli, 1977: Use LTL rather than MSO as spec
language.

• V.+Wolper, 1983: Elementary (exponential)
translation from LTL to automata.

• Safra, 1988: Doubly exponential construction of
tree automata for strategy trees wrt LTL spec
(using V.+Wolper).

• Pnueli+Rosner, 1989: 2EXPTIME realizability
algorithm wrt LTL spec (using Safra).

• Rosner, 1990: Realizability is 2EXPTIME-
complete.

9



Standard Critique

Impractical! 2EXPTIME is a horrible complexity.

Response :

• 2EXPTIME is just worst-case complexity.

• 2EXPTIME lower bound implies a doubly
exponential bound on the size of the smallest
strategy; thus, hand design cannot do better in
the worst case.

10



Real Critique

• Algorithmics not ready for practical implementation.

• Complete specification – unrealistic.

• Construction from scratch – unrealistic.

Response : More research needed!

• Better algorithms

• Incremental synthesis – write spec incrementally.

• Compositional synthesis – synthesis from components.

11



Synthesis from Components

Basic Intuition : [Lustig+V., 2009]

• In practice, systems are typically not built
from scratch; rather, they are constructed from
existing components.
– Hardware: IP cores, design libraries
– Software: standard libraries, web APIs
– Example: mapping application on smartphone

– location services, Google maps API,
graphics library

• Can we automate “construction from components”?

Setup :

• Library L = {C1, . . . , Ck} of component types.
• Linear temporal specification: ϕ

Problem : Construct a finite system S that satisfies
ϕ by composing components that are instances of
the component types in L.

Question : What are components? How do you
compose them?

12



Components I: Transducers

Transducer : A simple model of a reactive system
– a finite-state machine with inputs and outputs
(Moore machine).

• Transducers are receptive.
• Output depends on state alone.

13



Dataflow Synthesis from Components

Setup :

• Components: multi-input multi-output transducers
e.g., hardware IP blocks

• Dataflow composition: connect input and output
ports so outputs become inputs, e.g., connect
sequential circuits

Theorem : [Lustig+V.,2009]
Dataflow synthesis from components is undecidable.

Crux :

• Number of component instances not bounded, a
priori.

• Cell of Turing-machine tape can be viewed as
a component, connected to cells to its left and
right.

14



Components II: Transducers with Exits

q0

0
start

q1

1

q2

0

q3

1

a

b

b

a

b

a

15



Control-flow Composition I

Motivation: Software-module composition – exactly
one component interacts with environment at one
time; on reaching an exit state, goto start state of
another component.

A library of two components: L = {M1,M2}

16



Control-flow Composition II

Pick three component instances from L:

17



Control-flow Composition III

Connect each exit to some start state – resulting
composition is a transducer and is receptive.

18



Controlflow Synthesis

Setup :

• Components: single-input single-output transducers
with exit states, e.g., software module

• Controlflow composition: upon arrival at an exit
state, goto start state of another component –
composer chooses target of branch.

• No a priori bound on number of component
instances!

Theorem : [Lustig+V.,2009]
Controlflow synthesis from components is 2EXPTIME-
complete.

Crux :

• Consider general (possible infinite) composition
trees, that is, unfoldings of compositions

• Use alternating automata to check that all
possible computations wrt composition satisfy ϕ

• Show that if general composition exists then finite
composition exists.

19



Controlflow Synthesis from Recursive
Components

Key Idea : Use call and return, instead of goto.

• An online store may call the PayPal web service,
which receives control of the interaction with the
user until it returns the control to the online store
with approval/disapproval of payment.

Modeling :

• calls: component has a set of call states; when
a call state is reached, another component is
called.

• returns: component has a set of return states;
when a return state is reached, control returns to
the calling component.

• re-entry: component has a set of re-entry
states; when control returns to a component, the
component enters a re-entry state.

• return value: modeled by means of re-entry
states.

• call value: not modeled explicitly here.

20



Recursive Components

Setup :

• Components: single-input single-output transducers
with call states, return states, and re-entry states

• Controlflow composition: calls and returns

Related : recursive state machines of Alur at el.

• The result of composing recursive components is
a recursive state machine.

• Equivalent to an infinite-state transducer.

21



Specifying Call-and-Return
Computations

Need: In a call-and-return computation, specification
may need to refer to call-and-return structure [Alur-
Etessami-Madhusudan, 2004]

• E.g., “if the pre-condition p holds when a
procedure A is called, then if A terminates, then
the post-condition p is satisfied upon return.

Solution : Alur et al.

• Nested Word: Description of call-and-return
computations – sequence of letters, plus calls,
and matching returns, when exist
– Traces of pushdown machines with pushes

and pops made visible
• Nested-Word Temporal Logic (NWTL): logic

refers to call-and-return structure
– next: refers to next state
– nextµ: refers to return that matches a call

Now : Controlflow synthesis from recursive components
wrt NWTL properties.

22



Automata-Theoretic Approach

Key Idea of Temporal Synthesis :

• Use tree automata to accept “good” strategy
trees

• Use word automata to accept “good” tree
branches

V.+Wolper, 1983: Exponential translation from LTL
to Büchi automata

Needed Aere : automata-theoretic counterpart to
NWTL

Answer : NWBA – Nested-Word Büchi Automata
[Alur et al., 2008]

• Standard transition relation
• Call transition relation
• Return transition relation

Theorem : Exponential translation from NWTL to
NWBA

23



Automata-Theoretic Approach to
Controlflow Synthesis

Key Idea Lustig+V, 2009

• Composition tree is bad if it enables a
computation that violates ϕ, i.e., accepted by
NBW A¬ϕ.

• Construct NBT that searches for a bad computation
by guessing a computation and simulating A¬ϕ.

• Complement NBT and test for nonemptiness.

Extending to Recursive Components :

• Computations go up and down the composition
tree – use 2-way automata to track them.

• Need to have an NBT simulate NWTL – NBT
needs to track cycles, from call to return and back
to call.

Bottom Line : Doable, but construction is rather
messy. Complexity: 2EXPTIME-complete.

Question : Can construction be simplified?

• Note: using alternation and 2-wayness simplified
earlier messy automata-theoretic constructions.

24



Controlflow Synthesis from
Probabilistic Components

Goal : Build reliable systems from unreliable
components.

• Example : How do you turn a fair coin into a
comletely biased coin?

• What are probabilistic components?

• How are they connected together?

• What is the specification formalism?

• What is the appropriate notion of realizability?

25



Probabilistic Components

Examples : noisy sensors, probabilistic CMOS

Probabilistic Components : transducers with exit
states and probabilistic transition function.

26



Probabilistic Components

A probabilistic component is a probabilistic transducer
w. exits – (ΣI, ΣO, Q, q0, δ, F, L):

• Q — finite set of states

• q0 — start state

• F ⊆ Q — set of exit states

• ΣI and ΣO —- input and output alphabets

• δ : Q × ΣI → Dist(Q) — Transition function that
assigns a prob. distribution to state/input pairs

• L : Q → L — output function

Input : w ∈ {a, b}ω

Output : probability distribution on {0, 1}ω

27



Control-flow Composition I

Pick three component instances from library L =
{M1,M2}:

28



Controlflow Composition

Connect each exit to some start state – resulting
composition is a probabilistic transducer.

29



Modeling Controlflow Composition

Crux : (Current component, Exit state) −→ Next
state

Composer : A deterministic transducer that
captures controlflow in a composition.

• Composer — describes how to connect components

• Composition — resulting probabilistic transducer

30



DPW Specification

DPW — Deterministic Parity Word Automaton A

• Each state of A has a priority (a natural number).

• A accepts an infinite word if the corresponding
run of A satisfies the parity condition.

• Parity condition: the lowest priority that occurs
infinitely often is even.

DPW can express all ω-regular specifications.

LTL can be translated to DPW.

31



Probabilistic Correctness

Key Idea : System must satisfy DPW specification
in face of every possible input.

• With prob 1, the run of the system is accepted by
DPW.

• Probability defined by input: so which input?

• We assume adversarial environment: for every
possible input, with prob 1, DPW must accept.

32



Probabilistic Realizability

Environment Strategy : The environment probabilistically
chooses the next input depending upon history of
the system.

• Environment: a function f : Q∗ → Dist(ΣI)

• Each strategy f induces a probability distribution
µf on the set of runs of M .

• Environment wins if run of M is rejected by A

with probability > 0.

Realizability : System M realizes spec A

iff the environment has no winning strategy
against M .

33



Controlflow Synthesis from
Probabilistic Components

• What are probabilistic components? Probabilistic
Transducers w. Exits

• How are they connected together? Deterministic
Controlflow

• What is the specification formalism? DPW
• What is the appropriate notion of realizability?

Probabilistic
• What is the object being synthesized? Composer

Note : Components are now probabilistic, but
controlflow is still deterministic.

DPW Synthesis problem : Given library L and
DPW A, find composer C over L such that the
composition defined by C realizes A.

Theorem : [Lustig-Nain-V., 2011] DPW synthesis
from probabilistic components is decidable

34



Embedded-Parity Synthesis:
Simplifying DPW Synthesis

Key Idea : Instead of using a DPW as spec, assign
priorities directly to each state of each component
in the library and use the parity condition.

DPW Synthesis Embedded-Parity
Synthesis

Specification given
as DPW

Specification
embedded as
priorities of
component states

Environment wins if
output rejected by
DPW with prob. > 0

Environment wins
if output satisfies
parity condition
with prob < 1

Natural problem Artificial problem

35



Embedded-Parity Synthesis

Theorem : [Lustig-Nain-V., 2011] embedded-
parity synthesis from probabilistic components is
decidable in EXPTIME.

Proof Idea :

• Composer is finite, so composition is finite.
• Suffices to focus on pure, memoryless environment

strategies.
• Finite probabilistic transduer + pure, memoryless

environment strategiy = Markov chain.
• Apply ergodic analysis: with prob 1, limit

behavior in ergodic set.
• Unfold chain into tree, translating ergodicity onto

tree.
• Construct Büchi tree automaton for bad composition

trees.
• Complement automaton and check nonemptiness.

36



DPW Synthesis

Theorem : [Lustig-Nain-V., 2011] DPW synthesis
from probabilistic components is decidable in
2EXPTIME.

• Proof Idea : Take product of components in
library L with DPW A and reduce to embedded-
parity synthesis.

• Difficulty : Transitions of composers must
depend only on components, cannot depend on
states of A.

• Solution : Use techniques from synthesis with
incomplete information, pay another exponential
in complexity.

• Note : Upper bound in 4EXPTIME for LTL spec.

37



Controlflow Composition

Questions :

• If components are probabilistic why not allow
probabilistic controlflow?

• Is probabilistic controlflow more powerful than
deterministic controlflow?

Theorem : [Nain&V., 2012] Probabilistic
and deterministic composers have the
same expressive power for embedded-
parity specifications.

Theorem : [Nain&V., 2012] Probabilistic
composers are more expressive than
deterministic composers for DPW
specifications.

Similar to memory vs randomness tradeoff in
games [[Chatterjee-De Alfaro-Henzinger, 2004].

38



Synthesizing Probabilistic Composers

Main difficulties:

• Expressiveness Barrier :

– For deterministic composers, DPW synthesis
is solved via embedded parity.

– Expressiveness result rules this out for
probabilistic composers.

• Unbounded Branching of Tree Representation :

– For deterministic composers:
∗ branching of transition function is bounded.
∗ depends on number of exits, fixed for given

library.
∗ So automata-theoretic techniques can be

used.
– For probabilistic composers:

∗ branching of transition function is potentially
unbounded.

∗ depends on size of composition.

39



Synthesizing Probabilitis Composers

Theorem : [Nain&V., 2012] Controlflow
synthesis of probabilistic composers from
probabilistic components is decidable.

Proof Idea : Simulate probabilistic controlflow via
deterministic controlflow.

• Add to library a component MD whose sole
purpose is to express probabilitic branching.

• Modify spec to ignore MD.

40



In Conclusion

Framework : Compositional Synthesis = Synthesis
from Component Libraries:

• What types of components?
• How are components composed?
• How are requirements specified?

Future Work

• Connection to games with incomplete information
• Tighter bounds
• Better algorithms

41


