Compositional Temporal
Synthesis

Moshe Y. Vardi

Rice University

What Good is Model Checking?

Model Checking :

e Given: Program P, Specification .

e Task: Check that P = ¢

success :

e Algorithmic methods: temporal specifications
and finite-state programs.

e Also: Certain classes of infinite-state programs
e Tools: SMV, SPIN, SLAM, etc.

e Impact on industrial design practices is increasing.

Problems :

e Designing P is hard and expensive.

e Redesigning P when P K~ ¢ is hard and
expensive.

Automated Design

Basic Idea :

e Start from spec ¢, design P such that P = ¢.
Advantage:
— No verification
— No re-design
e Derive P from ¢ algorithmically.
Advantage:

— No design

In essence : Declarative programming taken to
the limit.

Program Synthesis

The Basic Idea: Mechanical translation
of human-understandable task specifications

to a program that is known to meet the
specifications.

Deductive Approach (Green, 1969, Waldinger and
Lee, 1969, Manna and Waldinger, 1980)

e Prove realizability of function,
e.g., (Vz)(Jy)(Pre(x) — Post(z,y))

e Extract program from realizability proof.
Classical vs. Temporal Synthesis

e Classical: Synthesize transformational programs

e Temporal: Synthesize programs for ongoing

computations (protocols, operating systems,
controllers, etc.)

Synthesis of Ongoing Programs

Specs: Temporal logic formulas

Early 1980s : Satisfiability approach
(Wolper, Clarke+Emerson, 1981)

e Given: ¢

e Satisfiability: Construct M = ¢

e Synthesis: Extract P from M.

Example : always (odd — next —odd)N
always (—odd — next odd)

Reactive Systems

Reactivity : Ongoing interaction with environment
(Harel+Pnueli, 1985), e.g., hardware, operating
systems, communication protocols, etc.

Example : Printer specification —
J; - job i submitted, P; - job ¢ printed.

e Safety: two jobs are not printed together
always —(Py A Py)

e Liveness: every job is eventually printed
always /\?:1(,]@- — eventually P;)

Satisfiability and Synthesis

Specification Satisfiable? Yes!

Model M: A single state where J;, Jo, P, and P,
are all false.

Extract program from M7 No!

Why? Because M handles only one input
seqguence.

e J1,Jo: input variables, controlled by environment

e P, P output variables, controlled by system

Desired : a system that is receptive to all input
seguences.

Conclusion : Satisfiability is inadequate for synthesis.

Realizability

I input variables, O: output variables
Game:

e System: choose from 2¢
e Env: choose from 2!

Infinite Play :

105 11, 22, - - -
Og, 01, O9, ...

Infinite Behavior : 19U og, 21 U 01, 12 U 09, ...
Win: behavior = spec
Specifications : LTL formulaon TuU O

Strategy : Function f : (2/)* — 2©

Realizability : Abadi+Lamport+Wolper, 1989
Dill, 1989, Pnueli+Rosner, 1989
Existence of winning strategy for system.

Synthesis : Pnueli+Rosner, 1989
Extraction of winning strategy for system.

Church’s Problem

Church, 1957: Realizability problem wrt specification
expressed in MSO (monadic second-order theory of
one successor function)

Buchi+Landweber, 1969:
e Realizablility is decidable.

e If a winning strategy exists, then a finite-state
winning strategy exists.

e Realizability algorithm produces finite-state strategy.

Rabin, 1972: Simpler solution via Rabin tree
automata.

Question : LTL is subsumed by MSO, so what
did Pnueli and Rosner do?
Answer : better algorithms!

Post-1972 Developments

e Pnueli, 1977: Use LTL rather than MSO as spec
language.

e V.+Wolper, 1983: Elementary (exponential)
translation from LTL to automata.

e Safra, 1988: Doubly exponential construction of
tree automata for strategy trees wrt LTL spec
(using V.+Wolper).

e Pnueli+Rosner, 1989: 2EXPTIME realizability
algorithm wrt LTL spec (using Safra).

e Rosner, 1990: Realizability is 2EXPTIME-
complete.

Standard Critique

Impractical! 2EXPTIME is a horrible complexity.

Response :

e 2EXPTIME is just worst-case complexity.

e 2EXPTIME lower bound implies a doubly
exponential bound on the size of the smallest
strategy; thus, hand design cannot do better In
the worst case.

10

Real Critique

e Algorithmics not ready for practical implementation.
e Complete specification — unrealistic.

e Construction from scratch — unrealistic.

Response : More research needed!

e Better algorithms
e Incremental synthesis — write spec incrementally.

e Compositional synthesis — synthesis from components.

11

Synthesis from Components

Basic Intuition : [Lustig+V., 2009]

e In practice, systems are typically not built
from scratch; rather, they are constructed from
existing components.

— Hardware: IP cores, design libraries

— Software: standard libraries, web APIs

— Example: mapping application on smartphone
— location services, Google maps API,
graphics library

e Can we automate “construction from components”™?

Setup:

e Library L = {C4,...,Cy} of component types.
e Linear temporal specification: ¢

Problem : Construct a finite system S that satisfies
w by composing components that are instances of
the component types in L.

Question : What are components? How do you
compose them?

12

Components I: Transducers

Transducer : A simple model of a reactive system
— a finite-state machine with inputs and outputs
(Moore machine).

e Transducers are receptive.
e Output depends on state alone.
a

start — %

q2

13

Dataflow Synthesis from Components

Setup:

e Components: multi-input multi-output transducers
e.g., hardware IP blocks

e Dataflow composition: connect input and output
ports so outputs become inputs, e.g., connect
sequential circuits

Theorem : [Lustig+V.,2009]
Dataflow synthesis from components is undecidable.

Crux:

e Number of component instances not bounded, a
priori.

e Cell of Turing-machine tape can be viewed as
a component, connected to cells to its left and
right.

14

Components II: Transducers with EXxits

a
d1
1
a A
b
qo
start — a
O
b b

15

Control-flow Composition |

Motivation: Software-module composition — exactly
one component interacts with environment at one
time; on reaching an exit state, goto start state of

another component.

A library of two components: L = {M;, M5}

16

Control-flow Composition Il

Pick three component instances from L:

4 4

17

Control-flow Composition |l

Connect each exit to some start state — resulting
composition is a transducer and is receptive.

-

18

Controlflow Synthesis

Setup:

e Components: single-input single-output transducers
with exit states, e.g., software module

e Controlflow composition: upon arrival at an exit
state, goto start state of another component —
composer chooses target of branch.

e No a priori bound on number of component
Instances!

Theorem : [Lustig+V.,2009]
Controlflow synthesis from components is 2ZEXPTIME-
complete.

Crux:

e Consider general (possible infinite) composition
trees, that is, unfoldings of compositions

e Use alternating automata to check that all
possible computations wrt composition satisfy ¢

e Show that if general composition exists then finite
composition exists.

19

Controlflow Synthesis from Recursive

Components

Key ldea: Use call and return, instead of goto.

An online store may call the PayPal web service,
which receives control of the interaction with the
user until it returns the control to the online store
with approval/disapproval of payment.

Modeling :

calls: component has a set of call states; when
a call state is reached, another component is
called.

returns: component has a set of return states;
when a return state is reached, control returns to
the calling component.

re-entry: component has a set of re-entry
states; when control returns to a component, the
component enters a re-entry state.

return value: modeled by means of re-entry
states.

call value: not modeled explicitly here.

20

Recursive Components

Setup:

e Components: single-input single-output transducers
with call states, return states, and re-entry states
e Controlflow composition: calls and returns

Related : recursive state machines of Alur at el.

e The result of composing recursive components is
a recursive state machine.
e Equivalent to an infinite-state transducer.

21

Specifying Call-and-Return
Computations

Need: In a call-and-return computation, specification
may need to refer to call-and-return structure [Alur-
Etessami-Madhusudan, 2004]

e E.g., “If the pre-condition p holds when a
procedure A is called, then if A terminates, then
the post-condition p is satisfied upon return.

Solution : Alur et al.

e Nested Word: Description of call-and-return
computations — sequence of letters, plus calls,
and matching returns, when exist
— Traces of pushdown machines with pushes

and pops made visible

e Nested-Word Temporal Logic (NWTL): logic
refers to call-and-return structure
— next: refers to next state
— next,: refers to return that matches a call

Now: Controlflow synthesis from recursive components
wrt NWTL properties.

22

Automata-Theoretic Approach

Key Idea of Temporal Synthesis

e Use tree automata to accept “good” strategy
trees

e Use word automata to accept “good” tree
branches

V.+Wolper, 1983: Exponential translation from LTL
to Blchi automata

Needed Aere: automata-theoretic counterpart to
NWTL

Answer : NWBA — Nested-Word Buchi Automata
[Alur et al., 2008]

e Standard transition relation
e Call transition relation
e Return transition relation

Theorem : Exponential translation from NWTL to
NWBA

23

Automata-Theoretic Approach to
Controlflow Synthesis

Key Idea Lustig+V, 2009

e Composition tree is bad if it enables a
computation that violates ¢, i.e., accepted by
NBW A_,.

e Construct NBT that searches for a bad computation
by guessing a computation and simulating A-,.

e Complement NBT and test for nonemptiness.

Extending to Recursive Components

e Computations go up and down the composition
tree — use 2-way automata to track them.

e Need to have an NBT simulate NWTL — NBT
needs to track cycles, from call to return and back
to call.

Bottom Line : Doable, but construction Is rather
messy. Complexity: 2EXPTIME-complete.

Question : Can construction be simplified?

e Note: using alternation and 2-wayness simplified
earlier messy automata-theoretic constructions.

24

Controlflow Synthesis from
Probabilistic Components

Goal: Build reliable systems from unreliable
components.

e Example: How do you turn a fair coin into a
comletely biased coin?

e \What are probabilistic components?
e How are they connected together?
e What is the specification formalism?

e \What is the appropriate notion of realizability?

25

Probabilistic Components

Examples : noisy sensors, probabilistic CMOS

Probabilistic Components : transducers with exit
states and probabilistic transition function.

26

Probabilistic Components

A probabilistic component is a probabilistic transducer
w. exits — (X7,%0,Q, qo, 96, F, L):

e () — finite set of states

e go — Start state

o F' C () — set of exit states

e X ; and Xp —- Iinput and output alphabets

e §:(Q x X5 — Dist(Q)) — Transition function that
assigns a prob. distribution to state/input pairs

e L :() — L — output function

Input: w € {a,b}*
Output : probability distribution on {0, 1}

27

Control-flow Composition |

Pick three component instances from library L =
{Ml,MQ}:

-

a[1],b[.5]

start —

all] I

b[1]

a[1] [b[.5]

b[.5]

a[l]

start —

M,
-

28

Controlflow Composition

Connect each exit to some start state — resulting
composition is a probabilistic transducer.

-

a[l] a[l]

-

all],b[1]
b[1])

b[.5]

29

Modeling Controlflow Composition

Crux: (Current component, Exit state) — Next
state

Composer : A deterministic transducer that
captures controlflow in a composition.

exit 1
e Composer — describes how to connect components

e Composition — resulting probabilistic transducer

30

DPW Specification

DPW — Deterministic Parity Word Automaton A
e Each state of A has a priority (a natural number).

e A accepts an infinite word if the corresponding
run of A satisfies the parity condition.

e Parity condition: the lowest priority that occurs
Infinitely often is even.

DPW can express all w-regular specifications.

LTL can be translated to DPW.

31

Probabilistic Correctness

Key ldea: System must satisfy DPW specification
In face of every possible input.

e With prob 1, the run of the system is accepted by
DPW.

e Probability defined by input: so which input?

e We assume adversarial environment: for every
possible input, with prob 1, DPW must accept.

32

Probabilistic Realizability

Environment Strategy : The environment probabilistically
chooses the next input depending upon history of
the system.

e Environment: a function f : Q* — Dist(X)

e Each strategy f induces a probability distribution
pr on the set of runs of M.

e Environment wins if run of M is rejected by A
with probability > 0.

Realizability : System M realizes spec A
Iff the environment has no winning strategy
against M.

33

Controlflow Synthesis from
Probabilistic Components

e What are probabilistic components? Probabilistic
Transducers w. Exits

e How are they connected together? Deterministic
Controlflow

e What is the specification formalism? DPW

e What is the appropriate notion of realizability?
Probabilistic

e What is the object being synthesized? Composer

Note: Components are now probabilistic, but
controlflow is still deterministic.

DPW Synthesis problem : Given library L and
DPW A, find composer C over L such that the
composition defined by C realizes A.

Theorem : [Lustig-Nain-V., 2011] DPW synthesis
from probabilistic components is decidable

34

Embedded-Parity Synthesis:
Simplifying DPW Synthesis

Key Idea: Instead of using a DPW as spec, assign
priorities directly to each state of each component
In the library and use the parity condition.

DPW Synthesis Embedded-Parity
Synthesis

Specification given || Specification

as DPW embedded as
priorities of

Environment wins if
output rejected by
DPW with prob. > 0

Natural problem

component states

Environment wins
If output satisfies
parity condition
with prob < 1

Artificial problem

35

Embedded-Parity Synthesis

Theorem : [Lustig-Nain-V., 2011] embedded-
parity synthesis from probabilistic components is
decidable in EXPTIME.

Proof Idea :

Composer is finite, so composition is finite.
Suffices to focus on pure, memoryless environment
strategies.

Finite probabillistic transduer + pure, memoryless
environment strategiy = Markov chain.

Apply ergodic analysis: with prob 1, Ilimit
behavior in ergodic set.

Unfold chain into tree, translating ergodicity onto
tree.

Construct Blichi tree automaton for bad composition
trees.

Complement automaton and check nonemptiness.

36

DPW Synthesis

Theorem: [Lustig-Nain-V., 2011] DPW synthesis
from probabilistic components is decidable in
2EXPTIME.

e Proof Idea: Take product of components in
library L with DPW A and reduce to embedded-
parity synthesis.

e Difficulty : Transitions of composers must

depend only on components, cannot depend on
states of A.

e Solution : Use techniques from synthesis with
Incomplete information, pay another exponential
In complexity.

e Note: Upper bound in 4EXPTIME for LTL spec.

37

Controlflow Composition

Questions :

e If components are probabilistic why not allow
probabilistic controlflow?

e Is probabilistic controlflow more powerful than
deterministic controlflow?

Theorem: [Nain&V., 2012] Probabilistic
and deterministic composers have the
same expressive power for embedded-
parity specifications.

Theorem: [Nain&V., 2012] Probabilistic
composers are more expressive than
deterministic composers for DPW
specifications.

Similar to memory vs randomness tradeoff in
games [[Chatterjee-De Alfaro-Henzinger, 2004].

38

Synthesizing Probabilistic Composers

Main difficulties:

e EXpressiveness Barrier

— For deterministic composers, DPW synthesis
IS solved via embedded patrity.

— EXxpressiveness result rules this out for
probabilistic composers.

e Unbounded Branching of Tree Representation

— For deterministic composers:
x branching of transition function is bounded.
x depends on number of exits, fixed for given
library.
x SO0 automata-theoretic techniques can be
used.
— For probabilistic composers:
« branching of transition function is potentially
unbounded.
x depends on size of composition.

39

Synthesizing Probabilitis Composers

Theorem : [Nain&V., 2012] Controlflow
synthesis of probabilistic composers from
probabilistic components is decidable.

Proof Idea : Simulate probabilistic controlflow via
deterministic controlflow.

e Add to library a component Mp whose sole
purpose is to express probabilitic branching.
e Modify spec to ignore Mp.

4 I
Mp

start —

1/2 1/2

40

In Conclusion

Framework : Compositional Synthesis = Synthesis
from Component Libraries:

e What types of components?
e How are components composed?
e How are requirements specified?

Future Work

e Connection to games with incomplete information
e Tighter bounds
e Better algorithms

41

