
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Algorithmic probabilistic game semantics

Playing games with automata

Stefan Kiefer · Andrzej S. Murawski ·

Joël Ouaknine · Björn Wachter ·

James Worrell

Received: date / Accepted: date

Abstract We present a detailed account of a translation from probabilistic
call-by-value programs with procedures to Rabin’s probabilistic automata. The
translation is fully abstract in that programs exhibit the same computational
behaviour if and only if the corresponding automata are language-equivalent.
Since probabilistic language equivalence is decidable, we can apply the trans-
lation to analyse the behaviour of probabilistic programs and protocols. We
illustrate our approach on a number of case studies.

1 Introduction

Ever since Michael Rabin’s seminal paper on probabilistic algorithms [38], it
has been widely recognised that introducing randomisation in the design of
algorithms can yield substantial improvements in time and space complexity.
There are by now dozens of randomized algorithms solving a wide range of
problems much more efficiently than their ‘deterministic’ counterparts—see
[33] for a good textbook survey of the field.

Unfortunately, these advantages are not without a price. Randomized algo-
rithms can be rather subtle and tricky to understand, let alone prove correct.
Moreover, the very notion of ‘correctness’ slips from the Boolean to the proba-
bilistic. Indeed, whereas traditional deterministic algorithms associate to each
input a given output, randomized algorithms yield for each input a probabilistic
distribution on the set of possible outputs.

Research funded by EPSRC (EP/G069158/1).

S. Kiefer · J. Ouaknine · B. Wachter · J. Worrell
Dept of Computer Science, Univ. of Oxford, Parks Road, Oxford OX1 3QD, UK

A. S. Murawski
Dept of Computer Science, Univ. of Leicester, University Road, Leicester LE1 7RH, UK

2 Stefan Kiefer et al.

Our work exploits some of the latest modelling techniques developed by
the denotational semantics community to handle probabilistic programs. Their
distinctive feature is that they capture observational program behaviour, as
opposed to individual computational steps that a program can make during
execution, as in operational semantics. Technically speaking, the models we
rely on are fully abstract [31]: two programs have the same denotations if and
only if they are contextually equivalent. The notion of contextual equivalence
relies on comparing the outcomes of deploying programs in all possible con-
texts. In the probabilistic case, the outcomes are measured through probability
distributions.

Contextual equivalence is an expressive and powerful technique, as it sub-
sumes many other properties. As will be seen in the Dining Cryptographers
case study, it is particularly suitable to analysing anonymity protocols, as by
its very definition it provides an account of what can be observed about a
protocol and hides unobservable actions, such as histories of private variables.
In general, contextual equivalence is very difficult to reason about due to the
universal quantification over all syntactic contexts in which the program be-
haviours need to be considered.

Game semantics [2,20,36] has emerged as a versatile technique for build-
ing models that pass the criterion of full abstraction. Its development has
proceeded along all axes of programming paradigms, and is by now applicable
to higher-order types, concurrency, polymorphism, probability and references.

In our work we rely on a game model of an ML-like higher-order lan-
guage RML, for which a game model was constructed by Abramsky and Mc-
Cusker [3]. Equivalently, the model can be presented in the Honda-Yoshida
style [17], which we shall follow because it is more direct and relies on a more
economical alphabet of moves. In order to model a probabilistic variant of the
language, we adopt the probabilistic framework of Danos and Harmer [11].
In contrast to previous expository papers on game semantics [4,1], our ac-
count of probabilistic game semantics uses a call-by-value evaluation strategy,
which underpins most modern programming languages. Note that our ear-
lier paper [28] was based on a call-by-name probabilistic game semantics and
was missing many implementation-related details. As well as being more self-
contained, the present approach enables more direct and transparent encodings
of our various case studies.

For the purpose of deriving a formalism compatible with finite-state mod-
elling methods we consider a fragment of the language, in which programs have
finite datatypes and the type system is restricted to first-order types (this will
mean that programs have first-order types as well as being able to use free
first-order identifiers, which correspond to unknown first-order components).
For the fragment in question we define a compositional translation from terms
to probabilistic automata. Our main result, Theorem 2, states that the au-
tomata capture the semantics, i.e. the associated probabilistic language is a
faithful representation of the program’s game semantics. Consequently, proba-
bilistic language equivalence of the derived automata characterizes contextual

Algorithmic probabilistic game semantics 3

program equivalence, and the associated algorithms can be applied to solve
contextual equivalence problems.

We have implemented a tool apex that takes a program (in the above-
defined fragment) as input and returns a probabilistic automaton capturing
the game semantics of the program. This paper describes a number of case
studies illustrating the use of apex to verify anonymity and almost-sure ter-
mination, and to perform average-case analysis of data types. These examples
highlight some of the distinctive features of our approach, including the ability
to describe models in a high-level language, to model open programs with free
identifiers and to check contextual equivalence.

Related Work Most probabilistic model checkers use temporal logic to ex-
press specifications. Among this class are PRISM [27], ProbVerus [14], RAP-
TURE [12], ETMCC [15], APNN-toolbox [5], MRMC [23], Ymer [46], and
LiQuor [9]. For the most part, these tools use probabilistic and continuous-
time variants of Computation Tree Logic, although Linear Temporal Logic
is also supported in [9,5,6]. The class of models treated includes discrete
and continuous-time Markov chains, Markov decision processes (which feature
both probabilistic and nondeterministic branching), stochastic Petri nets, and
process algebras. The model-checking algorithms implemented in these tools
combine state-of-the-art techniques from non-probabilistic model checking, in-
cluding symbolic representations [27,5], symmetry reduction and bisimulation
minimisation [23], abstraction /refinement [12], partial-order reduction [9], to-
gether with techniques for handling large systems of linear equations and linear
programs, as well as statistical techniques, such as sampling [46].

The approach put forward with apex is set apart by its ability to check
equivalence between programs and their specification, which is enabled by the
ability of game semantics to hide internal behavior. Hiding, in turn, can also
be a means to produce a small semantics of a program because the program
captures just its input and output behavior. The more compact automaton
can then be interpreted more easily and analysed more efficiently. We have
demonstrated this approach in a variety of case studies.

Verification of probabilistic programs has also been studied in the context
of program logics and theorem proving. McIver and Morgan [29] give a proof
system to reason about probabilistic properties of programs; a logic-based
approach has also been pursued by Hurd [19].

2 Programming Language

We consider a probabilistic ML-like language pRML over a finite ground datatype
{0, · · · ,max} (max > 0). pRML is a probabilistic and finitary variant of
RML [3], obtained by augmenting RML with coin-tossing, restricting the datatypes
to finite ones and replacing general recursion with loops. Ultimately, for the
purpose of obtaining a correspondence with probabilistic automata, we shall
consider a fragment of pRML in Subsection 2.2.

4 Stefan Kiefer et al.

Γ ! () : unit
n ∈ {0, · · · ,max}

Γ ! n : int

p0, · · · , pmax ∈ Q

max∑

i=0

pi = 1

Γ ! coin[0 : p0, · · · ,max : pmax] : int

Γ ! M : int Γ ! Mi : θ i = 0, · · · ,max
Γ ! case(M)[M0, · · · ,Mmax] : θ

Γ ! M : int Γ ! N : unit
Γ ! whileM doN : unit

(x : θ) ∈ Γ
Γ ! x : θ

Γ, x : θ1 ! M : θ2
Γ ! λxθ1 .M : θ1 → θ2

Γ ! M : θ1 → θ2 Γ ! N : θ1
Γ ! MN : θ2

Γ ! M : var
Γ ! !M : int

Γ ! M : var Γ ! N : int
Γ ! M :=N : unit

Γ, x : var ! M : θ
Γ ! new x inM : θ

Γ ! M : unit → int Γ ! N : int → unit
Γ ! mkvar(M,N) : var

Fig. 1 Syntax of pRML.

2.1 pRML

Formally, pRML is based on types θ generated according to the grammar given
below.

θ ::= unit | int | var | θ → θ

Terms of pRML along with typing judgments of the form

x1 : θ1, · · · , xk : θk " M : θ

are presented in Figure 1.

Remark 1 When referring to coin[0 : p0, · · · ,max : pmax], we shall often omit
the entries with zero probabilities and write, for instance, coin[0 : 0.5, 1 : 0.5].
We restrict the probabilities p0, · · · , pmax to be rational to achieve decidability.

Remark 2 mkvar(M,N) is the so-called bad-variable constructor. It allows one
to construct terms of type var, which are unlike standard (good) variables. As
the reduction rules will make clear, mkvar(M,N) is best viewed as an “object”
of type var equipped with its own reading (M) and writing (N) methods. We
further discuss the role of bad variables in Remark 3.

The operational semantics of pRML is defined in Figure 2 for terms of the
shape

x1 : var, · · · , xk : var " M : θ.

It relies on statements of the form (s,M) ⇓p (s′, V), where s, s′ are states
(formally, functions from {x1, · · · , xk} to {0, · · · ,max}) and V ranges over
values.

One can interpret a concrete derivation of (s,M) ⇓p (s′, V) as saying that
the associated evaluation of program M and state s to value V and state
s′ has probability p. Because of the term coin, M may have countably many
evaluations from a given state. We shall write (s,M) ↓p V iff p =

∑

pi and the
sum ranges over all derivations of (s,M) ⇓pi (s′, V) for some s′. If there are no

Algorithmic probabilistic game semantics 5

s, V ⇓1 s, V s, coin[0 : p0, · · · ,max : pmax] ⇓pn s, n

s,M ⇓p s′, n s′,Mn ⇓q s′′, V

s, case(M)[M0, · · · ,Mmax] ⇓pq s′′, V

(s |x %→ 0),M ⇓p s′, V

s, new x inM ⇓p s′, V

s,M ⇓p s′, x

s, !M ⇓p s′, s′(x)

s,M ⇓p s′, x s′, N ⇓q s′′, n

s,M := N ⇓pq s′′(x %→ n), ()

s,M ⇓p s′, λx.M ′ s′, N ⇓q s′′, V s′′,M ′[V/x] ⇓r s′′′, V ′

s,MN ⇓pqr s′′′, V ′

s,M ⇓p s′, 0

s,whileM doN ⇓p s′, ()

s,M ⇓p s′, n (n > 0) s′, N ⇓q s′′, () s′′,whileM doN ⇓r s′′′, ()

s,whileM doN ⇓pqr s′′′, ()

s,M ⇓p s′, Vr s′, N ⇓q s′′, Vw

s,mkvar(M,N) ⇓pq s′′,mkvar(Vr , Vw)

s,M ⇓p s′,mkvar(Vr , Vw) s′, Vr() ⇓q s′′, n

s, !M ⇓pq s′′, n

s,M ⇓p s′,mkvar(Vr , Vw) s′, N ⇓q s′′, n s′′, Vwn ⇓r s′′′, ()

s,M := N ⇓pqr s′′′, ()

V ranges over values which can take one of the following shapes: (), n, xvar, λxθ.M ,
mkvar(λxunit.M,λyint.N). s(x %→ n) stands for s in which s(x) has been changed to n.
s′ = (s |x %→ n) is an extension of s, defined only if x &∈ dom(s), which coincides with s on
dom(s) and satisfies s′(x) = n.

Fig. 2 Operational semantics of pRML.

such derivations, we simply write (s,M) ↓0 V . The judgment (s,M) ↓p V thus
denotes the fact that the probability of evaluating M in state s to value V is
p. When M is closed, i.e. " M : θ, we write M ↓p V , because s is then empty.
For instance, we have coin[0 : 0.5, 1 : 0.5] ↓0.5 0 and coin[0 : 0.5, 1 : 0.5] ↓0.5 1.

We now define the notion of contextual equivalence induced by the opera-
tional semantics. A context C[−] is simply a term of the language containing a
placeholder [−] that can be instantiated with a term of pRML to yield another
term.

Definition 1 Terms Γ " M1 : θ and Γ " M2 : θ are contextually equivalent
(written Γ " M1

∼= M2 : θ) if for all contexts C[−] such that " C[M1], C[M2] :
unit we have C[M1] ↓p () if and only if C[M2] ↓p ().

While contextual equivalence of closed terms " M1 : int, " M2 : int coin-
cides with the equality of induced subdistributions on values1, equivalences
involving terms of higher-order types as well as terms with free identifiers
(open program phrases) are difficult to reason about directly. This is because
contextual equivalence relies, on universal quantification over contexts, i.e.

1 Note that we need to talk about subdistributions because of divergence.

6 Stefan Kiefer et al.

all possible instantiations of the unknown identifiers. The main approaches
to handling such equivalences for languages with rich type structures are cur-
rently logical relations (see e.g. [13]), environmental bisimulation (see e.g. [41])
and game semantics. As far as we know, the former two have not been applied
in the probabilistic context.

Example 1 • A loop that terminates with probability one is equivalent to (),
e.g., " while (coin[0 : 0.7, 1 : 0.3]) do () ∼= ().

• It can be shown that x : int " M0
∼= M1 : int holds exactly whenM0[m/x] ↓p

n if and only if M1[m/x] ↓p n for all m,n ∈ {0, · · · ,max}. That is to say,
∼= generalizes the concept of equality of input/output functions.

• We have f : int → unit " f(coin[1 : 0.5, 2 : 0.5]) ∼= M : unit, where M is the
term

new x in (

x := 1;

while (!x) do

case(coin[0 : p0, 1 : p1, 2 : p2])[(), x := 0; f(1) , x := 0; f(2)]

)

and p0, p1, p2 are chosen so that p0 + p1 + p2 = 1 and p1 = p2.

Remark 3 In [40] Reynolds advocated modelling the type var as (unit → int)×
(int → unit). While this approach is conceptually elegant, many elements of the
product space do not behave like memory cells (good variables). Consequently,
to achieve full abstraction, so-called “bad variables” have to be admitted into
the language, e.g. in the form of the mkvar constructor. However, if no type
in Γ or θ contains an occurrence of var, contextual equivalence is completely
unaffected by the inclusion of mkvar [34]. This will be true in all of our case
studies.

Despite the absence of general recursion and the restriction to a finite
ground type, contextual equivalence in pRML is already undecidable in the
deterministic case without loops, e.g. at type (unit → unit) → (unit → unit) →
unit [34]. The probabilistic setting is known to be a conservative extension [11,
Corollary 3.7], thus to yield decidability results pRML has to be restricted
further. In the deterministic case, research in that direction has been carried
out using regular [34] and visibly pushdown languages [18].

2.2 A Restricted Language

In this section we focus on a restriction of pRML to basic first-order types,
which we call L. It features terms with first-order procedures, also indetermi-
nate ones. The latter are listed on the left-hand side of the turnstile in the
typing rules.

Algorithmic probabilistic game semantics 7

Γ ! () : unit
n ∈ {0, · · · ,max}

Γ ! n : int

p0, · · · , pmax ∈ Q

max∑

i=0

pi = 1

Γ ! coin[0 : p0, · · · ,max : pmax] : int

(x : int) ∈ Γ Γ ! Mi : θ i = 0, · · · ,max
Γ ! case(x)[M0, · · · ,Mmax] : θ

(f : unit → int), (g : unit → unit) ∈ Γ
Γ ! while f() do g() : unit

(x : β) ∈ Γ
Γ ! x : β

Γ, x : β1 ! M : β2

Γ ! λxβ1 .M : β1 → β2

(f : β1 → β2), (x : β1) ∈ Γ
Γ ! fx : β2

(x : var) ∈ Γ
Γ ! !x : int

(x : var), (y : int) ∈ Γ
Γ ! x := y : unit

Γ, x : var ! M : θ
Γ ! new x inM : θ

(x : unit → int), (y : int → unit) ∈ Γ
Γ ! mkvar(x, y) : var

Γ ! M : θ1 Γ, x : θ1 ! N : θ2
Γ ! letx = M inN : θ2

Fig. 3 Syntax of L.

L uses types θ generated according to the grammar given below.

θ ::= β | var | β → β β ::= unit | int

Its syntax is presented in Figure 3. The letx = M inN term corresponds to
(λxθ .N)M from pRML. Note that, as a special case, letx = M inN allows the
user to define a procedure M and link it to the code that uses it.

Our syntax is minimalistic in order to simplify the meta-theory: we have
isolated the simplest instances of every construct, e.g. case(x)[· · ·], x := y, fx,
while f() do g(), so that their more structured (and commonly used) variants
can easily be compiled into L as “syntactic sugar”. For instance, assuming
Γ " M : unit, the term M ;N corresponds simply to letx = M inN . Here is a
selection of other cases:

– case(M)[M0, · · · ,Mmax] corresponds to letx = M in case(x)[M0, · · · ,Mmax];
– x :=N corresponds to let y = N inx := y;
– fN corresponds to letx = N in fx and, more generally, MN is let f =

M in letx = N in fx;
– whileM doN corresponds to

let f = λxunit.M in let g = λyunit.N in (while f() do g()).

The reader may be puzzled by the minimalistic rule for while, which involves
f : unit → int, g : unit → unit. It is necessitated by the fact that, under call-
by-value evaluation, letx = M in let y = N in (whilex do y) and whileM doN
are not equivalent: in the first case M and N are evaluated only once. Hence,
the somewhat complicated shape of our rule, which allows us to handle the
general case through a basic case and let.

8 Stefan Kiefer et al.

3 Games

In this section we give a self-contained account of the probabilistic game se-
mantics of L obtained by combining the Honda-Yoshida approach to mod-
elling call-by-value evaluation [17] with the Danos-Harmer probabilistic games
framework [11].

Game semantics views computation as a dialogue (exchange of moves)
between the environment (Opponent, O) and the program (Proponent, P).
The dialogues are called plays. In our setting, the players will always alter-
nate. Programs are then interpreted by strategies, which tell P whether and
how to extend a play after an O-move. Danos and Harmer introduced proba-
bilistic game semantics: a probabilistic strategy assigns a probability to each
even-length play, subject to several technical constraints [11]. Intuitively, the
strategy provides P with a (sub)distribution on responses at each stage of the
game at which P is to make a move. It was shown that a certain class of plays,
called complete, suffice to account for probabilistic program equivalence [35].
Hence we shall only concentrate on these in what follows.

Because we intend to relate the model to probabilistic automata, we have
made our account very direct and restricted the use of the usual technical
machinery needed to set up a game model (arena, justification, strategy, com-
position) to a minimum. Let us begin with some basic definitions specifying
what moves are available in our games and how they can be used in a play.
We start off by defining an auxiliary concept of tags.

Definition 2 Let Γ be a context and θ a type. If x occurs in Γ , we write θx
for the corresponding type. Let us define the set TΓ,θ of associated tags to be

{cx, rx | (x : θx) ∈ Γ, θx ≡ β1 → β2} ∪

{crx, r
r
x, c

w
x , r

w
x | (x : θx) ∈ Γ, θx ≡ var} ∪

{r↓} ∪ {c, r | θ ≡ β1 → β2} ∪ {cr, rr, cw, rw | θ ≡ var}.

Thus, for each function-type identifier x in Γ , we have tags cx and rx represent-
ing calls and returns related to that identifier. r↓ can be taken to correspond
to the fact that evaluation was successfully completed. If θ is a function type
then c and r refer respectively to calling the corresponding value and obtain-
ing a result. The intuitions behind crx, r

r
x, c

w
x , r

w
x are analogous except that they

refer respectively to the reading and writing actions associated with x : var.
Similarly, cr, rr, cw, rw are used if θ ≡ var, to account for reads and writes for
the corresponding value.

Next we define initial moves, which simply contain values for all free
integer-typed identifiers and % for other identifiers. For the definition to make
sense we need to assume that the identifiers in Γ are listed in some order. We
write V for the set {%} ∪ {0, · · · ,max}.

Definition 3 (Initial moves) Given Γ = [x1 : θ1, · · · , xk : θk], we define the
set IΓ of initial moves to be

{(v1, · · · , vk) ∈ Vk | ∀1≤i≤k (vi = % ⇐⇒ θi .≡ int)}.

Algorithmic probabilistic game semantics 9

We shall use ι to range over initial moves and write ι(xi) to refer to vi.

Given θ, let us define Vθ to be {0, · · · ,max} if θ ≡ int and {%} otherwise.

Definition 4 Let t ∈ TΓ,θ and v ∈ V. We shall say that (t, v) is a non-initial
move if it has one of the shapes listed below.

Shape Condition

(cx, v1), (rx, v2) θx ≡ β1 → β2, v1 ∈ Vβ1 , v2 ∈ Vβ2

(r↓, v) v ∈ Vθ

(c, v1), (r, v2) θ ≡ β1 → β2, v1 ∈ Vβ1 , v2 ∈ Vβ2

(crx, %), (r
r
x, v) θx ≡ var, v ∈ Vint

(cwx , v), (r
w
x , %)

(cr, %), (rr, v) θ ≡ var, v ∈ Vint

(cw, v), (rw , %)

Next we introduce complete plays, as these suffice to reason about equivalence
in our case [35].

Definition 5 Let Γ be a context and θ a type. A complete play2 over Γ, θ
is a (possibly empty) sequence of moves ι(t1, v1) · · · (tk, vk) such that ι ∈ IΓ ,
ti ∈ TΓ,θ (i = 1, . . . , k) and the corresponding sequence of tags t1 · · · tk matches
the regular expression

X r↓ (cX r + cr X rr + cw X rw)∗

where
X = (

∑

(x:θx)∈Γ
θx≡β1→β2

(cx rx) +
∑

(x:θx)∈Γ
θx≡var

((crx r
r
x) + (cwx rwx)))

∗.

We write CΓ,θ to refer to the set of complete plays over Γ, θ.

The shape of complete plays can be thought of as a record of successful com-
putation. First, calls are made to free identifiers of non-ground types in the
context (expression X) then a value is reached (r↓) and, if the value is of a
non-ground type, we have a series of calls and matching returns correspond-
ing to uses of the value, possibly separated by external calls with matching
returns.

Remark 4 In game semantics moves are assigned ownership: O (environment)
or P (program). ι and those with tags rx, rrx, r

w
x , c, c

r, cw belong to O and the
rest (tags cx, crx, c

w
x , r↓, r, r

r , rw) to P . We shall write MO and MP to refer to
O- and P -moves respectively.

Following [11], we shall interpret terms Γ " M : θ by functions σ : CΓ,θ → [0, 1],
which we call [0, 1]-weighted complete plays on Γ, θ. We write σ : Γ, θ to refer
to them.

2 Readers familiar with game semantics will notice that we omit justification pointers. This
is because they are uniquely recoverable in the sequences of moves under consideration.

10 Stefan Kiefer et al.

4 Interpretation of L through weighted complete plays

What we describe below amounts to a more concrete reformulation of the cor-
responding probabilistic game semantics [17,11], aimed to highlight elements
relevant to the subsequent translation to probabilistic automata. Below for
each term of L we define the corresponding σ by listing all complete plays
with non-zero weights.

– Γ " () : unit
σ(ι (r↓, %)) = 1

– Γ " n : int
σ(ι (r↓, n)) = 1

– Γ " coin[0 : p0, · · · ,max : pmax] : int

σ(ι (r↓, n)) = pn n = 0, · · · ,max

– Γ " case(x)[M0, · · · ,Mmax]

Let σn correspond to the terms Mn (n = 0, · · · ,max).

σ(ι s) = σι(x)(ι s)

– Γ " while f() do g() : unit

Let s range over sequences matching ((
∑max

n=1(cf , %) (rf , n)) (cg, %) (rg, %))
∗.

σ(ι s (cf , %) (rf , 0) (r↓, %)) = 1

– Γ " x : β
σ(ι (r↓, ι(x))) = 1

– Γ " λxβ1 .M : β1 → β2

Let σ′ correspond to Γ, x : β1 " M : β2. Suppose ui ∈ Vβ1 , vi ∈ Vβ2

(i = 1, · · · , k).

σ(ι (r↓, %)) = 1

σ(ι (r↓, %) (c, u1)s1(r, v1) · · · (c, uk)sk(r, vk)) =
∏k

i=1 σ
′((ι, ui) si (r↓, vi))

– Γ " fx : β2

σ(ι (cf , ι(x))(rf , v)(r↓, v)) = 1 v ∈ Vβ2

– Γ " !x : int
σ(ι (crx, %)(r

r
x, v)(r↓, v)) = 1 v ∈ Vint

– Γ " x := y : unit
σ(ι (cwx , ι(y))(r

w
x , %)(r↓, %)) = 1

Algorithmic probabilistic game semantics 11

– Γ " mkvar(x, y) : var

σ(ι (r↓, %)s) = 1

s ranges over sequences matching

(
max
∑

n=0

(cr, %)(crx, %)(r
r
x, n)(r

r , n) + (cw, n)(cwy , n)(r
w
y , %)(r

w, %))∗

To interpret new x inM and letx = M inN we need to introduce a notion of
composition on complete plays, which is a specialisation of the composition of
probabilistic strategies [11, Section 2.4] to types occurring in L.

First we analyse a particular way in which two complete plays can be
combined. Let S be a special tag.

– Given s1 ∈ CΓ,θ let us write s1[tx/t, (S, v)/(r↓, v)], or s′1 for short, for the
sequence s1 in which each tag from {c, r, cr, rr, cw, rw} has been replaced
with a corresponding tag subscripted with x and the (unique) move (r↓, v)
with (S, v).

– Given s2 ∈ CΓ+{x:θ},θ′ let s2[ι (S, v)/(ι, v)], or s′2 for short, be the sequence
s2 in which the initial move (ι, v) was replaced with ι followed by (S, v).

Let B = IΓ ∪ ({S, cx, rx, crx, r
r
x, c

w
x , r

w
x } × V). We say that s1 and s2 are com-

patible if s′1 ! B = s′2 ! B, where s ! B denotes the subsequence of s restricted
to moves in B. We use s \ B to refer to the dual subsequence of s consisting of
moves that do not belong to B. Given compatible s1 and s2, we define another
sequence s1!s2 by

s1!s2 = s′1 |||
B

s′2 ,

where |||B is the selective synchronised parallel construct of CSP. This produces
an interleaving of s′1 and s′2 subject to the requirement that they synchronise
on events from B. Because the sequences of tags underlying s′1 and s′2 have
the following respective shapes (for clarity we ignore tags with superscripts):

ιX∗ S (cx X∗ rx)∗ X =
∑

y cy ry
ιS Y ∗ r↓ (cY ∗ r)∗ Y = X + cxrx

there is actually only one way of synchronising s′1 and s′2: both must first
synchronise on ι, then s1 can proceed with X∗, after which synchronisation
on S must take place, s2 can then proceed (Y ∗) but, once it encounters cx,
s1 will regain control until it eventually reaches rx, when s2 can continue, etc.
Thus the synchronised sequence has to match the following expression

ιX∗
1 S (X2 + cx X

∗
1 rx)

∗ r↓ (c (X2 + cxX
∗
1 rx)

∗ r)∗

where the subscripts 1, 2 indicate whether the X segment originates from s1
or s2. So long as s1 and s2 are compatible, they can always be synchronised
in a unique way.

12 Stefan Kiefer et al.

Definition 6 Given σ1 : Γ, θ and σ2 : Γ + {x : θ}, θ′ we define σ2[σ1/x] : Γ, θ
as follows:

σ2[σ1/x](s) =
∑

s1 ∈ CΓ,θ, s2 ∈ CΓ∪{x:θ},θ′

s1, s2 compatible
s = (s1!s2) \ B

σ1(s1) · σ2(s2),

where \B corresponds to hiding all actions from B.

Note that this sum may diverge in general. This is guaranteed not to happen
in our case, though, thanks to compatibility with the Danos-Harmer frame-
work [11, Proposition 2.2]. The remaining constructs of the language can now
be assigned weighted complete plays in the following way.

– Γ " new x inM : θ

Let σ1 correspond to Γ, x : var " M : θ and let cell : Γ, var be defined by

cell(ι (r↓, %) s) = 1,

where s ranges over sequences matching

((cr, %)(rr, 0))∗(
max
∑

n=0

((cw, n)(rw , %) ((cr, %)(rr , n))∗))∗.

The expression above captures the behaviour of a memory cell initialised
to 0: initially (cr, %) is followed by (rr , 0) and afterwards by (rr , n), where
n is the value occurring in the preceding move with tag cw. Then the
interpretation σ of new x inM is specified as follows.

σ = σ1[cell/x]

– Γ " letx = M inN : θ2

Let σ1,σ2 correspond to Γ " M : θ1 and Γ, x : θ1 " N : θ2 respectively.
Then the interpretation σ of letx = M inN is specified as follows.

σ = σ2[σ1/x]

Theorem 1 ([17,11,35]) Suppose Γ " Mi : θ (i = 1, 2) are L-terms and
σi : Γ, θ are the corresponding interpretations (as specified above). Then Γ "
M1

∼= M2 : θ if and only if σ1 = σ2.

Algorithmic probabilistic game semantics 13

5 Automata

We represent the weighted complete plays associated with terms Γ " M : θ
using a special class of probabilistic automata, called (Γ, θ)-automata. These
are based on the classical notion of Rabin [37] and can be viewed as a special
instance of the so-called reactive model of probabilistic choice [45]. We write
S(X) for the set of probability subdistributions on X .

Definition 7 A probabilistic automaton is a tuple A = (Σ, Q, i, δ, F), where

– Σ is a finite alphabet;
– Q is a finite set of states;
– i ∈ Q is the initial state;
– δ : Q×Σ → S(Q) is a transition function;
– F ⊆ Q is the set of final states.

Given f ∈ F and w = w1 · · ·wn ∈ Σn let Af (w) be the sum of weights of all
paths from i to f , i.e.

Af (w) =
∑

(q0,··· ,qn)∈Qn+1

q0=i, qn=f

n
∏

i=1

δ(qi−1, wi)(qi).

The automata used to interpret terms will be probabilistic automata with
extra structure. More precisely, transitions corresponding to the environment
will be deterministic, while transitions for program-moves will be generative.
The latter means that the sum of weights associated with outgoing transitions
from program-states will never exceed 1. Also, for technical convenience, the
automata will not read initial moves and, if θ ≡ β, the final moves will also be
suppressed. In the latter case, the information needed to recover them will be
provided in a final state in the form of a subdistribution.

As our alphabet we shall use the set TΓ,θ×V, which contains all non-initial
moves (Definition 4). Recall from Definition 2 that TΓ,θ contains tags which
intuitively represent term evaluation, calls/returns associated with the resul-
tant value as well as calls/returns related to the indeterminate components
of a term. Elements of V = {%} ∪ {0, · · · ,max} are then used to represent
parameters occurring in the respective calls/returns.

Definition 8 A (Γ, θ)-automaton is a tuple (Q, i, δ, F, η) such that

– (TΓ,θ × V, Q, i, δ, F) is a probabilistic automaton;
– the set of states is partitioned into QO and QP (that will be used for

processing O- and P -moves respectively);
– i ∈ QP ;
– δ is partitioned into δO and δP such that:

– (O-determinacy) if δO(q,m)(q′) .= 0 then m ∈ MO, q ∈ QO , q′ ∈ QP

and δO(q,m)(q′) = 1,

14 Stefan Kiefer et al.

– (P -generativity) if δP (q,m)(q′) .= 0 then m ∈ MP , q ∈ QP , q′ ∈ QO

and
∑

m∈MP ,q′′∈Q

δP (q,m)(q′′) ≤ 1;

– F and η are subject to the following conditions.
– If θ ≡ β then F ⊆ QP , η : F → S(Vβ) and for all f ∈ F

∑

q,m

δ(f,m)(q) +
∑

v∈Vβ

η(f)(v) ≤ 1.

– If θ .≡ β then F ⊆ QO (η will be immaterial in this case).

Next we spell out what it means for (Γ, θ)-automata to represent weighted
complete plays.

Definition 9 Let σ : Γ, θ and let {Aι}ι∈IΓ be a collection of (Γ, θ)-automata.
We shall say that {Aι}ι∈IΓ represents σ if the conditions below are satisfied
for all ι ∈ IΓ .

– If θ ≡ β then σ(ιs(r↓, v)) =
∑

f∈F Af
ι (s) · η(f)(v) for all ι s (r↓, v) ∈ CΓ,θ.

– If θ .≡ β then σ(ι s) =
∑

f∈F Af
ι (s) for all ι s ∈ CΓ,θ.

Finally we show how to construct collections of automata representing the
weighted complete plays induced by terms of L.

Theorem 2 Let Γ " M : θ be a L-term and σ : Γ, θ the corresponding set of
weighted complete plays defined in Section 4. Then there exists a collection of
(Γ, θ)-automata representing σ.

Proof We shall denote the collection of automata referred to in the statement
of the Theorem by {AΓ*M

ι }ι∈IΓ and will most often omit the typing context
Γ " for brevity. The construction of this family will proceed by structural
induction for L-terms.

– The automata A()
ι , An

ι , A
coin[0:p0,··· ,max :pmax]
ι and Ax:β

ι are given by the
respective one-state automata listed below, where η : {0, · · · ,max} → [0, 1]
is the subdistribution η(n) = pn.

(%, 1) (n, 1) η (ι(x), 1)

We use double circling to indicate that a state is final (the states above are
also initial, which we highlight by filling their background). Additionally,
whenever the distribution η is relevant, we shall write it inside the final
state. In each of the cases considered above, the empty word will carry
weight 1, so the given automata do represent the requisite complete plays
from Section 4 as stipulated in Definition 9.

Algorithmic probabilistic game semantics 15

– For Acase(x)[M0,··· ,Mmax]
ι we can simply take A

Mι(x)
ι .

– The automata Afx
ι , A!x

ι , Ax := y
ι , Amkvar(x,y)

ι can be constructed directly
from the definition of the corresponding complete plays given in Section 4.

– Aλxβ1 .M
ι can be obtained as follows, where u, v, f range over Vβ1 , Vβ2 and

FAM
(ι,u)

respectively, and • is the only final state in the new automaton.

i
(r↓,&),1

!! •
(c,u),1

!! iAM
(ι,u)

f

(r,v),η
AM

(ι,u)
(f)(v)

""

Note that (r↓, %) is accepted with probability 1 to correspond to the re-
quirement σ(ι (r↓, %)) = 1 from Section 4. Moreover, the new transition
between f and • allows us to model the desired multiplication effect on
weights:

σ(ι (r↓, %) (c, u1)s1(r, v1) · · · (c, uk)sk(r, vk)) =
k
∏

i=1

σ′((ι, ui) si (r↓, vi)).

– We proceed to discuss the automata-theoretic account of the σ2[σ1/x] con-
struction, which is used to interpret the remaining syntactic constructs
letx = M inN and new x inM . The argument will be divided into two
cases: θ ≡ β and θ .≡ β. The former can be treated more directly by
concatenation, while for the latter we shall use a product-like construc-
tion. Suppose σ1 : Γ, θ and σ2 : Γ + {x : θ}, θ′. Let the families {A1

ι }ι,
{A2

ι,v}ι,v represent σ1 and σ2 respectively. Let us fix ι and assume that
A1

ι = (Q1, i1, δ1, F1, η1) and A2
ι,v = (Qv

2, i
v
2, δ

v
2 , F

v
2 , δ

v
2), where v ∈ Vθ.

– Suppose θ ≡ β. In this case the corresponding sequences s1 (here we
refer to s1 from Definition 6) will not contain the c, r tags. Hence, the
pattern of tags that arises during synchronisation degenerates to

ι X∗
1 S X∗

2 r↓ (c X∗
2 r)∗.

Consequently, in order to simulate it, it suffices to link final states of
A1

ι with appropriate copies of A2
ι,v. To that end we define a (Γ, θ)-

automaton A′ = (Q′, i′, δ′, F ′, η′) as follows, where
⊕

stands for the
disjoint sum of sets.
• Q′ = Q1 +

⊕

v∈Vβ
Qv

2

• i′ = i1
• δ′ = δ1 + δextra +

⊕

v∈Vβ
δv2

∀f∈F1,v∈Vβ ,q′∈Qv
2

δextra(f,m)(q′) = η(f)(v) · δv2(i
v
2 ,m)(q′)

• F ′ = F1 +
⊕

v∈Vβ
F v
2

16 Stefan Kiefer et al.

• η′ = ηextra +
⊕

v∈Vβ
ηv2

ηextra is defined only if θ′ is a base type. Then we have:

∀f∈F1,u∈Vθ′
ηextra(f)(u) =

∑

v∈Vβ ,i
v
2∈Fv

2

η1(f)(v) · η
v
2 (i

v
2)(u).

Note that by linking the automata through δextra(f,m)(q′) = η(f)(v) ·
δv2 (i

v
2,m)(q′) we obtain the requisite multiplication on weights from

Definition 6. No erasure is necessary in this case because the alphabet
B corresponds to initial and final moves, which are not represented
explicitly in automata.

– Now we tackle the other case (θ .≡ β). We shall simply write (Q2, i2, δ2, F2, η2)
instead of (Qv

2, i
v
2, δ

v
2 , F

v
2 , η

v
2), as v = % in this case. Next we introduce

the product construction that will allow the two automata to engage
in interaction according to the definition of σ2[σ1/x] (and synchro-
nize on moves in B). First we apply the relabelling [tx/t, (S, v)/(r↓, v)]
to Aι. In order to allow for synchronisation on (S, %) we shall add

a new state i−2 along with a transition i−2
(S,&),1

!! i2 . The automaton

A|||B = (Q, i, δ, F, η) capturing the requisite interactions is defined as
follows.
• Σ = (TΓ∪{x:θ},θ′ × V) ∪ {(S, %)}
• Q = Q1 × (Q2 ∪ {i−2 })
• i = (i1, i

−
2)

• δ is defined below, where we let m, b range over TΓ,θ′ × V and
{cx, rx, crx, r

r
x, c

w
x , r

w
x }× V respectively and qi, q′i ∈ Qi (i = 1, 2).

δ((q1, i
−
2),m)(q′1, i

−
2) = δ1(q1,m)(q′1)

δ((q1, i
−
2), (S, %))(q

′
1, i2) = δ1(q1, (S, %))(q′1)

δ((q1, q2),m)(q′1, q2) = δ1(q1,m)(q′1)
δ((q1, q2),m)(q1, q′2) = δ2(q2,m)(q′2)
δ((q1, q2), b)(q′1, q

′
2) = δ1(q1, b)(q′1) · δ2(q2, b)(q

′
2)

• F = F1 × F2

• η(f1, f2) = η2(f2)
Note that in the last clause for δ the probabilities are multiplied (in
fact one of them will be equal to 1), as in the definition of σ2[σ1/x].
Accordingly, A|||B will be consistent with Definition 6 in the following
sense.
• If θ′ ≡ β for any f ∈ F we shall have (A|||B)f (s) · η(f)(v) .= 0
only if ι s (r↓, v) = s1!s2 for compatible s1, s2. This is because
the constituent automata have to synchronise exactly on elements
of B. Conversely, if ι s (r↓, v) = s1!s2 for compatible s1, s2 then
∑

f∈F (A
|||B)f (s)·η(f)(v) = σ1(s1)·σ2(s2), because during synchro-

nisation the weights on synchronised transitions are multiplied.

Algorithmic probabilistic game semantics 17

• Similarly, if θ′ .≡ β, for any f ∈ F , we have (A|||B)f (s) .= 0 only if
ι s = s1!s2 and

∑

f∈F (A
|||B)f (s) = σ1(s1) · σ2(s2), as required.

However, A|||B is not a (Γ, θ′)-automaton yet, due to the presence of
transitions involving tags associated with x as well as S. We can re-
move them by turning them into ε-transitions (thus implementing the
erasure \B from the definition of σ2[σ1/x]) and applying one of the
standard ε-elimination algorithms for weighted automata, e.g. [32]. For
completeness we give the partitioning of states in A|||B into O-states
and P -states:

QO = QO
1 × ({i−2 } ∪QO

2),
QP = QO

1 ×QP
2 ∪ QP

1 × ({i−2 } ∪QO
2).

Other states can be removed as they are not reachable from (i1, i
−
2).

Now that we have an automata-theoretic construction corresponding to
σ2[σ1/x], the theorem for letx = M inN and new x inM follows by applying
the construction as explained in Section 4.

12

5.1 Some special cases more concretely

The syntax of L that we introduced was very economical and many commonly
used idioms had to be compiled into the language via the let construct. Next we
give four constructions that cover selected special cases. They yield equivalent
automata to those constructed by following the general recipe given above,
but are more suitable for implementation and also more intuitive.

– Let (f : β1 → β2) ∈ Γ and suppose AM
ι = (Q, i, δ, F, η) corresponds to

Γ " M . Then the automaton for letx = M in fx (normally written as fM)
can be constructed as follows.

Q′ = Q + {q}+ {fv | v ∈ Vβ2}
i′ = i

δ′ = δ + {f
(cf ,u), η(f)(u)
−−−−−−−−−→ q | f ∈ F, u ∈ Vβ1}+ {q

(rf ,v),1
−−−−−→ fv | v ∈ Vβ2}

F ′ = {fv | v ∈ Vβ2}
η′ = {(fv, (v, 1)) | v ∈ Vβ2}

– Let (x : var) ∈ Γ and suppose Aι = (Q, i, δ, F, η) corresponds to Γ "
M : int. Then the automaton for let y = M inx := y (typically written as
x :=M) can be obtained as follows.

Q′ = Q+ {q}+ {f&}
i′ = i

δ′ = δ + {f
(cwx ,u), η(f)(u)
−−−−−−−−−→ q | f ∈ F, u ∈ Vint}+ {q

(rwx ,&),1
−−−−−→ f&}

F ′ = {f&}
η′ = {(f&, (%, 1))}

18 Stefan Kiefer et al.

– Suppose Aι,& = (Q, i, δ, F, η) corresponds to Γ, x : var " M : θ. Then the
automatonA′

ι for Γ " new x inM : θ can be constructed by creating (max+1)
copies of M (tracking the intermediate values of x), in which transitions
related to x are appropriately redirected or erased. Formally

Aι = (Q× {0, · · · ,max}, (i, 0), F × {0, · · · ,max}, δ′, η′),

where

δ′((q1, i),m)(q2, j) =

δ(q1,m)(q2) m = (t, v), i = j, t .= rrx, c
w
x

δ(q1,m)(q2) m = (t, v), v = j, t = rrx, c
w
x

0 otherwise

η′(f, i) = η(f) f ∈ F , i ∈ {0, · · · ,max}

Now it suffices to designate all transitions involving tags crx, r
r
x, c

w
x , r

w
x as

ε-transitions and to perform ε-removal.
– Let (f : unit → int), (g : unit → unit) ∈ Γ , (x : unit) .∈ Γ and suppose

A1
ι = (Q1, i1, δ1, F1, η1) and A2

ι = (Q2, i2, δ2, F2, η2) correspond to Γ "
M : int and Γ " N : unit. Then the automaton for let f = λxunit.M in let g =
λxunit.N in while f() do g() (which corresponds to whileM doN) can be con-
structed by eliminating ε-transitions in the automaton given below.

Q′ = Q1 +Q2

i′ = i1

δ′ = δ1 + δ2 + {f1
ε,
∑

max

n=1 η1(f1)(n)
−−−−−−−−−−−→ i2 | f1 ∈ F1}+ {f2

ε,η2(f2)(&)
−−−−−−−→ i1 | f2 ∈ F2}

F ′ = F1

in which η′(f1)(%) = η1(f)(0) for any f1 ∈ F ′.

5.2 Case studies

Next we present a series of case studies in which the automata have been
generated in an automated way by our tool apex. In order to reduce the
number of transitions, consecutive transitions tagged cx and rx respectively
(the same applies to crx, r

r
x and cwx , r

w
x) are lumped together. In order to retrieve

the correspondence with game semantics, the reader should refer to the table
below.

game semantics automata

•0
(cx,&)

!! •
(rx,&)

!! •1 •0
runx

!! •1

•0
(cx,u)

!! •
(rx,&)

!! •1 •0
x(u)

!! •1

•0
(cx,&)

!! •
(rx,v)

!! •1 •0
vx

!! •1

•0
(cx,u)

!! •
(rx,v)

!! •1 •0
(u,v)x

!! •1

•0
(cwx ,u)

!! •
(rwx ,&)

!! •1 •0
write(u)x

!! •1

•0
(crx,&)

!! •
(rrx,v)

!! •1 •0
vx

!! •1

Algorithmic probabilistic game semantics 19

For flexibility, we use a variety of int- and var-types with different ranges. In the
code we shall write, for example, int%5 or var%7 to reflect that. We also use
arrays: an array a of size N is translated into L by declaring N variables using
new. Assuming the variables are x0, · · · , xN−1, array accesses a[M] can then be
desugared to case(M)[x0, · · · , xN−1]. Note that, because we work with finite
datatypes, various arithmetic operations can be handled via case(· · ·)[· · ·].
Subdistributions associated with final nodes will be written inside nodes. In
the figures we use 0 to stand for %, so (0, 1) denotes the distribution returning
% (termination) with probability 1.

6 Experimental Results

We describe the architecture of the tool apex, which generates automata by
following the constructions described earlier. Further, we give experimental
results with statistics on running time and automata sizes. We profile the
different automata operations involved to identify the automata operations
that are most critical for performance.

From a given program, apex builds an automaton and writes it to disk.
The automaton can then be viewed as a graph or compared for equivalence to
another automaton. The architecture of apex is split into a language front-
end, implemented in OCaml, which translates the program into a sequence of
operations on automata, and a back-end automata library, implemented in C,
which represents automata as adjacency graphs.

We have run apex on a collection of benchmark case studies using a 3.07
GHz workstation with 48GB of memory and a time-out limit of 10 minutes.
The benchmarks consist of probabilistic programs studied in previous pub-
lications [28,24], and one new case study, the Crowds protocol [39]. In this
subsection we briefly review the case studies and give performance statistics.

Crowds protocol. Assume that there is a sender who would like to transmit
a message to a receiver. The sender is a member of a crowd of participants.
The sender is aware that there are corrupt members—potentially even the
receiver—who seek to intercept the identity of the sender. The Crowds proto-
col [39] forwards the message via a random route to the receiver, so that the
sender can plead probable innocence to be the originator of the message. As
crowd memberships may change, the protocol may run for several rounds R
leading to path reformulations.

The algorithm works as follows (we provide the apex code in Figure 4).
Each honest crowd member probabilistically either forwards the message to
another randomly chosen member or sends it directly to the recipient. It is
assumed that, when corrupt crowd members receive a message from another
member, they just announce the identity of the other member. In this way,
the protocol dynamically builds a random route to the recipient. The identity
of the sender cannot be determined with absolute certainty. However, if a
corrupt member receives a message along this route, it leaks the identity of the

20 Stefan Kiefer et al.

const USERS := 30;
const CORRUPT := 3;
const ROUNDS := 2;

announce : int%USERS -> unit |-
var%2 corrupt [USERS];
var%USERS i := USERS - 1;
while(USERS - i < CORRUPT) do {

corrupt [i] := 1; // initialise corrupt users
i := i - 1;

} ;
var%(ROUNDS +1) round :=0;
while(round < ROUNDS) do {
var%USERS current ;
var%USERS previous ;
var%2 done;
// create path
while(done = 0) do {

i f (corrupt [current] = 1) then {
announce (previous);
done := 1

} else {
i f (coin [0:1/4 ,1:3/4]) then { // forward or not

previous := current ; // save the sender
current := rand[USERS]; // forward to whom ?

} else {
done := 1

} // end of if
} // end of if

}; // end of current path
round := round + 1;

}:unit // end of path reformulations

Fig. 4 Crowds protocol.

member it has received the message from. We assume that corrupt members
can determine when two different messages originate from the same sender,
e.g., due to similarity in content. Thus over several path reformulations the
more often the identity of a particular member is announced, the likelier he is to
be the actual sender of given class of messages. Thus the concept of anonymity
can be quantified probabilistically. Different degrees of probabilistic innocence
exist: one variant considers whether the sender has higher probability than
any other member to be announced, another variant considers the probability
for the sender to be announced is larger than zero.

Shmatikov [43] modelled the Crowds protocol in the probabilistic model
checker PRISM using one counter for each member. The counter variables
recorded the number of times a member has been announced by a corrupt
member. Anonymity could thus be quantified by computing the probability
that a certain relation between counter values held, e.g., the probability that
the identity of the sender is announced more often than any other member.
The downside of this modelling approach was that the counter values led to
an exponential blow up in the state space.

Algorithmic probabilistic game semantics 21

(0 ,16/49)

(0,4/7)

 a n n o u n c e (0) , 1 5 / 5 6

 a n n o u n c e (2) , 9 / 1 1 2

 a n n o u n c e (1) , 9 / 1 1 2
(0,1) a n n o u n c e (2) , 9 / 1 9 6

 a n n o u n c e (1) , 9 / 1 9 6

 a n n o u n c e (0) , 1 5 / 9 8

 a n n o u n c e (0) , 1 5 / 5 6

 a n n o u n c e (2) , 9 / 1 1 2

 a n n o u n c e (1) , 9 / 1 1 2

Fig. 5 Crowds: 3 members, 1 corrupt.

In apex, however, the Crowds protocol can be conveniently modeled with-
out instrumenting the model with counters. Instead the announcements of
members are labels in the automaton. Figure 5 shows the automaton obtained
with 3 members and 1 corrupt member.

In this example game semantics is used for automatic extraction of an
abstraction of the protocol that captures exactly the information needed to
investigate its anonymising power. The sizes of the extracted models grow only
linearly in the number of rounds and members. Thus, model-checking them will
be more efficient than model checking the full state space, as could be done with
other tools. Here our goal is not to prove equivalence with a specification, but
to demonstrate how game semantics can be used as a technique for compact
model building.

Dining cryptographers [28]. A classical example illustrating anonymity is that
of the Dining Cryptographers protocol [8], which is a popular case study that
very nicely illustrates the benefits of game semantics. Imagine that a certain
number of cryptographers are sharing a meal at a restaurant around a circular
table. At the end of the meal, the waiter announces that the bill has already
been paid. The cryptographers conclude that it is either one of them who has
paid, or the organisation that employs them. They resolve to determine which
of the two alternatives is the case, with the proviso that for the former the
identity of the payer should remain secret.

A possible solution goes as follows. A coin is placed between each pair
of adjacent cryptographers. The cryptographers flip the coins and record the
outcomes for the two coins that they can see, i.e., the ones that are to their
immediate left and right. Each cryptographer then announces whether the
two outcomes agree or disagree, except that the payer (if there is one) says
the opposite. When all cryptographers have spoken, they count the number of
disagreements. If that number is odd, then one of them has paid, and otherwise,
their organisation has. Moreover, if the payer is one of the cryptographers, then
no other cryptographer is able to deduce who it is.

We show how to model the Dining Cryptographers protocol in our prob-
abilistic programming language, and verify anonymity using apex. Let us
consider the case of three cryptographers, numbered 1, 2, and 3, from the
point of view of the first cryptographer; the open program in Figure 6 en-
acts the protocol. This program has a local variable whopaid that can be set

22 Stefan Kiefer et al.

const N:= 4; // number of cryptographers = N-1
coins: int%2-> unit , ann : int %2 -> unit |-

var%N whopaid :=2;
var%2 first :=coin;
var%2 right := first ;
var%2 left;
var%2 parity ;

var%N i:=1;
while (i) do {

i f (i=N-1) then {
left:= first;

}
else {

left:=coin[0:1/2 , 1:1/2];
}
i f (i=1) then {

coins(right); coins(left)
}
ann ((left=right)+(whopaid =i)) ;
right := left;
i:=i+1

} : unit

Fig. 6 Dining cryptographers.

to 2 or 3, to model the appropriate situation. All events meant to be visi-
ble to the first cryptographer, i.e., the outcomes of his two adjacent coins,
as well as the announcements of all cryptographers, are made observable by
respectively calling the free procedures coins and ann with the corresponding
values. Thus, the observable behaviour of the program will correspond to the
perspective of the first cryptographer. (Probabilistic) anonymity with respect
to the first cryptographer then corresponds to the assertion that the program
in which whopaid has been set to 2 is contextually equivalent to the program
in which it is set to 3. From the code in Figure 6, apex produces the following
probabilistic automaton.

0

1 coins(0), 1/4

6
 coins(0), 1/4

10

 coins(1), 1/4

11 coins(1), 1/4 2

 coins(0), 1

7
 coins(1), 1

 coins(0), 1

 coins(1), 1 3 ann(1), 1
4

 ann(0), 1/2

9

 ann(1), 1/2

(0,1)

 ann(1), 1

 ann(0), 1

8 ann(0), 1
 ann(1), 1/2

 ann(0), 1/2

The variable whopaid is set to 2 in Figure 6. It turns out that setting whopaid
to 3 yields precisely the same automaton. The two programs are therefore
contextually equivalent, which establishes anonymity of the protocol with three
cryptographers.

Algorithmic probabilistic game semantics 23

One can easily investigate larger instances of the protocol by changing the
value of the constant N in line 1. It is interesting to note that the size of the
state space of the automata grows only linearly with the number of cryptog-
raphers, despite the fact that the raw cryptographers state space is ostensibly
exponential (due to the set of possible outcomes of the coin flips). Note how-
ever that this complexity is in our case reflected in the number of paths of
the automata rather than in the number of their states. In fact, in our exper-
iments (see Table 1), the state spaces of the intermediate automata as well as
the total running times grew linearly as well. This unexpected outcome arose
partly from apex’s use of bisimulation reduction throughout the construction,
in which most symmetries were factored out. The automaton for 20 cryptog-
raphers is shown below to illustrate that the automaton size grows linearly
with the number of cryptographers:

0

1 coins(0), 1/4

23
 coins(0), 1/4

44

 coins(1), 1/4

45 coins(1), 1/4
2

 coins(0), 1

24

 coins(1), 1

 coins(0), 1

 coins(1), 1 3
 ann(1), 1

4

 ann(0), 1/2

26

 ann(1), 1/2 5
 ann(1), 1/2

27

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

6
 ann(1), 1/2

28

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

7
 ann(1), 1/2

29

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

8
 ann(1), 1/2

30

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

9
 ann(1), 1/2

31

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

10
 ann(1), 1/2

32

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

11
 ann(1), 1/2

33

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

12
 ann(1), 1/2

34

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

13
 ann(1), 1/2

35

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

14
 ann(1), 1/2

36

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

15
 ann(1), 1/2

37

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

16
 ann(1), 1/2

38

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

17
 ann(1), 1/2

39

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

18
 ann(1), 1/2

40

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

19
 ann(1), 1/2

41

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

20
 ann(1), 1/2

42

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

21
 ann(1), 1/2

43

 ann(0), 1/2

 ann(0), 1/2

 ann(1), 1/2

(0,1)

 ann(1), 1

 ann(0), 1

25
 ann(0), 1

 ann(1), 1/2

 ann(0), 1/2

We can also show that probabilistic anonymity fails when the coins are
biased. Note that thanks to full abstraction, whenever two probabilistic pro-
grams are not equivalent, their corresponding probabilistic automata will dis-
agree on the probability of accepting some particular word. This word, whose
length need be at most the total number of states of both automata, can be
thought of as a counterexample to the assertion of equivalence of the original
programs, and can be used to debug them. Using a counterexample word, we
are able to track down the exact program locations that lead to inequivalence
and also a scenario in the protocol where anonymity is breached. For example,
if tossing 0 has probability 1

3 , apex produces the following counterexample for
the protocol instance with 4 cryptographers:

coins(1) coins(1) ann(1) ann(1) ann(0)

which gives a probability 1
9 in the automaton where cryptographer 2 has paid

and 2
9 if cryptographer 3 has paid. Counterexample words are generated au-

tomatically using the techniques from [24].
The current version of apex can analyse instances of up to 800 philosophers

in the given time limit. (In previous experiments [28], instances of the protocol
with up to 100 cryptographers could be handled before the tool would time
out.)

The Dining Cryptographers protocol is a popular benchmark for evaluating
frameworks for analysing anonymity and information hiding. One approach is
to use probabilistic temporal-logic model checking. For example, the protocol
has been used as a case study for the prism probabilistic model checker [27].
Van der Meyden and Su [44] use an algorithm for model checking a temporal
logic with epistemic modalities. In this setting the specification can refer to
subjective probabilities, permitting a more explicit formalisation of anonymity
properties that in a pure temporal logic. Kacprzak et al. [22] have investigated
the performance of epistemic model checking algorithms on this case study

24 Stefan Kiefer et al.

0

1 8 0 _ g r a d e , 1

1 9
 1 _ g r a d e , 1

1 4

 o u t (2) , 1 / 4

1 5

 o u t (1) , 1 / 4

1 6

 o u t (0) , 1 / 4

1 7

 o u t (3) , 1 / 4

 o u t (3) , 1 / 4

 o u t (2) , 1 / 4

 o u t (1) , 1 / 4

 o u t (0) , 1 / 4

(0,1)

2 o u t (1) , 1

3 o u t (2) , 1

4

 o u t (0) , 1
5

 o u t (3) , 1

6
 0 _ g r a d e , 1

 1 _ g r a d e , 1

7
 1 _ g r a d e , 1

 0 _ g r a d e , 1

8

 1 _ g r a d e , 1

 0 _ g r a d e , 1

9 0 _ g r a d e , 1

 1 _ g r a d e , 1

1 0

 o u t (3) , 1 / 4

 o u t (2) , 1 / 4

 o u t (1) , 1 / 4

 o u t (0) , 1 / 4

1 1

 o u t (0) , 1 / 4

 o u t (3) , 1 / 4

 o u t (2) , 1 / 4

 o u t (1) , 1 / 4

1 2
 o u t (2) , 1 / 4

 o u t (1) , 1 / 4

 o u t (0) , 1 / 4

 o u t (3) , 1 / 4

1 3

 o u t (1) , 1 / 4

 o u t (0) , 1 / 4

 o u t (3) , 1 / 4

 o u t (2) , 1 / 4

 0 _ g r a d e , 1

 1 _ g r a d e , 1

 1 _ g r a d e , 1

 0 _ g r a d e , 1

 1 _ g r a d e , 1

 0 _ g r a d e , 1

 0 _ g r a d e , 1

 1 _ g r a d e , 1

Fig. 7 Grades: specification automaton

using both BDD- and SAT-based approaches. The above papers consider only
finite instances of the protocol. They report that the complexity of model
checking grows exponentially with the number of cryptographers, and for al-
most all properties their experiments involve instances with fewer that 20
cryptographers.

Our approach does not directly formalise the knowledge and beliefs of
different agents. Instead this is modelled indirectly via the ability of game
semantics to handle programs with free identifiers, modelling what is visible
to the environment. Consequently we formalise anonymity as a global prop-
erty (equivalence in all contexts) rather than a collection of different temporal
logic assertions. In this respect our work is similar to the process-algebraic ap-
proaches to verifying anonymity (see in particular [7,42]). As reported above,
the automata we produce seem to scale linearly with the number of cryptog-
raphers. In essence we model the runs of the protocol as a language, and our
automata are an exponentially compact representation of this language.

McIver and Morgan [30] prove the correctness of arbitrarily large instances
of the Dining Cryptographers protocol via an approach integrating non-interference
and stepwise refinement. Their proof is comprised of assertions in a Hoare-style
program logic. Whilst being completely formal, to the best of our knowledge,
the proof has not been automated.

Grades protocol. The grades protocol [24] gives a randomised algorithm to
determine, for a given group of students, a sum of their grades, e.g. to com-
pute the average, without revealing their individual grade in the process. The
algorithm works as follows: Let S ∈ N be the number of students, and let
{0, · · · , G − 1} (G ∈ N) be the set of grades. Define N = (G − 1) · S + 1.
Further we assume that the students are arranged in a ring and that each pair
of adjacent students shares a random integer between 0 and N − 1. Thus a

Algorithmic probabilistic game semantics 25

0

3 0
 0 _ g r a d e , 1 / 4

3 1 1 _ g r a d e , 1 / 4

3 2

 1 _ g r a d e , 1 / 4

3 3

 0 _ g r a d e , 1 / 4

3 4 0 _ g r a d e , 1 / 4

3 5 1 _ g r a d e , 1 / 4

3 6 0 _ g r a d e , 1 / 4

3 7

 1 _ g r a d e , 1 / 4

2 9

 o u t (0) , 1

2 8 o u t (0) , 1

 o u t (1) , 1

2 6

 o u t (1) , 1

 o u t (3) , 1

2 7 o u t (3) , 1
 o u t (2) , 1

 o u t (2) , 1

(0 ,1)

2
 o u t (1) , 1

3

 o u t (2) , 1

4 o u t (3) , 1

5 o u t (0) , 1

6

 0 _ g r a d e , 1

 1 _ g r a d e , 1

7

 0 _ g r a d e , 1

 1 _ g r a d e , 1

8

 1 _ g r a d e , 1

 0 _ g r a d e , 1

9

 0 _ g r a d e , 1

 1 _ g r a d e , 1

1 0

 o u t (0) , 1

1 1

 o u t (0) , 1

1 2

 o u t (1) , 1

1 3

 o u t (1) , 1

1 4

 o u t (3) , 1

1 5

 o u t (3) , 1

1 6

 o u t (2) , 1

1 7

 o u t (2) , 1

1 8

 o u t (0) , 1

1 9

 o u t (1) , 1

2 0
 o u t (3) , 1

2 1 o u t (2) , 1

2 2

 o u t (0) , 1

2 3 o u t (1) , 1

2 4
 o u t (3) , 1

2 5
 o u t (2) , 1

 1 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 0 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

 1 _ g r a d e , 1 / 4

Fig. 8 Grades: implementation automaton

student shares a number l with the student on the left and a number r with
the student on the right, respectively. Denoting the student’s grade by g, the
student announces the number (g + l − r)mod N . Because of the ring struc-
ture, each number will be reported twice, once as l and once as r, so the sum
of all announcements (modulo N) will be the same as the sum of all grades.
We can verify that only this sum can be gleaned from the announcements by
an external observer, i.e. an observer who does not know about the individ-
ual grades. This correctness condition can be formalised by a specification,
in which the students make random announcements subject to the condition
that their sum equals the sum of their grades. This means effectively that the
check for anonymity of the Grades protocol reduces to a language equivalence
check of implementation automaton and specification automaton. This holds
because we know that the specification automaton is anonymous and hence is
the implementation if it is indistinguishable from the specification.

26 Stefan Kiefer et al.

For two students and two grades, the automaton for the specification and
the implementation, respectively, are shown in Figures 7 and 8.

Hibbard’s algorithm. We analyse the average shape of binary search trees gen-
erated by sequences of random insertions and deletions. In his seminal paper
on random deletion in binary search trees, Hibbard [16] proved that: if n+ 1
items are inserted into an initially empty binary tree, in random order, and
if one of those items (selected at random) is deleted, the probability that the
resulting binary tree has a given shape is the same as the probability that this
tree shape would be obtained by inserting n items into an initially empty tree,
in random order.

For more than a decade it was subsequently believed that Hibbard’s theo-
rem in fact proved that trees obtained through arbitrary sequences of random
insertions and deletions are automatically random, i.e., have shapes whose dis-
tribution is the same as if the trees had been generated directly using random
insertions only; see [16,26]. It turns out that this intuition was wrong. In 1975,
Knott showed that, although Hibbard’s theorem establishes that n+1 random
insertions followed by a deletion yield the same distribution on tree shapes as
n insertions, we cannot conclude that a subsequent random insertion yields a
tree whose shape has the same distribution as that obtained through n + 1
random insertions [26].

As Jonassen and Knuth [21] point out, this result came as a surprise. In [25],
they gave a counterexample (based on Knott’s work) using trees having size no
greater than three. Despite the small sizes of the trees involved and the small
number of random operations performed, their presentation showed that the
analysis at this stage is already quite intricate. This suggests a possible reason
as to why an erroneous belief was held for so long: carrying out even small-scale
experiments on discrete distributions is inherently difficult and error-prone.
For example, it would be virtually impossible to carry out by hand Jonassen
and Knuth’s analysis for trees of size no greater than five (i.e., five insertions
differ from five insertions followed by a deletion and then another insertion),
and even if one used a computer it would be quite tricky to correctly set up
a bespoke exhaustive search. With apex such analyses can be carried out
almost effortlessly. It suffices to write programs that implement the relevant
operations and subsequently print the shape of the resultant tree, and then ask
whether the programs are equivalent or not. As an example, we describe how
to use apex to reproduce Jonassen and Knuth’s counterexample, i.e., three
insertions differ from three insertions followed by a deletion and an insertion.
Since apex does not at present support pointers, we represent binary trees of
size n using arrays of size 2n−1, following a standard encoding (see, e.g., [10]):
the left and right children of an i-indexed array entry are stored in the array at
indices 2i+1 and 2i+2 respectively. It is then possible to write a short program
that inserts three elements at random into a tree, then sequentially prints out
the tree shape in breadth-first manner using a free printing procedure. The
automaton for tree size 15 and 3 insertions is shown below.

Algorithmic probabilistic game semantics 27

Table 1 Experiments: running times and automata size.

benchmark peak final time

case study param S T S T total
crypto N 100 2728 119808 205 816 1.06
crypto N 200 5428 479608 405 1616 7.17
crypto N 500 13528 2999008 1005 4016 119.68
crypto N 800 21628 7678408 1605 6416 597.31
crypto N 900 - - - - -
crowd U 10 R 2 1136 2648 3 147 0.03
crowd U 10 R 3 1137 3147 4 276 0.05
crowd U 20 R 1 8465 18466 2 112 0.14
crowd U 20 R 2 8466 18488 3 317 0.37
crowd U 20 R 3 8467 19319 4 596 0.76
crowd U 40 R 1 65725 137726 2 232 2.36
crowd U 40 R 2 65726 137768 3 657 9.15
crowd U 40 R 3 - - - - -
herman N 7 1725 3956 1 0 0.03
herman N 9 5685 19908 1 0 0.14
herman N 11 21801 122260 1 0 0.92
herman N 13 86377 881252 1 0 8.93
herman N 15 344489 7066164 1 0 153.04
herman N 17 - - - - -
tree S 15 I 3 72063 142905 26 94 3.50
tree S 15 I 4 82683 329742 37 257 13.12
tree S 27 I 3 - - - - -
grade-spec S 20 G 3 4183 43624 1563 43624 0.11
grade-spec S 20 G 4 6223 94245 2324 94245 0.24
grade-spec S 20 G 5 8263 164106 3085 164106 0.40
grade-spec S 100 G 3 100903 4282104 39803 4282104 14.42
grade-spec S 100 G 4 151103 9543205 59604 9543205 29.67
grade-spec S 100 G 5 201303 16884506 79405 16884506 50.84
grade-impl2 S 20 G 3 38749 536239 31203 536239 1.81
grade-impl2 S 20 G 4 82049 1554585 68444 1554585 7.17
grade-impl2 S 20 G 5 141349 3389931 120125 3389931 20.25
grade-impl2 S 100 G 3 4161709 64585119 3980003 64585119 347.22
grade-impl2 S 100 G 4 - - - - -

0 2 5 p r i n t (1) , 1 3 / 7 2

2 4

 p r i n t (1) , 1 1 / 7 2

2 3 p r i n t (1) , 1 / 6

2 2 p r i n t (1) , 1 1 / 7 2

2 1

 p r i n t (1) , 2 5 / 7 2
1 6 p r i n t (1) , 1

1 7 p r i n t (1) , 1

1 8 p r i n t (0) , 1

1 9 p r i n t (0) , 1

2 0 p r i n t (1) , 1

(0 ,1)

2
 p r i n t (0) , 1

3 p r i n t (1) , 1

4

 p r i n t (0) , 1

5 p r i n t (0) , 1

6 p r i n t (1) , 1

7 p r i n t (1) , 1

8

 p r i n t (0) , 1

9 p r i n t (0) , 1

1 0 p r i n t (0) , 1

1 1 p r i n t (0) , 1

1 2

 p r i n t (1) , 1

1 3 p r i n t (0) , 1

1 4 p r i n t (0) , 1

1 5 p r i n t (0) , 1

 p r i n t (0) , 1

 p r i n t (0) , 1

 p r i n t (1) , 1

 p r i n t (1) , 1

 p r i n t (1) , 1

Statistics. Table 1 summarises running times and automata sizes obtained dur-
ing our experiments. In the course of generating the final automaton, apex
generates intermediate automata. We record the peak automata size, i.e. the
maximal number of states and transitions, respectively, of any (intermediate)
automaton that was generated by apex. These peak sizes may exceed the ones
of the final automaton. An extreme example is the herman case study where
the final automaton, shown in Figure 9, has only a single state and no transi-
tion.

28 Stefan Kiefer et al.

(0,1)

Fig. 9 Herman’s protocol: final automaton

While the intermediate automata
grow exponentially with the pa-
rameters. The reason why only in-
stances of up to N = 17 can be
handled is the size of the interme-
diate automata. The table explores the parameter range which can still be
handled within the timeout limit.

With typically over 98% of the running time, across all case studies, the
new operator is the dominating semantic operation. As input, the new operator
takes an automaton and a variable to be hidden. In the input automaton, the
variable is essentially an uninterpreted function. In an exploration phase, the
variable is interpreted as a state variable, and then subsequently its transitions
are replaced by ε-transitions. Removing the labels of transitions by turning
them into ε-transitions creates a lot of redundancy in the automaton, which
makes many states bisimilar and creates an opportunity for state-space reduc-
tion. Therefore the automaton is passed to a bisimulation reduction routine
before ε-transitions are removed. Running bisimulation before ε-removal is ad-
vantageous because ε-removal has cubic worst-case complexity in the number
of states, while bisimulation reduction can be done in m log(n) time, where m
is the number of edges and n the number of states.

Bisimulation reduction leads to a dramatic reduction in automata size, so
that subsequent steps operate on smaller automata. Because bisimulation is
applied to larger automata than the other steps (the peak number of transi-
tions recorded in Table 1), bisimulation is typically the most expensive step
which consumes at least 70% of the running time of the new operator (and
hence also a significant portion of the overall running time).

The following table gives the relative runtime contribution of the different
phases of the new operator in percent. Percentages are given per case study,
as instances of the same case study show very similar behaviour:

case study bisimulation exploration ε-removal
crowd 50% 25% 25%
crypto 72% 8% 20%
herman 71% 14% 15%
grade-spec 80% 12% 8%
grade-impl 78% 10% 12%

References

1. S. Abramsky. Algorithmic games semantics: a tutorial introduction. In H. Schwichten-
berg and R. Steinbruggen, editors, Proof and System Reliability, pages 21–47. Kluwer
Academic Publishers, 2002. Proceedings of the NATO Advanced Study Institute, Mark-
toberdorf.

2. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Information
and Computation, 163:409–470, 2000.

3. S. Abramsky and G. McCusker. Call-by-value games. In Proceedings of CSL, volume
1414 of Lecture Notes in Computer Science, pages 1–17. Springer-Verlag, 1997.

Algorithmic probabilistic game semantics 29

4. S. Abramsky and G. McCusker. Game semantics. In H. Schwichtenberg and U. Berger,
editors, Logic and Computation. Springer-Verlag, 1998. Proceedings of the 1997 Mark-
toberdorf Summer School.

5. F. Bause, P. Buchholz, and P. Kemper. A toolbox for functional and quantitative
analysis of DEDS. In Proceedings of Computer Performance Evaluation (Tools), volume
1469 of LNCS, 1998.

6. M. Bernardo, R. Cleaveland, S. Sims, and W. Stewart. TwoTowers: A tool integrating
functional and performance analysis of concurrent systems. In Proceedings of FORTE,
volume 135 of IFIP Conference Proceedings, 1998.

7. M. Bhargava and C. Palamidessi. Probabilistic anonymity. In CONCUR, volume 3653
of Lecture Notes in Computer Science, pages 171–185. Springer, 2005.

8. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. J. Cryptology, 1(1):65–75, 1988.

9. F. Ciesinski and C. Baier. LiQuor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In Proceedings of QEST. IEEE Computer Society, 2006.

10. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, second edition, 2001.

11. V. Danos and R. Harmer. Probabilistic game semantics. ACM Transactions on Com-
putational Logic, 3(3):359–382, 2002.

12. P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen. Reachability analysis of
probabilistic systems by successive refinements. In Proceedings of PAPM-PROBMIV,
volume 2165 of LNCS, 2001.

13. D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control effects
on local relational reasoning. In Proceedings of ICFP, pages 143–156. ACM, 2010.

14. V. Hartonas-Garmhausen, S. Vale Aguiar Campos, and E. M. Clarke. ProbVerus: Prob-
abilistic symbolic model checking. In Proceedings of ARTS, volume 1601 of LNCS, 1999.

15. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov chain model
checker. In Proceedings of TACAS, volume 1785 of LNCS, 2000.

16. T. N. Hibbard. Some combinatorial properties of certain trees with applications to
searching and sorting. J. ACM, 9(1):13–28, 1962.

17. K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computation. The-
oretical Computer Science, 221(1–2):393–456, 1999.

18. D. Hopkins, A. S. Murawski, and C.-H. L. Ong. A fragment of ML decidable by vis-
ibly pushdown automata. In Proceedings of ICALP, volume 6756 of Lecture Notes in
Computer Science, pages 149–161. Springer, 2011.

19. J. Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, University of
Cambridge, 2002.

20. J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I. Models, observables
and the full abstraction problem, II. Dialogue games and innocent strategies, III. A fully
abstract and universal game model. Information and Computation, 163(2):285–408,
2000.

21. A. T. Jonassen and D. E. Knuth. A trivial algorithm whose analysis isn’t. J. Comput.
Syst. Sci., 16(3):301–322, 1978.

22. M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, F. Raimondi, and M. Szreter.
Comparing bdd and sat based techniques for model checking chaum’s dining cryptog-
raphers protocol. Fundam. Inform., 72(1-3):215–234, 2006.

23. J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker. In
Proceedings of QEST. IEEE Computer Society, 2005.

24. S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. Language equiva-
lence for probabilistic automata. In CAV, volume 6806 of Lecture Notes in Computer
Science, pages 526–540. Springer, 2011.

25. G. D. Knott. Deletion in Binary Storage Trees. PhD thesis, Stanford University, 1975.
Computer Science Technical Report STAN-CS-75-491.

26. D. E. Knuth. Sorting and searching. In Volume 3 of The Art of Computer Programming
(first printing). Addison-Wesley, 1973.

27. M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic
real-time systems. In CAV, pages 585–591, 2011.

30 Stefan Kiefer et al.

28. A. Legay, A. S. Murawski, J. Ouaknine, and J. Worrell. On automated verification of
probabilistic programs. In Proceedings of TACAS, volume 4963 of Lecture Notes in
Computer Science, pages 173–187. Springer, 2008.

29. A. McIver and C. Morgan. Abstraction and refinement in probabilistic systems. SIG-
METRICS Performance Evaluation Review, 32(4):41–47, 2005.

30. A. McIver and C. Morgan. The thousand-and-one cryptographers. In Reflections on
the Work of C.A.R. Hoare. Springer, 2010.

31. R. Milner. Fully abstract models of typed lambda-calculi. Theoretical Computer Sci-
ence, 4(1):1–22, 1977.

32. M. Mohri. Generic e-removal and input e-normalization algorithms for weighted trans-
ducers. Internation Journal of Foundations of Computer Science, 13(1):129–143, 2002.

33. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

34. A. S. Murawski. Functions with local state: regularity and undecidability. Theoretical
Computer Science, 338(1/3):315–349, 2005.

35. A. S. Murawski and J. Ouaknine. On probabilistic program equivalence and refinement.
In Proceedings of CONCUR, volume 3653 of Lecture Notes in Computer Science, pages
156–170. Springer, 2005.

36. H. Nickau. Hereditarily sequential functionals. In Proceedings of the Symposium of
Logical Foundations of Computer Science. Springer-Verlag, 1994. LNCS.

37. M. O. Rabin. Probabilistic automata. Information and Control, 6 (3):230–245, 1963.
38. M. O. Rabin. Probabilistic algorithms. In Algorithms and Complexity: New Directions

and Results, pages 21–39. Academic Press, 1976.
39. M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web transactions. ACM Trans.

Inf. Syst. Secur., 1(1):66–92, 1998.
40. J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J.C. van Vliet, editors,

Algorithmic Languages, pages 345–372. North Holland, 1978.
41. D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order

languages. ACM Trans. Program. Lang. Syst., 33(1):5, 2011.
42. S. Schneider and A. Sidiropoulos. Csp and anonymity. In ESORICS, volume 1146 of

Lecture Notes in Computer Science, pages 198–218. Springer, 1996.
43. V. Shmatikov. Probabilistic model checking of an anonymity system. Journal of Com-

puter Security, 12(3/4):355–377, 2004.
44. R. van der Meyden and K. Su. Symbolic model checking the knowledge of the dining

cryptographers. In CSFW, pages 280–. IEEE Computer Society, 2004.
45. R. J. van Glabbeek, S. A. Smolka, and B. Steffen. Reactive, generative and stratified

models of probabilistic processes. Inf. Comput., 121(2):285–408, 1995.
46. H. L. S. Younes. Ymer: A statistical model checker. In Proceedings of CAV, volume

3576 of LNCS, 2005.

