
Contextual approximation and higher-order procedures

?

Ranko Lazić and Andrzej S. Murawski

DIMAP and Department of Computer Science, University of Warwick, UK

Abstract. We investigate the complexity of deciding contextual approximation
(refinement) in finitary Idealized Algol, a prototypical language combining higher-
order types with state. Earlier work in the area established the borderline between
decidable and undecidable cases, and focussed on the complexity of deciding ap-
proximation between terms in normal form.
In contrast, in this paper we set out to quantify the impact of locally declared
higher-order procedures on the complexity of establishing contextual approx-
imation in the decidable cases. We show that the obvious decision procedure
based on exhaustive �-reduction can be beaten. Further, by classifying redexes
by levels, we give tight bounds on the complexity of contextual approximation
for terms that may contain redexes up to level k, namely, (k � 1)-EXPSPACE-
completeness. Interestingly, the bound is obtained by selective �-reduction: re-
dexes from level 3 onwards can be reduced without losing optimality, whereas
redexes up to order 2 are handled by a dedicated decision procedure based on
game semantics and a variant of pushdown automata.

1 Introduction

Contextual approximation (refinement) is a fundamental notion in programming lan-
guage theory, facilitating arguments about program correctness [17] as well as sup-
porting formal program development [6]. Intuitively, a term M

1

is said to contextually
approximate another term M

2

, if substituting M
1

for M
2

in any context will not lead
to new observable behaviours. Being based on universal quantification over contexts,
contextual approximation is difficult to establish directly. In this paper, we consider the
problem of contextual approximation in a higher-order setting with state. Contextual
reasoning at higher-order types is a recognised challenge and a variety of techniques
have been proposed to address it, such as Kripke logical relations [3] or game mod-
els [2]. In this work, we aim to understand the impact of locally defined higher-order
procedures on the complexity of establishing contextual approximation. Naturally, one
would expect the complexity to grow in the presence of procedures and it should grow
as the type-theoretic order increases. We shall quantify that impact by providing tight
complexity bounds for contextual approximation in our higher-order framework. The
results demonstrate that, from the complexity-theoretic point of view, it is safe to in-
line procedures only down to a certain level. Below that level, however, it is possible to
exploit compositionality to arrive at better bounds than those implied by full inlining.

The vehicle for our study is Idealized Algol [15, 1], the protypical language for
investigating the combination of local state with higher-order procedures. In order to
? Research supported by EPSRC (EP/J019577/1, EP/M011801/1).

2 Ranko Lazić and Andrzej S. Murawski

avoid obviously undecidable cases, we restrict ourselves to its finitary variant IA
f

, fea-
turing finite base types and no recursion (looping is allowed, though). Both semantic
and syntactic methods were used to reason about Idealized Algol [1, 14] in the past. In
particular, on the semantic front, there exists a game model that captures contextual ap-
proximation (in the sense of inequational full abstraction) via complete-play inclusion.
Earlier work in the area [8, 11, 13] used this correspondence to map out the borderline
between decidable and undecidable cases within IA

f

. The classification is based on type-
theoretic order: a term is of order i if its type is of order at most i and all free variables
have order less than i. We write IAi for the set of IA

f

-terms of order i. It turns out that
contextual approximation is decidable for terms of all orders up to 3, but undecidable
from order 4 onwards. The work on decidability has also established accurate complex-
ity bounds for reasoning about contextual approximation between terms in �-normal
form as well as terms with the simplest possible �-redexes, in which arguments can only
be of base type. For order-3 terms, the problem can be shown EXPTIME-complete [13],
while at orders 0, 1, 2 it is PSPACE-complete [12]. In this paper, we present a finer anal-
ysis of the decidable cases and consider arbitrary �-redexes. In particular, functions can
be used as arguments, which corresponds to the inlining of procedures.

We evaluate the impact of redexes by introducing a notion of their level: the level
of a �-redex (�x.M)N will be the order of the type of �x.M . Accordingly, we can
split IAi into sublanguages IAk

i , in which terms can contain redexes of level up to k. IA0

i

is then the normal-form case and IA

1

i is the case of base-type arguments. Obviously,
the problem of contextually approximating IA

k
i (i 3, k � 2) terms can be solved by

�-reduction (and an appeal to the results for IA0

i), but this is known to result in a k-fold
exponential blow-up, thus implying a (k + 1)-EXPTIME upper bound for IAk

3

. This
bound turns out to be suboptimal. One could lower it by reducing to IA

1

i instead, which
would shave off a single exponential, but this is still insufficient to arrive at the optimal
bound. It turns out, however, that reducing IA

k
3

terms to IA

2

3

(all redexes up to order 3 are
eliminated) does not lead to a loss of optimality. To work out the accurate bound for the
IA

2

3

case, one cannot apply further �-reductions, though. Instead we devise a dedicated
procedure based on game semantics and pushdown automata. More specifically, we in-
troduce a variant of visibly pushdown automata [4] with ✏-transitions and show how to
translate IA

2

3

into such automata so that the accepted languages are faithful representa-
tions of the term’s game semantics [1]. The translation can be performed in exponential
time and, crucially, the automata correspoding to IA

2

3

-terms satisfy a boundedness prop-
erty: the stack symbols pushed on the stack during ✏-moves can only form contiguous
segments of exponential length with respect to the term size. This allows us to solve the
corresponding inclusion problem in exponential space with respect to the original term
size. Consequently, we can show that IA2

3

contextual approximation is in EXPSPACE.
The above result then implies that program approximation of IAk

3

-terms is in (k�1)-
EXPSPACE. Furthermore, we can prove matching lower bounds for IA

k
1

. The table
below summarises the complexity results. The results for k � 2 are new.

k = 0 k = 1 k � 2

IA

k
1

PSPACE-complete [12] PSPACE-complete [12] (k � 1)-EXPSPACE-complete
IA

k
2

PSPACE-complete [12] PSPACE-complete [12] (k � 1)-EXPSPACE-complete
IA

k
3

EXPTIME-complete [13] EXPTIME-complete [13] (k � 1)-EXPSPACE-complete

Contextual approximation and higher-order procedures 3

2 Idealized Algol

We consider a finitary version IA

f

of Idealized Algol with active expressions [1]. Its
types are generated by the following grammar.

✓ ::= � | ✓ ! ✓ � ::= com | exp | var

IA

f

can be viewed as a simply-typed �-calculus over the base types com, exp, var (of
commands, expressions and variables respectively) augmented with the constants listed
below

skip : com i : exp (0 i max) succ : exp ! exp pred : exp ! exp

ifzero� : exp ! � ! � ! � seq� : com ! � ! � deref : var ! exp

assign : var ! exp ! com cell� : (var ! �) ! �
while : exp ! com ! com mkvar : (exp ! com) ! exp ! var

where � ranges over base types and exp = { 0, · · · ,max }. Other IA
f

-terms are formed
using �-abstraction and application

� ` M : ✓ ! ✓0 � ` N : ✓

� ` MN : ✓0
�, x : ✓ ` M : ✓0

� ` �x✓.M : ✓ ! ✓0

using the obvious rules for constants and free identifiers. Each of the constants corre-
sponds to a different programming feature. For instance, the sequential composition of
M and N (typically denoted by M ;N) is expressed as seq�MN , assignment of N to
M (M :

=N) is represented by assignMN and cell�(�x.M) amounts to creating a
local variable x visible in M (new x in M). mkvar is the so-called bad-variable con-
structor that makes it possible to construct terms of type var with prescribed read- and
write-methods. whileMN corresponds to while M do N . We shall write ⌦� for the
divergent constant that can be defined using while 1 do skip.

The operational semantics of IA
f

, based on call-by-name evaluation, can be found
in [1]; we will write M + if M reduces to skip. We study the induced contextual
approximation.

Definition 1. We say that � ` M
1

: ✓ contextually approximates � ` M
2

: ✓ if, for any
context C[�] such that C[M

1

], C[M
2

] are closed terms of type com, we have C[M
1

]+
implies C[M

2

]+. We then write � ` M
1

@⇠ M
2

.

Even though the base types are finite, IA
f

contextual approximation is not decidable [11].
To obtain decidability one has to restrict the order of types, defined by:

ord(�) = 0 ord(✓ ! ✓0) = max(ord(✓) + 1, ord(✓0)).

Definition 2. Let i � 0. The fragment IAi of IA
f

consists of IA
f

-terms x
1

: ✓
1

, · · · , xn : ✓n `
M : ✓ such that ord(✓j) < i for any j = 1, · · · , n and ord(✓) i.

Contextual approximation is known to be decidable for IA
1

, IA
2

and IA

3

[13], but it is
undecidable for IA

4

[11].

Definition 3. – The level of a �-redex (�x✓.M)N is the order of the type of �x✓.M .

4 Ranko Lazić and Andrzej S. Murawski

MA⇥B = MA +MB MA)B = MA +MB

�A⇥B = [�A,�B] �A)B = [�A,�B]
`A⇥B = `A + `B `A)B = `B +(IB ⇥ IA) + (`A \ (MA ⇥MA))

�A reverses the ownership of moves in A while preserving their kind.

Fig. 1. Constructions on arenas

– A term has degree k if all redexes inside it have level at most k.
– IA

k
i is the subset of IAi consisting of terms whose degree is at most k.

�-reduction can be used to reduce the degree of a term by one at an exponential cost.

Lemma 1. Let d � 1. A �-term M of degree d can be reduced to a term M 0 of degree
d� 1 with a singly-exponential blow-up in size.

3 Games

Game semantics views computation as an exchange of moves between two players,
called O and P. It interprets terms as strategies for P in an abstract game derived from
the underlying types. The moves available to players as well as the rules of the game
are specified by an arena.

Definition 4. An arena is a triple A = hMA,�A,`A i, where

– MA is a set of moves;
– �A : MA ! {O,P }⇥ {Q,A } is a function indicating to which player (O or P)

a move belongs and of what kind it is (question or answer);
– `A✓ (MA + { ? })⇥MA is the so-called enabling relation, which must satisfy the

following conditions:
• If ? enables a move then it is an O-question without any other enabler. A move

like this is called initial and we shall write IA for the set containing all initial
moves of A.

• If one move enables another then the former must be a question and the two
moves must belong to different players.

Arenas used to interpret the base types of IA

f

are shown in Figure 2: the moves at
the bottom are answer-moves. Product and function-space arenas can be constructed as
shown in Figure 1. Given an IA

f

-type ✓, we shall write J✓K for the corresponding arena
obtained compositionally from A

com

, A
exp

and A
var

using the) construction. Given
arenas, we can play games based on a special kind of sequences of moves. A justified
sequence s in an arena A is a sequence of moves in which every move m 62 IA must
have a pointer to an earlier move n in s such that n `A m. n is then said to be the
justifier of m. It follows that every justified sequence must begin with an O-question.

Given a justified sequence s, its O-view xsy and P-view psq are defined as follows,
where o and p stand for an O-move and a P-move respectively:

x✏y = ✏ xsoy = xsyo xso t py = xsyo p
p✏q = ✏ psoq = o (if o is initial) pspq = psqp psp t oq = psqp o.

Contextual approximation and higher-order procedures 5

A

com

A

exp

A

var

?

run

done

?

q

0 · · · max

?

read write(0) · · · write(max)

0 · · · max ok

Fig. 2. Arenas for base types

A justified sequence s satisfies visibility condition if, in any prefix tm of s, if m is a
non-initial O-move then its justifier occurs in xty and if m is a P-move then its justifier
is in ptq. A justified sequence satisfies the bracketing condition if any answer-move is
justified by the latest unanswered question that precedes it.

Definition 5. A justified sequence is a play iff O- and P -moves alternate and it satisfies
bracketing and visibility. We write PA for the set of plays in an arena A. A play is single-
threaded if it contains at most one occurrence of an initial move.

The next important definition is that of a strategy. Strategies determine unique responses
for P (if any) and do not restrict O-moves.

Definition 6. A strategy in an arena A (written as � : A) is a non-empty prefix-closed
subset of single-threaded plays in A such that:

(i) whenever sp
1

, sp
2

2 � and p
1

, p
2

are P-moves then p
1

= p
2

;
(ii) whenever s 2 � and so 2 PA for some O-move o then so 2 �.

We write comp (�) for the set of non-empty complete plays in �, i.e. plays in which all
questions have been answered.

An IA

f

term � ` M : ✓, where � = x
1

: ✓
1

, · · · , xn : ✓n, is interpreted by a strategy
(denoted by J� ` M : ✓K) in the arena J� ` ✓K = J✓

1

K ⇥ · · · ⇥ J✓nK) J✓K. The
denotations are calculated compositionally starting from strategies corresponding to
constants and free identifiers [1]. The latter are interpreted by identity strategies that
copy moves across from one occurrence of the same arena to the other, subject to the
constraint that the interactions must be plays. Strategies corresponding to constants are
given in Figure 3, where the induced complete plays are listed. We use subscripts to
indicate the origin of moves. Let � : A) B and ⌧ : B) C. In order to compose the
strategies, one first defines an auxiliary set �† of (not necessarily single-threaded) plays
on A) B that are special interleavings of plays taken from � (we refer the reader
to [1] for details). Then �; ⌧ : A) C can be obtained by synchronising �† and ⌧ on
B-moves and erasing them after the synchronisation. The game-semantic interpretation
captures contextual approximation as follows.

Theorem 1 ([1]). � ` M
1

@⇠ M
2

if and only if comp J� ` M
1

K ✓ comp J� ` M
2

K.

Remark 1. �† is an interleaving of plays in � that must itself be a play in PA)B . For
instance, only O is able to switch between different copies of � and this can only happen

6 Ranko Lazić and Andrzej S. Murawski

JskipK : JcomK run done

JiK : JexpK q i

JsuccK : JexpK1) JexpK q q1
P

max

i=0 i1 ((i+ 1) mod max)
JpredK : JexpK1) JexpK q q1

P
max

i=0 i1 ((i� 1) mod max)
Jifzero�K : JexpK3) J�K2) J�K1) J�KP

q`J�Ka
q q3 03 q1 a1 a+

P
q`J�Ka

q q3 (
P

max

i=1 i3) q2 a2 a

Jseq�K : JcomK2) J�K1) J�K
P

q`J�Ka
q run2 done2 q1 a1 a

JderefK : JvarK1) JexpK q read1
P

max

i=0 i1 i

JassignK : JvarK2) JexpK1) JcomK run q1
P

max

i=0 i1 write(i)2 ok2 done

Jcell�K : (JvarK1,1) J�K1)) J�KP
q`J�Ka

qq1(read1,1 01,1)
⇤(
P

max

i=0 write(i)1,1 ok1,1(read1,1 i1,1)
⇤)⇤a1a

JmkvarK : (JexpK2,1) JcomK2)) JexpK1) JvarK
read q1 (

P
max

i=0 i1 i) +
P

max

i=0 write(i) run2 (q2,1 i2,1)
⇤
done2 ok

JwhileK : JexpK2) JcomK1) JcomK run q2 (
P

max

i=1 i2 run1 done1 q2)
⇤ 02 done

Fig. 3. Strategies for constants. Only complete plays are specified.

after P plays in B. We shall discuss two important cases in detail, namely, B = J�K and
B = J�k ! · · · ! �

1

! �K.

– If B = J�K then a new copy of � can be started only after the previous one is
completed. Thus �† in this case consists of iterated copies of �.

– If B = J�k ! · · · ! �
1

! �K then, in addition to the above scenario, a new copy
of � can be started by O each time P plays qi (question from �i). An old copy of
� can be revisited with ai, which will then answer some unanswered occurrence
of qi. However, due to the bracketing condition, this will be possible only after all
questions played after that qi have been answered, i.e. when all copies of � opened
after qi are completed. Thus, in this particular case, �† contains “stacked” copies
of �. Consequently, we can capture X = { ✏ }[comp (�†

) in this case by equation

X = {"} [
S
{ q A

0

qi1 X ai1 A1

. . . qim X aim Am aX |
qA

0

qi1ai1A1

. . . qimaimAma 2 comp (�)}

where Aj’s stand for (possibly empty and possibly different) segments of moves
from A. Note that, in a play of �, qi will always be followed by ai.

4 Upper bounds

We shall prove that contextual approximation of IA2

3

terms can be decided in exponen-
tial space. Thanks to Lemma 1, this will imply that approximation of IAk

3

(k � 2) terms
is in (k � 1)-EXPSPACE. In Section 5 we will show that these bounds are tight.

This shows that by firing redexes of level higher than 3 we do not lose optimal
complexity. However, if redexes of order 2 were also executed (i.e. first-order proce-
dures were inlined), the problem would be reduced to IA

1

3

and the implied bound would

Contextual approximation and higher-order procedures 7

be 2-EXPTIME, which turns out suboptimal. In what follows, we show that contex-
tual approximation of IA2

3

terms is in EXPSPACE. To that end, we shall translate the
terms to automata that represent their game semantics. The alphabet of the automata
will consist of moves in the corresponding games. Recall that each occurrence of a base
type in a type contributes distinct moves. In order to represent their origin faithfully, we
introduce a labelling scheme based on subscripts.

First we discuss how to label occurrences of base types in types. Let ⇥ be a type
of order at most 3. Then ⇥ ⌘ ⇥m ! · · · ! ⇥

1

! � and ⇥i’s are of order at most
2. Consequently, for each 1 i m, we have ⇥i ⌘ ⇥i,mi ! · · · ! ⇥i,1 ! �i and
⇥i,j’s are of order at most 1. Thus, we have ⇥i,j ⌘ �i,j,mi,j ! · · · ! �i,j,1 ! �i,j .
Note that the above decomposition assigns a sequence of subscripts to each occurrence
of a base type in ⇥. Observe that ord(⇥) = 3 if and only if some occurrence of a
base type gets subscripted with a triple. Next we are going to employ the subscripts to
distinguish base types in IA

3

typing judgments.

Definition 7. A third-order typing template is a sequence x
1

: ✓
1

, · · · , xn : ✓n, ✓,
where ord(✓i) 2 (1 i n) and ord(✓) 3.

To label ✓
1

, · · · , ✓n, ✓ we will use the same labelling scheme as discussed above but,
to distinguish ✓i’s from ✓ and from one another, we will additionally use superscripts
xi for the former. The labelling scheme will also be used to identify moves in the cor-
responding game. Recall that the game corresponding to a third-order typing template
will have moves from MJ✓1K + · · · + MJ✓nK + MJ✓K. The super- and subscripts will
identify their origin in a unique way.

Example 1. Let ⌘ x
1

: (com ! exp) ! var, x
2

: com ! exp ! var, ((com !
exp) ! var) ! com. Here is the labelling scheme for : x

1

: (com

x1
1,1 ! exp

x1
1

) !
var

x1 , x
2

: com

x2
2

! exp

x2
1

! var

x2 , ((com
1,1,1 ! exp

1,1) ! var

1

) ! com. In
the corresponding games, among others, we will thus have moves runx1

1,1, runx2
2

, qx2
1

,
read

x2 , run
1,1,1 as well as run .

Our representation of game semantics will need to account for justification pointers.
Due to the well-bracketing condition, pointers from answers need not be represented
explicitly. Moreover, because of the visibility condition, in our case we only need to
represent pointers from moves of the shapes qxi,j and qi,j,k. Such pointers must point
at some moves of the form qxi and qi,j respectively. In order to represent a pointer we
are going to place a hat symbol above both the source and target of the pointer, i.e. we
shall also use “moves” of the form cqxi,j ,[qi,j,k (sources) and bqxi , cqi,j (targets) - the latter
hatted moves will only be used if the former exist in the sequence. Similarly to [10], we
shall represent a single play by several sequences of (possibly hatted) moves under the
following conditions:

– whenever a target-move of the kind discussed above is played, it may or may not
be hatted in the representing sequences of moves,

– if a target-move is hatted, all source-moves pointing at the target move are also
hatted,

– if a target-move is not hatted, no source-moves pointing at the move are hatted.

8 Ranko Lazić and Andrzej S. Murawski

Note that this amounts to representing all pointers for a selection of possible targets,
i.e. none, one or more (including all). Because the same b-symbol is used to encode
each pointer, in a single sequence there may still be ambiguities as to the real target of
a pointer. However, among the representing plays we will also have plays representing
pointers only to single targets, which suffice to recover pointer-related information. This
scheme works correctly because only pointers from P-moves need to be represented and
the strategies are deterministic (see the discussion at the end of Section 3 in [13]).

Example 2. The classic examples of terms that do need explicit pointers are the Kier-
staad terms ` K

1

,K
2

: ((com

1,1,1 ! com

1,1) ! com

1

) ! com defined by Ki ⌘
�f (com!com)!com.f(�xcom

1

.f(�x
2

com.xi)). To represent the corresponding strategies
the following sequences of moves will be used (among others).

– K
1

: q q
1

q
1,1 q1 q1,1 q1,1,1 (zero targets), q q

1

dq
1,1 q1 q1,1 [q

1,1,1 (one target),
q q

1

q
1,1 q1 dq1,1 q1,1,1 (one target), q q

1

dq
1,1 q1 dq1,1 [q

1,1,1 (two targets).
– K

2

: q q
1

q
1,1 q1 q1,1 q1,1,1 (zero targets), q q

1

dq
1,1 q1 q1,1 q1,1,1 (one target),

q q
1

q
1,1 q1 dq1,1 [q

1,1,1 (one target), q q
1

dq
1,1 q1 dq1,1 [q

1,1,1 (two targets).

To represent strategies corresponding to IA

2

3

-terms we are going to define an extension
of visibly pushdown automata [4]. The alphabet will be divided push-, pop- and no-op-
letters corresponding to possibly hatted moves. Additionally, we will use ✏-transitions
that can modify stack content, albeit using a distinguished stack alphabet.

Definition 8. Let = x
1

: ✓
1

, · · · , xm : ✓m, ✓ be a third-order typing template and let
M = MJ✓1K + · · · + MJ✓nK + MJ✓K. Below we shall refer to the various components
of M using subscripts and superscripts according to the labelling scheme introduced
earlier, also using q and a for questions and answers respectively. We define the sets
⌃

push

,⌃
pop

,⌃
noop

as follows.

– ⌃
push

= {qi,j,k,[qi,j,k | qi,j,k 2 M} [{qxh
i,j ,

dqxh
i,j | q

xh
i,j 2 M}

– ⌃
pop

= {ai,j,k | ai,j,k 2 M} [{axh
i,j | a

xh
i,j 2 M}

– ⌃
noop

= (M\ (⌃
push

[⌃
pop

)) [{cqi,j | qi,j,k 2 M} [{dqxh
i | qxh

i,j 2 M}

⌃
push

and ⌃
pop

contain exclusively P- and O-moves respectively, while we can find
both kinds of moves in ⌃

noop

. Let us write ⌃O
noop

,⌃P
noop

for subsets of ⌃
noop

consist-
ing of O- and P-moves respectively. The states of our automata will be partitioned into
states at which O is to move (O-states) and whose at which P should reply (P-states).
Push-moves and ✏-transitions are only available at P-states, while pop-transitions be-
long to O-states. No-op transitions may be available from any kind of state. Further,
to reflect determinacy of strategies, P-states allow for at most one executable outgoing
transition, which may be labelled with an element of ⌃P (push or no-op) or be silent
(noop, push or pop).

Definition 9. Let be a third-order typing template. A -automaton A is a tuple
(Q,⌃,⌥, �, i, F) such that

– Q = QO
+QP is a finite set of states partitioned into O-states and P-states,

– ⌃ = ⌃O
+ ⌃P is the finite transition alphabet obtained from as above, parti-

tioned into O- and P-letters, where⌃O
= ⌃

pop

+⌃O
noop

and⌃P
= ⌃

push

+⌃P
noop

,

Contextual approximation and higher-order procedures 9

– ⌥ = ⌥⌃
+ ⌥ ✏ is a finite stack alphabet partitioned into ⌃-symbols and ✏-symbols,

– � = �O
pop

+ �O
noop

+ �P is a transition function consisting of �O
pop

: QO ⇥⌃
pop

⇥
⌥⌃ * QP , �O

noop

: QO ⇥ ⌃O
noop

* QP and �P : QP * (⌃
push

⇥QO ⇥ ⌥⌃) +

(⌃P
noop

⇥QO
) +QP

+ (QP ⇥ ⌥✏) + (⌥✏ * QP
),

– i 2 QO is an initial state, and
– F ✓ QO is a set of final states.

 -automata are to be started in the initial state with empty stack. They will accept by
final state, but whenever this happens the stack will be empty anyway. Clearly, they are
deterministic. The set of words derived from runs will be referred to as the trace-set of
A, written T (A). We write L(A) for the subset of T (A) consisting of accepted words
only. The -automata to be constructed will satisfy an additional run-time property
called P-liveness: whenever the automaton reaches a configuration (q, �) 2 QP ⇥ ⌥
from (i, ✏), �P will provide a unique executable transition.

Remark 2. In what follows we shall reason about IA2

3

terms by structural induction.
The base cases are the constants and identifiers �, f : ✓ ` f : ✓, where ord(✓) 2. For
inductive cases, we split the rule for application into linear application and contraction.

� ` M : ✓ ! ✓0 � ` N : ✓

�,� ` MN : ✓0
ord(✓ ! ✓0) 2

�, x : ✓, y : ✓ ` M : ✓0

�, x : ✓ ` M [x/y] : ✓0

Note that the restriction on ✓ ! ✓0 is consistent with the fact that the level of redexes
cannot exceed 2 and free identifiers have types of order at most 2. The relevant �-
abstraction rule is

�, x : ✓ ` M : ✓0

� ` �x✓.M : ✓ ! ✓0
ord(✓ ! ✓0) 3.

This stems from the fact that we are considering IA

3

.

Lemma 2. Let x
1

: ✓
1

, · · · , xm : ✓m ` M : ✓ be an IA

2

3

-term and let � = Jx
1

:

✓
1

, · · · , xm : ✓m ` M : ✓K. There exists a P-live (x
1

: ✓
1

, · · · , xm : ✓m, ✓)-automaton
AM , constructible from M in exponential time, such that T (AM) and L(AM) repre-
sent respectively � and comp (�) (in the sense of our representation scheme).

Proof. Translation by structural induction in IA

2

3

. The base cases corresponding to the
special constants can be resolved by constructing finite automata, following the de-
scription of the plays in Figure 3. For free identifiers, automata of a similar kind have
already been constructed as part of the translation of normal forms in [13]. We revisit
them below to show which moves must be marked to represent pointers.

Let ✓ be a second-order type. Then x : ✓ ` x : ✓ is interpreted by the identity strat-
egy, which has complete plays of the form

P
q`a qq

xXaxa, where X is given by the
context-free grammar below. When writing

P
q`a, we mean summing up over all pairs

of moves of the indicated shape available in the associated arena M such that q `M a.
Below we also use the condition 9q.qi ` q to exclude moves of the form qi that do not
enable any other questions (such moves are never targets of justification pointers).

X ! ✏ | (

P
qi`ai

qxi qiY
⇤
i aia

x
i)X | (

P
qi`ai
9q.qi`q

bqxi qi(bYi)
⇤aia

x
i)X

Yi !
P

qi,j`ai,j
qi,jq

x
i,jXaxi,jai,j

bYi !
P

qi,j`ai,j
qi,j cqxi,jXaxi,jai,j

10 Ranko Lazić and Andrzej S. Murawski

To capture X , we can construct Ax as in [13], by pushing return addresses when reading
qxi,j , cqxi,j and popping them at axi,j . Note that this simply corresponds to interpreting
recursion in the grammar.

�-abstraction and contraction are interpreted by renamings of the alphabet, so it
remains to consider the hardest case of (linear) application. The rule simply corre-
sponds to composition: in any cartesian-closed category J�,� ` MN : ✓0K is equal
(up to currying) to J� ` N : ✓K; J ` �x✓.��.Mx : ✓ ! (� ! ✓0)K. Note that in
our case ord(✓) 1, i.e. Remark 1 will apply and the strategy for MN can be ob-
tained by running the strategy for M , which will call copies of N , whose interleavings
will obey the stack discipline. To model the interaction, let us consider the moves on
which the automata will synchronise. Since ord(✓) 1, the moves that will interact
will be of the form q, a, qi, ai from N ’s point of view and qk, ak, qk,i, ak,i from M ’s
viewpoint for some k. Thus, given AM = (QM ,⌃M ,⌥M , iM , �M , FM) and AN =

(QN ,⌃N ,⌥N , iN , �N , FN), we let AMN = (QMN ,⌃MN ,⌥MN , iM , �MN , FM), where

QMN = QM + (QO
M ⇥QN)

⌃MN = (⌃M \ {qk, ak, qk,i, ak,i}) + (⌃N \ {q
0

, a
0

, q
1

, a
1

})
⌥⌃MN
MN = ⌥M + ⌥N
⌥ ✏
MN = ⌥ ✏

M + ⌥ ✏
N +QO

M

The decomposition of ⌃MN into push-, pop- and noop-letters is inherited from the
constituent automata. We specify the transition function �MN below using derivation
rules referring to transitions in AM and AN . A push-transition reading x and pushing �

will be labelled with
x/���!. Dually, x,���! will represent a pop. ex stands for any transition

involving x, where x could also be ✏.

– AM ’s non-interacting transitions are copied over to AMN .

s
ex�!AM s0

s
ex�!AMN s0

x 2 (⌃M \ {qk, ak, qk,i, ak,i}) + {✏}

– M calls N (left) and N returns from the call (right).

s
qk�!AM s0 iN

q�!AN t

s
✏�!AMN (s0, t)

s0
ak�!AM s00 t

a�!AN f 2 FN

(s0, t)
✏�!AMN s00

– N ’s non-interacting transitions are copied over while keeping track of AM ’s state.

t
ex�!AN t0

(s, t)
ex�!AMN (s, t0)

s 2 QO
M , x 2 (⌃N \ {q

0

, a
0

, q
1

, a
1

}) [{✏}

– N calls its argument (left) and the argument returns (right).

s
qk,i��!AM s0 t

qi�!AN t0

(s, t)
✏/t0��!AMN s0

s0
ak,i��!AM s00 t0

ai�!AN t00

s0
✏,t0��!AMN (s00, t00)

Contextual approximation and higher-order procedures 11

Note that the interaction involves moves that are not used to represent pointers, i.e.
whenever pointers are represented they remain the same as they were in the orig-
inal strategies, which is consistent with the definition of composition. The states in
QMN are divided into O- and P -states as follows: QO

MN = QO
M + (QO

M ⇥ QO
N) and

QP
MN = QP

M +(QO
M ⇥QP

N). The correctness of the construction follows from the fact
that it is a faithful implementation of legal interactions (see, e.g., [9]), as discussed in
Remark 1. P-liveness follows from the fact the constituent strategies are P-live and that
the construction simulates interaction sequences, including infinite chattering. ut

Our next step will be to analyse the shape of reachable configurations of AM . We aim
to understand how many elements of ⌥✏ can occur consecutively on the stack.

Definition 10. Suppose (q, �) 2 Q⇥ (⌥⌃ [⌥✏)⇤. The ✏-density of � is defined to be the
length of the longest segment in � consisting solely of consecutive elements from ⌥✏.

While the size of stacks corresponding to IA

2

3

terms is unbounded (consider, for in-
stance, x : ✓ ` x : ✓ with ✓ = (com ! com) ! com), ✏-density turns out to be
bounded. We shall prove that it is exponential with respect to the size of the original
term. This will be crucial to obtaining our upper bound. The main obstacle to proving
this fact is the case of composition MN . As discussed in Remark 1, M “stacks up”
copies of N and we would first like to obtain a bound on the number of nested calls
to N that are not separated by a move from ⌃

push

(such moves block the growth of
✏-density). For this purpose, we go back to plays and analyse sequences in which the
relevant questions are pending: a pending question is one that has been played but re-
mains unanswered. Observe that sequences of pending questions are always alternating.
We will not be interested in the specific questions but only in their kinds, as specified
by the table below.

Question q qi, q
x qi,j , q

x
i qi,j,k, q

x
i,j

Kind 0 1 2 3

Definition 11. Let s be a play. We define pend(s) to be the sequence from {0, 1, 2, 3}⇤
obtained from s by restricting it to pending questions and replacing each question with
the number corresponding to its kind.

Thus, any non-empty even-length play s, pend(s) will match the expression 0(12 +

32)

⇤
(1 + 3). We say that the (12)-potential of s is equal to k if k is the largest k such

that pend(s) = · · · (12)k · · · . In other words, the (12)-potential of a play is the length
of the longest segment (12)k in pend(s).

Lemma 3. Let � ` M : ✓ be an IA

2

3

-term. Then the (12)-potential of any play in J� `
MK is bounded and the bound bM is exponential in the size of M .

Lemma 3 is a key technical result needed to establish the following boundedness prop-
erty that is satisfied by automata representing IA

2

3

-terms.

Lemma 4. Let � ` M : ✓ be an IA

2

3

-term and consider AM constructed in Lemma 2.
There exists a bound dM , exponential in the size of M , such that the ✏-density of con-
figurations reachable by AM is bounded by dM .

12 Ranko Lazić and Andrzej S. Murawski

Next we derive a bound on plays witnessing failure of contextual approximation in
IA

2

3

. Consider IA

2

3

-terms � ` M
1

,M
2

: ✓ and let �i = J� ` Mi : ✓K for i = 1, 2.
Given a play, let its height be the maximum number of pending questions from ⌃

push

occurring in any of its prefixes. Note that, for plays from �i, this will be exactly the
maximum number of symbols from ⌥⌃ that will appear on the stack of AMi at any
point of its computation.

Lemma 5. There exists a polynomial p such that if comp�
1

\ comp�
2

is not empty
then it contains a play of height p(n

1

+ n
2

), where n
1

, n
2

are the numbers of states in
AM1 and AM2 respectively.

Theorem 2. For IA

2

3

-terms � ` M
1

,M
2

: ✓, one can decide � ` M
1

@⇠ M
2

in expo-
nential space.

Proof. Note that this boils down to testing emptiness of comp�
1

\comp�
2

. By Lemma 5,
it suffices to guess a play whose height is polynomial in the size of AM1 , AM2 , i.e.
exponential with respect to term size. Moreover, by Lemma 4, the ✏-density of the
corresponding configurations of AM1 and AM2 will also be exponential. Thus, in or-
der to check whether a candidate s is accepted by AM1 and rejected by AM2 , we
will only need to consider stacks of exponential size wrt M

1

,M
2

. Consequently, the
guess can be performed on the fly and verified in exponential space. Because NEX-
PSPACE=EXPSPACE, the result follows.

Corollary 1. For k � 2, contextual approximation of IAk
3

-terms is in (k�1)-EXPSPACE.

5 Lower bounds

Here we show that contextual approximation of IAk
1

-terms is (k � 1)-EXPSPACE-hard
for k � 2. Note that this matches the upper bound shown for IAk

3

-terms and will allow us
to conclude that contextual approximation in IA

k
1

, IAk
2

and IA

k
3

is (k � 1)-EXPSPACE-
complete. Our hardness results will rely on nesting of function calls and iteration af-
forded by higher-order types. Below we introduce the special types and terms to be
used.

Let k, n 2 N. Define the type n by 0 = com and n+ 1 = n ! n. Note that
ord(n) = n. Also, let Exp(k, n) be defined by Exp(0, n) = n and Exp(k + 1, n) =

2

Exp(k,n). Given k � 2, consider the term twicek = �xk�1.�yk�2.x(xy) : k.

Definition 12. Let k � 2. Writing MnN as shorthand for M(M · · · (M| {z }
n

N) · · ·), let

us define a family of terms {nestn,k} with f : 1, x : 0 ` nestn,k : 0 by taking nestn,k ⌘
(twice

n
k gk�1

)gk�2

· · · g
1

g
0

, where g
0

⌘ x, g
1

⌘ f and gi ⌘ twicei for i > 1.

The terms have several desirable properties, summarised below.
Lemma 6. Let k � 2. nestn,k belongs to IA

k
2

, has polynomial size in n and is �-
reducible to fExp(k�1,n)x.

Note that the nested applications of f in fExp(k�1,n)x are akin to generating a stack of
height Exp(k � 1, n). We shall exploit this in our encodings. Note that, by substituting
�ccom.c; c for f in fExp(k�1,n)x, we obtain a term that iterates x as many as Exp(k, n)
times, i.e. Exp(k � 1, n)-fold nesting is used to simulate Exp(k, n)-fold iteration.

Contextual approximation and higher-order procedures 13

Simulating Turing machines

Let w be an input word. Let n = |w|, l = Exp(k � 1, n) and N = Exp(k, n). We shall
consider a deterministic Turing machine T running in SPACE (l) and TIME (N) and
simulate T ’s behaviour on w. This suffices to establish SPACE (l)-hardness.

We start off with the description of an encoding scheme for configurations of T . We
shall represent them as strings of length l over an alphabet ⌃T , to be specified later.
We shall write ConfigT for the subset of (⌃T)

l corresponding to configurations. The
encoding of the initial configuration will be denoted by c

init

and we shall write AcceptT
for the set of representations of accepting configurations. Given c 2 ConfigT , we write
next(c) for the representation of the successor of c according to T ’s transition function.
Let us introduce a number of auxiliary languages that will play an important role in the
simulation. We write cR for the reverse of c.

Definition 13. Let ⌃#

T = ⌃T + {#}. We define the languages L
0

,L
1

✓ (⌃T)
⇤ and

L
2

,L
3

,L
4

✓ (⌃#

T)

⇤ as follows.

L
0

= {c
init

} L
1

= AcceptT L
2

= {cR # next(c) | c 2 ConfigT }
L
3

= {c# next(c)R | c 2 ConfigT } L
4

= {c# dR | c 2 ConfigT , d 6= next(c)}

Lemma 7. There exists a representation scheme for configurations of T such that ⌃T

is polynomial in the size of T,w and the following properties hold.

1. There exist deterministic finite-state automata A
0

,A
1

, constructible from T,w in
polynomial time, such that L(A

0

) \ (⌃T)
l
= L

0

and L(A
1

) \ (⌃T)
l
= L

1

.
2. For any i = 2, 3, 4, there exists a deterministic pushdown automaton Ai, con-

structible from T,w in polynomial time, such that L(Ai) \ ((⌃T)
l
#(⌃T)

l
) =

Li. Moreover, transitions of the automata are given by three transition functions
�
push

: Qpush ⇥ ⌃T ! Qpush ⇥ ⌥ , �
noop

: Qpush ⇥ {#} ! Qpop and �
pop

:

Qpop ⇥ ⌃T ⇥ ⌥ ! Qpop, the initial state belongs to Qpush and the automaton
accepts by final state. I.e., the automata will process elements of (⌃T)

l
#(⌃T)

l by
performing push-moves first, then a noop move for # and, finally, pop-moves.

Remark 3. Note that in the above lemma we had to use intersection with (⌃T)
l (resp.

(⌃T)
l
#(⌃T)

l) to state the correctness conditions with respect to ConfigT , because the
automata will not be able to count up to l. However, in our argument, we are going to
use the nesting power of IAk

1

to run their transition functions for suitably many steps (l
and 2l + 1 respectively).

The significance of the languages L
0

,L
1

,L
2

,L
3

,L
4

stems from the fact that they are
building blocks of two other languages, L

5

and L
6

, which are closely related to the
acceptance of w by T .

Lemma 8. Consider the languages L
5

,L
6

✓ (⌃#

T)

⇤ defined by L
5

= {c
init

cR
1

d
1

· · · cRN # dN # fR | cj 2 ConfigT , f 2 AcceptT , 8inext(ci) = di} and L
6

=

{c
1

dR
1

· · · cN # dRN | cj 2 ConfigT , 9inext(ci) 6= di}. Then T accepts w if and
only if L

5

6✓ L
6

.

14 Ranko Lazić and Andrzej S. Murawski

Proof. Note that if T accepts w then the sequence of (representations of the) configu-
rations belonging to the accepting run, in which every other representation is reversed,
gives rise to a word that belongs to L

5

but not to L
6

.
Conversely, if a word c

init

cR
1

d
1

· · · cRN # dN # fR 2 L
5

does not belong
to L

6

then c
1

= next(c
init

), ci+1

= next(di) (i = 1, · · · , N � 1) and f = next(dN).
Thus, the word actually represents an accepting run on w. ut

Our hardness argument consists in translating the above lemma inside IA

k
1

. To that
end, we shall show how to capture L

2

,L
3

,L
4

and, ultimately, L
5

and L
6

, using IA

k
1

terms. We shall work under the assumption that ⌃#

T = {0, · · · ,max}. Note, though,
that the results can be adapted to any max > 0 by encoding ⌃#

T as sequences of exp-
values. Similarly, using multiple exp-valued variables, IA-terms can store values that
are bigger than max . We shall take advantage of such storage implicitly (e.g. for state
values or stack elements), but the number of extra variables needed for this purpose will
remain polynomial.

Definition 14. We shall say that an IA-term z : exp ` M : com captures L ✓ (⌃#

T)

⇤

if comp (Jz ` MK) = {run qz (a
1

)

z qz (a
2

)

z · · · qz (ak)z done | a
1

a
2

· · · ak 2 L}.

Example 3. The term z : exp ` M
#

: com, where M
#

⌘ if z = # then skip else ⌦,
captures {#}. In our constructions we often write [condition] to stand in for the asser-
tion if (condition) then skip else ⌦.

Lemma 9. There exist IAk
1

-terms z : exp ` M
0

,M
1

: com, constructible from T,w in
polynomial time, capturing L

0

,L
1

respectively.

Lemma 10. There exists an IA

k
1

-term z : exp ` M
2

: com, constructible from T,w in
polynomial time, which captures L

2

.

Thanks to the last two lemmas we are now ready to capture L
5

.

Lemma 11. There exists an IA

k
1

-term z : exp ` M
5

: com, constructible in polynomial
time from T,w, which captures L

5

.

Proof. Note that a word from L
5

contains N = Exp(k, n) segments from L
2

. To ac-
count for that, it suffices to use N copies of M

#

;M
2

. However, for a polynomial-time
reduction, we need to do that succinctly. Recall that nestn,k gives us l-fold nesting of
functions, where l = Exp(k� 1, n). Consequently, N -fold iteration can be achieved by
l-fold nesting of �ccom.c; c. Thus, we can take

M
5

⌘ M
0

; nestn,k[�c
com.c; c/f, (M

#

;M
2

)/x];M
#

;M
1

.

To complete the hardness argument (by restating Lemma 8 using IA

k
1

terms), we also
need to capture L

6

. Because of the existential clause in its definition we need to use a
slightly different capture scheme.

Lemma 12. There exists an IA

k
1

-term z : exp,FLAG : var ` M 0
6

: com, constructible
in polynomial time from T,w, such that comp (Jz,FLAG ` M 0

6

K) = {run qz (a
1

)

z qz

(a
2

)

z · · · qz (ak)z done | a
1

a
2

· · · ak 2 L
3

} [{run qz (a
1

)

z qz (a
2

)

z · · · qz (ak)z
write(1)

FLAG

ok

FLAG

done | a
1

a
2

· · · ak 2 L
4

}.

Contextual approximation and higher-order procedures 15

Lemma 13. There exists an IA

k
1

-term z : exp ` M
6

: com, constructible in polynomial
time from T,w, which captures L

6

.

Proof. It suffices to run M 0
6

for N + 1 steps and check whether the flag was set:

M
6

⌘ new FLAG in (FLAG

:
=0; nestn,k[�c

com.c; c/f, (M 0
6

;M
#

)/x];M 0
6

; [!FLAG = 1])

Theorem 3. Contextual approximation between IA

k
1

terms is (k�1)-EXPSPACE-hard.

Proof. By Lemmas 8, 11, 13, for any Turing machine T running in SPACE (Exp(k �
1, n)) and TIME (Exp(k, n)) and an input word w, there exist IAk

1

-terms x : exp `
M

5

,M
6

, constructible from T,w in polynomial time, such that T accepts w if and only
if M

5

does not approximate M
6

. This implies (k � 1)-EXPSPACE-hardness. ut

6 Conclusion

We have shown that contextual approximation in IA

k
1

, IAk
2

, IAk
3

is (k � 1)-EXPSPACE-
complete. The algorithm that leads to these optimal bounds reduces terms to IA

2

3

(with
possibly (k � 2)-fold exponential blow-up) and we use a dedicated EXPSPACE pro-
cedure for IA2

3

exploiting game semantics and decision procedures for a special kind
of pushdown automata. In particular, the results show that untamed �-reduction would
yield suboptimal bounds, but selective �-reduction of redexes up to level 3 does not
jeopardise complexity. The bounds above apply to open higher-order terms, i.e. IAi

(i > 0) terms, for which the problem of contextual approximation is difficult to attack
due to universal quantification over contexts.

Our work also implies bounds for contextual approximation of IAk
0

terms, i.e. closed
terms of base type. Conceptually, this case is much easier, because it boils down to test-
ing termination. In this case our techniques can be employed to obtain better upper
bounds for IAk

0

than those for IAk
1

((k � 1)-EXPSPACE). For a start, like for IAk
1

, we
can reduce IAk

0

terms (at (k� 2)-fold exponential cost) to IA

2

0

. Then termination in IA

2

0

can be checked in exponential time by constructing pushdown automata via Lemma 2
and testing them for emptiness (rather than inclusion). Since emptiness testing of push-
down automata can be performed in polynomial time and the automata construction
in Lemma 2 costs a single exponential, this yields an EXPTIME upper bound for ter-
mination in IA

2

0

. Consequently, termination in IA

k
0

(k � 2) can be placed in (k � 1)-
EXPTIME, though it is not clear to us whether this bound is optimal. For completeness,
let us just mention that termination in IA

0

0

and IA

1

0

is PSPACE-complete due to presence
of variables and looping (membership follows from the corresponding upper bounds for
contextual equivalence).

Another avenue for future work is IAk
1

, IAk
2

, IAk
3

contextual equivalence. Of course,
our upper bounds for approximation also apply to contextual equivalence, which amounts
to two approximation checks. However, one might expect better bounds in this case
given that our hardness argument leans heavily on testing inclusion.

Finally, one should investigate how our results can be adapted to the call-by-value
setting. An educated guess would be that, in the analogous fragment of ML, the reduc-
tion of redexes up to order 3 (rather than 2) should be suppressed in order to obtain
accurate complexity estimates.

16 Ranko Lazić and Andrzej S. Murawski

References

1. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract game semantics
for Idealized Algol with active expressions. In P. W. O’Hearn and R. D. Tennent, editors,
Algol-like languages, pages 297–329. Birkhaüser, 1997.

2. S. Abramsky and G. McCusker. Game semantics. In H. Schwichtenberg and U. Berger, edi-
tors, Logic and Computation. Springer-Verlag, 1998. Proceedings of the 1997 Marktoberdorf
Summer School.

3. A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation independence. In
Proceedings of POPL, pages 340–353. ACM, 2009.

4. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of STOC’04,
pages 202–211, 2004.

5. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model-checking. In Proceedings of CONCUR, volume 1243 of Lecture Notes in
Computer Science, pages 135–150. Springer, 1997.

6. R. Colvin, I.J. Hayes, and P.A. Strooper. Calculating modules in contextual logic program
refinement. Theory and Practice of Logic Programming, 8(01):1–31, 2008.

7. S. Fortune, D. Leivant, and M. O’Donnell. The expressiveness of simple and second-order
type structure. J. ACM, 30:151–185, 1983.

8. D. R. Ghica and G. McCusker. Reasoning about Idealized Algol using regular expressions.
In Proceedings of ICALP, volume 1853 of Lecture Notes in Computer Science, pages 103–
115. Springer-Verlag, 2000.

9. R. Harmer. Games and full abstraction for non-deterministic languages. PhD thesis, Uni-
versity of London, 2000.

10. D. Hopkins, A. S. Murawski, and C.-H. L. Ong. A fragment of ML decidable by visibly
pushdown automata. In Proceedings of ICALP, volume 6756 of Lecture Notes in Computer
Science, pages 149–161. Springer, 2011.

11. A. S. Murawski. On program equivalence in languages with ground-type references. In
Proceedings of IEEE Symposium on Logic in Computer Science, pages 108–117. Computer
Society Press, 2003.

12. A. S. Murawski. Games for complexity of second-order call-by-name programs. Theoretical
Computer Science, 343(1/2):207–236, 2005.

13. A. S. Murawski and I. Walukiewicz. Third-order Idealized Algol with iteration is decidable.
In Proceedings of FOSSACS, volume 3441 of Lecture Notes in Computer Science, pages
202–218. Springer, 2005.

14. A. M. Pitts. Operational semantics and program equivalence. In Proceedings of APPSEM,
volume 2395 of Lecture Notes in Computer Science, pages 378–412. Springer, 2000.

15. J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J.C. van Vliet, editors,
Algorithmic Languages, pages 345–372. North Holland, 1978.

16. M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.
17. A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-style reasoning in a

logic for higher-order concurrency. In Proceedings of ICFP’13, pages 377–390, 2013.

