
Algorithmic games for full ground references

A. S. Murawski1 and N. Tzevelekos2,!

1 University of Leicester
2 Queen Mary, University of London

Abstract. We present a full classification of decidable and undecidable cases for
contextual equivalence in a finitary ML-like language equipped with full ground
storage (both integers and reference names can be stored). The simplest unde-
cidable type is unit → unit → unit. At the technical level, our results marry
game semantics with automata-theoretic techniques developed to handle infinite
alphabets. On the automata-theoretic front, we show decidability of the emptiness
problem for register pushdown automata extended with fresh-symbol generation.

1 Introduction

Mutable variables in which numerical values can be stored for future access and update
are the pillar of imperative programming. The memory in which the values are de-
posited can be allocated statically, typically to coincide with the lifetime of the defining
block, or dynamically, on demand, with the potential to persist forever. In order to sup-
port memory management, modern programming languages feature mechanisms such
as pointers or references, which allow programmers to access memory via addresses.
Languages like C (through int*) or ML (via intref ref) make it possible to store
the addresses themselves, which creates the need for storing references to references
etc. We refer to this scenario as full ground storage. In this paper we study an ML-like
language GRef with full ground storage, which permits the creation of references to
integers as well as references to integer references, and so on.

We concentrate on contextual equivalence3 in that setting. Reasoning about program
equivalence has been a central topic in programming language semantics since its in-
ception. This is in no small part due to important applications, such as verification prob-
lems (equivalence between a given implementation and a model implementation) and
compiler optimization (equivalence between the original program and its transform).
Specifically, we attack the problem of automated reasoning about our language in a
finitary setting, with finite datatypes and with looping instead of recursion, where de-
cidability questions become interesting and the decidability/undecidability frontier can
be identified. In particular, it is possible to quantify the impact of higher-order types on
decidability, which goes unnoticed in Turing-complete frameworks.

The paper presents a complete classification of cases in which GRef program equiv-
alence is decidable. The result is phrased in terms of the syntactic shape of types. We
! Supported by a Royal Academy of Engineering Research Fellowship.
3 Two program phrases are regarded as contextually equivalent, or simply equivalent, if they can
be used interchangeably in any context without affecting the observable outcome.

write θ1, · · · , θk ! θ to refer to the problem of deciding contextual equivalence between
two termsM1, M2 such that x1 : θ1, · · · , xm : θm ! Mi : θ (i = 1, 2). We investigate
the problem using a fully abstract gamemodel of GRef.4 Such a model can be easily ob-
tained by modifying existing models of more general languages, e.g. by either adding
type information to Laird’s model of untyped references [14] or trimming down our
own model for general references [18]. The models are nominal [1, 14] in that moves
may involve elements from an infinite set of names to account for reference names. Ad-
ditionally, each move is equipped with a store whose domain consists of all names that
have been revealed (played) thus far and the corresponding values. Note that values of
reference types also become part of the domain of the store. This representation grows
as the play unfolds and new names are encountered.We shall rely on the model both for
decidability and undecidability results. Our work identifies the following undecidable
cases as minimal.

! unit → unit → unit (unit → unit → unit) → unit ! unit
! ((unit → unit) → unit) → unit (((unit → unit) → unit) → unit) → unit ! unit

Obviously, undecidability extends to typing judgments featuring syntactic supertypes
of those listed above (for instance, when fourth-order types appear on the left-hand side
of the turnstile or types of the shape θ1 → θ2 → θ3 occur on the right). The remaining
cases are summarized by typing judgements in which each of θ1, · · · , θm is generated
by the grammar given on the left below, and θ by the grammar on the right,

ΘL ::= β | ΘR → ΘL ΘR ::= β | Θ1 → β

where β stands any ground type andΘ1 is a first-order type, i.e. β ::= unit | int | refi int
and Θ1 ::= β | β → Θ1. We shall show that all these cases are in fact decidable. In
order to arrive at a decision procedure we rely on effective reducibility to a canonical
(β-normal) form. These forms are then inductively translated into a class of automata
over infinite alphabets that represent the associated game semantics. Finally, we show
that the representations can be effectively compared for equivalence.

The automata we use are especially designed to read moves-with-stores in a single
computational step. They are equipped with a finite set of registers for storing elements
from the infinite alphabet (names). Moreover, in a single transition step, the content
of a subset of registers can be pushed onto the stack (along with a symbol from the
stack alphabet), to be popped back at a later stage. We use visibly pushdown stacks [4],
i.e. the alphabet can be partitioned into letters that consistently trigger the same stack
actions (push, pop or no-op). Conceptually, the automata extend register pushdown au-
tomata [6] with the ability to generate fresh names, as opposed to their existing capa-
bility to generate names not currently present in registers. Crucially, we can show that
the emptiness problem for the extended machine model remains decidable.

Because the stores used in game-semantic plays can grow unboundedly, one can-
not hope to construct the automata in such a way that they will accept the full game
semantics of terms. Instead we construct automata that, without loss of generality, will
accept plays in which the domains of stores are bounded in size. Each such restricted
4 A model is fully abstract if it captures contextual equivalence denotationally, i.e. equivalence
can be confirmed/disproved by reference to the interpretations of terms.

2

play can be taken to represent a set of real plays compatible with the representation.
Compatibility means that values of names omitted in environment-moves (O-moves)
can be filled in arbitrarily, but values of names omitted in program-moves (P -moves)
must be the same as in preceding O-moves. That is to say, the omissions leading to
bounded representation correspond to copy-cat behaviour.

Because we work with representations of plays, we cannot simply use off-the-shelf
procedures for checking program equivalence, as the same plays can be represented
in different ways: copy-cat behaviour can be modelled explicitly or implicitly via the
convention. However, taking advantage of the fact that stacks of two visibly pushdown
automata over the same partitioning of the alphabet can be synchronized, we show how
to devise another automaton that can run automata corresponding to two terms in par-
allel and detect inconsistencies in the representations of plays. Exploiting decidability
of the associated emptiness problem, we can conclude that GRef program equivalence
in the above-mentioned cases is decidable.

Related Work. The investigations into models and reasoning principles for storage
have a long history. In this quest, storage of names was regarded by researchers as an
indispensable intermediate step towards capturing realistic languages with dynamic-
allocated storage, such as ML or Java. Relational methods and environmental bisimu-
lations for reasoning about program equivalence in settings similar to ours were stud-
ied in [20, 5, 13, 3, 7, 21], albeit without decidability results. More foundational work
included labelled transition system semantics [11] and game semantics [14, 18]. In
both cases, it turned out that the addition of name storage simplified reasoning, be it
bisimulation-based or game-semantic. In the former case, bisimulation was even un-
sound without full ground storage. In the latter case, the game model of integer stor-
age [16] turned out more intricate (complicated store abstractions) than that for full
ground or general storage [14, 18]. As for decidability results, finitary Reduced ML
(integer storage only) was studied by us in [17], yet only judgements of the form
· · · ,β → β, · · · ! β were tackled due to intricacies related to store abstractions (in
absence of full ground storage, names cannot be remembered by programs). A closely
related language, called RML [2] (integer storage but with bad references, that is, con-
structs of reference type which do not correspond to valid reference cells) was studied
in [15, 10], but no full classification has emerged yet. In particular, although the class
of types shown decidable is common in both languages, the status of the types that we
list as undecidable above remains open in the case of RML.

2 GRef

We work with a finitary ML-like language GRef whose types θ are generated according
to the following grammar.

θ ::= β | θ → θ β ::= unit | γ γ ::= int | ref γ

Note that reference types are available for each type of the shape γ (full ground stor-
age). The language is best described as the call-by-value λ-calculus over the ground
types β augmentedwith finitely many constants, do-nothing command, case distinction,
looping, and referencemanipulation (allocation, dereferencing, assignment). The typing

3

Γ " () : unit

i ∈ {0, · · · ,max}
Γ " i : int

(x : θ) ∈ Γ
Γ " x : θ

Γ " M : int Γ " N : unit
Γ " while M doN : unit

Γ " M : int Γ " N0 : θ · · · Γ " Nmax : θ
Γ " case(M)[N0, · · · , Nmax] : θ

Γ " M : θ → θ′ Γ " N : θ
Γ " MN : θ′

Γ ∪ {x : θ} " M : θ′

Γ " λxθ.M : θ → θ′

Γ " M : γ
Γ " refγ(M) : ref γ

Γ " M : ref γ
Γ " !M : γ

Γ " M : ref γ Γ " N : γ
Γ " M :=N : unit

Fig. 1. Syntax of GRef.

rules are given in Figure 1. In what follows, we write M ; N for the term (λzθ.N)M ,
where z does not occur in N and θ matches the type of M . let x = M in N will stand
for (λxθ .N)M in general. The operational semantics of the language can be found, e.g.
in [18]. Note that, if max > 0, reference equality is expressible in our syntax [19].

Definition 1. We say that the term-in-context Γ ! M1 : θ approximates Γ ! M2 : θ
(written Γ ! M1

!
∼ M2) if C[M1] ⇓ implies C[M2] ⇓ for any context C[−] such that

! C[M1], C[M2] : unit. Two terms-in-context are equivalent if one approximates the
other (written Γ ! M1

∼= M2).

3 Game semantics

Game semantics views computation as a dialogue between the environment (Opponent,
O) and the program (Proponent, P). We give an overview of the fully abstract game
model of GRef [14, 18]. Let A =

⊎
γ Aγ be a collection of countably infinite sets of

reference names, or just names. The model is constructed using mathematical objects
(moves, plays, strategies) that will feature names drawn from A. Although names un-
derpin various elements of our model, their precise nature is irrelevant. Hence, all of
our definitions preserve name-invariance, i.e. our objects are (strong) nominal sets [8,
22]. Note that we do not need the full power of the theory but mainly the basic notion of
name-permutation. For an element x belonging to a (nominal) setX , we write ν(x) for
its name-support, i.e. the set of names occurring in x. Moreover, for any x, y ∈ X , we
write x ∼ y if x and y are the same up to a permutation of A. Our model is couched in
the Honda-Yoshida style of modelling call-by-value computation [9]. Before we define
what it means to play our games, let us introduce the auxiliary concept of an arena.

Definition 2. An arenaA = 〈MA, IA,λA,!A〉 is given by a setMA of moves, its subset
IA of initial ones, a labelling function λA : MA → {O, P}×{Q, A} and a justification
relation !A ⊆ MA × (MA \ IA).
In addition, for all m, m′ ∈ MA, we stipulate: m ∈ IA =⇒ λA(m) = (P, A),
m !A m′ ∧ λQA

A (m) = A =⇒ λQA
A (m′) = Q, m !A m′ =⇒ λOP

A (m) -= λOP
A (m′).

We write λOP
A (resp. λQA

A) for λA post-composed with the first (second) projection.

We shall use ι to range over initial moves. Let λA be theOP -complement of λA. Given
arenas A, B, the arenas A ⊗ B and A ⇒ B are constructed as in the following figure,

4

MA⇒B = {%} % MA % MB , IA⇒B = {%}

λA⇒B = [% &→ PA, λA[ιA &→ OQ], λB]

"A⇒B = {(%, ιA), (ιA, ιB)}∪ "A ∪ "B

MA⊗B = (IA × IB) % ĪA % ĪB , IA⊗B = IA×IB

λA⊗B = [(ιA, ιB) &→ PA, λA ! ĪA, λB ! ĪB]

"A⊗B = {((ιA, ιB), m) | ιA "A m ∨ ιB "B m}

∪ "̄A ∪ "̄B

where ĪA = MA \ IA, !̄A = (!A! ĪA × ĪA) (and similarly for B). Let us write [i, j]
for the set {i, i+1, · · · , j}. For each type θ we can define the corresponding arena !θ".

!unit" = 〈{)}, {)}, {(), PA)}, ∅〉 !ref γ" = 〈Aγ , Aγ , {(a, PA) | a ∈ Aγ}, ∅〉

!int" = 〈[0,max], [0,max], {(i, PA) | i ∈ [0,max]}, ∅〉 !θ → θ′" = !θ" ⇒ !θ′"

Although types are interpreted by arenas, the actual games will be played in prearenas,
which are defined in the same way as arenas with the exception that initial moves are
O-questions. Given arenas A, B we define the prearena A → B as follows.

MA→B = MA 0MB λA→B = [λA[ιA 1→ OQ],λB]

IA→B = IA !A→B = {(ιA, ιB)}∪ !A ∪ !B

A store is a type-sensitive finite partial function Σ : A ⇀ [0,max] ∪ A such that
a ∈ dom(Σ) ∩ Aint implies Σ(a) ∈ [0,max], and a ∈ dom(Σ) ∩ Aref γ implies
Σ(a) ∈ dom(Σ) ∩ Aγ . We write Sto for the set of all stores. A move-with-store on a
(pre)arenaA is a pairmΣ withm ∈ MA and Σ ∈ Sto.

Definition 3. A justified sequence on a prearena A is a sequence of moves-with-store
on A such that, apart from the first move, which must be of the form ιΣ with ι ∈ IA, ev-
ery move nΣ′

in s is equipped with a pointer to an earlier movemΣ such thatm !A n.
m is then called the justifier of n.

For each S ⊆ A and Σ we define Σ0(S) = S and Σi+1(S) = Σ(Σi(S)) ∩ A (i ≥ 0).
Let Σ∗(S) =

⋃
i Σ

i(S). The set of available names of a justified sequence is defined
inductively by Av(ε) = ∅ and Av(smΣ) = Σ∗(Av(s) ∪ ν(m)). The view of a justified
sequence is defined by: view (ε) = ε, view(mΣ) = mΣ and view (s mΣ t nΣ′

) =
view (s)mΣnΣ′ . We shall write s 5 s′ to mean that s is a prefix of s′.

Definition 4. Let A be a prearena. A justified sequence s on A is called a play, if it
satisfies the conditions below.
– No adjacent moves belong to the same player (Alternation).
– The justifier of each answer is the most recent unanswered question (Bracketing).
– For any s′mΣ 5 swith non-empty s′, the justifier ofm occurs in view (s′) (Visibility).
– For any s′mΣ 5 s, dom(Σ) = Av(s′mΣ) (Frugality).

Definition 5. A strategy σ on a prearenaA, written σ : A, is a set of even-length plays
of A satisfying:

– If soΣpΣ′

∈ σ then s ∈ σ (Even-prefix closure).
– If s ∈ σ and s ∼ t then t ∈ σ (Equivariance).
– If s1p

Σ1

1 , s2p
Σ2

2 ∈ σ and s1 ∼ s2 then s1p
Σ1

1 ∼ s2p
Σ2

2 (Nominal determinacy).

5

Following [14, 18], GRef-terms Γ ! M : θ, where Γ = {x1 : θ1, · · · , xn : θn} can
be interpreted by strategies for the prearena !θ1" ⊗ · · · ⊗ !θn" → !θ", which we shall
denote by !Γ ! θ". Given a set of playsX , let us write comp(X) for the set of complete
plays in X , i.e. those in which each occurrence of a question justifies an answer. The
interpretation given in [14, 18] is then fully abstract in the following sense.

Proposition 6 ([14, 18]). Let Γ ! M1, M2 : θ be GRef-terms. Γ ! M1
!
∼ M2 if, and

only if, comp(!Γ ! M1 : θ") ⊆ comp(!Γ ! M2 : θ"). Hence, Γ ! M1
∼= M2 if, and

only if, comp(!Γ ! M1 : θ") = comp(!Γ ! M2 : θ").

We shall rely on the result for proving both undecidability and decidability results, by
referring to complete plays generated by terms.

q O

) P

q0 O

a P

Example 7. The name-generating term ! λxunit.ref(0) : unit → ref int yields
complete plays of the shape given below (the corresponding prearena is given
on the right).

q∅)∅ q
Σ′

0

0
aΣ1

0 · · · q
Σ′

i−1

0
aΣi

i q
Σ′

i

0
· · ·

where Σ′
0 = ∅ and, for all i > 0, Σi = Σ′

i−1 ∪ {(ai, 0)}, dom(Σ′
i) = dom(Σi).

Moreover, for any i -= j we have ai -= aj . Note that Σ′
i can be different from Σi, i.e.

the environment is free to change the values stored at all of the locations that have been
revealed to it.

Note that in the above example the sizes of stores keep on growing indefinitely.
However, the essence of the strategy is already captured by plays of the shape q)

q0 a(a0,0)
0 · · · q0 a(ai,0)

i q0 · · · under the assumption that, whenever a value is missing
from the store of an O-move, it is arbitrary and, for P-moves, it is the same as in the
preceding O-move. Next we spell out how a sequence of moves-with-store, not contain-
ing enough information to qualify as a play, can be taken to represent proper plays.

Definition 8. Let s = mΣ1

1 · · ·mΣk

k be a play over Γ ! θ and t = mΘ1

1 · · ·mΘk

k be a
sequence of moves-with-store. We say that s is an extension of t ifΘi ⊆ Σi (1 ≤ i ≤ k)
and, for any 1 ≤ i ≤ 7k/28, if a ∈ dom(Σ2i) \ dom(Θ2i) then Σ2i(a) = Σ2i−1(a).
We write ext(t) for the set of all extensions of t.

Because we cannot hope to encode plays with unbounded stores through automata, our
decidability results will be based on representations of plays that capture strategies via
extensions.

4 Undecidability arguments

We begin with undecidable cases. Our argument will rely on queue machines, which
are finite-state devices equipped with a queue.

Definition 9. Let A be a finite alphabet. A queue machine over A is specified by
〈Q, QE, QD, init , δE , δD 〉, where Q is a finite set of states such that Q = QE 0QD,
init ∈ QE is the initial state, δE : QE → Q × A is the enqueuing function, whereas
δD : QD ×A→ Q is the dequeuing function.

6

A queue machine starts at state init with an empty queue. Whenever it reaches a state
q ∈ QE , it will progress to the state π1δE(q) and π2δE(q) will be added to the as-
sociated queue. If the machine reaches a state q ∈ QD and its queue is empty, the
machine is said to halt. Otherwise, it moves to the state δD(q, x), where x is the symbol
at the head of the associated queue, which is then removed from the queue. The halting
problem for queue machines is well known to be undecidable (e.g. [12]). By encoding
computation histories of queue machines as plays generated by GRef terms we next
show that the equivalence problem for GRef terms must be undecidable. Note that this
entails undecidability of the associated notion of term approximation.

Theorem 10. The contextual equivalence problem is undecidable in the following cases.
– ! unit → unit → unit
– (unit → unit → unit) → unit ! unit
– (((unit → unit) → unit) → unit) → unit ! unit
– ! ((unit → unit) → unit) → unit

q

)

q0

)0

q1

)1

We sketch the argument in the first case. The arena used to interpret closed terms
of type unit → unit → unit has the shape given on the right. We are going to
use plays from the arena to represent sequences of queue operations. Enqueuing
will be represented by segments of the form q0)0, whereas q1)1 will be used
to represent dequeuing. Additionally, in the latter case q1 will be justified by)0

belonging to the segment representing the enqueuing of the element that is now
being dequeued. For instance, the sequenceEEDEDE, in whichE, D stand for
enqueing and dequeing respectively, will be represented as follows.

q) q0)0 q0)0 q1)1 q0)0 q1)1 q0)0

Observe that all such plays are complete. Given a queue machineQ, let us write hist(Q)
for the (prefix-closed) subset of (E 0D)∗ corresponding to all sequences of queue op-
erations performed byQ. Note that hist(Q) is finite if and only if Q halts. Additionally,
define hist−(Q) to be hist(Q) from which the longest sequence is removed (if hist(Q)
is infinite and the sequence in question does not exist we set hist−(Q) = hist(Q)). Note
that the sequence corresponds to a terminating run and necessarily ends inD.

Lemma 11. LetQ be a queuemachine. There exist terms ! M, M−: unit→unit→unit
of GRef such that comp(!M"), comp(!M−") represent hist(Q), hist−(Q) respectively.

Proof. W.l.o.g. we shall assume that Q can be fitted into int (otherwise, we could
use a fixed number of variables to achieve the desired storage capacity). Let D[−] ≡
C[λx.C0[λy.C1[−]]], where C[−], C0[−], C1[−] are given in Figure 2 (∗ is a special
symbol not in the queue alphabet and Ω is a canonical divergent term). C0[−] and
C1[−] handle enqueuing and dequeuing respectively. We take M , M− to be D[()],
D[if (!STATE ∈ QD ∧ !!LAST = ∗) thenΩ] respectively. ;<

Observe that hist(Q) = hist−(Q) exactly when Q does not halt. Consequently, the
problem of deciding hist(Q) = hist−(Q) is undecidable. Thus, via Proposition 6, we
can conclude that program equivalence is undecidable for closed terms of type unit →
unit → unit. The remaining cases are treated in a similar manner.

7

C[−] = let STATE = ref(init) in

let LAST = ref(ref(∗)) in [−]

C1[−] = if (!STATE +∈ QD) thenΩ;

if (!!PREV += ∗ ∨ !SYM = ∗) thenΩ;

STATE := δD(!STATE , !SYM);

SYM := ∗; [−]

C0[−] = if (!STATE +∈ QE) thenΩ;

let SYM = ref(π2δE(!STATE)) in

let PREV = ref(!LAST) in

STATE := π1δE(!STATE);

LAST := SYM ; [−]

Fig. 2. Simulating a queue machine in " unit → unit → unit. The variable STATE : ref int

contains the current state of the machine. The queue is encoded as a backwards-connected list
with elements (PREV ,SYM) : ref

2
int × ref int, with last-element pointer LAST : ref

2
int.

Enqueuing adds a new last element while dequeuing sets the first non-∗ symbol of the list to ∗.

5 Decidability
We now focus on a fragment of GRef, called GRef", that comprises all types that do
not fall under the undecidable cases identified earlier.
Definition 12. Suppose Γ = x1 : θ1, · · · , xm : θm. The term-in-context Γ ! M : θ
belongs to GRef" provided θ1, · · · , θm can be generated from ΘL and θ is generated
from ΘR, where ΘL ::= β | ΘR → ΘL, ΘR ::= β | Θ1 → β and Θ1 ::= β | β → Θ1.
Put otherwise, we focus on sequents of the form: ΘR → · · · → ΘR → β ! ΘR,
where ΘR = (β → · · · → β) → β. In order to show decidability we first translate
GRef" terms into automata that represent their game semantics. Any GRef" term can
be effectively converted to an equivalent term in canonical shape, which is captured
by the grammar below. Consequently, it suffices to show that program equivalence
between terms in canonical form is decidable. Accordingly, in what follows, we focus
exclusively on translating terms in canonical shape.

C ::= () | i | xref γ | λxΘ1 .C | case(xint)[C, · · · , C] | (while (!xref int) do C); C

| let yγ = !xref γ in C | (xref int := i); C | (xref2 γ := yref γ); C

| letxref int = ref(0) in C | letxref2 γ = ref(yref γ) in C | let yΘL = z () in C
| let yΘL = z i in C | let yΘL = z xref γ in C | let yΘL = z (λxΘ1 .C) in C

Each type θ can be written in the form θ = θn → . . . → θ1 → β, for types θ1, . . . , θn

and base type β. For brevity, we shall write θ = (θn, . . . , θ1,β). We call n the arity of θ
and denote it by ar(θ). Next we fix notation for referring to moves that are available in
arenas corresponding to GRef" typing judgments: each move can be viewed as a pair
(l, t) subject to consistency constraints induced by the subtypes which contribute them,
e.g. the label corresponding to a tag related to int must be a number from [0,max].
Definition 13. For every type θ let us define the associated set of labels Lθ as follows:
Lunit = {)}, Lint = {0, · · · ,max}, Lref γ = Aγ , Lθ→θ′ = {)}.
We shall write L for the set of all labels. Given a GRef" typing judgement Γ ! M : θ
we write T for the set of associated tags:
T = {ci, ri | θ ≡ θ′→β, 0≤ i≤ ar(θ′)}∪{cx

i , rxi | (x : (θm, · · ·, θ1,β)) ∈ Γ, 0 < i≤m}

∪ {cx
j,i, r

x
j,i | (x : (θm, · · ·, θ1,β)) ∈ Γ, 0 < j ≤m, θj ≡ θ′→β, 0≤ i≤ ar(θ′)}∪{r↓}

8

partitioned as T = Tpush 0 Tpop 0 Tnoop, where Tpush = {ci, cx
i , cx

j,i | i > 0}, Tpop =
{ri, rxi , rxj,i | i > 0} and Tnoop = {c0, r0, cx

j,0, r
x
j,0}.

The automata we shall rely on are equipped with finitely many, say n, registers for
storing elements ofA, the first nr of which are read-only. The content of registers, called
register assignment, will be described by an injective partial function ρ : [1, n] ⇀ A.
The set of all register assignments will be denoted by Reg and we shall use ρ to range
over them. The automata will read elements of L × T× Sto (corresponding to moves-
with-store) in a single transition step. In order to specify what label is to be read in a
given step we use symbolic labels from the set L = {)} ∪ [0,max] ∪ { Ri | 1 ≤ i ≤
n } (Ri stands for the name stored in the ith register). To designate which tag is to be
processed we simply use elements of (the finite set) T. To describe stores, we shall use
symbolic stores from the set SSto = {S : [1, n] ⇀ [0,max]∪{R1, · · · , Rn} | [1, nr] ⊆
dom(S)}. Symbolic stores represent stores by use of indices instead of actual names
(for example,S(i) = Rj means that in S the i-th name stores the j-th name). Altogether,
in order to define our automata, we will use transition labels from the set

TL = P([nr+1, n])× L× (((Tpush 0 Tpop)× Cstack ×Mix) 0 Tnoop)× SSto

whereMix is the set of partial injections π : [nr+1, n] → [nr+1, n] and P is powerset.
Depending on tags involved, the above set can be partitioned intoTLpush, TLpop, TLnoop

respectively. The first componentX ∈ P([nr+1, n]) of each transition label is respon-
sible for name generation: |X | fresh names are to be generated and placed in registers
given in X . When the tag corresponds to an O-move (tags c0, ri, rx

i , rx
j,i, cx

j,0 (i > 0))
freshness is meant to be interpreted locally, i.e. none of the new names can be present in
the current register. For P-moves (tags r↓, r0, ci, cx

i , cx
j,i, rx

j,0 (i > 0)), we require global
freshness, i.e. that the names have not been encountered before by the automaton.

The ((Tpush 0 Tpop) × Cstack × Mix) 0 Tnoop part corresponds to stack actions.
Our automata will use a visibly pushdown stack [4], where the tags determine stack
actions according to the partition into Tpush, Tpop and Tnoop. The stack will be used to
store elements from Cstack×Reg, where Cstack is a finite set of stack symbols (thus, on
the stack we will store stack symbols together with register assignments). Note that in
transition labels the tags from Tpush 0Tpop come with (s,π) ∈ Cstack×Mix. For push-
tags, s,π indicate that s should be pushed along with register assignment ρ ◦ π, where
ρ is the present content of the registers, i.e. we only push the (content of) registers from
cod(π) reindexed according to π. For pop-tags, s,π indicate what stack symbol should
occur on top of the stack and π spells out the expected relationship between the present
register assignment ρ and the assignment ρ′ on top of the stack: for popping to take place
we require ρ(i) = ρ′(j) iff (i, j) ∈ π. The content of registers in dom(ρ′) \ cod(π) will
then be popped directly into the machine registers without reindexing.

Name-generation is meant to occur before pushing (so the new names can end up on
the stack as soon after being generated), but after popping. The symbolic store S ∈ SSto
in a transition label is also interpreted after name generation (so that fresh names can
occur in stores). Assuming ρ is the register assignment obtained after popping and name
generation, S stipulates that the move which is being read must come with the store
Σ = { (ρ(i), S(i)) | S(i) ∈ [0,max] } ∪ { (ρ(i), ρ(j)) | S(i) = Rj } (this definition
will be valid because we shall always have dom(ρ) = dom(S)). Formally, the automata
we use are defined as follows.

9

Definition 14. An (nr, n)-automaton of type θ is given asA = 〈Q, q0, ρ0, δ, F 〉where:

– Q is a finite set of states, partitioned intoQO (O-states) andQP (P -states);
– q0 ∈ QP is the initial state; F ⊆ QO is the set of final states;
– ρ0 ∈ Reg is the initial register assignment such that [1, nr] ⊆ dom(ρ0);
– δ ⊆ (QP × (TLpush ∪TLnoop)×QO)∪ (QO × (TLpop ∪TLnoop)×QP)∪ (QO ×

Mix×QO) ∪ (QP ×Mix×QP) is the transition relation.

Additionally, if θ is a base type then there is a unique final state qF , while δ ! {qF } = ∅
(no outgoing transitions) and δ−1!{qF } ⊆ {qF }×TLnoop×QP (reach only by no-op).

Note that in addition to the labelled transitions discussed earlier, we allow ε-transitions
(q1,π, q2) ∈ δ which rearrange the contents of registers in [nr+1, n] according to π ∈
Mix: if the automaton is in state q1 and the current register assignment is ρ, after the
transition the automaton will move to q2 and the new register assignment will be ρ ◦ π,
where π(i) = i (1 ≤ i ≤ nr) and π(i) = π(i) (otherwise). We write L(A) for the set
of words from (L × T× Sto)∗ that are accepted by A by final state.

Given Γ = {x1 : θ1, · · · , xm : θm} and θ, let us write P 1
Γ(θ for the set of plays of

length 1 over !Γ ! θ". Recall that each of them will have the form ιΣ0 , where ι ∈ IΓ ,
i.e. ι = (l1, · · · , lm) with li ∈ Lθi

. Moreover, the names in ιΣ0 coincide with those of
dom(Σ0) = ν(Σ0). We order them by use of register assignments and set:

I+
Γ(θ = {(ιΣ0 , ρ0) | ι

Σ0 ∈ P 1
Γ(θ, ν(ρ0) = ν(Σ0), ∃k. ρ0([1, k]) = ν(ι)}

For brevity, we shall write each element (ιΣ0 , ρ0) ∈ I+
Γ(θ as ιΣ0

ρ0
.

Lemma 15. Let Γ ! C : θ be a GRef"-term in canonical form. For each j = ιΣ0

ρ0
∈

I+
Γ(θ , there exists a deterministic (|ν(ι)|, mj)-automaton Aj with initial register as-
signment ρ0 such that

⋃
w∈L(Aj)

ext(ιΣ0w) = comp(!Γ ! C : θ") ∩ P ιΣ0

Γ(θ , where
P ιΣ0

Γ(θ is the set of plays over !Γ ! θ" that start from ιΣ0 .

Proof. We build upon the techniques developed in [10] insofar as the non-nominal part
of the constructions and pointers are concerned. The essence of the nominal approach
is revealed in the construction of the automaton, say A′, corresponding to letxref2 γ =
ref(yref γ) in C. This is done inductively, starting from the automaton for C, call it A,
in which x appears in the initial assignment with name a. Passing to A′ then amounts
to omitting a from all transitions in A (along with parts of the store that can only
be reached through a) as long as a has not been played in a P-transition (scenarios
in which this happens in an O-transition are discarded). At that point, we convert the
transition into one which creates a fresh name and then proceed asA. The construction
is complicated by the fact that, while a is being omitted from the store, we need to keep
track of its value inside the state and the value may be a chain of other hidden names.

As in [10], the hardest construction is that of the automaton for let y = z(λx.C) in C′.
Because of the structure of the arenas involved, the automaton needs to be designed so
that it can alternate between plays in C and C′. More specifically, from designated states
in C, we need to allow for jumps to C′ and vice versa. In [10], such jumps involve the
stack so that the well-bracketing condition is preserved: each call is matched to the ap-
propriate return.5 In our setting the jumps involve the stack also in a more crucial way:
5 Jumps to C

′ are made by P-calls of specific type in C, and returns by corresponding O-returns.

10

when jumping to C′, the automaton stores its register assignment to the stack so that,
once control returns to C, the state can be recovered and computation can resume from
where it had been interrupted. Such interleaving of computations fromC and C′ requires
frequent rearrangements of registers to make sure the respective register assignments of
C and C′ are simulated in the single register assignment of the automaton we construct.
For this, we follow a two-step construction which involves first introducing a notion of
automaton operating on two distinct register assignments that do not interfere with each
other, which we next reduce to an (nr, n)-automaton. ;<

Lemma 16. Let Γ ! C1, C2 : θ be GRef"-terms in canonical form. For each j =
ιΣ0

ρ0
∈ I+

Γ(θ , there exists a deterministic (|ν(ι)|, nj)-automaton Bj with initial register
assignment ρ0 such that L(Bj) = ∅ iff comp(!Γ ! C1 : θ") ∩ P ιΣ0

Γ(θ ⊆ !Γ ! C2 : θ".

Proof. Let A1
j , A2

j be the automata obtained from the previous Lemma for C1, C2 re-
spectively. Because our automata use visibly pushdown stacks and rely on the same
partitioning of tags, we can synchronize them using a single stack and check whether
any complete play from P ιΣ0

Γ(θ represented by A1
j is also represented by A2

j . Note that
this is not a direct inclusion check, because the automata represent plays via extensions
and the representations are not uniquely determined. Consequently, Bj synchronizes
A1

j ,A
2
j and also explores each possible way of relating names that are present in stores.

Once a clash is detected (e.g. different store values, global freshness vs existing name),
Bj continues to simulate A1

j only to see whether the offending scenario extends to a
complete play of C1. If so, it enters an accepting state. ;<

Note that, although I+
Γ(θ is an infinite set, there exists a finite subset J ⊆ I+

Γ(θ such
that {Aj}j∈J already captures comp(!Γ ! C : θ"), because up to name-permutation
there are only finitely many initial moves. Consequently, we only need finitely many
of them to check whether Γ ! C1

!
∼ C2. By Lemma 16, to achieve this we need to be

able to decide the emptiness problem for (nr, n)-automata. To show that it is indeed
decidable we consider register pushdown automata [6] over infinite alphabets. They are
similar to (nr, n)-automata in that they are equipped with registers and a stack. The
only significant differences are that they process single names in a computational step
and do not have the ability to generate globally fresh names. The first difficulty is easily
overcome by decomposing transitions of our automata into a bounded number of steps
(the existence of the bound follows from the fact that symbolic stores in our transition
function are bounded). To deal with freshness we need a separate argument.

Lemma 17. The emptiness problem for register pushdown automata extended with
fresh-symbol generation is decidable.

Proof. Register pushdown automata have the ability to generate (locally fresh) symbols
not present in the current registers. However, using them directly as a substitute for
global freshness is out of question, because it would lead to spurious accepting runs
due to the presence of the stack. To narrow the gap, we observe that if the automata
could generate locally fresh symbols that are in addition not present on the stack then,
for the purposes of emptiness testing, this stronger generative power, which we refer to
as quasi freshness, could stand in for global freshness. It turns out that a run involving

11

quasi fresh symbols can be simulated through local freshness. Whenever a quasi fresh
name is generated, we will generate a locally fresh name annotated with a tag indicating
its supposed quasi-freshness. The tags will accompany such names as they are being
pushed from registers and popped back into them. Whenever we find that a tagged
name in a register coincides with a name on top of the stack, we will interrupt the
computation as this will indicate that the supposedly quasi-fresh symbol is not quasi
fresh. If no violations are detected through tags, we can show that annotated locally
fresh names in an accepting run may well be replaced by quasi-fresh ones. ;<

Finally, combining Proposition 6 with Lemmata 15-17 we obtain:

Theorem 18. Program approximation (and thus program equivalence) is decidable for
GRef"-terms.

References
1. S. Abramsky, D. Ghica, A. S. Murawski, C.-H. L. Ong and I. Stark. Nominal games and full
abstraction for the nu-calculus. In LICS, pp 150–159, 2004.

2. S. Abramsky and G. McCusker. Call-by-value games. In CSL, LNCS 1414, pp 1–17, 1997.
3. A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation independence. In

POPL, pp 340–353, 2009.
4. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, pp 202–211, 2004.
5. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for storage. In

TLCA, LNCS 3461, pp 86–101, 2005.
6. E. Y. C. Cheng and M. Kaminski. Context-free languages over infinite alphabets. Acta Inf.
35(3), pp 245–267, 1998.

7. D. Dreyer, Ge. Neis and L. Birkedal. The impact of higher-order state and control effects on
local relational reasoning. In ICFP, pp 143–156, 2010.

8. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Asp. Comput. 13, pp 341–363, 2002.

9. K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computation. TCS,
221(1–2):393–456, 1999.

10. D. Hopkins, A. S. Murawski, and C.-H. L. Ong. A fragment of ML decidable by visibly
pushdown automata. In ICALP, LNCS 6756, pp 149–161, 2011.

11. A. Jeffrey and J. Rathke. Towards a theory of bisimulation for local names. In LICS, 1999.
12. D. Kozen. Automata and Computability. Springer, 1997.
13. V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-order imperative

programs In POPL, pp 141–152, 2006.
14. J. Laird. A game semantics of names and pointers. APAL 151: 151–169, 2008.
15. A. S. Murawski. Functions with local state: regularity and undecidability. TCS 338, 2005.
16. A. S. Murawski and N. Tzevelekos. Full abstraction for Reduced ML. In FOSSACS, 2009.
17. A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. In ESOP, 2011.
18. A. S. Murawski and N. Tzevelekos. Game semantics for good general references. LICS, 2011.
19. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state. In Gordon

and Pitts (eds), Higher-Order Operational Techniques in Semantics, pp 227–273. CUP, 1998.
20. U. S. Reddy and H. Yang. Correctness of data representations involving heap data structures.

Sci. Comput. Program., 50(1-3):129–160, 2004.
21. D. Sangiorgi, N. Kobayashi and E. Sumii. Environmental bisimulations for higher-order

languages. ACM Trans. Program. Lang. Syst., 33(1):5:1–5:69, 2011.
22. N. Tzevelekos. Full abstraction for nominal general references. LMCS, 5(3:8), 2009.

12

