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Abstract—We present a new fully abstract and effectively pre-
sentable denotational model for RefML, a paradigmatic higher-
order programming language combining call-by-value evaluation
and general references in the style of ML. Our model is built
using game semantics. In contrast to the previous model by
Abramsky, Honda and McCusker [3], it provides a faithful
account of reference types, and the full abstraction result does
not rely on the availability of spurious constructs of reference
type (bad variables). This is the first denotational model of this
kind, preceded only by the trace model recently proposed by
Laird [16].

I. INTRODUCTION

Nearly all modern programming languages implement the
concept of a mutable reference in some form, with varying
constraints as to the kind of values permitted in the store.
The storing of ground-type values such as integers is the
most simple embodiment of the idea, underpinning basic
imperative programming. However, languages such as C, Java
or ML offer much more flexibility with regard to storage
through the availability of function pointers, object references
and general references respectively. In fact, in the last two
cases values of any type are storable. In this paper we
focus on ML-style general references, which can support the
storage of ground values, functions as well as references
themselves. Even without polymorphism or recursive types,
the paradigm is remarkably expressive: thanks to inherent
sharing and the ability to create cyclic structures in the store
references can account for recursion and many high-level
programming abstractions such as objects [8] and aspects [27].
In recent years they have been an extremely popular object
of research involving a panoply of techniques: environmental
bisimulations [14, 26], game semantics [3, 30, 18], Hoare-style
logics [31, 28], logical relations [7, 5, 10], possible-world se-
mantics [20], realizability [6], and traces [16].
In this paper we advance the state of the art in fully abstract

modelling of general references with game semantics. The
first game model of a language involving general references
was constructed by Abramsky, Honda and McCusker [3]. The
model interprets references according to Reynolds’ recipe [25]:
the reference type ref θ (for storing values of type θ) is viewed
as a product of the reading (1 → θ) and writing (θ → 1)
types respectively. The associated full abstraction1 argument
for reference types requires one to populate the product
space corresponding to references with non-native reference
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1A model is (equationally) fully abstract if equality of interpretations

coincides with the notion of program equivalence.

objects. These so-called “bad references” are arbitrary pairs
consisting of (possibly unrelated) reading and writing methods.
As a result, the model fails to validate many fundamental
equivalences associated with storage such as the ones below2:

• x : ref θ " x := !x ∼= () : unit
• x : ref θ " (x :=V ;x :=W ) ∼= x :=W : unit
• x : ref θ " (x :=V ; !x) ∼= (x :=V ;V ) : θ

because the interpretation does not relate reads and writes
before the reference is bound to a reference cell. Moreover, the
process of reading or writing values is not viewed as atomic
and treated as a compound operation that might produce side-
effects potentially affecting all other memory locations.

In recent years nominal game semantics [2, 17, 30] has
emerged as an alternative approach to modelling storage
in game semantics, which can overcome the shortcomings
caused by bad variables. Reference types are no longer treated
as syntactic sugar for certain product types, but interpreted
through a countable set of names, intuitively corresponding to
names of reference cells. Several fully abstract and effectively
presentable models for languages involving storage have been
obtained by following this route, without relying on the
availability of bad variables.

• Laird [17] showed how to capture an extension of the
ν-calculus [24] with storage for (untyped) names. A
reference cell may contain itself in this setting.

• We showed how to account for ground-type storage
in [23], thus mending the original model of Reduced ML
due to Abramsky and McCusker [4].

Both of the above results consist in superimposing store
information on the standard notion of play. In the former case
the full store is included with each move, whereas in the latter
the store needs to be carefully restricted. It should be noted that
general references do not extend either of the above languages
conservatively.

In this paper we refine the model of general references
presented in [3]. Our plays do not feature information about
the full content of the store, as this would reveal functional val-
ues and jeopardize full abstraction. Instead, interactions with
the functional store, which partially reveal the properties of
stored values, are weaved into traditional play. To that end we
introduce a novel notion of play in which justification pointers
from moves need not point at other moves but, alternatively,
they might point inside the stores that other moves carry,
more precisely to their functional parts. Another new technical

2V,W are assumed to be values.



ingredient in our work is the notion of composition. Here the
main challenge is to identify conditions ensuring that higher-
order values not accessible to one of the strategies will not be
covertly modified during composition.
On the structural level, our proof of full abstraction follows

the well-established pattern of proving such results. Sound-
ness (Section V) is obtained by showing conformance with
a categorical framework [30], already known to guarantee
soundness. Completeness (Section VI) follows from a defin-
ability result, which is interesting in its own right, as the new
structure of plays enables one to perform rather unexpected
transformations on plays to reduce the problem to simpler
and smaller instances. Altogether we obtain a model in which
program approximation (contextual preorder) corresponds to
inclusion of the induced complete3 plays. This immediately
implies effective presentability, i.e. a decidable presentation
of the compact elements of the model.

Related and future work. As already described, our
model rectifies problems present in a previous game model
due to Abramsky, Honda and McCusker [3]. The structure
of their model was subsequently studied by Levy [21] and
Melliès [22] with the aim of understanding its structure in
more abstract terms. Otherwise the most closely related work
is Laird’s fully abstract trace semantics of essentially the same
language [16]. Our model can be viewed as a game-semantic
counterpart of his work: traces are derived from terms through
an operational semantics, whereas our strategies are defined
in a compositional and syntax-free manner. This illustrates
a recent convergence of complementary results in the two
fields (cf. [19] and [18]) that promises to lead, in the long
run, to an operational account of game semantics, which will
ultimately make it possible to move smoothly between (syntax-
directed, non-compositional) labelled transition system seman-
tics and (syntax-independent, compositional) game semantics.
Laird [15] has also presented a fully abstract model for a
fragment of Concurrent ML with higher-order communication
channels. Although it does not handle higher-order references,
it does embody a notion of play where typed channel names
may justify plays of the corresponding types.
A different fully abstract game model for the language

considered in this paper has already been presented by one
of us [30]. Grounded in monadic semantics for store, it did
not however offer an explicit characterization of program
equivalence due to reliance on innocent strategies (which had
to be quotiented for full abstraction). The present work can
thus also be seen as a refinement of that work towards a model
that captures the behaviour of the environment more faithfully.
In the wide spectrum of methodologies for references our

work offers a new foundation for compositional analysis of
general references. Modular verification of programs with
general references is a topical problem, which was already
attacked through a variety of approaches, e.g. separation
logic [28]. In future, we hope to apply our model to model-
checking and control-flow analysis in the spirit of algorithmic

3A play is complete if any question occurring in it has been answered.

u,Γ " () : unit
i ∈ Z

u,Γ " i : int
a ∈ (u ∩ Aθ)
u,Γ " a : ref θ

(x : θ) ∈ Γ
u,Γ " x : θ

u,Γ " M1 : int u,Γ " M2 : int
u,Γ " M1 ⊕M2 : int

u,Γ " M : int u,Γ " N0 : θ u,Γ " N1 : θ
u,Γ " ifM thenN1 elseN0 : θ

u,Γ " M : ref θ
u,Γ " !M : θ

u,Γ " M : ref θ u,Γ " N : θ
u,Γ " M :=N : unit

u,Γ " M : θ
u,Γ " refθ(M) : ref θ

u,Γ " M : ref θ u,Γ " N : ref θ
u,Γ " M = N : int

u,Γ " M : θ → θ′ u,Γ " N : θ
u,Γ " MN : θ′

u,Γ ∪ {x : θ} " M : θ′

u,Γ " λxθ .M : θ → θ′

Fig. 1. Syntax of RefML.

game semantics [12, 1]. Although higher-order references are
an expressive paradigm, quickly resulting in undecidability,
decidable properties can sometimes be identified [9] and
we will be in a good position to approach such from a
new perspective. We would also like to make an impact on
the automated or machine-checkable verification of program
equivalences and understand the relationship between game
semantics and other methods used to the same end, such as
step-indexing [5] and bisimulation-based techniques [26]. On
the semantic front, as a next step, we would like to extend
our work to polymorphism, so as to eliminate the bad-variable
problem in [18].

II. THE LANGUAGE REFML

We shall work with types defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

The language considered, which we shall call RefML, is best
described as the call-by-value λ-calculus over the ground types
unit, int, ref θ augmented with basic commands (termination),
primitives for integer arithmetic (constants, zero-test, binary
integer functions) and higher-order reference manipulation
(reference names, dereferencing, assignment, memory alloca-
tion, reference equality testing). The typing rules are given
in Figure 1, where A =

⊎

θ Aθ stands for a countable set of
reference names (one such set for each type θ), or just names, u
for a finite subset of A, and ⊕ for binary integer functions (e.g.
+, −, ∗, =). Their precise choice is to some extent immaterial:
for the full abstraction argument to hold it suffices to be able
to compare integer variables with integer constants and act
on the result. In the above and in what follows, we write
M ;N for the term (λzθ.N)M , where z does not occur in N
and θ matches the type of M . letx = M inN will stand for
(λxθ .N)M in general. The values of the language are given
by the syntax:

V ::= () | i | a | x | λxθ.M.



(S, if 0 thenN1 elseN0) → (S,N0) (S, a = b) → (S, 0)

(S, if i thenN1 elseN0) → (S,N1) (S, a = a) → (S, 1)

(S, (λx.M)V ) → (S,M [V/x]) (S, a :=V ) → (S[a *→ V ], ())

(S, !a) → (S, S(a)) (S, refθ(V )) → (S[a′ *→ V ], a′)

(S,M) → (S′,M ′) =⇒ (S,E[M ]) → (S′, E[M ′])

Notes: i != 0, a != b, a′ /∈ dom(S).

Fig. 2. Small-step operational semantics of RefML.

To define the operational semantics of RefML, we need to
introduce a notion of state. A state will simply be a function
from a finite set of names to values such that the type of
each name matches the type of its assigned value. We write
S[a *→ V ] for the state obtained by updating S so that a is
mapped to V (this may extend the domain of S). Given a state
S and a term M we say that the pair (S,M) is compatible if
all names occurring in M are from the domain of S.
The small-step reduction rules are given as judgments of

the shape (S,M) → (S′,M ′), where (S,M), (S′,M ′) are
compatible and dom(S) ⊆ dom(S′). We present them in
Figure 2, where we let a, b range over names. Evaluation
contexts are given by

E ::= (λx.N) | N | ⊕N | i⊕ | = N | a =

| ! | :=N | a := | refθ( ) | if thenN1 elseN0.

We say that (S,M) evaluates to (S′, V ) if (S,M) →→
(S′, V ), with V a value. For " M : unit we say that M
converges, written M ⇓, if (∅,M ) evaluates to some (S′, ()).

Example 1: Let circ be the circular reference defined by:

" letx = refunit→unit(λyunit.y) in
x :=(λyunit.(!x)y); x : ref (unit → unit)

We shall write Ωunit for the divergent term (!circ) (). Using
Ωunit it is easy to define analogous divergent terms Ωθ at any
type. Also, for any type θ, we define the terms newθ by:

newunit = refunit() newθ→θ′ = refθ→θ′(λxθ .Ωθ′)

newint = ref int(0) newrefi θ′′ = ref (ref (· · · ref (newθ′′)))

where θ′′ is one of unit, int or a function type. These terms
create new names and initialise them with default values. We
shall write new x inM for letx = newθ inM .

Definition 2: We say that the term-in-context Γ " M1 : θ
approximates Γ " M2 : θ (written Γ " M1

!
∼ M2) if

C[M1] ⇓ implies C[M2] ⇓ for any context C[−] such that
" C[M1], C[M2] : unit. Two terms-in-context are equivalent
if one approximates the other (written Γ " M1

∼= M2).

Example 3: • Let Inc be the term

" letn = ref int(0) inλxunit.n := !n+ 1; !n : unit → int

that reports the number of times the function has been
invoked. Let Γ = {x : ref (unit → int), y : ref (unit →

int)}. The first two terms listed below turn out to be
equivalent, but the third one can be distinguished from
the two, because 2 is returned.

Γ " x := Inc; y := !x; ((!x)() + (!y)()) : int
Γ " x := Inc; y := !x; 3 : int
Γ " x := Inc; y := Inc; ((!x)() + (!y)()) : int

The equivalence is borrowed from [31] and, like the
equivalences listed in the introduction, cannot be con-
firmed in the game model of [3] due to the bad variable
problem.

• RefML is not a conservative extension of Reduced
ML [29], in which the only reference type available is
ref int. Let Γ = {f : unit → unit}. The terms

Γ " letn = ref int(0) inλyunit.if !n then () else (n :=1; f())
Γ " letn = ref int(0) inλyunit.if !n then () else (f();n :=1)

are equivalent in Reduced ML4, but inequivalent when
tested with RefML contexts. For instance, take C[−] to
be the context below.

letR = refunit→unit(λx
unit.x) in

let f = λyunit.(!R)() in (R := [−]; (!R)())

III. GAME SEMANTICS

Our game model will be constructed using mathematical
objects (moves, plays, strategies) that feature names drawn
from the set A =

⊎

θ Aθ . We set Aφ =
⊎

θ,θ′ Aθ→θ′ , these
are the names of functional type. Although names underpin
various elements of our model, we do not want to delve into
the precise nature of the sets containing them. Hence, all of
our definitions preserve name-invariance, i.e. our objects are
(strong) nominal sets [11, 30]. Note that we do not need the
full power of the theory but mainly the basic notion of name-
permutation. Here permutations are bijections π : A → A

with finite support which respect the indexing of name-sets.
For an element x belonging to a (nominal) set X we write
ν(x) for its name-support, which is the set of names occurring
in x. Moreover, for any x, y ∈ X , we write x ∼ y if
there is a permutation π such that x = π · y. Our model is
couched in the Honda-Yoshida style of modelling call-by-value
computation [13]. Before we define what it means to play our
games, we introduce the auxiliary concept of an arena.

Definition 4: An arena A = 〈MA, IA,λA,"A〉 is given by:

• a set of movesMA and a subset IA ⊆ MA of initial ones,
• a labelling function λA : MA → {O,P}× {Q,A},
• a justification relation "A ⊆ MA × (MA \ IA);

satisfying, for each m,m′ ∈ MA, the conditions:

• m ∈ IA =⇒ λA(m) = (P,A),
• m "A m′ ∧ λQA

A (m) = A =⇒ λQA
A (m′) = Q,

• m "A m′ =⇒ λOP
A (m) 3= λOP

A (m′).

4This can be established by mapping them to the corresponding strategies
in [4] or [23].



We range over moves by m,n and use i, q, a to refer to
initial moves, question-moves and answer-moves respectively.
We also use o and p to stress ownership of moves. Let λA be
the OP-complement of λA. Note that if i "A m then λA(m) =
(O,Q). We call such moves m the initial questions of the
arena A. Given arenas A,B, the arenas A⊗B and A ⇒ B are
constructed as follows, where ĪA = MA\IA, "̄A = ("A" ĪA2)
(and similarly for B).

MA⊗B = (IA × IB) 5 ĪA 5 ĪB IA⊗B = IA × IB

λA⊗B = [(iA, iB) *→ PA, λA " ĪA, λB " ĪB]

"A⊗B = {((iA, iB),m) | iA "A m ∨ iB "B m} ∪ "̄A ∪ "̄B

MA⇒B = {%} 5MA 5MB IA⇒B = {%}

λA⇒B = [ % *→ PA, λA[iA *→ OQ], λB ]

"A⇒B = {(%, iA)} ∪ {(iA, iB)}∪ "A ∪ "B

Now for each type θ we define the corresponding arena !θ".

!unit" = 〈{%}, {%}, ∅, ∅〉 !int" = 〈Z,Z, ∅, ∅〉

!ref θ" = 〈Aθ,Aθ, ∅, ∅〉 !θ → θ′" = !θ" ⇒ !θ′"

We write 1 for !unit", Z for !int", and Aθ for !ref θ".
Moreover, we set Mφ =

⊎

θ,θ′ M!θ→θ′". Although types are
interpreted by arenas, the actual games will be played in
prearenas, which are defined in the same way as arenas with
the exception that initial moves are O-questions. Given arenas
A,B we define the prearena A → B as follows.

MA→B = MA 5MB λA→B = [λA[iA *→ OQ],λB]

IA→B = IA "A→B = {(iA, iB)}∪ "A ∪ "B

We write Valθ for the set I!θ", that is,

Valunit = Valθ→θ′ = %, Valint = Z, Valref θ = Aθ.

Let Val =
⊎

θ Valθ . A store Σ is a type-preserving finite partial
function from A to Val, that is, Σ : A ⇀ Val and

|Σ| finite ∧ (a ∈ dom(Σ) ∩ Aθ =⇒ Σ(a) ∈ Valθ) .

We write Sto for the set of all stores. A move-with-store on
a (pre)arena A is a pair mΣ with m ∈ MA and Σ ∈ Sto.

Definition 5: A justified sequence on a prearena A is a
sequence of moves-with-store from MA5Mφ such that, apart
from the first move which must be of the form iΣ with i ∈ IA,
every move in s is equipped with a pointer to an earlier move,
or to a name inside the store of an earlier move. These pointers
are called justification pointers and are subject to the following
constraints.

• If nT points to mΣ then either m,n ∈ MA and m "A n,
or m,n ∈ Mθ→θ′ for some θ, θ′ and m "!θ→θ′" n. We
say that mΣ justifies nT .

• If nT points to a ∈ dom(Σ) of mΣ then a ∈ Aθ→θ′ for
some θ, θ′, and n must be an initial question in M!θ→θ′".
We say that mΣ a-justifies nT .

An intuitive way to comprehend pointers to a name a ∈
dom(Σ) ∩Aθ→θ′ is to think of them as pointing to the value

% of a stored in Σ. Since the value of a is of function type,
its structure is not revealed at once, but it can be explored
by players by invoking the function, that is, by playing in
!θ → θ′" from that initial %.
Note that a justified sequence on A contains moves from

MA, called A-moves, and moves from Mφ, which hereditarily
point inside stores of other moves. The latter are called φ-
moves. We shall say that mΣ is an ancestor of nT (or that nT

is a descendant of mΣ) if there is a chain of pointers from nT

to m, possibly passing through stores on the way. Similarly,
we say that mΣ is an a-ancestor of nT (or that nT is an a-
descendant of mΣ) if there is a chain of pointers from nT to
a in Σ (the chain may also be visiting other stores). Note that
each φ-move has a unique a-ancestor, which is an A-move.
For each S ⊆ A and Σ we define:

Σ0(S) = S, Σi+1(S) = Σ(Σi(S))∩A, Σ∗(S) =
⋃

i
Σi(S).

The set of available names of a justified sequence is defined
inductively by Av(ε) = ∅ and

Av(snT ) =











Av(s) if there is an a-ancestor mΣ

of nT and a /∈ Av(s≤mΣ )

Σ∗(Av(s) ∪ ν(n)) otherwise

where s≤mΣ is the initial subsequence of s up to mΣ . We
shall be writing s 7 s′ to mean that s is a prefix of s′.

Definition 6: Let A be a prearena. A justified sequence s
on A is called a legal sequence, written s ∈ LA, if it satisfies
the conditions below.

• No adjacent moves belong to the same player, and no
move points to a move (or the store of a move) of the
same player (Alternation).

• The justifier of each answer is the most recent unan-
swered question (Bracketing).

We call s a play if it additionally satisfies:

• For any s′mΣ 7 s, dom(Σ) = Av(s′mΣ) (Frugality).

We write PA for the set of plays on A.

Example 7: Here are two plays on !ref (int → int)" →
!int → int" (for the sake of clarity, we omit pointers that would
just point at preceding moves). We use double-line pointers to
highlight the justification pointers pointing at stores.

a(a,$) %(a,$) 1(a,$) 1(a,$) 3(a,$) 3(a,$)

a(a,$) %(a,$) 1(a,$) 1(a,$) 3(a,$) 3(a,$)

The plays will be among those used to interpret the terms

x : ref (int → int) " !x : int → int

x : ref (int → int) " λhint.(!x)h : int → int

respectively. Note that these terms can be distinguished by the
context

letx = newint→int in (λf
int→int.f(x := λhint.0 ; 0)) [ ].



Each name appearing in a legal sequence s, i.e. such that
a ∈ ν(s), is called a P-name of s, written a ∈ P (s), if it is
first introduced in s by a P-move, that is, there is even-length
s′mΣ 7 s such that a ∈ ν(mΣ) \ ν(s′). The set of O-names
of s, O(s), is defined dually. Clearly, ν(s) = O(s) 5 P (s).
Moreover, let us define γ to be the canonical function on justi-
fied sequences which imposes frugality by deleting unavailable
names from store-domains and all φ-moves that they justify
hereditarily. Concretely, γ(ε) = ε and:

γ(snT ) =











γ(s) if there is an a-ancestor mΣ

of nT and a /∈ Av(s≤mΣ );

γ(s) nT !Av(snT ) otherwise.

Definition 8: A strategy σ on a prearena A, written σ : A,
is a set of even-length plays of A satisfying:

• If soΣpΣ
′

∈ σ then s ∈ σ (Even-prefix closure).
• If s ∈ σ and s ∼ t then t ∈ σ (Equivariance).
• If s1p

Σ1

1 , s2p
Σ2

2 ∈ σ and s1 ∼ s2 then s1p
Σ1

1 ∼ s2p
Σ2

2

(Nominal determinacy).

Example 9: For each arena A there is an identity strategy,
idA : A → A, defined by

idA = { s ∈ P even

A→A | ∀s′ 7even s. s′ " Al = s′ " Ar },

where the indices l, r distinguish the two copies of A, and
s′ " Ax is the subsequence of s′ containing only moves from
the x-copy, along with all φ-moves having a-ancestors from
the x-copy (for some a).

The behaviour of idA is called copycat. More generally, we
say that moves nTn′T ′

are a copycat pair in a play s if they
are consecutive in it, nT = n′T ′

, and if nT is justified by
m′Σ′

(or by some a ∈ dom(Σ′)) then n′T ′

is justified by mΣ

(resp. by a ∈ dom(Σ)) where mΣm′Σ′

are consecutive in s.
It will be useful to spot copycat behaviours occurring in plays
exclusively between φ-moves with consecutive a-ancestors.

Definition 10: Let s be an alternating justified sequence in
A, s′ 7 s be ending in mΣm′Σ′

and let a ∈ dom(Σ) ∩
dom(Σ′) ∩ Aφ such that m′Σ′

is not a-justified by mΣ . We
say that (s, s′, a) is a copycat triple if, for all φ-moves nT in
s which have mΣ or m′Σ′

as an a-ancestor,

• if n has the same polarity as m then there is n′T ′

such
that nTn′T ′

are a copycat pair in s,
• if n has the same polarity as m′ then there is n′T ′

such
that n′T ′

nT are a copycat pair in s.

Example 11: We will be economical when writing stores
and, in particular, components of the form (a, %) will often
be written simply as a. The copycat behaviour is exemplified
in the strategy σ : Aunit→unit → 1 = {ε, a(a,$)%(a,$)s} where
(a(a,$)%(a,$)s, a(a,$)%(a,$), a) are copycat triples. For example,
σ contains the play:

aa %a %a %a %a %a

O P O P O P

σ will turn out to denote x : ref (unit → unit) " () : unit.

We now turn to defining a suitable notion of interaction
between plays. Given arenas A,B,C, we define the prearena
A → B → C by setting MA→B→C = MA→B 5 MC ,
IA→B→C = IA and:

λA→B→C = [λA→B[iB *→ PQ],λC ]

"A→B→C = "A→B ∪ {(iB, iC)}∪ "C

Let u be a justified sequence on A → B → C. We define u "

AB to be u in which all C-moves are suppressed, along with
associated pointers and all φ-moves which are a-descendants
of C-moves. u " BC is defined analogously. u " AC is defined
similarly with the caveat that, if there was a pointer from a
C-move to a B-move which in turn had a pointer to an A-
move, we add a pointer from the C-move to the A-move. Let
us write u "γ X for γ(u " X) with X ∈ {AB,BC,AC}.
Below we shall often say that a move is an O- or a P-move
in X meaning ownership in the associated prearena (A → B,
B → C or A → C).

Definition 12: A justified sequence u on A → B → C is
an interaction sequence on A,B,C if it satisfies bracketing
and frugality and, for all X ∈ {AB,BC,AC}, we have (u "

X) ∈ LX and the following conditions hold.

• P (u "γ AB) ∩ P (u "γ BC) = ∅;
• O(u "γ AC) ∩ (P (u "γ AB) ∪ P (u "γ BC)) = ∅;
• For each u′ 7 u ending in mΣm′Σ′

and a ∈ dom(Σ′) if

– m′ is a P-move in AB and a /∈ Av(u′ " AB),
– or m′ is a P-move in BC and a /∈ Av(u′ " BC),
– or m′ is an O-move in AC and a /∈ Av(u′ " AC),

then Σ(a) = Σ′(a) and, moreover, if a ∈ Aφ then
(u " X,u′ " X, a) are a copycat triple, where X is the
respective element of {AB,BC,AC}.

We write Int(A,B,C) for the set of interaction sequences on
A,B,C, and σ‖τ for the set of interactions between strategies
σ : A → B and τ : B → C:

σ‖τ = { u ∈ Int(A,B,C) | (u "γ AB) ∈ σ∧(u "γ BC) ∈ τ }.

We shall be referring to the last condition in the definition
as the copycat condition. According to it, during an interaction
the players cannot change the parts of the store which regard
names that are not available to them. Moreover, in the case
these names are of functional type, the players are obliged to
copycat as far as a-descendants of these names are concerned.

Example 13: Consider the strategy σ : Aunit→int → 1 ⇒ Z

given by the set of all even prefixes of plays of the form

aa %a %a %a %a 3a ia ia

O P O P O P O P

for all i ∈ Z, and let τ : 1 ⇒ Z → Z contain all even prefixes
of % % j j for all j ∈ Z. Their interaction is depicted below.



We mark polarities for σ on the left of the diagram, and for
τ on the right.

Aunit→int

σ
!! 1 ⇒ Z

τ
!! Z

OQ aa

PA %a OQ

OQ %a PQ (1)

PQ %a OQ

OQ %a PQ (2)

PA 3a OA

OA 3a PA (3)

PA 3a OA

3a PA

Consider point (1) in the interaction. In τ , P plays %a but
a is not available in the composite play at that point, hence
P must copycat from that point on at a-descendants of (that
occurrence of) %a. This is precisely what happens in points
(2) and (3).
Let us now consider the same τ and the strategy σ′ :
Aunit→int → 1 ⇒ Z given by the even prefixes of:

aa %a 3a %a 3a 3a

O P O P O P

The following could seem a possible interaction. Note that
the projection on the right is the play % % 3 3 ∈ τ , as the move
played at (1) and its successor are removed by γ.

Aunit→int

σ
!! 1 ⇒ Z

τ
!! Z

OQ a
PA %a OQ

OQ %a PQ (1)

PA 3a OA

OQ %a PQ

PA 3a OA

3a PA

However, there is a violation of the copycat condition at (1).
Again, a is not available at that point in τ and therefore P
plays %a and starts a copycat triple on a. But %a is justified by
a, thus violating the conditions for a copycat triple. Put simply,
τ interrogates the value of a name which is not available to it.

Next we go on to show that the definition of interaction
sequences is a sound basis for composing strategies. First we
examine the switching discipline implied by it.

Lemma 14: If u ∈ Int(A,B,C) then for all u′mΣnT 7 u
the following switching conditions are satisfied.

• n is a P-move in AB (in BC) iff m is an O-move in AB
(resp. BC).

• n is an O-move in AC iff m is a P-move in AC.

Remark 15: Note that the switching conditions allow for m
being a P-move in AC from A and its successor, n, being an
O-move in AC from C. These are perfectly legal interactions.

Below by saying that m survives in u "γ AB we mean
that the application of γ on u " AB does not completely
remove mΣ (and similarly for the other cases). We say that
m introduces a in u′ = u "γ AB if m survives in u′ as, say,

mΣ′

and the latter introduces a in u′ (and similarly for the
other cases).

Lemma 16: Let u ∈ Int(A,B,C) and suppose mΣ intro-
duces the name a in u. If m is a P-move in AB (a P-move
in BC, an O-move in AC) then m introduces a in u "γ AB
(resp. u "γ BC, u "γ AC).

Corollary 17: For all u ∈ Int(A,B,C) we have ν(u) =
P (u "γ AB) 5 P (u "γ BC) 5O(u "γ AC).

Lemma 18: If u ∈ Int(A,B,C) then (u "γ AB) ∈ PA→B ,
(u "γ BC) ∈ PB→C and (u "γ AC) ∈ PA→C .

Definition 19: Given strategies σ : A → B and τ : B → C
we define the composite strategy σ; τ : A → C to be

σ; τ = { s ∈ PA→C | ∃u ∈ σ‖τ. s = u "γ AC }.

Proposition 20: Strategy composition is well-defined,
i.e. for all σ : A → B and τ : B → C, σ; τ is a strategy on
A → C.

Proposition 21: Composition of strategies is associative.

Definition 22: G is the category of arenas and strategies,
in which strategies in the prearena A → B are morphisms
between A and B.

IV. MODEL

In this section we show that G possesses enough structure to
model RefML. Specifically, we shall show that it is (equivalent
to) a νρ-model in the sense of [30, Definition 3.12].
We start off by demonstrating some specific strategies which

constitute the main ingredients of a νρ-model.

Example 23: For each type θ we define a strategy eqθ :
Aθ ⊗ Aθ → Z by:

eqθ = {ε} ∪ {(a, a′)ΣiΣs | i ∈ {0, 1}, a = a′ ⇐⇒ i = 1}

where ((a, a′)ΣiΣs, (a, a′)ΣiΣ , b) is a copycat triple, for any
b ∈ A. That is to say, iΣ leaves the functional values of the
initial Σ unchanged.

Example 24: For each name a there is a unique (up to
name-permutation) store Σa such that dom(Σ) = Σ∗({a}).
More precisely:

Σa = {(a, vθ)} if a ∈ Aθ, θ ∈ {unit, int, θ′ → θ′′}

Σa = {(a, b)} ∪Σb if a ∈ Aref θ, b ∈ Aθ

where vθ = 0 if θ = int, and vA = % otherwise. Then, the
following strategy

nuθ : 1 → Aθ = {ε, %aΣa | a ∈ Aθ}

corresponds to the term newθ (fresh reference creation) from
Example 1.



A play iΣAa
Σ′

s ∈ PA is called a thread if there is at most one
O-move in s which is justified, or a-justified for some name
a, by aΣ

′

. Below we introduce strategies updθ : Aθ⊗!θ" → 1
and drfθ : Aθ → !θ" for updating and dereferencing respec-
tively, by representing only their threads. The full strategies
are then obtained by interleaving their threads in such a way
that one thread does not depend on another (i.e. in a thread-

independent way, see below).

Example 25: We define

updθ= {(a, iθ)
Σ%Σs | θ = θ′→θ′′, iΣθ %Σs an a-copycat}

∪ {ε, (a, iθ)
Σ%Σ

′

s′ | Σ′ = Σ[a *→ iθ], a
′ 3= a,

((a, iθ)
Σ%Σ

′

s′, (a, iθ)
Σ%Σ

′

, a′) a copycat triple}

where by iΣθ %Σs being an a-copycat we mean that P copycats
between moves which are a-descendants of %Σ and moves
which are descendants of (a, iθ)Σ . Moreover, the first move
of s (s′), if any, is a-justified by %Σ (resp. a′-justified by
%Σ

′

). For example, in the case of θ = int we get upd
int

=
{ε, (a, i)(a,j)%(a,i)}. If θ is a function type then the update is
not as explicit: the higher-order value has to be interrogated by
O in order to be revealed. E.g. upd

unit→int
: Aunit→int ⊗ (1 ⇒

Z) → 1 has threads of the following form.

(a, %)a %a %a %a ia ia

O P O P O P

Example 26: We define

drfθ= {aΣ%Σs | θ = θ′→θ′′, aΣ%Σs an a-copycat}

∪ {ε, aΣiΣθ s′ | iθ = Σ(a), a′ ∈ A,

(aΣ iΣθ s′, aΣiΣθ , a
′) a copycat triple}

where by aΣ%Σs being an a-copycat we mean that P copycats
between moves which are descendants of %Σ and moves
which are a-descendants of aΣ . Moreover, the first move of
s (s′), if any, is justified by %Σ (resp. a′-justified by iΣθ ).
For example, drfint = {ε, a(a,i)i(a,i)}. On the other hand,
drfunit→int : Aunit→int → 1 ⇒ Z has threads of the following
form.

aa %a %a %a ia ia

O P O P O P

Observe the duality with the play of the previous example.
Updates and dereferencings are dual: the value in the initial
move of upd is copied to the store of its second move, whereas
the value in the second move of drf is copied from the store
of its initial move.

Following [2] and [17], G can be shown equivalent to the
Kleisli category of another category Gsst equipped with a
strong monad T . More precisely, Gsst is the lluf subcategory of
total single-threaded strategies [3, 17] such that the store values
of the first move are not taken into account. Single-threaded
strategies are composed by use of their thread-independent

closures [17], only that in our case the notion of thread-
independence has to be extended so that values of functional
names coming from different threads induce copycat triples.

We say that a strategy σ : A is total if for every iΣ ∈ PA

there is iΣaΣ ∈ σ and, moreover, for every a ∈ dom(Σ)
and iΣaΣs ∈ σ, (iΣaΣs, iΣaΣ, a) is a copycat triple. Put
otherwise, a total strategy always answers the initial question
at once, without introducing any new names nor updating the
store. We will also consider an even stronger notion of strategy,
which allows for cartesian products.

Definition 27: A total strategy σ : A is single-threaded if
for each iΣaΣs ∈ σ there is at most one move which is
(a-)justified by aΣ . If, moreover,

• for all iΣaΣmΣ′

s ∈ σ, we have Σ ⊆ Σ′,
• for all iΣaΣ , iΣ

′

a′Σ
′

∈ σ, we have a = a′,

then we say that σ is strongly single-threaded.

We aim to construct a lluf subcategory of G containing
only strongly single-threaded strategies. We start off with the
following notions. For each play of the form iΣaΣs we define
its current thread inductively as follows.

thr(iΣaΣsmT ) = iΣ
′

aΣ
′

mT if mT (a-)justified by aΣ

thr(iΣaΣsmT ) = thr(iΣaΣs)mT if mT (a-)justified by iΣ

thr(iΣaΣsmT ) = thr(iΣaΣs′)mT if mT (a-)justified in s

where s′ is the longest prefix of s such that the move which
(a-)justifies mT is in thr(iΣaΣs′), and Σ′ = T " ν(i a). We
say that iΣaΣs ∈ PA is thread-independent, written s ∈ P ti

A,
if for all s′pΣ 7 s:

• thr(s′pΣ) = thr(s′)pΣ ,
• ν(γ(thr(s′pΣ))) ∩ ν(s′) ⊆ ν(γ(thr(s′))),
• if s′ ends in oT and a ∈ dom(T )\ν(thr(s′)) then Σ(a) =

T (a), and if a ∈ Aφ then (s, s′pΣ, a) are a copycat triple.

For each strongly single-threaded strategy σ : A we define:

σ† = {s ∈ σ | |s| ≤ 2}∪{s ∈ P ti
A | ∀s′ 7e s. γ(thr(s′)) ∈ σ}

Following [17], it can be shown that σ† is a well-defined
strategy. Moreover, if σ : A → B, τ : B → C are strongly
single-threaded strategies then so is σ†; τ : A → C.

Definition 28: Let Gsst be the lluf subcategory of G where
morphisms are strongly single-threaded strategies and mor-
phism composition is defined as above (i.e. via σ†; τ ).

The restriction to Gsst allows us to form finite products. The
one-element arena 1 is the terminal object, while binary prod-
ucts are given by the following construction. Given strongly
thread-independent σ : A → B and τ : A → C, define
〈σ, τ〉 : A → B ⊗ C to be the strategy which replies to each
initial iΣA with (iB , iC)Σ , if iΣA i

Σ
B ∈ σ and iΣA i

Σ
C ∈ τ , and

from that point on it plays either as σ or as τ depending on
whether the current thread is one in AB or in AC respectively.
Moreover, the lifting operator [2] yields a strong monad T in
Gsst with exponentials, with the associated Kleisli category GT

sst

being equivalent to G.



To interpret the remaining constructs of RefML in G, we
follow [30] by showing that Gsst is a νρ-model in the sense
of [30, Definition 3.12]. The main constructs of the model
are the morphisms eqθ, nuθ, updθ, drfθ presented above (as
morphisms in G rather than in GT

sst). Moreover, for each finite
u = {a1, · · · , an} ⊆ A we set !u" to be the arena with moves
of the form (a′1, · · · , a

′
n) ∼ (a1, · · · , an), all of them initial.

The functors !u" ⊗ yield the initial state comonads of [30].
Checking that the diagrams of [30, Definition 3.12] commute
is routine. It follows that G is a model of RefML.

Definition 29: Given RefML types θ1, · · · , θn, θ and finite
u ⊆ A let us write !u, θ1, · · · , θn " θ" for the prearena
(!u"⊗ !θ1"⊗ · · ·⊗ !θn") → !θ". Any RefML term-in-context
u, x1 : θ1, · · · , xn : θn " M : θ can then be interpreted in a
canonical way as a strategy in !u, θ1, · · · , θn " θ", which we
shall denote by !u, x1 : θ1, · · · , xn : θn " M : θ".

Example 30: We revisit the circular reference term "
circ : ref (unit → unit) from Example 1. ! " !circ" is given
by the composition of

σ = !new x inx := λyunit.(!x)y; x" : 1 → A1⇒1

with drfunit→unit : A1⇒1 → (1 ⇒ 1). The former contains
plays of the form:

% a(a,$) %(a,$) %(a,$) %(a,$) %(a,$)

O P O P O P

The composition is depicted below; we mark the polarities of
moves in the composite play.

1
σ

!! AA
drf

!! 1 ⇒ 1
% OQ

aa

%a PA

%a OQ (1)

%a

%a

%a PQ

%a OQ (2)

%a

%a

%a PQ

%a OQ (3)

...

Consider point (1) in the interaction. O plays %a but a is not
available in the composite play at that point, hence O must
copycat from that point on for moves a-justified by %a. This
is precisely what happens in points (2) and (3). Thus, observe
that ! " !circ" never answers the question played in (1), that
is, the strategy ! " (!circ)()" diverges (it equals the empty
strategy).

V. SOUNDNESS

The purpose of this section is to show that complete-
trace inclusion is sound for contextual approximation (Propo-
sition 33). We follow the traditional route by establishing
Computational Soundness and Adequacy. The former is a
direct consequence of working with a νρ-model. We restate
the relevant result [30, Proposition 3.17] below. For any term
M , state S and finite set of names u, let the terms (S)• and
new u inM be inductively defined by:

(∅)• = () ({(a, V )} 5 S)• = a := V ; (S)•

new ∅ inM = M new ({a} 5 u) inM = new a in (new u inM)

where new a inM abbreviates letx= newθ inM [x/a] (if a ∈
Aθ). Note that an implicit ordering of S and u needs to be
assumed but any such ordering would give (semantically and
operationally) equivalent terms.

Proposition 31: If (S,M) →→ (S′,M ′) then, taking u, u′ to
be respectively dom(S), dom(S′), we have !u " (S)•;M" =
!u " new (u′ \ u) in (S′)•;M".

For Adequacy, we need to show that, for any divergent
closed term " M : unit (i.e. if M 3⇓), we have ! " M" = {ε}.
Note that M 3⇓ if, and only if, (∅,M) induces an infinite re-
duction sequence. Recall the reduction rule for dereferencing:

DRF (S, !a) → (S, S(a)).

Observe that by removing it from the reduction relation we
are left with an extension of the ν-calculus [29] with dummy
state that can be updated but not read. Because the ν-calculus
is strongly normalising, so is the restriction of our reduction
relation with the DRF rule removed (in the restricted language
an attempt to evaluate !a is regarded as termination). Thus,
if M diverges then (∅,M) induces a reduction sequence with
infinitely many DRF reduction steps. We will exploit this fact
by adding a counter to M that increases its value just before
a DRF rule can be applied. Since M diverges, the value of the
counter will have to be unbounded.

Proposition 32: For all " M : unit, ifM 3⇓ then !M" = {ε}.
Proof: Suppose, for the sake of contradiction, that M 3⇓

and ! " M" = {ε, %%}. For any term u,Γ " N : θ and a ∈
Aint \ u construct a, u,Γ " Na by recursively replacing each
subterm ofN of the shape !N ′ with a := (!a+1); !N ′. Observe
that each s ∈ !u,Γ " N" induces some s′ ∈ !a, u,Γ " Na"
such that a appears in s′ only in stores (and in a single place
in the initial move) and O never changes the value of a. Then,
for each i ∈ Z take Ni to be the term new a in (a := i;Na; !a).
Because %% ∈ ! " M", we shall have %j ∈ ! " M0" for some
j ∈ Z.
On the other hand, each play corresponding to Ni is ob-

tained from a play s′ for Na such that the initial value of a is i,
a appears in s′ only in stores (and in a single place of the initial
move) and O never changes the value of a. Moreover, P never
decreases the value of a in s′. Thus, if sjΣ is a complete play
of !Ni", then j ≥ i. We shall find a term contradicting this by
considering the infinite reduction sequence of (∅,M). It must



have infinitely many DRF steps, so suppose (∅,M) →→ (S,M ′)
in j + 1 such steps. Then we obtain (∅,M0) →→ ({(a, j +
1)} 5 Sa, (M ′)a; !a). By Proposition 31 we have that %j ∈
! " new a, u in (a := j + 1; (Sa)•; (M ′)a; !a)", where u =
dom(S). Since ! " new a, u in (a := j + 1; (Sa)•; (M ′)a; !a)"
is the same as ! " (new u in (S)•;M ′)j+1" (assignment
a := j + 1 commutes with the creation of u), we obtain
%j ∈ ! " (new u in (S)•;M ′)j+1", a contradiction.

Recall that a play is complete if each question occurring
in it justifies an answer. Given a set of plays X , let us write
comp(X) for the set of complete plays in X . By Proposi-
tion 32 and monotonicity of composition we can conclude the
following.

Proposition 33: Let Γ " M1,M2 : θ be terms of RefML.
comp(!Γ " M1 : θ") ⊆ comp(!Γ " M2 : θ") implies Γ "
M1

!
∼ M2.

VI. COMPLETENESS

Here we prove the converse of Proposition 33, which
follows from the definability result below.

Lemma 34: Let s be a complete play in !Θ " θ", where
Θ = {θ1, · · · , θn}, and pref(s) be the set of its even-length
prefixes. There exist Γ = {x1 : θ1, · · · , xn : θn} and Γ "
Ms : θ such that comp(!Γ " Ms : θ") = comp(pref(s)).

The proof of the lemma consists of two stages. First we
show that a number of simplifying assumptions can be made
about the shape of s. Subsequently, for plays satisfying the
additional constraints, we are going to reduce the problem to
an instance involving a play of strictly smaller length.

Let s be non-empty. We show that it suffices to prove the
lemma for plays s subject to the following three conditions.
Below we give constructions that eliminate violations of the
respective conditions without altering the length of plays.

1. Stores associated with the first two moves have the same
domains.

Suppose s = iΣi mΣm s1 is a play in !Θ " θ". Let
a ∈ dom(Σm) \ dom(Σi) with a ∈ Aθa . Consider the play
s′ = (i, a)Σ

′

i mΣ′

m s′1 in !Θ, ref θa " θ", where Σ′
i = Σi 5Σa

(see Example 24 for Σa) and mΣ′

m s′1 is equal to mΣm s1 in
which the stores have been extended with Σa " (dom(Σa) \
{a}). Given Γ, z : ref θa " Ms′ : θ, we can take Ms to be
new z inMs′ .

2. No move points at the store of the initial move.

Let s = iΣi · · ·mΣm · · ·, and suppose that m is justified by
a ∈ dom(Σi) such that a ∈ Aθ′

1→θ′

2
. Then there exist k, l ∈ N

such that Σk
i (ml) = a, where i = (m1, · · · ,mn).

Consider s′ = (i, %)Σi · · ·mΣm · · ·, which is a play in
Θ, θ′1 → θ′2 " θ. Suppose Γ, f : θ′1 → θ′2 " Ms′ : θ satisfies
the Lemma. Then we can take Ms to be let f =!kxl inMs′ .

3. The second move is an answer that does not justify any
other moves.

Suppose the second move of s is a question. Thanks to
2 we can assume it is justified by the initial move (rather
than its store). Consequently, the presence of the question
indicates that the play proceeds in !Θ, θ′1 → θ′2 " θ", where
the question and the corresponding answer originate from θ′1
and θ′2 respectively. Thus,

s = iΣi qθ′

1

Σq s1 aθ′

2

Σa s2 aθ
Σ s3.

Now consider the play

s′ = (i, a)Σi,aaθ′

1

Σq,a s′1 qθ′

2

Σa,a s′2 a
Σ,a
θ s′3

in !Θ, θ′1 → θ′2, ref (θ
′
2 → θ) " θ′1", where s′i (i = 1, 2, 3)

stands for si in which (a, %) was added to each store. Note
that aθ′

1
is the same move as qθ′

1
only in answer position, and

dually for qθ′

2
, aθ′

2
. Given Γ, f : θ′1 → θ′2, z : ref (θ′2 → θ) "

Ms′ : θ′1, one can take Ms to be

new z in let v = Ms′ in (!z)(fv).

So the validility of the lemma in general can be derived
from that for plays in which the second move is an answer.
Further, let us assume that the answer justifies a move and
s = iΣi %Σ" s1 mΣm s2 is a play from !Θ " θ′1 → θ′2".
Consider the complete play s′ = (i, a)Σi,a %Σ",a s′1 m

Σm,a s′2
in !Θ, ref (θ′1 → θ′2) " unit", where s′i (i = 1, 2) is the same
as si except that (a, %) was added to the store of each move.
Moreover, all moves in s1, s2 pointing to %Σ" now point at
its store, just like m. Given Γ, z : ref (θ′1 → θ′2) " Ms′ : unit,
one can take Ms to be new z in (Ms′ ; !z).

Consequently, in the rest of the proof we can assume
that the transformations used in the proof above have been
consecutively applied to the given play.

For the second stage of the proof let us assume that
s = iΣi aΣa qΣq mΣm s1 is a play in !Θ " θ" such that
no justification pointer points at Σi or a, and dom(Σi) =
dom(Σa). Hence q must point at some b ∈ dom(Σa). Suppose
b ∈ Aθ′

1→θ′

2
and let Σfn be the restriction of Σ to names

associated with function types. Consider the play

s′ = (i, q, dom(Σfn
a ), X)Σq+Σfn

a mΣm+Σfn
a s′1,

where:

• s′1 is the same as s1 except that each store was augmented

with a fresh copy of Σfn
a , referred to as Σfn

a ;

• pointers to Σa from s1 have been redirected to Σfn
a

associated with m, and pointers to i and q now point
at the new initial move.

• X is a list of names chosen so as to make s′ satisfy the
frugality condition, i.e. X = dom(Σq)\Σ∗

q(ν(i)∪ν(q)).
Because dom(Σi) = dom(Σa), we have X ⊆ dom(Σi).

Let ty(a) stand for ref θ provided a ∈ Aθ . Using this notation,
s′ is now a play in !Θ, θ′1, [ty(a)]a∈dom(Σfn

a )
, [ty(x)]x∈X " θ′2".

Crucially, s′ is shorter than s. Suppose

Γ, y : θ′1, [za : ty(a)], [wx : ty(x)] " Ms′ : θ
′
2

satisfies Lemma 34. In order to define Ms we need to be able
to copy the store Σfn

a at m to a. To that end we introduce



auxiliary variables za in which the higher-order state will be
recorded immediately beforem is played and add them to Ms′

to obtain

Γ, y : θ′1, [za : ty(a)], [wx : ty(x)], [za : ty(a)] " Ms′′ : θ
′
2

as follows.

• If m is an answer, we define Ms′′ to be

let v = Ms′ in [za := !za]; v .

• If m is a question, we can assume that Ms′ comes from
Step 3 discussed above, i.e. has the form

new z in let v = N in (!z)(fv).

Then we can define Ms′′ to be

new z in let v = N in [za := !za]; (!z)(fv).

To define Ms, we need some more notation. Let i =
(m1, · · · ,mn). Given a ∈ dom(Σi), we write aΓ for !kxl

provided Σk
i (ml) = a. Note that k and l may not be

determined uniquely. This will not be problematic in what
follows, because the purpose of the notation is to give us a
way of accessing a through the context. We can now define
Ms to be:

new za, za in let [wx = xΓ]x∈X in
assert(iΣi);
[aΓ :=Σa(a)]a∈dom(Σ int

a ); [aΓ :=Σa(a)Γ]a∈dom(Σref
a );

[aΓ :=λh.(!za)h]a∈dom(Σfn
a ),a )=b;

bΓ :=Mb; play(a)

where

• assert(iΣi) has the shape if condition then () elseΩunit

and condition is a conjunction of constraints of the form
!k1xl1 =!k2xl2 or !k1xl1 3=!k2xl2 (between reference cells
of the same type or integers) characterising5 iΣi ;

• Σ int
a and Σref

a are restrictions of Σa to integer references
and references to references respectively;

• Mb is the following term

letn = ref (0) in
λyθ1 .if (n = 0) then (n := !n+ 1;Ms′′) else (!zb)y

Mb behaves like Ms′′ when queried for the first time,
afterwards it follows the behaviour of the function stored
at b at m in s′;

• play(a) is () for θ ≡ unit, a for θ ≡ int, aΓ for θ ≡
ref (· · · ) and λxθ′′

1 .Ωθ′′

2
for θ ≡ θ′′1 → θ′′2 .

Lemma 34 can now be used to prove the following proposition.
Propositions 33 and 35 entail the main result.

Proposition 35: Let Γ " M1,M2 : θ be terms of RefML.
Γ " M1

!
∼ M2 implies comp(!Γ " M1 : θ") ⊆ comp(!Γ "

M2 : θ").

Theorem 36 (Full Abstraction): Let Γ " M1,M2 : θ be
terms of RefML. Γ " M1

!
∼ M2 if, and only if, comp(!Γ "

M1 : θ") ⊆ comp(!Γ " M2 : θ"). Hence, Γ " M1
∼= M2 if,

and only if, comp(!Γ " M1 : θ") = comp(!Γ " M2 : θ").

5E.g. for (a, b, a)(a,d)(d,5)(b,c)(c,d) in !ref2 int, ref3 int, ref2 int ! unit",
one would use x1 = x3, x1 "=!x2, !x1 =!!x2 and !!x1 = 5.

REFERENCES

[1] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Applying
game semantics to compositional software modelling and verification. In
TACAS’04, LNCS 2988, pp 421–435.

[2] S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B.
Stark. Nominal games and full abstraction for the nu-calculus. In
LICS’04, pp 150–159.

[3] S. Abramsky, K. Honda, and G. McCusker. Fully abstract game semantics
for general references. In LICS’98, pp 334–344.

[4] S. Abramsky and G. McCusker. Call-by-value games. In CSL’97, LNCS
1414, pp 1–17.

[5] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation
independence. In POPL’09, pp 340–353.

[6] L. Birkedal, K. Støvring, and J. Thamsborg. Realisability semantics of
parametric polymorphism, general references and recursive types. MSCS,
20(4):655–703, 2010.

[7] N. Bohr and L. Birkedal. Relational reasoning for recursive types and
references. In APLAS’06, LNCS 4279, pp 79–96.

[8] K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings.
Inf. Comput., 155(1-2):108–133, 1999.

[9] N. Charlton and B. Reus. A decidable class of verification conditions for
programs with higher order store. ECEASST, 23, 2009.

[10] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state
and control effects on local relational reasoning. In ICFP’10, pp 143–156.

[11] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Asp. Comput., 13:341–363, 2002.

[12] D. R. Ghica and G. McCusker. The regular language semantics of
second-order Idealized Algol. Theor. Comput. Sci., 309:469–502, 2003.

[13] K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value
computation. Theor. Comput. Sci., 221(1–2):393–456, 1999.

[14] V. Koutavas and M. Wand. Small bisimulations for reasoning about
higher-order imperative programs. In POPL’06, pp 141–152.

[15] J. Laird. Game semantics for higher-order concurrency. In FSTTCS’06,
LNCS 4337, pp 417–428.

[16] J. Laird. A fully abstract trace semantics for general references. In
ICALP’07, LNCS 4596, pp 667–679.

[17] J. Laird. A game semantics of names and pointers. Ann. Pure Appl.
Logic , 151:151–169, 2008.

[18] J. Laird. Game semantics for call-by-value polymorphism. In ICALP’10,
LNCS 6199, pp 187–198.

[19] S. B. Lassen and P. B. Levy. Typed normal form bisimulation for
parametric polymorphism. In LICS’08, pp 341–352.

[20] P. B. Levy. Possible world semantics for general storage in call-by-value.
In CSL’02, LNCS 2471, pp 232–246.

[21] P. B. Levy. Global state considered helpful. Electr. Notes Theor. Comput.
Sci., 218:241–259, 2008.

[22] P.-A. Melliès and N. Tabareau. An algebraic account of references in
game semantics. Electr. Notes Theor. Comput. Sci., 249:377–405, 2009.

[23] A. S. Murawski and N. Tzevelekos. Full abstraction for Reduced ML.
In FOSSACS’09, LNCS 5504, pp 32–47.

[24] A. M. Pitts and I. Stark. On the observable properties of higher order
functions that dynamically create local names, or: What’s new? In
MFCS’93, pp 122–141.

[25] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J.C. van
Vliet, editors, Algorithmic Languages, pp 345–372.

[26] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations
for higher-order languages. In LICS’07, pp 293–302, 2007.

[27] S. B. Sanjabi and C.-H. L. Ong. Fully abstract semantics of additive
aspects by translation. In AOSD’07, ACM ICPS 208, pp 135–148.

[28] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested hoare
triples and frame rules for higher-order store. In CSL’09, LNCS 5771,
pp 440–454.

[29] I. D. B. Stark. Names and Higher-Order Functions. PhD thesis,
University of Cambridge, 1995.

[30] N. Tzevelekos. Full abstraction for nominal general references. LMCS,
5(3), 2009.

[31] N. Yoshida, K. Honda, and M. Berger. Logical reasoning for higher-
order functions with local state. LMCS, 4(4), 2008.


