
Bisimilarity in Fresh-Register Automata

Andrzej S. Murawski

University of Warwick

a.murawski@warwick.ac.uk

Steven J. Ramsay

University of Warwick

s.ramsay@warwick.ac.uk

Nikos Tzevelekos

Queen Mary University of London

nikos.tzevelekos@qmul.ac.uk

Abstract—Register automata are a basic model of computation
over infinite alphabets. Fresh-register automata extend register
automata with the capability to generate fresh symbols in order
to model computational scenarios involving name creation. This
paper investigates the complexity of the bisimilarity problem for
classes of register and fresh-register automata. We examine all
main disciplines that have appeared in the literature: general
register assignments; assignments where duplicate register values
are disallowed; and assignments without duplicates in which
registers cannot be empty. In the general case, we show that
the problem is EXPTIME-complete.

However, the absence of duplicate values in registers enables us
to identify inherent symmetries inside the associated bisimulation
relations, which can be used to establish a polynomial bound
on the depth of Attacker-winning strategies. Furthermore, they
enable a highly succinct representation of the corresponding
bisimulations. By exploiting results from group theory and com-
putational group theory, we can then show solvability in PSPACE
and NP respectively for the latter two register disciplines. In each
case, we find that freshness does not affect the complexity class
of the problem.

The results allow us to close a complexity gap for language
equivalence of deterministic register automata. We show that de-
terministic language inequivalence for the no-duplicates fragment
is NP-complete, which disproves an old conjecture of Sakamoto.

Finally, we discover that, unlike in the finite-alphabet case, the
addition of pushdown store makes bisimilarity undecidable, even
in the case of visibly pushdown storage.

Index Terms—register automata, bisimilarity, computational
group theory, automata over infinite alphabets

I. INTRODUCTION

Register automata are one of the simplest models of com-

putation over infinite alphabets. They consist of finite-state

control and finitely many registers for storing elements from

the infinite alphabet. Since their introduction by Kaminski and

Francez [14] as a candidate formalism for capturing regular-

ity in the infinite-alphabet setting, they have been actively

researched especially in the database and verification com-

munities: selected applications include the study of markup

languages [19] and run-time verification [11]. While register

automata can detect symbols that are currently not stored in

registers (local freshness), the bounded number of registers

means that they are not in general capable of recognising

inputs that are genuinely fresh in the sense that they occur in

the computation for the first time (global freshness). Because

such a feature is desirable in many contexts, notably dynamic

resource allocation, the formalism has been extended in [27] to

fresh-register automata, which do account for global freshness.

This paper is concerned with the problem of bisimilarity
testing for register and fresh-register automata.

Bisimulation is a fundamental notion of equivalence in

computer science. Its central role is, in part, derived from the

fact that it is intensional and yet very robust. Consequently,

the algorithmics of bisimilarity have attracted a lot of attention

from researchers interested in the theory and practice of

equivalence checking. When the set of observable actions

available to a system is finite, a lot is already known about

the complexity of the problem for specific classes of systems,

although tight bounds are often difficult to obtain in the

infinite-state cases [26]. In this paper we prove a number

of bounds on the complexity of bisimulation equivalence

checking. We note that in this setting language equivalence

is known to be undecidable [19].

Our results are expressed using a unified framework that

comprises all variations that have appeared in the literature.

They differ in the allowed register assignment discipline,

which turns out to affect complexity. Assignments are allowed

to be: (S) single, if the contents of all registers are required to

be distinct; or (M) multiple, if we allow for duplicate values.

Furthermore, registers are required to: (F) always be filled;

or (#
0

) initially allowed to be empty; or (#) allowed to be

erased and filled during a run

1

. The complexity of bisimilarity

checking for each combination is summarised in the table

below, where we use the suffix “-c” to denote completeness for

this class and “-s” to denote solvability only. The results hold

regardless of whether one considers register or fresh-register

automata.

(M#) (M#

0

) (MF) (S#) (S#
0

) (SF)

EXP-c EXP-c EXP-c EXP-c PSPACE-c NP-s

Our work thus provides a practical motivation for modelling

systems with single assignment whenever possible — if the

system does not need to erase the contents of registers mid-

run, the corresponding equivalence problems are lower in the

complexity hierarchy.

We start by giving coarse, exponential-time upper bounds

for all the classes of system considered by showing how any

such bisimilarity problem can be reduced to one for finite-state

automata at exponential cost. For all the multiple assignment

machines this bound is tight and, for single assignment,

tightness depends upon whether or not erasing is allowed.

The implied significance of being able to erase the contents of

registers is explained by our proof that the bisimulation games

associated with such systems can simulate the computations

1

Empty content is “#”. A full definition of each of the automaton variants

is given in Section II.

of alternating Turing machines running in PSPACE. Here we

set up an encoding of the tape, determined by the presence or

absence of content in certain registers, and erasing of registers

corresponds to writing of tape cells.

Once erasure is forbidden under single assignments, we

obtain better bounds by investigating the structure of the

associated bisimulation relations. Such relations are generally

infinite, but only the relationship between the register assign-

ments in two configurations is relevant to bisimilarity, and

so we work with a finite, though exponentially large, class

of symbolic relations built over partial permutations (to link

register indices). Due to the inherent symmetry and transitivity

of bisimilarity, each such relation forms an inverse semigroup

under function composition. Also, crucially, the relations are

upward closed in the information order. Although, taken sep-

arately, neither of the preceding facts leads to an exponential

leap in succinctness of representation, taken together they

reveal an interconnected system of (total) permutation groups

underlying each relation. What is more, in any play of the

associated bisimulation game, the number of registers that are

empty must monotonically decrease. This, together with an

application of Babai’s result on the length of subgroup chains

in symmetric groups [4], allows us to show that any violation

of bisimilarity can be detected after polynomially many rounds

of the bisimulation game. Consequently, in this case, we are

able to decide bisimilarity in polynomial space.

The polynomial bound mentioned above enables us to close

a complexity gap (between NP and PSPACE) in the study of

deterministic language equivalence. Namely, we show that the

language inequivalence problem for deterministic RA(S#
0

) is

solvable in NP, and thus NP-complete, refuting a conjecture

by Sakamoto [21].

Further, if registers are additionally required to be filled

(SF), we can exhibit very compact representations of the rel-

evant bisimulation relations. The fact that permutation groups

have small generating sets [16] allows us then to design

a representation for symbolic bisimulations that is at most

polynomial in size. Furthermore, by exploiting polynomial-

time membership testing for permutation groups given in terms

of their generators [10], we show that such a representation can

be guessed and verified by a nondeterministic Turing machine

in polynomial time.

Finally, we consider bisimilarity for visibly pushdown reg-

ister automata (VPDRA) under the SF register discipline,

and we show that the problem here is already undecidable.

Since VPDRA(SF) are a particularly weak variant, this result

implies undecidability for all PDRA considered in [18]. In

contrast, for finite alphabets, bisimilarity of pushdown au-

tomata is known to be decidable [24] but non-elementary [5]

and, in the visibly pushdown case, EXPTIME-complete [25].

Related Work. The complexity of bisimilarity problems has

been studied extensively in the finite-alphabet setting and the

current state of the art for infinite-state systems is summarised

nicely in [26]. Recent papers concerning the complexity of

decision problems for register automata have, until now, not

considered bisimulation equivalence. However, there are sev-

eral related complexity results in the concurrency literature.

In his PhD thesis, Pistore [20], gives an exponential-time

algorithm for bisimilarity of HD-automata [17]. Since Pistore

shows that bisimulation relations for HD-automata have many

of the algebraic properties

2

as the relations we study here,

it seems likely that our algorithm could be adapted to show

NP-solvability of the bisimilarity problem for HD-automata.

Indeed, a compact representation of symmetries using gener-

ators for such a purpose was envisaged by [8].

Jonsson and Parrow [13] and Boreale and Trevisan [7] con-

sider bisimilarity over a class of data-independent processes.

These processes are terms built over an infinite alphabet, but

the behaviour of such a process does not depend upon the

data from which it is built. In the latter work, the authors

also consider a class of value-passing processes, whose be-

haviour may depend upon the result of comparing data for

equality. They show that if such processes can be defined

recursively then the problem is EXPTIME-complete. Since

value passing can be seen as a purely functional proxy for

multiple register assignments, this result neatly reflects our

findings for RA(M#). Finally, decidability of bisimilarity for

FRA(S#
0

) was proven in [27], albeit without a proper study

of its complexity (the procedure given in loc. cit. can be shown

to run in NEXPTIME).

Finally, it would be interesting to see to what extent

our decidability and complexity results can be generalised,

e.g. in settings with ordered infinite alphabets or nominal

automata [6].

Structure. In Section II we introduce the preliminaries and

prove all of the EXPTIME bounds in Section III. Then we start

the presentation of other results with register automata, as the

addition of global freshness requires non-trivial modifications.

In Section IV we show bounds for the (S#
0

) problems and

apply the techniques to deterministic language equivalence in

Section V. Section VI covers further improvements for the

(SF) case. In Section VII we generalise our techniques to

fresh-register automata and, finally, consider the pushdown

case in Section VIII.

II. PRELIMINARIES

We introduce some basic notation. Given a relation R ✓
X ⇥ Y , we define dom(R) = {x 2 X | 9y.(x, y) 2 R} and

rng(R) = {y 2 Y | 9x.(x, y) 2 R}. For natural numbers i
j, we write [i, j] for the set {i, i+ 1, . . . , j}.

A. Bisimilarity

We define bisimulations generally with respect to a labelled

transition system. As we shall see, the particular systems that

we will be concerned with in this paper are the configuration

graphs of various classes of (fresh-) register automata.

2

E.g. the active names of [20] are comparable to our characteristic sets.

2

Definition 1. A labelled transition system (LTS) is a

tuple S = (C,Act , { `�! | ` 2 Act}), where C is a set of con-
figurations, Act is a set of action labels, and

`�! ✓ C⇥ C is

a transition relation for each ` 2 Act .
A binary relation R ✓ C⇥ C is a bisimulation if for each

(
1

,
2

) 2 R and each ` 2 Act , we have: (1) if
1

`�! 0
1

, then

there is some
2

`�! 0
2

with (0
1

,0
2

) 2 R; (2) if
2

`�! 0
2

,

then there is some
1

`�! 0
1

with (0
1

,0
2

) 2 R. We say that

1

and
2

are bisimilar, written
1

⇠
2

, just if there is some

bisimulation R with (
1

,
2

) 2 R.

Let us recall that bisimilarity has a very natural game-

theoretic account. Given two configurations, one can consider

a bisimulation game involving two players, traditionally called

Attacker and Defender respectively. They play rounds in which

Attacker fires a transition from one of the configurations and

Defender has to follow with an identically labelled transition

from the other configuration. In the first round, the chosen

transitions must lead from the configurations to be tested

for bisimilarity, while, in each subsequent round, they must

start at the configurations reached after the preceding round.

Defender loses if he cannot find a matching transition. In

this framework, bisimilarity corresponds to the existence of

a winning strategy for Defender. The process of playing a

bisimulation game naturally favours Attacker as the decision

maker but, thanks to the forcing technique of [12], it is possible

to construct transition systems in which Defender effectively

ends up making choices.

B. Fresh-register automata

We will be interested in testing bisimilarity of configurations

generated by machines with registers and pushdown stack in

the infinite-alphabet setting, i.e. as Act we shall use the set

⌃⇥D for a finite alphabet ⌃ and an infinite alphabet D (with

its elements sometimes called names), cf. data words [19].

Definition 2. Given a natural number r, a class of r-register

assigments A is a set of functions from [1, r] to D] {#}.

Fix such a class. An r-fresh-register automaton (r-FRA) is a

tuple A = hQ, q
0

, ⇢
0

, �, F i, where:

• Q is a finite set of states, q
0

2 Q initial and F ✓ Q final;

• ⇢
0

2 A is the initial r-register assignment;

• � ✓ Q⇥⌃⇥(P([1, r])[{~})⇥[0, r]⇥P([1, r])⇥Q is the

transition relation, with elements written as q
t,X,i,Z����! q0.

We assume that in any such transition i /2 Z.

Finally an r-register automaton (r-RA) is a special case of an

r-FRA such that all its transitions q
t,X,i,Z����! q0 satisfy X 6= ~.

A register assignment then is just a mapping of register

indices to letters from the infinite alphabet D and the special

symbol #. This symbol is used to represent the fact that a

register is empty, i.e. contains no letter from D. Consequently,

by slight abuse of notation, for any r-register assignment ⇢ we

will be writing rng(⇢) for the set ⇢([1, r])\D, and dom(⇢) for

⇢�1

(rng(⇢)). Moreover, ⇢�1

= {(d, i) | d 2 D ^ (i, d) 2 ⇢}.

The meaning of a transition q
t,X,i,Z����! q0 is described as

follows. The components t and X are a precondition: for the

transition to be applicable, it must be that the next letter of

the input has shape (t, a) for some a 2 D and, moreover:

• if X ✓ [1, r] then a is already stored in exactly those

registers named by X;

• if X = ~ then a is (globally) fresh: it has so far not

appeared in the computation of A.

If the transition applies then taking it results in changes being

made to the current register assignment, namely: a is written

into register i (unless i = 0, in which case it is not written at

all) and all registers named by Z have their contents erased.

Definition 3. A configuration of an r-FRA A is a triple

(q, ⇢, H) consisting of a state q 2 Q, an r-register assignment

⇢ 2 A and a finite set H ✓ D, called the history, such

that rng(⇢) ✓ H . If q
1

t,X,i,Z����! q
2

is a transition of A,

then a configuration (q
1

, ⇢
1

, H
1

) can make a transition to

a configuration (q
2

, ⇢
2

, H
2

) accepting input (t, d), written

(q
1

, ⇢
1

, H
1

)

(t,d)���! (q
2

, ⇢
2

, H
2

), just if:

• X = {j | ⇢
1

(j) = d}, or X = ~ and d /2 H;

• for all j 2 [1, r], ⇢
2

(j) = d if j = i; and ⇢
2

(j) = # if

j 2 Z; and ⇢
2

(j) = ⇢
1

(j) otherwise;

• H
2

= H
1

[{d}.

We will sometimes write the set of configurations of A by CA
and the induced transition relation by !A. We let S(A) be

the LTS hCA, ⌃⇥D, !Ai.
On the other hand, a configuration of an r-RA A is a pair

(q, ⇢) of a state q 2 Q and an r-register assignment ⇢ 2 A.

The LTS hCA, ⌃ ⇥ D, !Ai is defined precisely as above,

albeit excluding the underlined conditions.

We define the specific classes of fresh-register automata that

we will study in this work by considering specialisations of

Definition 3 by the register assignment discipline followed.

Duplication in assignment. We consider two register storage

policies, namely single assignment (S) or multiple assignment

(M). In single assignment, we restrict the class of register

assignments to be injective on non-empty registers, i.e. each

⇢ 2 A has, for all i, j 2 [1, r], ⇢(i) = ⇢(j) just if i = j
or ⇢(i) = # = ⇢(j). In multiple assignment there is no such

restriction. To ensure that all configurations respect the register

assignment discipline, in an (S) automaton every transition

q
1

t,X,i,Z����! q
2

is required to have X = ~ or X ✓ {i}.

Emptiness of registers. We consider the automaton’s ability to

process empty registers. We say that either all registers must

always be filled (F), that registers may be initially empty (#

0

)

or that the contents of registers may be erased (#) during a

run. Under condition (F), the class of r-register assignments

A is restricted so that # /2 ⇢([1, r]) for each ⇢ 2 A. Under

conditions (F) and (#

0

), every transition q
1

t,X,i,Z����! q
2

has Z = ; and i 6= 0. Condition (#) imposes no specific

restrictions.

We describe particular classes by the acronym FRA(XY)

in which X 2 {M, S} and Y 2 {F, #
0

, #}. The class

3

FRA(XY) is the specialisation of Definition 2 to the largest

class of register assignments A satisfying the constraints

imposed by X and Y . E.g. FRA(S#
0

) are those automata

whose register assignments are all functions from [1, r] to

D[{#} that are injective on non-empty registers, and every

transition of such a machine is of the form q
1

t,X,i,Z����! q
2

with

Z = ;, i 6= 0 and X 2 {~, ;, {i}}. In a similar manner we

define the classes RA(XY).

Remark 4. The class RA(MF) follow the register assignment

discipline of the register automata defined by Segoufin [23].

The class RA(M#

0

) follow the register assignment discipline

of the M -Automata defined by Kaminski and Francez [14]

and the class of RA(S#
0

) follows the assignment discipline

of the finite memory automata considered in the same paper.

The class RA(SF) contain automata that follow the register

assignment discipline of the machines considered by Nevin,

Schwentick and Vianu [19]. The condition i 6= 0, which

stipulates that every name encountered by the automaton be

stored in some register, also originates from [14], [19]. The

class FRA(S#
0

) follow the register assignment discipline of

the automata defined in [27].

In this paper we are concerned with the following family

of decision problems.

Definition 5. Let X 2 {M, S} and Y 2 {F, #
0

, #}.

• The problem ⇠-FRA(XY) is: given an FRA(XY) A and

configurations
1

= (q
1

, ⇢
1

, H) and
2

= (q
2

, ⇢
2

, H),

does
1

⇠
2

hold in S(A)?

• The problem ⇠-RA(XY) is: given an RA(XY) A and

configurations
1

and
2

, does
1

⇠
2

hold in S(A)?

We shall relate the various classes of bisimilarity problems

that we study by their complexity. We write P
1

 P
2

to

denote that there is a polynomial-time many-one reduction

from problem P
1

to problem P
2

.

Lemma 6. The considered bisimilarity problems can be re-
lated as in Figure 1.

C. Groups and permutations
For any S ✓ [1, n], we shall write SS for the group of

permutations on S, and ISS for the inverse semigroup of

partial permutations on S. For economy, we write Sn for

S
[1,n]; and ISn for IS

[1,n].

For partial permutations � and ⌧ , we write �; ⌧ for their

relational composition: �; ⌧ = { (i, j) | 9k.�(i) = k ^ ⌧(k) =
j }. Moreover, for any � and i, j 2 [1, n], we let �[i 7! j] be

the result of updating � with (i, j):

�[i 7! j] = {(i, j)} [{(k,�(k)) | k 6= i ^ �(k) 6= j}.
For all j 2 [1, n], � 2 SS and S ✓ [1, n] we also write S[j]
for S [{j}, and � · S for {�(i) | i 2 S}.

III. BISIMILARITY PROBLEMS COMPLETE FOR EXPTIME

In this section we show that the upper four classes in our

two hierachies of automata all have bisimilarity problems that

are complete for exponential time.

Theorem 7. All of the problems ⇠-RA(S#), ⇠-RA(MF),
⇠-RA(M#

0

), ⇠-RA(M#), ⇠-FRA(S#), ⇠-FRA(MF),
⇠-FRA(M#

0

) and ⇠-FRA(M#) are EXPTIME-complete.

Proof: The result follows immediately from Propositions

8 and 10 and Lemma 6.

Our argument proceeds by showing that ⇠-FRA(M#) can

be solved in EXPTIME (Proposition 8) and ⇠-RA(S#) is

already EXPTIME-hard (Proposition 10). For the former, we

reduce the problem to a bisimilarity problem for finite state

automata of exponential size.

Given an instance of the r-register, FRA(M#) bisimilarity

problem, the idea is to construct a bisimilarity problem for a

finite automaton over an alphabet derived from a finite subset

N ✓ D of size 2r + 2. Given a configuration = (q, ⇢, H)

of the FRA, we represent it by an abstract configuration � ·
 = (q,� · ⇢,� · H) which is built entirely from letters in

N . Here � : D ! N is surjective, � · ⇢ = (�[# 7!#]) � ⇢
and � · H = {�(d) | d 2 H}. We choose the abstraction

� in such a way that it partitions D and N with respect to

rng(⇢) and H: that is, � = �
1

]�
2

]�
3

where rng(�i) are all

distinct and dom(�
1

) = rng(⇢), dom(�
2

) = H \ rng(⇢) and

dom(�
3

) = D \H . In addition, �
1

is injective.

The partitioning conditions ensure that our representation by

abstract configurations is faithful. But, due to global freshness,

the abstraction � cannot be chosen uniformly for the entire

simulation. This is because, with the alphabet limited to N ,

there would be no letters available to be played as part of

globally fresh transitions as soon as the simulated history

� · H became equal to N . Hence, the simulation needs to

recycle letters in the history as soon as they become otherwise

irrelevant to the current configuration and, consequently, a

new (typically smaller) history and a new abstraction �0
must

be chosen at each step. However, at position (q
1

,� · ⇢
1

,� ·
H), (q

2

,� · ⇢
2

,� · H) of the simulation, the only letters that

can be recycled are those that are not in � · ⇢
1

or � · ⇢
2

.

Recycling such a letter d by removing it from �·H is unfaithful

to the simulation, since it would potentially allow a globally

fresh transition playing d to be matched by a local one.

This demonstrates that it is necessary to know both register

assignments of the position in order to choose which letters

are available to recycle and hence the shape of a new history.

To this end, the bisimulation game induced by the simu-

lating finite automaton is constructed so that both of the two

component systems contain both of � · ⇢
1

and � · ⇢
2

.

Proposition 8. ⇠-FRA(M#) is solvable in EXPTIME.

Proof sketch: Given an r-FRA(M#) A =hQ, q
0

,⇢
0

,�, F i
and a pair of input configurations, we decide their bisimilarity

by checking an equivalent bisimilarity problem on a finite-

state automaton B. Each state of the finite automaton is of the

form (�, q
1

, ⇢
1

, H, q
2

, ⇢
2

, p), where ⇢
1

and ⇢
2

are r-register

assignments drawn only from N , representing the left and

right component systems of the bisimulation game that is

being simulated. States q
1

and q
2

are from Q, H is a history

built only over N and � and p are bookeeping information

4

⇠-FRA(SF) ⇠-FRA(S#
0

) ⇠-FRA(S#) ⇠-FRA(MF) ⇠-FRA(M#

0

) ⇠-FRA(M#)

⇠-RA(SF) ⇠-RA(S#
0

) ⇠-RA(S#) ⇠-RA(MF) ⇠-RA(M#

0

) ⇠-RA(M#)

Fig. 1. Relationship between the main bisimilarity problems considered in this work.

drawn from sets of constant size. The construction induces a

bisimulation game in which one turn of the original game is

simulated in two parts, consisting of four turns.

In the first part, Attacker announces which component he

would like to play from (i 2 {1, 2}) and then which transition

T 2 � he would like to simulate and which letter from N
to do it with. He then updates register assignment ⇢i in the

state accordingly, leaving ⇢
3�i untouched. Defender responds

by announcing the same transition and letter and updating the

same register assignment ⇢i but in the other component.

In the second part, Defender uses Defender forcing in order

to choose which transition she would like to simulate in

response to Attacker’s choice T , the letter used to simulate it

(which must be the same as the one chosen by Attacker) and

what the value of the new history should be. She then updates

register assignment ⇢
3�i and the history in her component

accordingly. Attacker is forced to respond by announcing the

same transition, letter and choice of history and updating

assignment ⇢
3�i and the history in his component to match.

It can be shown that such a simulation gives a faithful

reduction from the FRA bisimilarity problem to the bisimi-

larity problem for finite automata. The number of states of the

automata is bounded by O(|Q| · 2|N |+2r log |N |
). The alphabet

of the finite automaton, whose letters simultaneously announce

a transition of the FRA, a letter from N and a history, are

bounded above by O(|�| · 2|N |
). Hence bisimilarity can be

solved in time O(|�| · |Q|2 · 23|N |+4r|N | log |N |
). Since |N |

is O(r), it follows that bisimilarity can be decided in time

exponential in the size of the FRA, or polynomial in the size

of the FRA for fixed r.

Remark 9. The preceding proof shows that one turn of the

FRA(M#) bisimulation game can be simulated by using

four turns of the bisimulation game for the simulating finite

automaton. Consequently, any winning strategy for the FRA-

induced game can be transformed into a winning strategy for

the finite automaton-induced game with at most a constant-

factor increase in depth.

Further down the hierachy, to show ⇠-RA(S#) is

EXPTIME-hard, we use the registers of this class of automata

to represent the tape content of bounded Turing machines.

Proposition 10. ⇠-RA(S#) is EXPTIME-hard.

Proof sketch: We reduce instances of the Alternating

Linear Bounded Automaton (ALBA) acceptance problem,

which is known to be EXPTIME-hard, to RA(S#) bisimilarity.

From an ALBA M we construct an RA(S#) A that simulates

it, with the the binary tape content of M encoded by the

register assignment of A. At every step of the bisimulation

game, we arrange for Defender to choose transitions from

existential states (using Defender forcing [12]) and Attacker

to choose from universal states.

The ability of A to use empty registers and to erase

full registers is key to encoding the exponential amount of

information held on the tape in a number of registers that is

polynomial in its size. To this end, to represent a tape of size n,

we equip A with 2n registers, under the following encoding.

Cell k of the tape has 0 written on it iff register 2k � 1 is

empty and it has 1 written on it iff register 2k is empty.

IV. PSPACE-COMPLETENESS FOR RAS WITH SINGLE

ASSIGNMENT WITHOUT ERASURE (RA(S#
0

))

We next prove that the EXPTIME bound can be improved if

duplicate values and erasures are forbidden. We handle register

automata first to expose the flavour of our technique. The main

result is given below, it follows from Propositions 21 and 22.

Theorem 11. ⇠-RA(S#
0

) is PSPACE-complete.

Simplified notation: Recall that, in any transition q
1

t,X,i,Z����!
q
2

of an r-RA(S#
0

), we have that Z = ;, i 6= 0 and X ✓ {i}.

These restrictions allow for a simpler notation for transitions,

with � ✓ Q⇥ ⌃⇥ ([1, r] [{i • | i 2 [1, r] })⇥Q:

(a) we write each transition q
1

t,{i},i,;�����! q
2

as q
1

t,i�! q
2

;

(b) and each transition q
1

t,;,i,;����! q
2

as q
1

t,i•��! q
2

.

Thus, transitions of type (a) correspond to the automaton

reading an input (t, a) where a is the name in the i-th register;

while in (b) transitions the automaton reads (t, a) if a is locally
fresh, that is, it does not appear in the registers, and in this

case a will be stored in register i.

A. Symbolic bisimulation

We attack the bisimulation problem symbolically, i.e. by

abstracting actual names in the bisimulation game to the

indices of the registers where these names reside. This will

lead us to consider groups of finite permutations and inverse

semigroups of partial finite permutations. We shall define

symbolic bisimulations over pairs (q, S) of a state q and a

set of register indices S ✓ [1, r]. In this way, the locations of

the empty registers [1, r] \ S are made explicit.

Definition 12. Let A = hQ, q
0

, ⇢
0

, �, F i be an r-RA(S#
0

).

We first set:

U
0

= Q⇥ P([1, r])⇥ ISr ⇥Q⇥ P([1, r])

U = { (q
1

, S
1

,�, q
2

, S
2

) 2 U
0

| � ✓ S
1

⇥ S
2

}
A symbolic simulation on A is a relation R ✓ U , with elements

(q
1

, S
1

,�, q
2

, S
2

) 2 R written infix (q
1

, S
1

)R� (q2, S2

), such

5

that all (q
1

, S
1

,�, q
2

, S
2

) satisfy the following symbolic sim-
ulation conditions (SYS)

3

:

• for all q
1

t,i�! q0
1

,

– if i 2 dom(�) then there is some q
2

t,�(i)���! q0
2

with

(q0
1

, S
1

)R� (q0
2

, S
2

),

– if i 2 S
1

\ dom(�) then there is some q
2

t,j•��! q0
2

with

(q0
1

, S
1

)R�[i 7!j] (q
0
2

, S
2

[j]);

• for all q
1

t,i•��! q0
1

,

– there is some q
2

t,j•��! q0
2

with

(q0
1

, S
1

[i])R�[i 7!j] (q
0
2

, S
2

[j]),

– for all j 2 S
2

\ rng(�), there is some q
2

t,j�! q0
2

with

(q0
1

, S
1

[i])R�[i 7!j] (q
0
2

, S
2

).

We let the inverse of R be

R�1

= { (q
2

, S
2

,��1, q
1

, S
1

) | (q
1

, S
1

,�, q
2

, S
2

) 2 R }

and call R a symbolic bisimulation if both R and R�1

are symbolic simulations. We let s-bisimilarity, denoted

s⇠,

be the union of all symbolic bisimulations. We say that

configurations (q
1

, ⇢
1

) and (q
2

, ⇢
2

) are s-bisimilar, written

(q
1

, ⇢
1

)

s⇠ (q
2

, ⇢
2

), if (q
1

, dom(⇢
1

))

s⇠⇢1;⇢
�1
2

(q
2

, dom(⇢
2

)).

We approximate symbolic bisimilarity by a sequence of

indexed bisimilarity relations

i⇠ ✓ U defined inductively as

follows. First, we let

0⇠ be the whole of U . Then, for all

i 2 !, (q
1

, S
1

)

i+1⇠ ⌧ (q
2

, S
2

) just if (q
1

, S
1

, ⌧, q
2

, S
2

) and

(q
2

, S
2

, ⌧�1, q
1

, S
1

) both satisfy the (SYS) conditions in

i⇠.

Lemma 13. Let (q
1

, ⇢
1

), (q
2

, ⇢
2

) be configurations of an r-
RA(S#

0

), then: (q
1

, ⇢
1

) ⇠ (q
2

, ⇢
2

) () (q
1

, ⇢
1

)

s⇠ (q
2

, ⇢
2

).
Furthermore, for all i 2 !, i+1⇠ ✓ i⇠ and (

T
i2!

i⇠) =

s⇠.

Our next aim is to show that

s⇠ and each

i⇠ are closed

under composition and extension of partial permutations. The

latter allows us, in Lemma 18, to bound the convergence of

the indexed bisimulations by finding within them strict chains

of subgroups. The former, in Section VI, helps us to represent

s⇠ succinctly by appropriate choices of representatives.

Given S
1

, S
2

✓ [1, r] and �,�0 2 ISr we write � S1,S2 �0

just if � ✓ �0 ✓ S
1

⇥S
2

. Moroever, given X ✓ S ✓ [1, r], we

write idX for the partial map from S to S that acts as identity

on X (and is undefined otherwise).noteChanged the wording

here as it wasn’t clear what the range of S was (it looked like

it captured the (ID) rule) For any R ✓ U , we define its closure

Cl(R) to be the smallest relation R0
containing R and closed

under the following rules.

(q, S, idS , q, S) 2 R0 (ID)

(q
1

, S
1

,�, q
2

, S
2

) 2 R0

(q
2

, S
2

,��1, q
1

, S
1

) 2 R0 (SYM)

(q
1

, S
1

,�, q
2

, S
2

) 2 R0 � S1,S2 �0

(q
1

, S
1

,�0, q
2

, S
2

) 2 R0 (EXT)

(q
1

, S
1

,�
1

, q
2

, S
2

) 2 R0
(q

2

, S
2

,�
2

, q
3

, S
3

) 2 R0

(q
1

, S
1

,�
1

;�
2

, q
3

, S
3

) 2 R0 (TR)

3

We say that (q1, S1,�, q2, S2) satisfies the (SYS) conditions in R.

We say R is closed in case Cl(R) = R. We can show:

Lemma 14. Let P,R ✓ U be such that R = R�1. If all g 2 R
satisfy the (SYS) conditions in P then all g 2 Cl(R) satisfy
the (SYS) conditions in Cl(P).

Much of the following development relies upon the fact that

bisimilarity and indexed bisimilarity have a closed structure.

Corollary 15. (Closures) Bisimilarity and indexed bisimilarity
for RA(S#

0

) are both closed:
1) s⇠ = Cl(s⇠) ; 2) for all i 2 !: i⇠ = Cl(i⇠).

Proof: For 1 note that

s⇠ = (

s⇠)

�1

and all its elements

satisfy the (SYS) conditions in

s⇠. Hence, by Lemma 14 we

have that Cl(s⇠) is a symbolic bisimulation, i.e. Cl(s⇠) =

s⇠.

The result then follows. For 2 we proceed by induction on i.

When i = 0 then the result follows from the fact that

0⇠ is the

universal relation. For the inductive case, note first that

i+1⇠ is

symmetric by construction and all g 2 i+1⇠ satisfy the (SYS)

conditions in

i⇠. Hence, by Lemma 14, all elements of Cl(i+1⇠)

satisfy the (SYS) conditions in Cl(i⇠). By IH, Cl(i⇠) =

i⇠ so

Cl(i+1⇠) ✓ i+1⇠ , as required.

B. Permutation groups
Next we present a series of results that uncover group-

theoretic structure in closed relations. Given p 2 Q, S ✓ [1, r]
and R closed, let J p

S (R) = {X |X ✓ S, (p, S) RidX (p, S)}.

Lemma 16. J p
S (R) 6= ; and if X

1

, X
2

2 J p
S (R) then X

1

\
X

2

2 J p
S (R).

Proof: J p
S (R) 6= ; follows from S 2 J p

S (R). For the

rest, we observe that idX1 ; idX2 = idX1\X2 and R is closed.

It follows from the lemma above that J p
S (R) contains the

least element with respect to inclusion, which we shall call

the characteristic set of (p, S) in R and denote by Xp
S(R).

By Corollary 15, J p
S (R) = {X |Xp

S(R) ✓ X ✓ S}.

The family {Xp
S(R)}p2Q turns out to play an important

structural role in R for the following reason.

Lemma 17. Let p 2 Q and Gp
S(R) = {� \ (Xp

S(R) ⇥
Xp

S(R)) | (p, S) R� (p, S)}. Then Gp
S(R) is a group (under

composition). In particular, it is a subgroup of SXp
S(R)

.

Proof (sketch): First, since (p, S) RidS (p, S), we have

idXp
S(R)

2 Gp
S(R). Now, (p, S) R� (p, S) implies (p, S) R��1

(p, S). The existence of inverses is proved by establishing that

� \ (Xp
S(R) ⇥ Xp

S(R)) and ��1 \ (Xp
S(R) ⇥ Xp

S(R)) are

bijective. Thus, (� \ (Xp
S(R) ⇥Xp

S(R))); (��1 \ (Xp
S(R) ⇥

Xp
S(R))) = idXp

S(R)

.

Since indexed bisimulations are closed, they have group-

theoretic structure. We use it to help estimate their rate of

convergence. Recall U = Q⇥P([1, r])⇥ISr⇥Q⇥P([1, r]).

Lemma 18. Let S
1

, S
2

✓ [1, r] and US1,S2 = Q⇥{S
1

, S
2

}⇥
ISr⇥Q⇥{S

1

, S
2

}. Then the sub-chain { i⇠ | (i+1⇠ \ US1,S2) (
(

i⇠ \ US1,S2)} has size O(|Q|2 + r2|Q|).

6

Proof (sketch): We show that changes in

j⇠ \ US1,S2

(as j increases) can be traced back to either shrinkage of

a characteristic set Xp
S(

j⇠) (S 2 {S
1

, S
2

}), or shrinkage

of Gp
S(

j⇠) (S 2 {S
1

, S
2

}) or disappearance of all tuples

(q
1

, S0
1

,�, q
2

, S0
2

) for some q
1

, q
2

2 Q and S0
1

, S0
2

2 {S
1

, S
2

}.

The number of changes of each kind can be bounded by a

polynomial. In the second case we appeal to the fact that strict

chains of subgroups of a symmetric group on n-elements have

length at most linear in n, which is a result of Babai [4].

Note that it does not quite follow from the above result

that the sequence (

i⇠) converges in polynomially many steps,

because there are exponentially many pairs (S
1

, S
2

). Next

we shall establish such a bound by studying more closely

the overlap in evolutions of different (S
1

, S
2

). Let us write

�(S
1

, S
2

) for |S
1

|+ |S
2

|, i.e. 0 �(S
1

, S
2

) 2r.

Lemma 19. Let U�
S1,S2

= Q⇥ {S
1

}⇥ ISr ⇥Q⇥ {S
2

} and
let c be the constant of O(|Q|2 + r2|Q|) in Lemma 18 (2).
1) Then, for any (S

1

, S
2

), we have j⇠ \ U�
S1,S2

=

s⇠ \ U�
S1,S2

,
where j = c(2r � �(S

1

, S
2

) + 1)(|Q|2 + r2|Q|).
2) Let B = c(2r + 1)(|Q|2 + r2|Q|). For any (S

1

, S
2

), B⇠
\ U�

S1,S2
=

s⇠ \ U�
S1,S2

.

Proof: For Part 1 we reason by induction on (2r �
�(S

1

, S
2

)). We tackle the inductive step first. Assume the

result holds for all (S0
1

, S0
2

) with �(S0
1

, S0
2

) > �(S
1

, S
2

).

Let j0 = c(2r � (�(S
1

, S
2

) + 1) + 1)(|Q|2 + r2|Q|) =

c(2r � �(S
1

, S
2

))(|Q|2 + r2|Q|). Then, for all such (S0
1

, S0
2

),

(

j0⇠ \ U�
S0
1,S

0
2
) = (

s⇠ \ U�
S0
1,S

0
2
).

Observe that, for k > j0, if

k⇠ \ U�
S1,S2

=

k+1⇠ \ U�
S1,S2

,

then we must have

k⇠ \ U�
S1,S2

=

s⇠ \ U�
S1,S2

, because

the (SYS) conditions for (S
1

, S
2

) refer to either (S
1

, S
2

)

or (S0
1

, S0
2

) with �(S0
1

, S0
2

) > �(S
1

, S
2

).Consequently, if

j0⇠ \ U�
S1,S2

6= s⇠ \ U�
S1,S2

, the sequence (

k⇠ \ U�
S1,S2

)

(k = j0, j0 + 1, · · ·) will have to change in every step before

stabilisation. Thus, the steps before stabilisation will induce a

subchain of the chain analysed in Lemma 18 (2). Hence, at

most c(|Q|2+ r2|Q|) extra steps from (

j0⇠) will be required to

arrive at

s⇠ \ U�
S1,S2

, which delivers the required bound.

The base case (�(S
1

, S
2

) = 2r) can be established in a

similar fashion: in this case the (SYS) conditions can only

refer to (S
1

, S
2

), thus the sequence (

k⇠ \ U�
S1,S2

) (k � 0)

will be strictly decreasing before stabilisation and the bound

from Lemma 18 (2) can be applied.

Part 2 follows from Part 1, because c(2r+1)(|Q|2+r2|Q|)
is the largest of all the bounds.

Proposition 20. For any RA(S#
0

) bisimulation problem, if
there is a winning strategy for Attacker then there is one of
depth O(r|Q|2 + r3|Q|).

Proof: We first observe that bisimulation strategies and

their corresponding symbolic bisimulation strategies have the

same depth. Thus, it suffices to bound symbolic strategies for

Attacker. The O(r|Q|2+ r3|Q|) bound follows from Part 2 of

the preceding Lemma.

Proposition 21. ⇠-RA(S#
0

) is solvable in PSPACE.

Proof: In Remark 9 we established that bisimilarity

for RA(M#) can be reduced to the finite-alphabet case at

the cost of prolonging the bisimulation game by a constant

factor. Consequently, the polynomial bound from the preceding

Proposition (for RA(S#
0

)) is also valid after the reduction to

the finite-alphabet case.

Thanks to the bound, it suffices to play the corresponding

bisimulation games for polynomially many steps. The exis-

tence of a winning strategy can then be established by an

alternating Turing machine running in polynomial time. The

PSPACE bounds then follows from APTIME= PSPACE.

Proposition 22. ⇠-RA(S#
0

) is PSPACE-hard.

Proof (sketch): We reduce from the well-known

PSPACE-complete problem of checking validity of totally

quantified boolean formulas in prenex conjunctive normal

form. Universal quantification and selection of conjuncts is

performed by Attacker. For existential quantification and dis-

junctions, we rely on Defender Forcing. The choices of truth

values by both players are recorded in registers by using, for

each variable xi, registers 2i, 2i+ 1, both initialised to #. If

a player chooses true for xi, we fill register 2i leaving 2i+1

empty; we do the opposite otherwise. This makes it possible

to arrange for bisimilarity/non-bisimilarity (as appropriate) in

the final stage of the game, depending on whether the resulting

literal is negated.

V. LANGUAGE EQUIVALENCE FOR RA(S#
0

)

The results of the previous section can be used to close an

existing complexity gap for deterministic language equivalence

of register automata. Recall that, in the non-deterministic case,

language equivalence (even universality) is undecidable [19].

In the deterministic case, however, the problem can be solved

in PSPACE. Sakamoto [21] conjectured that the language

inequivalence problem is not in NP. Below we refute the

conjecture, showing that, for RA(S#
0

), the complexity of

deterministic language inequivalence actually matches that of

nonemptiness [22].

We call an r-RA(S#
0

) A deterministic if, for all states q of

A: (i) for all (t, i) 2 ⌃⇥ [1, r] there is at most one transition

of the form q
t,i�! q0, and (ii) for all t 2 ⌃ there is at most one

transition of the form q
t,i•��! q0. On the other hand, an LTS is

deterministic if, for all 2 C and ` 2 Act , there is at most

one transition
`�! 0

. Note that if A is deterministic then so

is its transition system S(A).

4

Then, from Proposition 20, one

obtains the following.

Lemma 23. Let Ai = hQi, q0i, ⇢0i, �i, Fii be a deterministic
ri-RA(S#

0

) (i = 1, 2), r = max(r
1

, r
2

) and N = |Q
1

|+|Q
2

|.

4

The converse may fail due to transitions of A not being fireable in S(A).

7

If L(A
1

) 6= L(A
2

) then there is some w 2 (L(A
1

)[L(A
2

))\
(L(A

1

) \ L(A
2

)) with |w| 2 O(rN2

+ r3N).

Theorem 24. Language inequivalence for deterministic
RA(S#

0

) is NP-complete.

Proof: Membership in NP is achieved via Lemma 23.

NP-hardness follows from NP-completeness of language non-

emptiness for deterministic RA(S#
0

) [22].

VI. NP BOUND FOR SINGLE ASSIGNMENT WITH FILLED

REGISTERS (RA(SF))

In Section IV we showed, in the setting with single assign-

ment and no erasures (denoted by RA(S#
0

)) the bisimilarity

problem was solvable in polynomial space. Here we show that

a further improvement is possible in the RA(SF) case, i.e. if

the registers are required to be filled from the very start. We

shall show an NP upper bound.

We start off with a series of results aiming to identify

succinct (polynomial-size) sets of generators for

s⇠, which we

shall call generating systems. In Section IV we already found

that parts of

s⇠ exhibit group-theoretic structure. Namely,

Lemma 17 shows that, for any p 2 Q and S ✓ [1, r],
Gp
S(

s⇠) = {� \ (Xp
S ⇥ Xp

S) | (p, S)
s⇠� (p, S)} is a group,

where Xp
S(

s⇠) ✓ S is the characteristic set of (p, S).
Note that, for RA(SF), we only have the case S = [1, r].

Furthermore,

s⇠ will be the only closed relation that we

shall consider. For these reasons, we write simply Xp
for

characteristic set Xp
[1,r](

s⇠) and Gp
for group Gp

[1,r](
s⇠).

The group-theoretic structure implies that Gp
can be gener-

ated by linearly many generators with respect to r.

Lemma 25 ([16]). Every subgroup of Sn has at most
max(2, bn

2

c) generators.

To handle the more general case (p, S)
s⇠� (q, S) of

different states, consider

Kp,q
= {� \ (Xp ⇥Xq

) | (p, [1, r]) s⇠� (q, [1, r])}.

Observe that, for �
1

,�
2

2 Kp,q
, we have �

2

= (�
2

;��1

1

);�
1

,

because ��1

1

;�
1

= idXq
. Moreover, �

2

;��1

1

2 Gp
, so �

2

has

been obtained from �
1

and an element of Gp
. Consequently, in

presence of generators of Gp
, one member of Kp,q

suffices to

generate the whole of Kp,q
by composition. This observation

motivates the following definition of a generating system.

Definition 26. A generating system G consists of:

• a partitioning of Q into P
1

, · · · , Pk;

• for each partition Pi, a single representative pi 2 Pi and:

– a characteristic set Xpi ✓ [1, r];
– a set Gpi

, of up to max(2, b r
2

c) permutations � 2 SXpi ;

– for each q 2 Pi \ {pi}, a partial permutation ray

pi
q 2

IS
[1,r] such that dom(ray

pi
q) = Xpi

; for technical

convenience, we also add ray

pi
pi

= idXpi .

We write rep(G) for the set {p
1

, · · · , pk} of representatives.

A generating system is used to generate a relation gen(G) ✓
(Q⇥ {[1, r]}⇥ ISr ⇥Q⇥ {[1, r]}) as follows. First, set

BASEG = {(pi, [1, r],�, pi, [1, r]) | pi 2 rep(G),� 2 Gpi}
[{(pi, [1, r], raypi

q , q, [1, r]) | pi 2 rep(G), q 2 Pi}

and then take gen(G) = Cl(BASEG).

Lemma 27. There exists a generating system G such that
gen(G) = s⇠.

Proof: We partition Q into equivalence classes de-

fined by: p ⇠ q if and only if there exists � such that

(p, [1, r],�, q, [1, r]) 2 s⇠. For each equivalence class Pi,

we pick a single member pi arbitrarily and let Gpi
consist

of the generators of Gpi
provided by Lemma 25. Consider

q 2 Pi \ {pi}. Because q 2 Pi, there exists � such that

(pi, [1, r],�, q, [1, r]) 2 s⇠. Then we can take ray

pi
q = � \

(Xpi ⇥ [1, r]). By the previous discussion, this delivers the

sought generating system.

Lemma 28. For any generating system G, membership in
gen(G) can be determined in polynomial time.

Proof: To determine whether (q
1

, [1, r],�, q
2

, [1, r]) 2
gen(G), we proceed as follows. If q

1

, q
2

belong to dif-

ferent partitions we return NO. Suppose q
1

, q
2

2 Pi.

Recall that BASEG contains (pi, [1, r], raypi
qj , qj , [1, r]) with

dom(ray

pi
qj) = Xpi

. Then (q
1

, [1, r],�, q
2

, [1, r]) 2 gen(G)
is equivalent to (pi, [1, r],�0, pi, [1, r]) 2 gen(G), where

�0
= ray

pi
q1 ;�; (ray

pi
q2)

�1

. This is in turn equivalent to �0 \
(Xpi ⇥Xpi

) being generated from permutations in Gpi
. That

the latter problem is solvable in polynomial time is a well-

known result in computational group theory [10].

Theorem 29. ⇠-RA(SF) is solvable in NP.

Proof: First we guess a generating system G and verify

whether gen(G) is a bisimulation. By Lemma 27, there exists

at least one generating system with this property. Because

generating systems involve polynomially many components of

polynomial size, they can be guessed in polynomial time. Next,

in order to check whether the guessed generating system gen-

erates a bisimulation, we need to verify the (SYS) conditions

(for S
1

= S
2

= [1, r]) for each of the polynomially many

elements of BASEG . Note that this will involve polynomially

many membership tests for gen(G), each of which can be

performed in polynomial time by Lemma 28. If the guess

leads to a non-bisimulation, we return NO. Otherwise, we

use another membership test for gen(G) to check whether the

given instance of the bisimilarity problem belongs to gen(G).
We return the outcome of that test as the final result.

Remark 30. Note that symbolic bisimulations are based

on partial finite permutations, which form inverse semi-

groups. Consequently, inverse semigroup-theoretic structure

could seem the most natural kind of structure with which to

approach our problems. Unfortunately, inverse semigroups do

not admit analogous results.

• There exist inverse subsemigroups of ISn that require

8

�n
n
2

�
⇡ 2

n
q

2

⇡n generators, e.g. {idX |X✓ [1, n], |X|= n
2

}.

• It is possible to show that the membership problem

for inverse subsemigroups of ISn is PSPACE-complete,

sharpening a result of Kozen [15].

Consequently, we were forced to look a bit deeper, and base

generating systems on groups.

Remark 31. Note that we do not have a matching lower bound

for RA(SF) which raises the intriguing prospect that there

may still be scope for improvement in this case.

VII. FRESH-REGISTER AUTOMATA WITH SINGLE

ASSIGNMENT WITHOUT ERASURE (FRA(S#
0

))

In this section we examine the problems tackled in Sec-

tions IV-VI albeit in the general case of FRAs. We would

like to apply the same techniques, aiming to produce the same

upper bounds, yet the FRA setting raises significant additional

challenges. Our approach for RAs relied on symbolic bisim-

ulations and the group-theoretic structure that emanated from

them. While we can express bisimilarity in FRAs symbolically

following [27], we shall see that such symbolic bisimulations

do not support the group-theoretic representations. The reason

is the treatment of the history of the computation, which affects

bisimilarity in subtle ways, especially in the initial stages

of the bisimulation game. In those stages, global and local

freshness can inter-simulate another, under certain conditions,

which leads us to extending our symbolic representations

beyond the r names that each system can have in its registers.

Simplified notation: We extend the simplified notation for

RA(S#
0

) by including transition labels for global freshness.

Recall that, in any transition q
1

t,X,i,Z����! q
2

of an r-FRA(S#
0

),

we have that Z = ;, i 6= 0 and X 2 {~, ;, {i}}. We thus

follow a simpler notation for transitions, with � ✓ Q ⇥ ⌃ ⇥
{i, i•, i~ | i 2 [1, r] }⇥Q:

(a) we write each transition q
1

t,{i},i,;�����! q
2

as q
1

t,i�! q
2

;

(b) and each q
1

t,;,i,;����! q
2

as q
1

t,i•��! q
2

;

(c) and each q
1

t,~,i,;����! q
2

as q
1

t,i~��! q
2

.

(a),(b) are as in RA(S#
0

). In (c), the automaton reads (t, a)
if a is globally fresh, i.e. it has not appeared in the history so

far, and stores it in register i. Formally, q
t,i~��! q0 can induce a

transition (q, ⇢, H)

t,a��! (q0, ⇢[i 7! a], H[{a}) just if a /2 H .

5

A. Symbolic bisimulation
Recall that, in the case of RAs, we were able to capture

bisimilarity symbolically by using pairs of symbolic configura-

tions of the form ((q
1

, S
1

), (q
2

, S
2

)), whereby Si represented

dom(⇢k) of the actual configuration (qk, ⇢k) represented by

(qk, Sk), and a partial bijection � : S
1

! S
2

capturing the

matching names of ⇢
1

and ⇢
2

. Moving to FRAs, the first

obstacle we face is that actual configurations contain the full

history of names and have therefore unbounded size. For

bisimulation purposes, though, keeping track of the whole

5

The latter condition above is slightly different but equivalent to that used

in [27]. In loc. cit., the names of ⇢ are not necessarily included in H and

hence in this rule one stipulates that a /2 rng(⇢) [H .

history, or its size, is not necessary. In fact, history only plays

a role in globally fresh transitions and one can easily see that

the following rule:

• Every globally fresh transition from q
1

must be matched

by a globally or a locally fresh transition from q
2

.

is sound for simulation of globally fresh transitions.

However, global freshness leads to severe complications in

the simulation of locally fresh transitions. For example, assum-

ing configurations (q
1

, ⇢
1

, H), (q
2

, ⇢
2

, H) with rng(⇢
1

) = H ,

we can see that a transition q
1

t,1•��! q0
1

can be matched by

some q
2

t,1~���! q0
2

, as the local names of q
1

coincide with all

the names in H . On the other hand, if H = {d
1

, d
2

} and

⇢i = {(1, di)} (for i = 1, 2), then a transition q
1

t,1•��! q0
1

cannot be matched by some q
2

t,1~���! q0
2

alone; rather, an

additional transition q
2

t,1��! q00
2

is needed in order to capture

the fact that q
1

t,1•��! q0
1

can produce d
2

. However, if |H| > 2r
then there will always be some d 2 H \ (rng(⇢

1

) [rng(⇢
2

))

that can be produced by q
1

t,1•��! q0
1

and, thence, the only way

for q
2

to capture it would be by some locally fresh transition.

From our discussion above it follows that, under certain

circumstances which include the fact that |H| 2r, local

freshness can be captured by global freshness and some

known-name transitions. To accommodate this feature, we will

design symbolic bisimulations with an additional component

h 2 [0, 2r][{1} that will abstract the size of |H|. The value

h = 1 would signify that |H| > 2r and therefore local-fresh

cannot be matched by global-fresh. On the other hand, h 2r
would mean that |H| = h 2r and therefore extra care

would need to be taken for fresh transitions. For h 2r, we

will consider symbolic configurations (qi, Si) (i = 1, 2) where

Si ✓ [1, 3r] and h = |Si|, related by bijections � : S
1

! S
2

.

• The component Si \ [1, r] of Si will still represent the

domain of ⇢i.
• The complementary part Si \ [1, r] will represent the

remaining names, those that have passed but no longer

reside in ⇢i (i.e. H \ rng(⇢i)), in some canonical fashion.

Effectively, the above will allow us to symbolically represent

the history of each FRA, up to the size 2r, in an ordered way.

It will also offer us a way to decide the simulation game for

locally fresh transitions. Let us say that one system performs

a transition q
1

t,i•��! q0
1

:

1. Such a transition can capture any name d that is represented

in some i0 2 S
1

\ [1, r]. If �(i0) 2 [1, r] then the other

system has the name in its registers and can (only) capture

it by some q
2

t,�(i0)����! q0
2

.

2. If �(i0) 2 S
2

\ [1, r] then the name is historical and the

other system does not currently have it in its registers.

It is therefore obliged to simulate by some locally fresh

transition q
2

t,j•��! q0
2

.

3. The transition can also capture any name d that is not in

H and, in this case, the other system can capture it by any

q
2

t,j•/j~�����! q0
2

. Moreover, such a simulation step would

9

increase the size of h by one.

We therefore formulate symbolic bisimulation as follows.

Definition 32. Let A = hQ, q
0

, ⇢
0

, �, F i be an r-FRA(S#
0

).

We first set:

U
0

= Q⇥P([1, 3r])⇥ IS
3r⇥Q⇥P([1, 3r])⇥ ([0, 2r][{1})

U = {(q
1

, S
1

,�, q
2

, S
2

, h) 2 U
0

| � ✓ S
1

⇥ S
2

^ h 2r =) |�| = |S
1

| = |S
2

| = h

^ h = 1 =) (� 2 ISr ^ S
1

, S
2

✓ [1, r])}
A symbolic simulation on A is a relation R ✓ U , with elements

(q
1

, S
1

,�, q
2

, S
2

, h) 2 R written (q
1

, S
1

)Rh
� (q2, S2

), such

that all (q
1

, S
1

,�, q
2

, S
2

, h) 2 R satisfy the following fresh
symbolic simulation conditions (FSYS):

6

(a) for all q
1

t,i�! q0
1

,

1. if �(i) 2 [1, r] then there is some q
2

t,�(i)���! q0
2

with

(q0
1

, S
1

)Rh
� (q

0
2

, S
2

),

2. if �(i) = j0 2 [r+1, 3r] then there is some q
2

t,j•��! q0
2

with (q0
1

, S
1

)Rh
(j j0)�� (q

0
2

, (j j0) · S
2

),

3. if i 2 S
1

\ dom(�) then there is some q
2

t,j•��! q0
2

with

(q0
1

, S
1

)Rh
�[i 7!j] (q

0
2

, S
2

[j]);

(b) for all q
1

t,i•��! q0
1

, i0 2 S
1

\ [1, r] and j 2 S
2

\ rng(�),

1. if �(i0) 2 [1, r] then there is some q
2

t,�(i0)����! q0
2

with

(q0
1

, (i i0) · S
1

)Rh
� �(i i0) (q

0
2

, S
2

),

2. if �(i0) = j0 2 [r+1, 3r] then there is some q
2

t,j•��! q0
2

with (q0
1

, (i i0) · S
1

)Rh
(j j0)�� �(i i0) (q

0
2

, (j j0) · S
2

),

3. there exists q
2

t,j�! q0
2

with (q0
1

, S
1

[i])Rh
�[i 7!j] (q

0
2

, S
2

);

(c) for all q
1

t,`i��! q0
1

with `i 2 {i•, i~} there is some q
2

t,`j��!
q0
2

with `j 2 {j•, j~} and,

1. if h < 2r then, taking i0 = min([r+1, 3r] \ S
1

) and

j0 = min([r+1, 3r] \ S
2

), we have

(q0
1

, (i i0)·S
1

[i0])Rh+1

(i i0)��[i0 7!j0]�(j j0) (q
0
2

, (j j0)·S
2

[j0]);
2. if h = 2r then

(q0
1

, S
1

[i] \ [1, r])R1
�[i 7!j]\[1,r]2 (q

0
2

, S
2

[j] \ [1, r]);
3. if h = 1 then (q0

1

, S
1

[i])R1
�[i 7!j] (q

0
2

, S
2

[j]) and if

`i = i• then `j = j•.

Here (a3) says that every name that is private to q
1

can

be simulated by q
2

with a locally fresh transition. (b3) is its

dual: this time it is q
2

playing one of its private names. Finally,

(c3) captures the cases where a name that is globally or locally

fresh both for q
1

and q
2

is played. Define the inverse by:

R�1

= { (q
2

, S
2

,��1, q
1

, S
1

, h) | (q
1

, S
1

,�, q
2

, S
2

, h) 2 R }

and call R a symbolic bisimulation if both R and R�1

are

symbolic simulations. We let s-bisimilarity, denoted

s⇠, be the

union of all symbolic bisimulations.

As before, we define a sequence of indexed bisimilarity

relations

i⇠ ✓ U inductively as follows. We let

0⇠ be the

whole of U . Then, for all i 2 ! and h 2 [0, 2r] [{1},

6

We say that (q1, S1,�, q2, S2, h) satisfies the (FSYS) conditions in R.

(q
1

, S
1

)

i+1⇠ h
⌧ (q

2

, S
2

) just if both (q
1

, S
1

, ⌧, q
2

, S
2

, h) and

(q
2

, S
2

, ⌧�1, q
1

, S
1

, h) satisfy the (FSYS) conditions in

i⇠.

Let i = (qi, ⇢i, H) (i = 1, 2) be configurations with com-

mon history H and let n = |H|. Their symbolic representation

will depend on n. We take symb(
1

,
2

) ✓ U to be:

(
{(q

1

, dom(⇢̂
1

), ⇢̂
1

; ⇢̂�1

2

, q
2

, dom(⇢̂
2

), n) | ✓(⇢̂
1

, ⇢̂
2

)} n 2r

{(q
1

, dom(⇢
1

), ⇢
1

; ⇢�1

2

, q
2

, dom(⇢
2

),1)} n > 2r

where ✓(⇢̂
1

, ⇢̂
2

) is the condition stipulating that ⇢̂i range over

all 3r-register assignments of type S#
0

such that rng(⇢̂i) = H
and ⇢̂i � [1, r] = ⇢i, for i = 1, 2. In particular, symb(

1

,
2

) is

singleton in case n > 2r but not necessarily so if n 2r. The

following lemma ensures that, with respect to bisimilarity, the

specific choice of element from symb(
1

,
2

) is not important.

Lemma 33. For all
1

,
2

as above, if |H| < 2r then either
symb(

1

,
2

) ✓ s⇠ or symb(
1

,
2

) \ s⇠ = ;.

Definition 34. We say that
1

and
2

are s-bisimilar, written

1

s⇠
2

, if symb(
1

,
2

) ✓ s⇠.

Note how the (FSYS) conditions are divided with respect

to the value of h: conditions (a2), (b1), (b2), (c1) and (c2) all

require h 2r; while conditions (a3), (b3) and (c3) are for

h = 1. On the other hand, (a1) applies to all h.

Remark 35. The definition of symbolic bisimulation we give

here is crucially more fine-grained than the one in [27]. Al-

though in loc. cit. the symbolic bisimulation is also given para-

metrically to the size of the history h (up to the given bound

7

),

for h 2r that formulation is simplistic in that it only keeps

track of names that reside in registers of the automata,

8

which

in turn prohibits us to derive (q
1

, S
1

)Rh
�1;�2

(q
3

, S
3

) from

(q
1

, S
1

)Rh
�1

(q
2

, S
2

) and (q
2

, S
2

)Rh
�2

(q
3

, S
3

) and apply the

group-theoretic approach.

Lemma 36. Let
1

and
2

be configurations of an r-FRA(S#
0

),
then:

1

⇠
2

()
1

s⇠
2

. Moreover, for all i 2 !,
i+1⇠ ✓ i⇠ and (

T
i2!

i⇠) =

s⇠.

Similarly to symbolic bisimulations for RA(S#
0

), we have

the following closure properties. Given R ✓ U we split R into

components:

R =

X
h2[0,2r][{1}

Rh

where Rh
= {(q

1

, S
1

,�, q
2

, S
2

) | (q
1

, S
1

,�, q
2

, S
2

, h) 2 R}.

We now write Cl(R) for the componentwise closure of R
with respect to identity, symmetry, transitivity and extension

of partial permutations, i.e. Cl(R) =

P
h2[0,2r][{1} Cl(Rh

).

Proposition 37. Symbolic bisimilarity and indexed symbolic
bisimilarity for FRA(S#

0

) are closed.
1) Cl(s⇠) =

s⇠ ; 2) for all i 2 !: i⇠ = Cl(i⇠).

We therefore observe that the extension of symbolic repre-

7

In fact, the bound used in [27] is smaller (2r�1), due to the fact that it

examines bisimulation between configurations with common initial names.

8

that is, in (q1, S1)Rh
� (q2, S2) we always have S1, S2 ✓ [1, r].

10

sentations to the size 3r, and the ensuing history representation

up to size 2r along with the extended symbolic bisimulation

conditions, have paid off in yielding the desired closure

properties. The group-theoretic behaviour of a closed relation

R differs between different components:

• R1
has the same structure as the closed relations R

examined in Section IV-B.

• For h 2 [0, 2r], the tuples (q
1

, S
1

,�, q
2

, S
2

) 2 Rh
respect

the condition |S
1

| = |S
2

| = |�| = h. In particular, � is

a bijection from S
1

to S
2

and, hence, in this case closure

under extension is trivial, and so are characteristic sets

(Xp
S(R

h
) = S). Moreover, � 2 IS

3r and S
1

, S
2

✓ [1, 3r].

We can hence see that the same groups arise as in the case of

RA(S#
0

), and actually simpler in the case h 2 [0, 2r], albeit

parameterised over h. This allows for a similar group-theoretic

treatment.

B. PSPACE bound for bisimulation game
Lemma 38. Let h 2 [0, 2r] [{1}, S

1

, S
2

✓ [1, 3r] and
Uh
S1,S2

= Q ⇥ {S
1

, S
2

} ⇥ ISr ⇥ Q ⇥ {S
1

, S
2

} ⇥ {h}. Then
the sub-chain { i⇠ | (i+1⇠ h \ Uh

S1,S2
) ((

i⇠h \ Uh
S1,S2

)} has
size O(|Q|2 + r2|Q|).

Given S
1

, S
2

✓ [1, 3r] and h 2 [0, 2r] [{1}, let us call

the triple (S
1

, S
2

, h) proper just if: either |S
1

| = |S
2

| = h, or

h = 1 and S
1

, S
2

✓ [1, r]. For such (S
1

, S
2

, h), let us define:

�̂(S
1

, S
2

, h) =

(
�(S

1

\ [1, r], S
2

\ [1, r]) + h if h 2 [0, 2r]

�(S
1

, S
2

) + 2r + 1 if h = 1

The measure �̂ enables us to show the following bound for sta-

bilising indexed bisimulation, proven similarly to Lemma 19.

Lemma 39. Let Uh�
S1,S2

= Q⇥{S
1

}⇥ISr⇥Q⇥{S
2

}⇥{h}
and let ĉ be the constant of O(|Q|2+r2|Q|) in Lemma 38 (2).
1) For any proper (S

1

, S
2

, h), we have (

j⇠ \Uh�
S1,S2

) = (

s⇠\
Uh�
S1,S2

), where j = ĉ(4r� �̂(S
1

, S
2

, h)+2)(|Q|2+r2|Q|).
2) Let B = ĉ(4r + 2)(|Q|2 + r2|Q|). For any proper

(S
1

, S
2

, h), it holds that B⇠ \ Uh�
S1,S2

=

s⇠ \ Uh�
S1,S2

.

We can therefore establish PSPACE solvability.

Proposition 40. For any FRA(S#
0

) bisimulation problem, if
there is a winning strategy for Attacker then there is one of
depth O(r|Q|2 + r3|Q|).

Proposition 41. ⇠-FRA(S#
0

) is solvable in PSPACE.

C. Generating systems and NP routines
We proceed to generating systems for FRA(SF), which are

h-parameterised versions of the ones for RA(SF), except that

now they are built over [1, 3r] rather than [1, r]. Since we

again consider only characteristic sets and groups with relation

parameter R =

s⇠, we will typically leave this argument

implicit in what follows. We call a pair (S, h) proper just

if (S, S, h) is proper.

Definition 42. A generating system GS,h for proper (S, h) (in

which case |S| 2r), consists of:

• a partitioning of Q into P
1

, · · · , Pk;

• for each partition Pi, a single representative pi 2 Pi and:

– a characteristic set Xpi

S,h ✓ S;

– a set Gpi

S,h, of up to max(2,r) permutations � 2 SX
pi
S,h

;

– for each q 2 Pi\{pi}, a partial permutation ray

pi
q 2 ISS

such that dom(ray

pi
q) = Xpi

S,h; for technical convenience,

we also add ray

pi
pi

= idX
pi
S,h

.

We write rep(GS,h) for the set {p
1

, · · · , pk} of representatives.

From GS,h we generate gen(GS,h) ✓ (Q⇥{S}⇥IS
3r ⇥Q⇥

{S}) by setting

BASEGS,h = {(pi, S,�, pi, S) | pi 2 rep(GS,h) ^ � 2 Gpi

S,h}
[{(pi, S, raypi

q , q, S) | pi 2 rep(GS,h) ^ q 2 Pi}

and taking gen(GS,h) = Cl(BASEGS,h).

The following lemma, proved in the same way as Lem-

mata 27 and 28, enables us to prove an NP upper bound for

bisimilarity in FRA(SF).

Lemma 43. 1) For any proper (S, h) there exists a generat-
ing system GS,h such that gen(GS,h) =

s⇠ \ Uh
S,S .

2) For any generating system GS,h, membership in gen(GS,h)

can be determined in polynomial time.

Theorem 44. ⇠-FRA(SF) is solvable in NP.

Proof: Given an input tuple (q
1

, S
1

,�, q
2

, S
2

, h0

), note

first that [1, r] ✓ S
1

, S
2

(by F) and |S
1

| = |S
2

|. We can

therefore convert it to an equivalent (q
1

, S0
1

,�0, q
2

, S
2

, h0

),

with S0
1

= S
2

, by applying a permutation on the indices in

S
1

\ [1, r]. Hence, we can assume wlog that our input is some

(q
1

, S0,�, q
2

, S0, h0

). Moreover, because the expansion of S
in the symbolic bisimulation game (when h 2 [0, 2r]) always

occurs in its first free register (min([r+1, 3r] \ S)), we can

compute the sequence (S0, h0, S0

), (S1, h0

+1, S1

), · · · of dis-

tinct triples considered in the game (in the h 2 [0, 2r] phase),

which must thence be bounded in length by 2r. Including the

final bisimulation phase (h = 1), this gives us 2r+1 phases.

We first generate for each of them a generating system, say

GSi,hi
, and then verify whether each gen(GSi,hi

) is a symbolic

bisimulation, similarly to Theorem 29. Note that each such

check can be achieved in polynomial time. If the guess

leads to some gen(GSi,hi
) being a non-symbolic-bisimulation,

we return NO. Otherwise, we use another membership test

for gen(GS0,h0
) to check whether the given instance of the

bisimilarity problem belongs to gen(GS0,h0
). We return the

outcome of that test as the final result.

VIII. VISIBLY PUSHDOWN AUTOMATA WITH SINGLE

ASSIGNMENT AND FILLED REGISTERS (VPDRA(SF))

Finally, we consider a variant of register automata with

visible pushdown storage [2]. We only consider the most

restrictive register discipline (SF), as undecidability will be

shown to apply already in this case.

Definition 45. A visibly pushdown r-register automaton (r-

VPDRA(SF)) A is a tuple hQ,⌃C ,⌃N ,⌃R,�, ⇢I , �i, where

Q, ⇢I have the same meaning as for r-RA,

11

• ⌃C , ⌃N , ⌃R are disjoint finite sets of push-, no-op- and

pop-tags respectively;

• � is a finite set of stack tags;

• � = �C[�N [�R, the transitions, have Lab = {1, . . . , r}[
{1•, . . . , r•} and:

� �C ✓ Q⇥ ⌃C ⇥ Lab⇥ �⇥ {1, · · · , r}⇥Q
� �N ✓ Q⇥ ⌃N ⇥ Lab⇥Q
� �R ✓ Q⇥ ⌃R ⇥ Lab⇥ �⇥ {1, · · · , r, •}⇥Q

Configurations of r-VPDRA(SF) are triples (q, ⇢, s), where

q 2 Q, ⇢ is a register assignment and s 2 (� ⇥ D)

⇤
is the

stack. An LTS arises by having a labelled edge (q
1

, ⇢
1

, s
1

)

(t,d)�!
(q

2

, ⇢
2

, s
2

) just if there exist i 2 [1, r] and l 2 {i, i•} such

that: (i) ⇢
1

(x) = ⇢
2

(x) for all x 6= i; (ii) if l = i then

⇢
1

(i) = ⇢
2

(i), otherwise ⇢
2

(i) 62 rng(⇢
1

); and (iii) one of the

following conditions holds:

• (q
1

, t, l, t0, j, q
2

) 2 �C and s
2

= (t0, ⇢
2

(j))s
1

,

• (q
1

, t, l, q
2

) 2 �N and s
2

= s
1

,

• (q
1

, t, l, t0, j, q
2

) 2 �R, s
1

= (t0, d0)s
2

,

where if j 2 [1, r] then d0 = ⇢
2

(j), otherwise d0 62 rng(⇢
2

).

We show that even the visibly pushdown with SF register

discipline is undecidable. To do so, we reduce from the un-

decidable emptiness problem for (one-way) universal register

automata with two registers (URA

2

) [9].

Theorem 46. VPDRA(SF) bisimiliarity is undecidable.

Proof (sketch): Given a URA

2

U , we devise a 2-VPDRA

AU with two configurations
1

,
2

such that U accepts a

word iff
1

6⇠
2

. AU is constructed to induce a bisimulation

game in which Attacker gets a chance to choose a word to be

accepted by U and simulate an accepting run (if one exists).

The stack of AU is used to store the word that Attacker has

chosen, with the top of the stack playing the role of the head

of U and the two registers of AU emulating the two registers

of U . To simulate a transition we arrange for Attacker to guess

the outcome of the comparison of the top of stack with the

current register contents whilst allowing Defender to verify the

correctness of such guesses via Defender forcing. Transitions

from universal states are chosen by Defender, again using

Defender forcing.

The argument sketched above also reduces URA

1

emptiness

to 1-VPDRA, which implies a non-primitive-recursive lower

bound for 1-VPDRA.

IX. CONCLUSION

We have demonstrated bounds on the bisimilarity problem

for broad classes of (fresh-)register automata, which include

those studied in the literature. The ability to start with empty

registers, erase their contents (or equivalently, store duplicate

values) and use of a stack all affect the inherent problem

complexity. Global freshness, however, does not seem to affect

complexity. Except for the SF discipline, all bounds are tight.

Although our problem formulation is with respect to two

configurations of a single automaton, extending our results to

problems concerning two automata is unproblematic. If the

automata have different numbers of registers, the game can be

played on an automaton with a number equal to the larger of

the two, with additional registers initialised (and left) empty.

Even in F register disciplines our arguments show that, since

these extra registers are never assigned to, the system can be

treated as a #

0

system without change in complexity.

ACKNOWLEDGEMENT

We would like to thank M. Jerrum, R. Gray, J. Mitchell and

M. Beaudry for useful discussions regarding computational

group theory. Thanks also to the anonymous referees for many

helpful suggestions. Research supported by the Engineering

and Physical Sciences Research Council (EP/J019577/1) and

the Royal Academy of Engineering (RF: Tzevelekos).

REFERENCES

[1] R. Alur,

ˇ

Cern´y, and S. Weinstein. Algorithmic analysis of array-

accessing programs. In CSL, LNCS, pp. 86–101. Springer, 2009.

[2] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC,

pp. 202–211, 2004.

[3] M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for

concurrent programs with dynamic creation of threads. Log. Meth. in
Comput. Sci., 7(4), 2011.

[4] L. Babai. On the length of subgroup chains in the symmetric group.

Com. in Algebra, 14(9), 1986.

[5] M. Benedikt, S. G¨oller, S. Kiefer, and A. S. Murawski. Bisimilarity

of pushdown automata is nonelementary. In LICS, pp. 488–498. IEEE

Computer Society, 2013.

[6] M. Boja´nczyk, B. Klin, and S. Lasota. Automata theory in nominal sets.

Log. Meth. in Comp. Sci., 10(3), 2014.

[7] M. Boreale and L. Trevisan. A complexity analysis of bisimilarity for

value-passing processes. Theor. Comput. Sci., 238(1-2):313–345, 2000.

[8] V. Ciancia and U. Montanari. Symmetries, local names and dynamic

(de)-allocation of names. Inf. and Comp., 208(12):1349 – 1367, 2010.

[9] S. Demri and R. Lazi´c. LTL with the freeze quantifier and register

automata. ACM Trans. Comput. Log., 10(3), 2009.

[10] M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial-time algorithms

for permutation groups. In FOCS, pp. 36–41. IEEE Comp. Soc., 1980.

[11] R. Grigore, D. Distefano, R. L. Petersen, and N. Tzevelekos. Runtime

verification based on register automata. In TACAS, LNCS, pp. 260–276.

Springer, 2013.

[12] P. Janˇcar and J. Srba. Undecidability of bisimilarity by defender’s

forcing. J.ACM, 55(1), 2008.

[13] B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class

of non-finite-state programs. Inf. Comput., 107(2):272–302, 1993.

[14] M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput.
Sci., 134(2), 1994.

[15] D. Kozen. Lower bounds for natural proof systems. In FOCS, pp. 254–

266. IEEE, 1977.

[16] A. McIver and P. M. Neumann. Enumerating finite groups. Quart. J.
Math., 38(4), 1987.

[17] U. Montanari and M. Pistore. An introduction to history dependent

automata. Electr. Notes Theor. Comput. Sci., 10, 1997.

[18] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Reachability in

pushdown register automata. In MFCS, LNCS, pp. 464–473. Springer,

2014.

[19] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings

over infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

[20] M. Pistore. History Dependent Automata. PhD thesis, University of

Pisa, 1999.

[21] H. Sakamoto. Studies on the Learnability of Formal Languages via
Queries. PhD thesis, Kyushu University, 1998.

[22] H. Sakamoto and D. Ikeda. Intractability of decision problems for finite-

memory automata. Theor. Comput. Sci., 231(2):297–308, 2000.

[23] L. Segoufin. Automata and logics for words and trees over an infinite

alphabet. In CSL, LNCS, pp. 41–57. Springer, 2006.

[24] G. S´enizergues. The bisimulation problem for equational graphs of finite

out-degree. SIAM J. Comput., 34(5):1025–1106, 2005.

[25] J. Srba. Visibly pushdown automata: From language equivalence to

simulation and bisimulation. In CSL, LNCS, pp. 89–103. Springer, 2006.

[26] J. Srba. Roadmap of infinite results.

http://www.brics.dk/~srba/roadmap/, 2008.

[27] N. Tzevelekos. Fresh-register automata. In POPL, pp. 295–306. ACM

Press, 2011.

12

