
Towards nominal Abramsky

Andrzej S. Murawski1 and Nikos Tzevelekos2,⋆

1 University of Warwick
2 Queen Mary, University of London

Abstract. Since the discovery of fully abstract models of PCF in the early 1990s,

game semantics has expanded to a wide range of programming paradigms, cov-

ering effects like state, control, general references, non-determinism, probability

and concurrency. Those models revealed an interesting phenomenon referred to

as Abramsky’s cube: starting from the PCF model and relaxing each of its com-

binatorial conditions, one was led to capture a corresponding impure effect. In

this paper we initiate the construction of an analogous cube for nominal games, a

strand of game semantics developed in the last ten years that incorporates names

as semantic atoms and captures generative effects without using “bad-object”

constructors. In particular, we examine the stateful axis of the cube: starting from

games for higher-order references we move to full ground references, where

strategies respect visibility, and from there to purely functional behaviour and

innocent strategies.

Authors’ note

Both authors met Samson at Oxford. Samson arrived there just in time to grill the first

of us as a D.Phil. examiner and a little later started supervising the second on an MFoCS

project.

Our life paths were closely intertwined afterwards. Andrzej joined the Algorithmic

Game Semantics team, while Nikos started his D.Phil. with Samson, to be followed by

a stint on the Logic of Interaction and Information Flow project.

Since Andrzej was supervised by Luke Ong, himself one of Samson’s students, we

belong to different generations of scientific offspring that can be traced back to Samson.

Still, Nikos does not quite like when Andrzej calls him “uncle”.

We are truly grateful to Samson for sound, reliable and insightful advice at various

stages of our academic lives.

Happy Birthday, Samson!

1 Introduction

Game semantics emerged as a new semantic theory in the 1990s through the quest for a

fully abstract model of PCF [AJM00,HO00]. In particular, models proposed by Hyland

and Ong [HO00], and Nickau [Nic94] have brought to the fore a number of techni-

cal constraints on how games should be designed, such as innocence, bracketing and

⋆ Supported by a Royal Academy of Engineering research fellowship.

visibility. Abramsky suggested that relaxations of the constraints can lead to a whole

hierarchy of models capturing a variety of impure computational features, a paradigm

that came to be known as Abramsky’s cube. The most immediate illustrations of this

methodology were subsequent papers about state [AM97], control [Lai97] and general

references [AHM98], in which violations of the above-mentioned three constraints were

related precisely to three different programming features. The three directions could be

viewed as three axes of a “cube”, which has ever since grown to embrace, among others,

polymorphism, non-determinism, probability and concurrency.

A related advance in the 2000s was the development of nominal game seman-

tics [AGM+04,Lai04,Tze09], which aimed to provide a more accurate account of gen-

erative effects, such as references and, specifically, to target the bad-variable problem

in game semantics. The problem stemmed from the way that references were modelled

as pairs of reading and writing methods, thus giving rise to objects of reference type

whose behaviour need not be compatible with that of genuine reference cells. Nominal

game models rely on collections of names that can be used throughout the play as part

of a move. Operationally, they correspond to reference names in the implementation.

In this paper we follow the paradigm of Abramsky’s cube in the nominal setting

and uncover constraints corresponding respectively to the expressive power of general

references (references to values of any type can be created), ground-type storage (only

references to ground-type values, such as numbers of names, are allowed) and pure

functional computation (no references can be created).

Our point of departure is our nominal model of RefML [MT11], which accounts

for computation with general references. To study restrictions on the creation of ref-

erences, we consider two sublanguages, called GrML and FunML respectively, which

embody respectively ground-type storage and pure functional computation. The model

from [MT11] provides a basic notion of a strategy and we set out to find restrictions

corresponding to GrML and FunML. In non-nominal modelling, the borderline between

general and ground-type storage could be captured by the visibility condition [AHM98].

Although this condition can be easily reintroduced in the nominal setting, it is not pre-

served by composition. To regain compositionality, we also need to eliminate the use

of higher-order local state, that is, the generation of names of higher-order reference

cells by programs. This results in a restriction that we call groundness, which provides

a semantic match for GrML. To pass from ground-type storage to pure functional com-

putation, we introduce a condition inspired by innocence. In order to make the course

of play totally dependent on view, we forbid the creation of any names by programs

and stipulate that copycat behaviour is followed whenever the environment requests the

value of a reference whose name cannot be found in the current P-view.

The conditions of groundness and innocence are accompanied by factorisation re-

sults, as in the original case of the cube, but they are a little more involved due to com-

plications that arise in the nominal setting. An elegant feature of the original cube was

the fact that the essence of the passage from functional computation could be attributed

to single representative strategies, corresponding respectively to a single integer-valued

memory cell and a single higher-order cell. In the nominal setting, in addition to these

strategies, one has to use families of name generators. Moreover, in order to pass to

2

u,Γ ⊢ () : unit
i ∈ Z

u,Γ ⊢ i : int
a ∈ (u ∩ Aθ)
u,Γ ⊢ a : ref θ

(x : θ) ∈ Γ
u,Γ ⊢ x : θ

u,Γ ⊢ M1 : int u,Γ ⊢ M2 : int
u,Γ ⊢ M1 ⊕M2 : int

u,Γ ⊢ M : int u,Γ ⊢ N0 : θ u,Γ ⊢ N1 : θ
u,Γ ⊢ if M then N1 else N0 : θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : θ
u,Γ ⊢ M :=N : unit

u,Γ ⊢ M : ref θ
u,Γ ⊢ !M : θ

u,Γ ⊢ M : ref θ u,Γ ⊢ N : ref θ
u,Γ ⊢ M = N : int

u,Γ ⊢ M : θ
u,Γ ⊢ refθ(M) : ref θ

u,Γ ⊢ M : θ → θ′ u,Γ ⊢ N : θ
u,Γ ⊢ MN : θ′

u,Γ ∪ {x : θ} ⊢ M : θ′

u,Γ ⊢ λxθ.M : θ → θ′

Fig. 1. Syntax of RefML. ⊕ stands for binary integer functions, e.g. +, −, ∗, = .

innocence, it is necessary to provide a facility for storing an unbounded collection of

names.

2 RefML

We start off by introducing the programming language RefML [MT11], which we shall

work with throughout the paper. Its types are defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

RefML is best described as the call-by-value λ-calculus over the ground types unit, int,

and ref θ, augmented with basic commands (termination), primitives for integer arith-

metic (constants, zero-test, binary integer functions) and higher-order reference ma-

nipulation (reference names, dereferencing, assignment, memory allocation, reference

equality testing). The typing rules are given in Figure 1, where A =
⊎

θ Aθ stands for

a countable set of reference names (one such set for each type θ), or just names, and u

refers to a finite subset of A.

Following standard conventions, we write M ;N for the term (λzθ.N)M , where z
does not occur in N and θ matches the type of M . let x = M in N will stand for

(λxθ .N)M in general. The values of the language are given by the syntax:

V ::= () | i | a | x | λxθ .M.

To define the operational semantics of RefML, we introduce a syntactic notion of

store. A syntactic store (or just store) will simply be a function from a finite set of names

to values such that the type of each name matches the type of its assigned value. We

write S[a 7→ V] for the store obtained by updating S so that a is mapped to V (this may

extend the domain of S). Given a store S and a term M we say that the pair (S,M) is

compatible if all names occurring in M are from the domain of S.

The small-step reduction rules are given as judgments of the shape (S,M) →
(S′,M ′), where (S,M), (S′,M ′) are compatible and dom(S) ⊆ dom(S′). We present

them in Figure 2, where we let a, b range over names. Evaluation contexts are given by

E ::= (λx.N) | N | ⊕N | i⊕ | = N | a =

| ! | :=N | a := | refθ() | if then N1 else N0.

3

(S, if 0 then N1 else N0) → (S,N0) (S, a = b) → (S, 0)

(S, if i then N1 else N0) → (S,N1) (S, a = a) → (S, 1)

(S, (λx.M)V) → (S,M [V/x]) (S, refθ(V)) → (S[a′ 7→ V], a′)

(S, !a) → (S, S(a)) (S,M) → (S′,M ′)

(S,E[M]) → (S′, E[M ′])(S, a :=V) → (S[a 7→ V], ())

Fig. 2. Small-step operational semantics of RefML (side-conditions: i 6= 0, a 6= b, a′/∈dom(S)).

We say that (S,M) evaluates to (S′, V) if (S,M) →→ (S′, V), with V a value. For

⊢ M : unit we say that M converges, written M ⇓, if (∅,M) evaluates to some (S′, ()).

Example 1. It is well known that higher-order references are sufficiently powerful to

enable one to define fixed-point combinators [AHM98] and, consequently, divergent

terms Ωθ at any type. Also, for any type θ, we define the terms newθ by:

newunit = refunit() newθ→θ′ = refθ→θ′(λxθ .Ωθ′)

newint = ref int(0) newrefi θ′′ = ref (ref (· · · ref (newθ′′)))

where θ′′ is one of unit, int or a function type. These terms create new names and

initialise them with default values.

Definition 2. The term-in-context Γ ⊢ M1 : θ approximates Γ ⊢ M2 : θ (written

Γ ⊢ M1
⊏
∼ M2) if C[M1] ⇓ implies C[M2] ⇓ for any context C[−] such that ⊢

C[M1], C[M2] : unit. Two terms-in-context are equivalent if they approximate each

other (written Γ ⊢ M1
∼= M2).

In the remainder of the paper we shall also discuss two specific fragments of RefML.

– GrML will comprise all RefML-terms in which all occurrences of refθ(M) are re-

stricted to non-functional types, i.e. θ cannot have the shape θ1 → θ2. Thus, GrML

is the sublanguage of RefML allowing for storage of ground values only.

– FunMLwill consist of allRefML-terms that do not have any occurrences of refθ(M).
Thus, FunML is also a subset of GrML. FunML can be viewed as a purely functional

fragment of RefML, since terms cannot create reference cells.

3 Game model

Here we review the game model of RefML first presented in [MT11]. Its distinctive

feature is the presence of stores in moves and the possibility of justifying a move with a

higher-order reference cell in addition to the standard option of justifying a move with

another.

Formally, the model is constructed using mathematical objects (moves, plays, strate-

gies) that feature names drawn from the set

A =
⊎

θ
Aθ .

4

MA⊗B = (IA × IB) ⊎ ĪA ⊎ ĪB

IA⊗B = IA × IB

λA⊗B = [(iA, iB) 7→ PA, λA ↾ ĪA, λB ↾ ĪB]

⊢A⊗B = {((iA, iB),m) | iA⊢Am ∨ iB ⊢B m}

∪ (⊢A↾ ĪA
2) ∪ (⊢B↾ ĪB

2)

MA⇒B = {⋆} ⊎MA ⊎MB

IA⇒B = {⋆}

λA⇒B = [⋆ 7→ PA, λA[iA 7→ OQ], λB]

⊢A⇒B = {(⋆, iA)} ∪ {(iA, iB)} ∪ ⊢A∪ ⊢B

Fig. 3. Arena constructions. We write ĪA = MA \ IA.

Although names underpin various elements of our model, we do not want to delve

into the precise nature of the sets containing them. Hence, all of our definitions pre-

serve name-invariance, i.e. our objects are (strong) nominal sets [GP02,Tze09]. Note

that we do not need the full power of the theory but mainly the basic notion of name-

permutation. Here permutations are bijections π : A → A with finite support which

respect the indexing of name-sets. For an element x belonging to a (nominal) set X we

write ν(x) for its name-support, which is the set of names occurring in x. Moreover, for

any x, y ∈ X , we write x ∼ y if there is a permutation π such that x = π · y.

Our model is couched in the Honda-Yoshida style of modelling call-by-value com-

putation [HY99]. Before we define what it means to play, we introduce the auxiliary

concept of an arena.

Definition 3. An arena A = 〈MA, IA, λA,⊢A〉 is given by:

– a set of moves MA and a subset IA ⊆ MA of initial ones,

– a labelling function λA : MA → {O,P} × {Q,A},

– a justification relation ⊢A ⊆ MA × (MA \ IA);

satisfying, for each m,m′ ∈ MA, the conditions (πi is the ith projection function):

– m ∈ IA =⇒ λA(m) = (P,A),
– m ⊢A m′ ∧ π2(λA(m)) = A =⇒ π2(λA(m

′)) = Q,

– m ⊢A m′ =⇒ π1(λA(m)) 6= π1(λA(m
′)).

We range over moves by m,n and use i, o, p to refer to initial moves, O-moves and

P-moves respectively. We let λA be the OP-complement of λA. Using the ⊗ and ⇒
constructions on arenas (Fig. 3), for each type θ we define the corresponding arena JθK,

starting from the following definitions.

JunitK = 〈{⋆}, {⋆}, ∅, ∅〉 JintK = 〈Z,Z, ∅, ∅〉

Jref θK = 〈Aθ,Aθ, ∅, ∅〉 Jθ → θ′K = JθK ⇒ Jθ′K

We write 1 for JunitK, Z for JintK, and Aθ for Jref θK; and set Mφ =
⊎

θ,θ′ MJθ→θ′K.

Although types are interpreted by arenas, the actual games will be played in preare-

nas, which are defined in the same way as arenas with the exception that initial moves

are O-questions. Given arenas A,B we define the prearena A → B as follows.

MA→B = MA ⊎MB λA→B = [λA[iA 7→ OQ], λB]

IA→B = IA ⊢A→B = {(iA, iB)}∪ ⊢A ∪ ⊢B

5

Our plays shall feature moves attached with stores, where the names appearing in a

play take values. We let the set Valθ of semantic values of type θ be IJθK (so Valunit =
Valθ→θ′ = {⋆}, Valint = Z, Valref θ = Aθ), and let Val =

⊎

θ Valθ . A store Σ is a

type-preserving finite partial function from A to Val, and Sto is the set of all stores:

Sto = {Σ : A ⇀ Val | |Σ| finite ∧ (a ∈ dom(Σ) ∩ Aθ =⇒ Σ(a) ∈ Valθ) }.

A move-with-store on a (pre)arena A is a pair mΣ with m ∈ MA and Σ ∈ Sto.

Definition 4. A justified sequence on a prearena A is a sequence of moves-with-store

from MA ⊎Mφ such that, apart from the first move which must be of the form iΣ with

i ∈ IA, every move in s is equipped with a pointer to an earlier move, or to a name

inside the store of an earlier move. These pointers are called justification pointers and

are subject to the following constraints.

– If nT points to mΣ then either m,n ∈ MA and m ⊢A n, or m,n ∈ Mθ→θ′ for

some θ, θ′ and m ⊢Jθ→θ′K n. We say that mΣ justifies nT .

– If nT points to a ∈ dom(Σ) of mΣ then a ∈ Aθ→θ′ for some θ, θ′, and n must be

an initial question in MJθ→θ′K. We say that mΣ a-justifies nT .

An intuitive way to comprehend pointers to a name a ∈ dom(Σ) ∩ Aθ→θ′ is to think

of them as pointing to the value ⋆ of a stored in Σ. Since the value of a is of function

type, its structure is not revealed at once, but it can be explored by players by invoking

the function, that is, by playing in Jθ → θ′K from that initial ⋆.

Note that a justified sequence on A contains moves from MA, called A-moves, and

moves from Mφ, which hereditarily point inside stores of other moves. The latter are

called φ-moves. We shall say that mΣ is an ancestor of nT (or that nT is a descendant of

mΣ) if there is a chain of pointers from nT to m, possibly passing through stores on the

way. Similarly, we say that mΣ is an a-ancestor of nT (or that nT is an a-descendant

of mΣ) if there is a chain of pointers from nT to a in Σ (the chain may also be visiting

other stores). Note that each φ-move has a unique a-ancestor from MA.

For each S ⊆ A and Σ we define the closure of S under Σ as Σ∗(S) =
⋃

i Σ
i(S),

where Σ0(S) = S and Σi+1(S) = Σ(Σi(S)) ∩ A. The set of available names of a

justified sequence is defined inductively by Av(ǫ) = ∅ and

Av(snT) =

{

Av(s) there is an a-ancestor mΣ of nT and a /∈ Av(s≤mΣ)

Σ∗(Av(s) ∪ ν(n)) otherwise

where s≤mΣ is the subsequence of s up to mΣ . We shall be writing s ⊑ s′ to mean that

s is a subsequence of s′.

Definition 5. Let A be a prearena. A justified sequence s on A is called a legal se-

quence, written s ∈ LA, if it satisfies the conditions below.

– No adjacent moves belong to the same player, and no move points to a move (or the

store of a move) of the same player (Alternation).

– The justifier of each answer is the most recent unanswered question (Bracketing).

6

We call s a play if it additionally satisfies:

– For any s′mΣ ⊑ s, dom(Σ) = Av(s′mΣ) (Frugality).

We write PA for the set of plays on A.

Example 6. Here are two plays on Aint→int → Z ⇒ Z (for the sake of clarity, we

omit pointers that would just point at preceding moves). We use double-line pointers to

highlight the justification pointers pointing at stores.

a(a,⋆) ⋆(a,⋆) 1(a,⋆) 1(a,⋆) 3(a,⋆) 3(a,⋆) a(a,⋆) ⋆(a,⋆) 1(a,⋆) 1(a,⋆) 3(a,⋆) 3(a,⋆)

The plays will be among those used to interpret the respective terms:

x : ref (int → int) ⊢ !x : int → int x : ref (int → int) ⊢ λhint.(!x)h : int → int

Each name appearing in a legal sequence s, i.e. such that a ∈ ν(s), is called a P-

name of s, written a ∈ P (s), if it is first introduced in s by a P-move, that is, there

is even-length s′mΣ ⊑ s such that a ∈ ν(mΣ) \ ν(s′). The set of O-names of s,

O(s), is defined dually. Clearly, ν(s) = O(s) ⊎ P (s). Moreover, let us define γ to

be the canonical function on justified sequences which imposes frugality by deleting

unavailable names from store-domains and all φ-moves that they hereditarily justify.

Concretely, γ(ǫ) = ǫ and:

γ(snT) =

{

γ(s) if there is an a-ancestor mΣ of nT and a /∈ Av(s≤mΣ);

γ(s) nT ↾Av(snT) otherwise.

Definition 7. A strategy σ on a prearena A, written σ : A, is a set of even-length plays

of A satisfying:

– If soΣpΣ
′

∈ σ then s ∈ σ (Even-prefix closure).

– If s ∈ σ and s ∼ t then t ∈ σ (Equivariance).

– If s1p
Σ1

1 , s2p
Σ2

2 ∈ σ and s1 ∼ s2 then s1p
Σ1

1 ∼ s2p
Σ2

2 (Nominal determinacy).

Example 8. For each arena A there is an identity strategy, idA : A → A, defined by

idA = { s ∈ P even

A→A | ∀s′ ⊑even s. s′ ↾ Al = s′ ↾ Ar },

where the indices l, r distinguish the two copies of A, and s′ ↾ Ax is the subsequence of

s′ containing only moves from the x-copy, along with all φ-moves having a-ancestors

from the x-copy (for some a).

The behaviour of idA is called copycat. More generally, we say that moves nTn′T ′

in a play s are a copycat pair if they are consecutive in s, nT = n′T ′

, and if nT is

justified by m′Σ′

(or by some a ∈ dom(Σ′)) then n′T ′

is justified by mΣ (resp. by

a ∈ dom(Σ)) where mΣm′Σ′

are consecutive in s. It will be useful to spot copycat be-

haviours occurring in plays exclusively between φ-moves with consecutive a-ancestors.

7

Definition 9. Let s be an alternating justified sequence in A, s′ ⊑ s be ending in

mΣm′Σ′

and let a ∈ dom(Σ) ∩ dom(Σ′) ∩ Aφ such that m′Σ′

is not a-justified by

mΣ . We say that (s, s′, a) is a copycat triple if, for all φ-moves nT in s which have

mΣ or m′Σ′

as an a-ancestor,

– if n has the same polarity as m then there is n′T ′

such that nTn′T ′

are a copycat pair,

– if n has the same polarity as m′ then there is n′T ′

such that n′T ′

nT are a copycat pair.

Example 10. We will be economical when writing stores and, in particular, compo-

nents of the form (a, ⋆) will often be written simply as a. Also, we will omit mention-

ing the empty play from strategies. Copycat behaviour is exemplified in the strategy

σ : Aunit→unit → 1 = {aa⋆as} where each (aa⋆as, aa⋆a, a) is a copycat triple. For

example, the play

aa ⋆a ⋆a ⋆a ⋆a ⋆a

O P O P O P

is in σ. The copycat behaviour means that, when P plays its first move ⋆a (underlined),

he does not change the value of a in the store. Thus, subsequent questions by O pointing

to a in ⋆a are responded to by copycat. The strategy turns out to be the denotation of

x : ref (unit → unit) ⊢ () : unit.

We now turn to defining a suitable notion of interaction between plays. Given arenas

A,B,C, we define the prearena A → B → C by:

MA→B→C = MA→B ⊎MC λA→B→C = [λA→B[iB 7→ PQ], λC]

IA→B→C = IA ⊢A→B→C = ⊢A→B ∪ {(iB, iC)}∪ ⊢C

Let u be a justified sequence on A → B → C. We define u ↾ AB to be u in which

all C-moves are suppressed, along with associated pointers and all φ-moves which are

a-descendants of C-moves. u ↾ BC is defined analogously. u ↾ AC is defined similarly

with the caveat that, if there was a pointer from a C-move to a B-move which in turn

had a pointer to an A-move, we add a pointer from the C-move to the A-move. Let us

write u ↾γ X for γ(u ↾ X) with X ∈ {AB,BC,AC}. Below we shall often say that a

move is an O- or a P-move in X meaning ownership in the associated prearena.

Definition 11. A justified sequence u on A → B → C is an interaction sequence on

A,B,C if it satisfies bracketing and frugality and, for all X ∈ {AB,BC,AC}, we

have (u ↾ X) ∈ LX and the following conditions hold.

– P (u ↾γ AB) ∩ P (u ↾γ BC) = ∅;

– O(u ↾γ AC) ∩ (P (u ↾γ AB) ∪ P (u ↾γ BC)) = ∅;

– For each u′ ⊑ u ending in mΣm′Σ′

and a ∈ dom(Σ′) if

• m′ is a P-move in AB and a /∈ Av(u′ ↾ AB),
• or m′ is a P-move in BC and a /∈ Av(u′ ↾ BC),
• or m′ is an O-move in AC and a /∈ Av(u′ ↾ AC),

then Σ(a) = Σ′(a) and, moreover, if a ∈ Aφ then (u ↾ X,u′ ↾ X, a) are a copycat

triple, where X is the respective element of {AB,BC,AC}.

8

We write Int(A,B,C) for the set of interaction sequences on A,B,C, and σ‖τ for the

set of interactions between strategies σ : A → B and τ : B → C:

σ‖τ = { u ∈ Int(A,B,C) | (u ↾γ AB) ∈ σ ∧ (u ↾γ BC) ∈ τ }.

We shall be referring to the last condition in the definition as the copycat condition.

According to it, during an interaction the players cannot change the parts of the store

which regard names that are not available to them. Moreover, in the case that these

names are of functional type, the players are obliged to copycat as far as a-descendants

of these names are concerned.

Example 12. Consider strategies σ : Aunit→int → 1 ⇒ Z and τ : 1 ⇒ Z → Z given by

the set of all even prefixes of plays of the form shown on the left below (for all i ∈ Z).

σ : aa ⋆a ⋆a ⋆a ⋆a 3a ia ia

O P O P O P O P

τ : ⋆ ⋆ j j
O P O P

Aunit→int

σ
// 1 ⇒ Z

τ
// Z

O aa

P ⋆a O

O ⋆a P (1)

P ⋆a O

O ⋆a P (2)

P 3a O

O 3a P (3)

P 3a O

3a P

Their interaction is on the right above. We mark polarities for σ on the left of the dia-

gram, and for τ on the right. Consider point (1) in the interaction. In τ , P plays ⋆a but a
is not available at that point, hence P must copycat from that point on at a-descendants

of (that occurrence of) ⋆a. This is precisely what happens in points (2) and (3).

Definition 13. Given strategies σ : A → B and τ : B → C we define the composite

strategy σ; τ : A → C to be { s ∈ PA→C | ∃u ∈ σ‖τ. s = u ↾γ AC }.

Strategy composition is well-defined and associative.

Definition 14. G is the category of arenas and strategies, in which strategies in the

prearena A → B are morphisms between A and B.

In [MT11] we have shown how to interpret RefML in G so as to obtain a full abstraction

result. We refer to this interpretation by writing JΓ ⊢ MK.

Example 15. Terms newθ from Example 1 are interpreted by the strategies nuθ : 1 →
Aθ , which create a fresh name of type θ and initialise it accordingly.

nuθ = { ⋆a(a,v) | a ∈ Aθ ∧ v ∈ {0, ⋆} }

In the remainder of the paper we identify subclasses of strategies that correspond to

denotations of GrML and FunML-terms respectively.

9

4 Groundness

This section is devoted to finding a class of strategies that characterise ground stor-

age, as embodied in GrML. The work predating nominal game semantics [AHM98] has

established visibility as the condition characterising the absence of higher-order refer-

ences. Visibility relies on the concept of a P -view [HO00], which can be adapted easily

to our setting.

Definition 16. The P-view psq of a play s is inductively defined by:

pǫq = ǫ, pmΣq = mΣ, ps pΣq = psq pΣ, ps x s′ oT q = psq xoT ,

where x is some mΣ , and oT points either to x or to a name in its store. A play s
is visible if, for any even-length prefix s′pΣ of s, the justifier of pΣ occurs in ps′q. A

strategy is visible if it contains only visible plays.

Remark 17. Note that if a play satisfies visibility then its P-view is a justified sequence.

Nonetheless, it may fail to be a play because of violating frugality. For example, the

following odd-length play on the prearena 1 → (Aunit ⇒ 1)

⋆ ⋆ aa ⋆a ba,b

O P O P O

has P-view ⋆ ⋆ ba,b, which breaks frugality in its last move.

In this section we first make the perhaps surprising observation that visible strategies

fail to compose in the game model introduced in the previous section. We repair the

failure by insisting on an additional nominal constraint.

Example 18. Consider the strategy σ : 1 → ((Z ⇒ Z) ⇒ 1) specified by the play

on the left below, which breaks visibility in its last move. We label the moves of the

prearena as shown on the right.

σ : ⋆ ⋆ ⋆Q ⋆A ⋆Q 3
O P O P O P

σ̂ : aa ⋆a ⋆aQ ⋆aA ⋆aQ ⋆a ⋆a 3a

O P O P O P O P

1 → (Z ⇒ Z) ⇒ 1
⋆

⋆
⋆Q

i ⋆A
j

We can see that σ = nuunit→unit; σ̂, where σ̂ : Aunit→unit → ((Z ⇒ Z) ⇒ 1) is

specified by the play on the left above (labelling of moves follows the same pattern).

Interestingly, both nuunit→unit and σ̂ satisfy visibility. After composition, though, the

two a-justified moves of σ̂ will be deleted, since a is no longer an available name.

Observe that, thanks to these two a-justified moves, the justifier of the last P -move

appears in the view. With a hidden, the last move breaks visibility.

Note that the failure of compositionality stems from the special way in which P -names

of higher-order reference cells are treated. This leads us to consider strategies in which

such names do not occur. Below we write Aφ =
⊎

θ,θ′ Aθ→θ′ .

10

Definition 19. A strategy σ is ground if it is visible and P (s)∩Aφ = ∅ for any s ∈ σ.

Intuitively, the definition corresponds to removing the capability to generate higher-

order reference names.

Lemma 20. Ground strategies compose. Consequently, for any GrML-term Γ ⊢ M ,

JΓ ⊢ MK is ground.

We will also have a converse of the above in the form of a definability result for finite

strategies (Corollary 32). The first steps to its proof will be two factorisation arguments

that remove violations of groundness.

Lemma 21. Let σ : A1 → A2. There exists a visible strategy σ : Aunit→unit⊗A1 → A2

such that 〈 !A1
; nuunit→unit, idA1

〉;σ = σ. Moreover, if P (s) ∩ Aφ = ∅ for any s ∈ σ
then P (s) ∩Aφ = ∅ for any s ∈ σ.

Proof. We are going to augment plays from σ using moves pointing to the higher-order

reference represented by Aunit→unit in such a way that visibility will hold. At the same

time the added moves will be consistent with the copycat behaviour required during

composition.

Formally, the extension s of a play s ∈ σ is defined as follows. Given a store Σ, we

write Σa for Σ ∪ {(a, ⋆)}.

– ǫ = ǫ, soΣ = soΣ
a

(o a question), spΣ = spΣ
a

(p an answer).

– spΣ = s ⋆Σ
a

1 · · · ⋆Σ
a

1

︸ ︷︷ ︸

k

pΣ
a

(p a question), where s = · · · oΣ
a

Om
Σa

k

k · · ·m
Σa

2

2 m
Σa

1

1 and

oΣO (or a name in its store) justifies pΣ in spΣ . Moreover, we require that the ith
(counting from left to right) occurrence of ⋆Σ

a

1 in ⋆Σ
a

1 · · · ⋆Σ
a

1 be justified by (a, ⋆)
from Σa

i . We depict the definition below, where the dashed line is a justification

pointer to a move or to a store.

· · · oΣ
a

Om
Σk∪{(a,⋆)}
k · · ·m

Σ1∪{(a,⋆)}
2 m

Σ1∪{(a,⋆)}
1 ⋆Σ

a

1 ⋆Σ
a

1 · · · ⋆Σ
a

1 pΣ
a

– soΣ = soΣ
a

⋆Σ
a

· · · ⋆Σ
a

︸ ︷︷ ︸

k

(o an answer), where the sequence ⋆Σ
a

· · · ⋆Σ
a

answers all

the a-justified questions (labelled ⋆Σ
a

1 above) in s that occur after the justifier of oΣ
a

.

One can then take σ to be the least strategy containing all plays s, where s ranges over

σ. It is easy to see that no new P -names are introduced by the construction (a is an

O-name). ⊓⊔

The second result delegates the creation of higher-order reference names and thus rids

a strategy of P -names from Aφ. In order to overapproximate the types of names that

can be used as P -names in a prearena A, we define the associated reference set R(A).
First, for each type θ, we define R(θ) by

R(unit) = R(int) = ∅, R(ref θ) = {θ} ∪R(θ), R(θ1 → θ2) = R(θ1) ∪R(θ2).

11

This is extended to prearenas as follows. For each prearena A,

R(A) =
⋃

m∈MA

{
{θ} ∪R(θ) | ν(m) ∩ Aθ 6= ∅

}
.

To isolate the higher-order types in R(A), we write HON(A) for the subset of R(A)
consisting of function types.

Lemma 22. Let σ : A1 → A2 and A =
⊗

θ∈HON(A1→A2)
(JθK ⇒ Aθ). Let also

genθ = J ⊢ λxθ.refθ(x)K : 1 → (JθK ⇒ Aθ). There exists a strategy σ : A⊗A1 → A2

such that 〈 !A1
; 〈 genθ 〉θ∈HON(A1→A2), idA1

〉;σ = σ. Moreover, if σ is visible, so is σ.

Proof. The main idea is to delegate the creation of new P -names to the additional A
component by inserting extra moves from A in front of P -moves. More precisely, given

s ∈ σ, we define an enriched play s as follows, where each vi is a question to the

appropriate JθK ⇒ Aθ .

– soΣpT = s oΣvΣ1 aΣ1

1 · · · v
Σk−1

k−1 vkp
Σk , where dom(T)\dom(Σ) = {a1, · · · , ak},

vi = T (ai), and Σi = T ↾ dom(Σ) ∪ {a1, · · · , ai}.

In addition, ǫ = ǫ. ⊓⊔

Corollary 23. Let σ : A1 → A2. There exists a ground strategy

σ : A(unit→unit) ⊗
(⊗

θ∈HON(A1→A2)
(JθK ⇒ Aθ)

)
⊗A1 → A2

such that 〈 !A1
; 〈 nuunit→unit, 〈 genθ 〉θ∈HON(A1→A2) 〉, idA1

〉;σ = σ. ⊓⊔

Thanks to the corollary the definability problem for finite strategies can be reduced to

the same problem for ground strategies.

5 Innocence

Here we would like to find a semantic match for FunML by a notion of innocence [HO00].

FunML embodies purely functional computation in presence of reference types: al-

though terms may receive, update and read the value of references, they cannot create

new ones. The notion of innocence defined below extends the standard notion appro-

priately to deal with moves that carry higher-order store. Traditionally, the notion of

innocence stipulates that each P-move of a strategy be determined by the P-view up to

the point just before the move is played. In our case, the notion needs to be customised

so as to take into account the names, and the corresponding parts of the store, which

become unavailable in the view. The last two conditions below stipulate that P cannot

play any names which do not appear in the view, and neither can he change their values.

Definition 24. A ground strategy σ :A is innocent if it satisfies the following conditions.

– If spΣ ∈ σ then ν(pΣ) ⊆ ν(s) (strong determinacy).

– If spΣ, s′ ∈ σ and s′oT ∈ PA with γ(psq) = γ(ps′oT q) then there exists s′oT p′Σ
′

∈
σ such that γ(pspΣq) ∼ γ(ps′oT p′Σ

′

q) (innocence).

12

– If spΣ ∈ σ and γ(pspΣq) = s′pΣ
′

then ν(pΣ
′

) ∩ ν(s) ⊆ ν(s′) (innocent P-

availability).

– If s′ ⊑ s ∈ σ ends in oΣpT and a ∈ dom(T) \ ν(γ(ps′q)) then T (a) = Σ(a) and,

moreover, if a ∈ Aφ then (s, s′, a) are a copycat triple (innocent P-storage).

Remark 25. Note that the first and third conditions above can be equivalently expressed,

modulo the other conditions, as a single one:

– If spΣ ∈ σ and γ(pspΣq) = s′pΣ
′

then ν(pΣ
′

) ⊆ ν(s′).

Moreover, given the above condition, innocence can be equivalently stated as:

– If spΣ , s′ ∈ σ and s′oT ∈ PA with γ(psq) = γ(ps′oT q) then there exists s′oT p′Σ
′

∈
σ such that γ(pspΣq) = γ(ps′oT p′Σ

′

q).

Due to innocent P-availability and innocent P-storage, innocent strategies are uniquely

determined by their behaviour on available names, that is, names appearing in the P-

view after application of γ. For instance, the behaviour of an innocent strategy on an

O-question asking the value of an unavailable name is a trivial copycat. Combined with

the innocence condition, our observation allows us to characterise innocent strategies

by their view-functions, defined as follows.

vf(σ) = {γ(psq) | s ∈ σ}

Lemma 26. Innocent strategies compose. Consequently, for any FunML-term Γ ⊢ M ,

JΓ ⊢ MK is an innocent strategy.

Next we show a factorisation result for ground strategies involving innocent ones. Our

first step will be to factor out violations of strong determinacy, namely, fresh-name

creation, in exactly the same way as in Lemma 22. We set GRN(A) = R(A)\HON(A).

Lemma 27. Let σ : A1 → A2 be a ground strategy, A =
⊗

θ∈GRN(A1→A2)
(JθK → Aθ)

and genθ = J ⊢ λxθ .refθ(x)K : 1 → (JθK ⇒ Aθ). There exists a strongly deterministic

ground strategy σ : A⊗A1 → A2 such that 〈!A1
; 〈 genθ 〉θ∈GRN(A1→A2), idA1

〉;σ = σ.

In the setting without names, a factorisation to innocence would just use an integer

reference, which would serve for storing the history of the play [AM97]. If one tries to

apply the same rationale in the nominal setting, one soon realises that names constitute a

basic obstacle because they cannot be obviously mapped into integers. In order to bridge

the gap, we are going to use integers that correspond to the order in which names appear

in a play, and external ‘oracles’ which will maintain a list of names and be able to add

to it (enlisting) as well as access names at a given position (look-up).

We first fix an encoding function from plays to integers. Given a play s, the function

produces a code #(s). The function first translates each name a ∈ Aθ into a pair (i, θ),
if a is the ith name of type θ appearing in s, and subsequently performs some standard

encoding from nested strings of integers (with pointers) into integers. Therefore, the

function is not injective, but orbit injective: s ∼ s′ ⇐⇒ #(s) = #(s′). We also fix an

13

ordering of names appearing inside plays such that names introduced earlier (i.e. closer

to the beginning of the play) appear earlier in the ordering.3

We next describe the family of strategies oracleθ which we shall use. The strategy

oracleθ : 1 → (Aθ ⇒ 1)⊗ (Z ⇒ Aθ) responds to the initial question with the answer

(⋆e, ⋆l). After that, the answer to any question a posed at ⋆e will be ⋆, which should

be viewed as confirmation that a has been added to the list. The strategy implements

the look-up function by responding to any question i, posed at ⋆l and such that the ith
question posed at ⋆e from the beginning of the play is a, with a.

Any strongly deterministic ground strategy σ : A shall be converted to an innocent

one which uses an external oracle for each type θ ∈ R(A), and a reference of type int.

Inside that reference, the strategy shall keep an encoding of the whole play so far (using

the function#()). WheneverO makes a move, say the last move in the play soΣ , P can

consult the int-reference in order to obtain a version of s where names are represented

by integers. Then, P queries the external oracles (via their look-up functionality) with

each integer representation in #(s), and receives the corresponding actual names as

answers. At this point, P has completely reconstructed s in an innocent manner. P
next updates the oracles with all the names newly introduced by oΣ (using the enlisting

functionality), and then plays his move as dictated by σ.

Lemma 28. Let A =
⊗

θ∈R(A1→A2)

(
(Aθ ⇒ 1)⊗ (Z ⇒ Aθ)

)
and σ : A1 → A2 be a

strongly deterministic ground strategy. There exists an innocent strategy σ : A⊗Aint⊗
A1 → A2 such that 〈!A1

; 〈〈 oracleθ 〉θ∈R(A1→A2), newint〉, idA1
〉;σ = σ.

Proof. We define σ to be the least innocent strategy extending σ′ =
⋃
{s | s ∈ σ},

where s is a set of plays defined below by induction on the length of the play. For the

base case we set ǫ = {ǫ}.

Now suppose s = iΣis′oΣpT . We let s contain all plays of the form

(〈 (⋆e, ⋆l)θ 〉θ∈R(A1→A2), â, i)
Σ̂is′′oΣ̂s1 s2 p

T̂

where â ∈ Aint a fresh name, Σ̂i = Σi[â 7→ 0], Σ̂ = Σ[â 7→ #(iΣis′)] and

s′′ ∈ ŝ′ is given by the induction hypothesis. Let a1, · · · , an, b1, · · · , bm be the names

in ν(iΣis′oΣ) ordered according to the canonical ordering, so that a1, · · · , an are the

elements of ν(iΣis′) and b1, · · · , bm those of ν(oΣ) \ ν(iΣis′). We set s1 to be the se-

quence iΣ̂1 aΣ̂1 iΣ̂2 aΣ̂2 · · · iΣ̂n aΣ̂n , such that aj ∈ Aθ (some θ) is the ijth name of type θ

in a1, · · · , an and iΣ̂j is justified by ⋆l θ. Moreover, s2 is the sequence bΣ̂1 ⋆Σ̂ · · · bΣ̂m ⋆Σ̂ ,

where each bΣ̂j is justified by the according initial ⋆e θ . Finally, T̂ = T [â 7→ #(s)].
First, in order to show that there exists an innocent extension σ of σ′, it suffices to

show that σ′ is in fact a strongly deterministic ground strategy satisfying the innocent

P-availability and innocent P-storage conditions, and in addition:

– for all s1p
Σ1

1 , s2p
Σ2

2 ∈ σ′, if γ(ps1q) = γ(ps2q) then γ(ps1p
Σ1

1 q) = γ(ps2p
Σ2

2 q).

3 Note here that names may first appear inside stores, which are not ordered. In such a case,

though, and because of the availability condition, they are reachable through the store through

previously introduced names, the ordering of which can be used to order the new names. E.g.

in the play a(a,b),(b,0)c(a,b
′),(c,d),(b,0),(b′,0),(d,0) we can order our names as a, b, c, b′, d.

14

By construction, σ′ is obviously strongly deterministic and ground, and depends solely

on moves and names that are available in the P-view. We can therefore show that it

satisfies the above conditions. Moreover, since σ contains extended versions of all plays

from σ, we have that 〈!A1
; 〈〈 oracleθ 〉θ∈R(A1→A2), newint〉, idA1

〉;σ = σ. ⊓⊔

Corollary 29. Let σ : A1 → A2 be a ground strategy, Θ1 = GRN(A1 → A2) and

Θ2 = R(A1 → A2). There exists an innocent strategy

σ :
(⊗

θ∈Θ1

(JθK ⇒ Aθ)
)
⊗ Aint ⊗

(⊗

θ∈Θ2

(Aθ ⇒ 1)⊗ (Z ⇒ Aθ)
)
⊗A1 → A2

such that 〈 !A1
; 〈 〈 genθ 〉θ∈GRN(A1→A2), nuint, 〈 oracleθ 〉θ∈R(A1→A2) 〉, idA1

〉;σ = σ.

⊓⊔

Remark 30 (Factoring the oracle). It is interesting to note that each strategy oracleθ can

be decomposed into an innocent strategy and three reference cells, of types int, ref θ and

unit → unit respectively. That is, oracleθ = 〈nuint, nuref θ, nuunit→unit〉; oracleθ , where

oracleθ : Aint ⊗ Aref θ ⊗ Aunit→unit → (Aθ ⇒ 1) ⊗ (Z ⇒ Aθ) is an innocent strategy

which behaves as follows:4

– when O provides a new name a to be enlisted, the strategy responds with ⋆Σ , where

Σ records that the ith name played by O is a (this uses the references of types int

and ref θ);

– when, on the other hand, O asks what is the ith name that has been enlisted then

the strategy uses the reference of type unit → unit in order to go back in the play

(in the same fashion as in Lemma 22), until it finds a P-move ⋆Σ which includes a

pair of values (i, a), at which point it carries back that a as an answer to i.

Although factorisation results typically deconstruct a strategy σ of a category of games

G1 into a characteristic strategy from G1 and a strategy from G2, where G2 a subcategory

of G1, the factorisation above does not follow this pattern, since the ground strategy

oracleθ is deconstructed into a strategy containing nuunit→unit (which is not ground).

Note, though, that if the initial σ of Lemma 28 were finite (up to name permutations)

then there would not be a need for such oracles, as σ would only contain plays with

boundedly many names, which could be stored in a bounded set of external references.

Finally, we call an innocent strategy σ compact if vf(σ) is finite up to name-permutations,

that is, if the set {{π · s | π ∈ PERM} | s ∈ vf(σ)} is finite.

4 Formally, oracleθ is the least innocent strategy which contains all plays of the form

(a1, a2, a3)
Σi(⋆e, ⋆l)

Σi[a1 7→0] and, in addition, if (a1, a2, a3)
Σi(⋆e, ⋆l)

Σi
′

s ∈ oracleθ then:

– (a1, a2, a3)
Σi(⋆e, ⋆l)

Σi
′

s aΣ⋆Σ[a1 7→Σ(a1)+1][a2 7→a] ∈ oracleθ .

– (a1, a2, a3)
Σi(⋆e, ⋆l)

Σi
′

s iΣs1s2 a
Σ ∈ oracleθ , where s1 is a copycat sequence of ques-

tions ⋆Σ[a1 7→i] pointing to a3 in preceding stores (starting from the store of iΣ), and such

that its last element points to a P-move ⋆Σ
′

with Σ′(a1) = i. The sequence s2 comprises of

a series of answers ⋆Σ
′

to the questions of s1, and a = Σ′(a2).

15

Lemma 31. Let Γ ⊢ θ be a typing context. For each compact innocent strategy σ :
JΓ ⊢ θK there is an FunML-term Γ ⊢ M : θ such that σ = JΓ ⊢ MK.

Corollary 32. Let Γ ⊢ θ be a typing context and σ : JΓ ⊢ θK a strategy that is finite

up to name-permutations. There is a RefML-term Γ ⊢ M : θ such that σ = JΓ ⊢ MK.

If σ is ground then there is a GrML-term Γ ⊢ M : θ such that σ = JΓ ⊢ MK.

6 Conclusion

We have considered three languages embodying respectively general store, ground store

and pure functional computation. These have been related to three families of strategies

in a nominal game model as shown below.

RefML GrML FunML

strategy ground strategy innocent strategy

In particular, our notions of groundness and innocence are nominal generalizations of

the standard notions of visibility and innocence.

Another theme in research on game semantics was universality, i.e. the fact that all

recursively presentable strategies were definable. We believe that, in the nominal setup,

universality is bound to fail for ground and innocent strategies (wrt GrML and FunML

respectively), because of the inability of these languages to store unbounded collections

of names. RefML does not seem to suffer from the same limitation, as lists of names of

type θ can be maintained through the type, say, ref (int → ref (θ)).
Our results illustrate that, with some extra effort, the methodology of the semantic

cube can also bear fruit in the nominal setting, though the results that are emerging are

perhaps not as elegant as in the original case.

References

[AGM+04] S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B. Stark. Nom-

inal games and full abstraction for the nu-calculus. In Proceedings of LICS, pages

150–159. IEEE Computer Society Press, 2004.

[AHM98] S. Abramsky, K. Honda, and G. McCusker. Fully abstract game semantics for general

references. In Proceedings of IEEE Symposium on Logic in Computer Science, pages

334–344. Computer Society Press, 1998.

[AJM00] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Information

and Computation, 163:409–470, 2000.

[AM97] S. Abramsky and G. McCusker. Call-by-value games. In Proceedings of CSL, volume

1414 of Lecture Notes in Computer Science, pages 1–17. Springer-Verlag, 1997.

[GP02] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable

binding. Formal Aspects of Computing, 13:341–363, 2002.

[HO00] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for PCF: I. Models, ob-

servables and the full abstraction problem, II. Dialogue games and innocent strate-

gies, III. A fully abstract and universal game model. Information and Computation,

163(2):285–408, 2000.

16

[HY99] K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computation.

Theoretical Computer Science, 221(1–2):393–456, 1999.

[Lai97] J. Laird. Full abstraction for functional languages with control. In Proceedings of

12th IEEE Symposium on Logic in Computer Science, pages 58–67, 1997.

[Lai04] J. Laird. A game semantics of local names and good variables. In Proceedings

of FOSSACS, volume 2987 of Lecture Notes in Computer Science, pages 289–303.

Springer-Verlag, 2004.

[MT11] A. S. Murawski and N. Tzevelekos. Game semantics for good general references. In

Proceedings of LICS, pages 75–84. IEEE Computer Society Press, 2011.

[Nic94] H. Nickau. Hereditarily sequential functionals. In Proceedings of the Symposium of

Logical Foundations of Computer Science. Springer-Verlag, 1994. LNCS.

[Tze09] N. Tzevelekos. Full abstraction for nominal general references. Logical Methods in

Computer Science, 5(3), 2009.

A Appendix

In this section we present some more advanced strategy examples.

Example 33. Let us consider the following strategy σ : 1 → ((Z ⇒ Z) ⇒ (Z ⇒ Z)).
The strategy is specified by plays of the form shown on the left below, where sum =
j1 + · · ·+ jk, and we have labelled the moves of the prearena as on the right below.

⋆ ⋆ ⋆Q ⋆A · · · ⋆Q ⋆A ⋆Q ⋆A i i j1 i j2 · · · i jk sum
O P O P O P O P O P O P O P O P

1→(Z ⇒ Z)⇒(Z ⇒ Z)
⋆

⋆
⋆Q

i ⋆A
j i

j

Thus, the strategy answers the initial ⋆ with the higher-order move ⋆. From that point

on, at each O-question ⋆Q to ⋆, the strategy replies with an answer ⋆A. When O queries

the value of the returned ⋆A, by playing some O-question i to it, the strategy propagates

the question to all preceding ⋆Q’s, and returns as an answer the sum of all the answers

to those questions. This behaviour can be matched by the semantics of the following

term (the last line below implicitly uses recursion).

let i = ref int(0), F = ref int→int→int(λx
int.λyint.0) in

λf int→int. i++; let g = !F in F := λxint. if (x−!i) then f else gx;

λyint. (!F)(!i)y + (!F)(!i−1)y + · · ·+ (!F)1y

The term implements the informal description of the strategy described above: it uses

an internal higher-order reference F where it stores all input functions f (the ith such

function is stored in F (i)), and returns a function which, on input y, returns the sum of

applying all previous f ’s to y.

Example 34. Let us revisit the strategy σ from Example 33 under the light of the

factorisation in Lemma 21. In particular, σ can be factorised as nuunit→unit; σ̂, where

17

σ̂ : Aunit→unit → ((Z⇒ Z)⇒ (Z⇒Z)) is a ground strategy specified by plays of the

form:

aa ⋆a ⋆aQ ⋆aA · · · ⋆aQ ⋆aA ⋆aQ ⋆aA ia ia ja1 ⋆a ⋆a ia ja2 ⋆a · · · ⋆a ia jak ⋆a · · · ⋆a suma

O P O P O P O P O P O P O P O P O P O P O P

with sum = j1 + · · · + jk. In fact, the strategy σ̂ defined above is a simplified version

of the one obtained via the factorisation theorem, but it follows the same rationale of

using the reference of type unit → unit for breaking inside the P-view in a visible way.

The strategy corresponds to the term below,

let i = ref int(0), inp = ref int(0), sum = ref int(0) in

λf int→int. let g = (if !i then !F else λxunit.x) in

i++; F := λxunit. (sum := !sum + f(!inp); g());

λyint. sum := !sum+ fy; inp := y; g(); !sum

where F a free variable of type ref (unit → unit).

18

