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Abstract

We present the first effectively presentable fully abstract model for Stark’s Re-
duced ML, a call-by-value higher-order programming language featuring integer-
valued references. The model is constructed using techniques of nominal game
semantics. Its distinctive feature is the presence of carefully restricted infor-
mation about the store in plays, combined with conditions concerning the par-
ticipants’ ability to distinguish reference names. We show how it leads to an
explicit characterization of program equivalence.
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1. Introduction

Reduced ML is a fragment of Standard ML introduced by Stark as a vehicle
for investigating dynamic allocation of mutable storage cells. Technically, it is
just the call-by-value λ-calculus with primitives for manipulating integers and
integer-valued references. In this paper, which is an extended version of [21],
we provide a fully abstract model for the language. This means that the inter-
pretations of two terms of the language will coincide if and only if the terms are
equivalent.

Despite its simplicity, Reduced ML gives rise to a rather subtle theory of
program equivalence. It can express elements of secrecy, freshness, locality and
object identity. Consider, for a start, the two equivalences below, where we use
the symbol ∼= to denote program equivalence and =int ref for the name-equality
test (the latter returns 1 or 0 depending on whether or not the names under
comparison are equal).

⊢ ref (0) =int ref ref (0) ∼= 0 (1)

⊢ letx = ref(0) in λyint ref .(x =int ref y) ∼= λyint ref .0 : int ref → bool (2)

Equivalence (1) shows that two consecutive calls to the reference constructor ref
never return identical reference names (both referenced cells will be initialised
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to 0, though). In example (2) we see that the name returned by ref will remain
private forever. In particular, the value of x cannot leak out or be regenerated
through subsequent calls to ref.

We stress that Reduced ML features integer-valued references only. Hence,
even when a name is communicated to a Reduced ML context, this does not
mean that the name was inevitably recorded by the environment. Indeed, the
following modification of the second equivalence still holds in Reduced ML.

f : int ref → unit ⊢ letx = ref(0) in (f x); (λyint ref .x =int ref y)
∼= (f (ref 0)); (λyint ref .0) : int ref → bool

(3)

In contrast, in a setting in which references to reference names are allowed, the
above equivalence could be broken by the context given below.

let r = ref (ref 0) in let f = (λyint ref . r := y) in ([− ] !r)

Similarly, the two terms given next will be equivalent: even though x is passed
to f , the environment will be not be able to memorize it beyond the runtime of
f .

f : int ref → unit ⊢ letx = ref(0) in fx;x := 0; (λyunit.if !x then 0 else1)
∼= letx = ref(0) in fx; (λxunit.1) : unit → int

(4)

The restricted capability to remember reference names means that in some sce-
narios the precise identity of names will be immaterial, because the context is
not powerful enough to tell them apart. This underpins the following equiva-
lence.

f : int ref → unit ⊢ letx1 = ref (0) in
letx2 = ref (0) in ((fx1); (x2 := !x1);x2)

∼= let x = ref (0) in (fx);x : int ref
(5)

Although Reduced ML programs cannot keep track of all the names they have
encountered during the course of interaction with another program, at any given
execution point there is a subset of such names that a program has at its dis-
posal. In game semantics, using the notion of P-view, we can overapproximate
this set by one consisting of names that occur in the current P-view as well as
those that the program created itself. We call such names P-available. Intu-
itively, whenever a program returns a name, it will be P-available. A corre-
sponding condition inside our model will be called P-availability.

As a consequence, since a program cannot have access to reference names
that are not P-available, its immediate behaviour will be independent of the
associated values kept in the store, because the program is simply unable to read
them. This leads us to found our game model on justified sequences with partial
information about the store, restricted to P-available names. Note that this
form of representation also conveys the idea that the program might depend on
former (possibly outdated) values of currently unavailable references, recorded
when the references were still available.
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Unfortunately, P-availability and partiality of store alone do not yet suffice
to establish a definability1 result. As example (5) demonstrates, a Reduced ML
context may be unable to distinguish some occurrences of names introduced by
the environment. In game semantics, we can capture this oversight in concrete
terms: two (occurrences of) such names are indistinguishable to the program
if and only if they have never occurred within the same P-view. Consequently,
regardless of whether such occurrences are the same or not, the program’s be-
haviour should remain the same. We formalize this observation via a saturation
condition, called blindness, and show that any finitary strategy subject to all
the conditions discussed above is definable, i.e. is a denotation of a Reduced
ML term. This naturally leads to a fully abstract model via the usual intrinsic
quotient construction.

To obtain a more direct account of program equivalence we next examine
the structure of the quotient in more detail. Crucially, we observe that blind
strategies are determined uniquely by plays in which the environment provides
a fresh name each time the name cannot be related by the program to any
existing names. We call such plays strict. Then, by symmetrizing the model,
we eventually arrive at the notion of mutually strict complete protoplays, in
which:

• all questions are answered,

• both players only use names available to them,

• stores are restricted to mutually available names,

• whenever a name appears in a player’s view for the first time, it must be
fresh.

This leads to an explicit characterization of equivalence: terms of Reduced ML
are equivalent if and only if they induce the same mutually strict complete
protoplays. This also means that the finitary (compact) part of our model can
be presented effectively.

Related Work. The first steps in the semantic analysis of Reduced ML were
taken by Stark himself, who identified a matching categorical framework and ex-
amined some of its instances without a full abstraction result. Further progress
became possible with the arrival of game semantics [3, 9, 26]. In particular,
Abramsky and McCusker presented a fully abstract model for a closely related
language called RML [4], which is essentially Reduced ML extended with the
“bad-variable” constructor mkvar. Its presence is a consequence of adopting
Reynolds’s principle of modelling references as objects with read and write
methods [31]. Thus, mkvar allows one to define terms of reference type that
need not correspond to actual memory locations. Unfortunately, this affects the

1A definability result typically states that certain elements of the model are denotations
of terms, e.g., see Lemma 39.
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induced notion of program equivalence, so the full abstraction result of [4] does
not fully apply to Reduced ML. More precisely, their model may not validate
equivalences at types containing (negative) occurrences of int ref. Typical ex-
amples are equivalences between x := !x and () (the terminating command), or
between x := 1;x := 1 and x := 1. In the former case the terms are inequivalent
in RML, because x may be instantiated with a mkvar-object whose reading or
writing method diverges, or causes side effects. Similarly, in the latter case, an
assignment to a mkvar-object might trigger a side effect that effectively allows
one to count how many assignments took place.

The “bad-variable” phenomenon, also present in the call-by-name setting,
has inspired subsequent developments in game semantics. It turned out that,
in the call-by-name framework, it could be circumvented by employing suit-
ably crafted (pre)orders on plays [16, 20], but no result of this kind has been
reported for call-by-value. However, an alternative and general approach to
dealing with bad variables seems to have emerged in the form of nominal game
semantics [10, 1, 34]. Nominal game semantics advocates a departure from
Reynolds’s modelling rule and stipulates that reference types be modelled by
names rather than objects. Using this approach, Laird showed a full abstrac-
tion result for a call-by-value language λν! with storable names rather than
integers [10]. As mentioned above, λν! is more expressive than Reduced ML in
its ability to distinguish reference names and, consequently, the obvious adap-
tation of the model to Reduced ML results in a failure of full abstraction.

Modelling references as names leads to considering a particular style of games
where the side-effects become, to some extent, explicit. In particular, moves in
our model are attached with stores, comprising of pairs of names and values,
which comes in stark contrast to the traditional modelling of side effects in game
semantics [5, 2]. Note that this approach is not specific to nominal games and
has been previously followed also in non-nominal settings [27, 13, 22].

Research into ML-like languages has also produced fully abstract game mod-
els for more significant extensions of Reduced ML, notably languages with
higher-order references [2, 34, 24]. These do not extend Reduced ML con-
servatively. For example, the following two terms are equivalent in Reduced
ML

f : unit → unit ⊢ letx = ref (0) inλyunit.if !x then () else (x := 1; f())
∼= letx = ref (0) inλyunit.if !x then () else (f();x := 1) : unit

but there exists a context with general references, which can separate them:

let r = ref (λxunit.x) in let f = λyunit.(!r)() in (r := [− ]; (!r)()).

It seems possible to adapt the approach of [34] to Reduced ML. However, it
leans on quotienting in order to achieve full abstraction (information on local
state and store update is too explicit in the intensional model and leads to
substantial undesirable distinctions). Therefore, it does not lead to an explicit
characterization of program equivalence, which we obtain in the present paper.
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u,Γ ⊢ () : unit u,Γ ⊢ Ω : unit
i ∈ Z

u,Γ ⊢ i : int
l ∈ u

u,Γ ⊢ l : int ref

(x : θ) ∈ Γ
u,Γ ⊢ x : θ

u,Γ ⊢M1 : int u,Γ ⊢M2 : int
u,Γ ⊢M1 ⊕M2 : int

u,Γ ⊢M : int
u,Γ ⊢ refM : int ref

u,Γ ⊢M1 : int ref u,Γ ⊢M2 : int ref
u,Γ ⊢M1 =M2 : int

u,Γ ⊢M : int u,Γ ⊢ N1 : θ u,Γ ⊢ N2 : θ
u,Γ ⊢ ifM thenN1 elseN2 : θ

u,Γ ⊢M : int ref
u,Γ ⊢ !M : int

u,Γ ⊢M : int ref u,Γ ⊢ N : int
u,Γ ⊢M :=N : unit

u,Γ ⊢M : θ → θ′ u,Γ ⊢ N : θ
u,Γ ⊢MN : θ′

u,Γ ⊎ {x : θ} ⊢M : θ′

u,Γ ⊢ λxθ.M : θ → θ′

Figure 1: Syntax of Reduced ML. (⊎ stands for the disjoint union.)

2. Reduced ML

Reduced ML [33] is an idealised programming language combining higher-
order types and integer references in the style of ML. Formally, it is the call-by-
value λ-calculus over the ground types unit, int, int ref augmented with basic com-
mands (termination, divergence), primitives for integer arithmetic (constants,
zero-test, binary integer functions) and reference manipulation (locations, deref-
erencing, assignment, equality testing, memory allocation). The typing rules are
given in Figure 1, where L stands for a countable set of locations, u for a finite
subset of L, and ⊕ for binary integer functions (e.g. +, −, ∗, =). Their precise
choice is to a large extent immaterial: only the ability to compare with integer
constants is crucial.

Remark 1. Note that reference equality testing can actually be programmed [29]
by writing two different values to the corresponding locations and checking how
they were affected. For example, one can define eq : int ref → int ref → int as

λxint ref .λyint ref . let vx = ref !x in
let vy = ref !y in

x := 0; y := 1;
let b = (!x =!y) in (x := !vx; y := !vy; b)

In the above and in what follows, we write letx =M inN for the term (λxθ.N)M .
Where x does not occur in N , we write M ;N .

To define the operational semantics of Reduced ML, we introduce a notion
of store. It will simply be a function from a finite set of locations to Z. We
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V is canonical
s, V ⇓ s, V

M ⇓ 0 N2 ⇓ V
ifM thenN1 elseN2 ⇓ V

i 6= 0 M ⇓ i N1 ⇓ V
ifM thenN1 elseN2 ⇓ V

M1 ⇓ i1 M2 ⇓ i2
M1 ⊕M2 ⇓ i1 ⊕ i2

M ⇓ λx.M ′ N ⇓ V ′ M ′[V ′/x] ⇓ V
MN ⇓ V

s,M ⇓ s′, i l 6∈ dom(s′)
s, refM ⇓ s′(l 7→ i), l

s,M ⇓ s′, l
s, !M ⇓ s′, s′(l)

s,M ⇓ s′, l s′, N ⇓ s′′, i
s,M :=N ⇓ s′′(l 7→ i), ()

M1 ⇓ l1 M2 ⇓ l2 l1 = l2
M1 =M2 ⇓ 1

M1 ⇓ l1 M2 ⇓ l2 l1 6= l2
M1 =M2 ⇓ 0

Figure 2: Big-step operational semantics of Reduced ML

write s(l 7→ i) for the store obtained by updating s so that l is mapped to i (this
may extend the domain of s). Given a store s : {l1, · · · , ln} → Z and a term M
we say that the pair (s,M) is compatible if and only if all locations occurring
in M are from {l1, · · · , ln}. We say that a term is canonical if it is either (),
an integer constant, a location, a variable or a λ-abstraction. The big-step
reduction rules are given as judgements of the shape s,M ⇓ s′, V , where (s,M),
(s′, V ) are compatible, dom(s) ⊆ dom(s′) and V is canonical. We present them
in Figure 2, where we let l, l1, l2 range over locations. In line with the definition
of Standard ML [17], most rules take the form

M1 ⇓ V1 M2 ⇓ V2 · · · Mn ⇓ Vn
M ⇓ V

which is meant to abbreviate

s1,M1 ⇓ s2, V1 s2,M2 ⇓ s3, V2 · · · sn,Mn ⇓ sn+1, Vn
s1,M1 ⇓ sn+1, V

.

In particular, this means that the ordering of the hypotheses is significant.
Although the choice of different l’s in the rule for ref yields a degree of non-
determinism, reductions are unique up to choice of fresh locations (Theorem 5.4
in [33]).

We shall write Γ ⊢ M : θ if and only if ∅,Γ ⊢ M : θ can be derived using
the rules of Figure 1. Similarly, ⊢ M : θ is shorthand for ∅, ∅ ⊢ M : θ. Given
⊢M : unit we write M ⇓ if and only if ∅,M ⇓ s, () for some store s.

Definition 2. We say that the term-in-context Γ ⊢M1 : θ approximates Γ ⊢
M2 : θ (written Γ ⊢M1

⊏
∼M2) iff C[M1] ⇓ implies C[M2] ⇓ for any context C[−]

such that ⊢ C[M1], C[M2] : unit. Two terms-in-context are equivalent if one
approximates the other (written Γ ⊢M1

∼=M2).

Remark 3. The only difference between our definition of Reduced ML and
Stark’s is the presence of Ω, the divergent constant without a reduction rule.
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Although we introduce it at type unit only, divergence at other types can be
achieved by considering Ω;M , where M is a closed term of the desired type
(e.g. 0, ref 0, λxunit.0).

Thanks to non-termination, we can define ⊏
∼ and decompose reasoning about ∼=.

Also, the inclusion of Ω induces domain-theoretic structure and makes it possible
to study compact elements and their effective presentability. At the same time,
the presence of Ω gives rise to the same notion of equivalence between Ω-free
Reduced ML terms as in [33], because C[M ] ⇓, where M is Ω-free, is equivalent
to ∅, C′[M ] ⇓ s′, 0 where

C′[−] ≡ letx = ref 0 in (C[x := 1/Ω])[M ]; !x

and s′ is a state.

3. Game models

In this section we proceed to the construction of our game model. Let us fix
a countably infinite set A, the set of names, the elements of which we denote by
a, b, c and variants. From now on, we shall work under the assumption:

L = A

In nominal game semantics two participants play a game by exchanging moves
that might involve names. However, when employing such moves, we are not
interested in what exactly the names are, though we would like to know how they
relate to names that have already been in play. Hence, the objects of study are
rather the induced equivalence classes with respect to name-invariance. Since
we want all game-semantic notions and constructions to be compatible with
name-invariance, their obvious adaptations would repeatedly have to include
conditions that enforce closure under renamings. Fortunately, this overhead
can be dealt with robustly using the language of nominal set theory [6].

3.1. Nominal sets

Definition 4. Let us write Perm(A) for the group of finite permutations of
A. A nominal set X is a set |X | (usually written X) equipped with a group
action of Perm(A).2 Moreover, each x ∈ X must have finite support, that is,
there exists a finite set u ⊆ A such that, for all permutations π,

(∀a ∈ u. π(a) = a) =⇒ π · x = x .

2A group action of Perm(A) on X is a function · : Perm(A) ×X → X such that, for
all x ∈ X and π, π′ ∈ Perm(A), π · (π′ · x) = (π ◦ π′) · x and id · x = x, where id is the identity
permutation.
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Finite support is closed under intersection, and hence each element x of a
nominal set has a least support ν(x), which we call the support of x. Intu-
itively, ν(x) is the set of names “involved” in x. Accordingly, we say that a is
fresh for x if a /∈ ν(x).

Trivially, every set X can be seen as a nominal set by setting π · x = x for
all x ∈ X . On the other hand, A is a nominal set by taking π · a = π(a), for
each π and a. The set Pfin(A) of finite sets of names is also a nominal set, with
action π ·u = {π(a) | a ∈ u} for each permutation π and finite u ⊆ A. Moreover,
ν(u) = u. More interestingly, if X and Y are nominal sets then so are:

• their cartesian product X × Y , with permutations acting componentwise,
π · (x, y) = (π · x, π · y);

• their disjoint union X ⊎ Y , with permutations acting as in X or Y ;

• the set X∗ of finite sequences of elements of X , with permutations acting
elementwise, π · (x1 . . . xn) = (π · x1) · · · (π · xn).

For example, the set A
∗ of finite sequences of atoms is a nominal set with

π · (a1 . . . an) = (π · a1) . . . (π · an) = π(a1) . . . π(an)

for each permutation π and a1, · · · , an ∈ A. Moreover, ν(a1 . . . an) contains
precisely the names a1, · · · , an (modulo repetitions).

We call X ′ ⊆ X a nominal subset of X if X ′ is closed under permutations,
these acting as on X . Accordingly, we say that R ⊆ X×Y is a nominal relation
if R a nominal subset of X × Y . Concretely, this means that (x, y) ∈ R implies
(π ·x, π ·y) ∈ R, for all permutations π. A nominal function is a function which
is also a nominal relation. If f : X → Y is a nominal function then, for each
x ∈ X and permutation π, f(π ·x) = π ·f(x). As a consequence, ν(f(x)) ⊆ ν(x).

Finally, for each element x of a nominal set X , we can form its orbit

[x] = {π · x | π ∈ Perm(A)}

under the permutation action. Taking the orbit [x] of x can be seen as blurring
the specific choice of names within x while retaining its underlying structure.
Note that [x] ⊆ X . For example, for any sequence a1 . . . an ∈ A

∗, its orbit

[a1 . . . an] = {π · (a1 . . . an) | π ∈ Perm(A)}

contains all sequences of atoms a′1 . . . a
′
n such that, for all i, j ∈ {1, ..., n}, we

have a′i = a′j if, and only if, ai = aj . On the other hand, in the nominal set A×A

we can form just two orbits, namely [(a, b)] and [(a, a)], for some a 6= b ∈ A.
The former contains all pairs of distinct names, while the latter all pairs made
of the same name.

In game semantics a particular strengthening of the notion of support, called
strong support, has turned out to be necessary to guarantee correct behaviour
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under strategy composition.3 In particular, we say that X is a strong nominal

set if, for all x ∈ X and permutations π,

π · x = x =⇒ ∀a ∈ ν(x). π(a) = a .

For example, the nominal set A
∗ is strong, whereas Pfin(A) is not. Note that a

nominal subset of a strong nominal set is itself strong and, moreover, if X and
Y are strong nominal sets then so are X × Y , X ⊎ Y and X∗.

3.2. Nominal arenas

Our semantics involves games comprising a formal exchange of moves be-
tween two players: a Proponent, corresponding to the modelled term; and an
Opponent, corresponding to the computational environment of the term. The
moves are selected from (pre)arenas, whose construction follows the structure
of types. Arenas specify the set of available moves and the correlation between
different moves within a game. Next we present these notions in detail. They
are essentially the call-by-value arenas of Honda and Yoshida [8], cast inside the
theory of (strong) nominal sets.

Definition 5. An arena A = (MA, IA,⊢A, λA) is given by:

• a strong nominal set MA of moves,

• a nominal subset IA ⊆MA of initial moves,

• a nominal enabling relation ⊢A⊆MA × (MA \ IA),

• a nominal labelling function λA :MA → {O,P} × {Q,A},

satisfying, for each m,m′ ∈MA, the conditions:

• m ∈ IA =⇒ λA(m) = (P,A) ,

• m ⊢A m′ ∧ λQAA (m) = A =⇒ λQAA (m′) = Q ,

• m ⊢A m′ =⇒ λOPA (m) 6= λOPA (m′) .

The role of λA is to label moves as Opponent or Proponent moves and as
Questions or Answers. We write λOPA and λQAA for λA followed by a first and
second projection functions respectively. The simplest arena is 0 = (∅, ∅, ∅, ∅).
Other flat arenas are 1, Z and A, defined by

M1 = I1 = {∗} , MZ = IZ = Z , MA = IA = A ,

where by “flat” we mean that, in each case, their enabling relation is empty.4

Arenas can be seen as directed bipartite graphs, with nodes given by moves,

3See [35] for motivation and a detailed explanation of its significance. The same notion
was pinpointed by Schöpp [32], as describing nominal sets with an essentially simple action.

4Note that MA = IA implies that ⊢A is empty: by MA = IA all moves are P-moves and
enabling can only relate moves of different polarities.
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edges by the enabling relation, and in which the partition is defined by the
OP-polarities. These graphs are rooted at initial moves.

We shall make use of the following constructions on arenas. By ĪA we denote
MA \ IA, by λ̄A the OP -complement of λA, while ιA and ιB range over initial
moves in the respective arenas.

MA⊗B = (IA × IB) ⊎ IA ⊎ IB
IA⊗B = IA × IB
λA⊗B = [((ιA, ιB), PA), λA ↾ IA, λB ↾ IB]

⊢A⊗B = {((ιA, ιB),m) | ιA ⊢A m or ιB ⊢B m} ∪ (⊢A↾ IA
2
) ∪ (⊢B↾ IB

2
)

MA⇒B = {∗} ⊎MA ⊎MB

IA⇒B = {∗}
λA⇒B = [(∗, PA), (ιA, OQ), λ̄A ↾ IA, λB ]
⊢A⇒B = {(∗, ιA), (ιA, ιB)} ∪ ⊢A ∪ ⊢B

The above constructions can be more concisely described by the following graphs,

A⊗ B = (ιA, ιB)

A− B−

A⇒B = ∗
ιA

A− B

where we write A− for A with its initial moves removed.
The types of Reduced ML are interpreted to arenas in the following way.

JunitK = 1 , JintK = Z , Jint refK = A , Jθ1 → θ2K = Jθ1K ⇒ Jθ2K .

Moreover, each finite u ⊆ A, say u = {a1, · · · , an}, is mapped to:

JuK = (Mu, Iu, λu,⊢u) , Mu = Iu = [(a1, · · · , an)] .

Remark 6. In the above translation of types we can vividly see the difference
between the nominal approach to modelling references, largely formulated in
Pitts and Stark’s work on the ν-calculus [28], and the object-like approach of
Reynolds [31]. In the latter, references would be modelled as products of their
read and write methods:

Jref θK ∼= (1⇒ JθK) × (JθK ⇒ 1).

Here, on the other hand, all types Aθ are given distinct atomic representa-
tions. A positive aspect of the Reynolds’s interpretation is functoriality of the
ref -constructor. However, although semantically pleasing, this is not necessarily
meaningful from a programmer’s point of view: given closed terms M1 : ref θ1
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and M : θ1 → θ2 (and even M ′ : θ2 → θ1), one can canonically construct a
term M2 : ref θ2, but in doing so a fresh reference for M2 must be created (this
procedure then is not functorial as identities are not preserved). In general,
in programs one cannot convert references from one type to another, unless by
use of type casting. But the latter is quite different from requiring ref to be
functorial.

Although types are interpreted by arenas, the actual games are played be-
tween arenas, in structures called prearenas, which are defined in the same
way as arenas with the exception that initial moves are O-questions. For given
arenas A,B we can construct a prearena A→ B by

MA→B =MA ⊎MB λA→B = [(ιA, OQ) ∪ (λ̄A ↾ IA) , λB]

IA→B = IA ⊢A→B = {(ιA, ιB)}∪ ⊢A ∪ ⊢B .

Typing judgements u,Γ ⊢ θ, where Γ = {x1 : θ1, · · · , xn : θn}, will be inter-
preted by strategies for the prearena

JuK ⊗ Jθ1K ⊗ · · · ⊗ JθnK → JθK

(if n + |u| = 0 we take the left-hand side to be 1) which we shall denote by
Ju,Γ ⊢ θK, or just JΓ ⊢ θK if u = ∅.

3.3. Plays

Analogously to the definition of store in Section 2, in this section a store will
be a partial function Σ : A ⇀ Z such that dom(Σ) is finite.

Remark 7. Our game-semantic framework relies on moves equipped with stores.
This should be contrasted with models for languages with bad variables [4, 2],
which did not feature names and explicit store-related information. The incor-
poration of stores into plays is proving to be an effective technique for modelling
scenarios without bad variables [1, 10, 12, 34, 35].

A basic justified sequence in a prearena A is a finite sequence s of moves
of A satisfying the conditions:

• the first move of s must be initial,

• but all other moves m must be equipped with a pointer to an earlier
occurrence of some move m′ such that m′ ⊢A m (we then say that m′

justifies m; if m is an answer, we might also say that m answers m′).

A justified sequence in A is a basic justified sequence s in which each move
is, in addition, decorated with a store to yield a move-with-store, typically
denoted bymΣ . Given a justified sequence s, we write s for the underlying basic
justified sequence. It should be clear that, similarly to the set of finite sequences
of moves, the set of justified sequences can be viewed as a (not necessarily strong)
nominal set with permutations preserving the pointer structure, but acting on
moves as in A and on stores by permuting the domain.

11



Below we define the notions of O-view xsy and P-view psq of a justified
sequence, using o and p to range over O-moves and P-moves respectively. We
write s′ ⊑ s if s′ is a prefix of s and use ⊑even if s′ is of even length.

xǫy = ǫ pιq = ι
xs oΣy = xsy oΣ ps pΣq = psq pΣ

xs oΣt pΣ
′

y = xsy oΣpΣ
′

ps pΣt oΣ
′

q = psq pΣoΣ
′

A name in s is said to be introduced by player X (X ∈ {O,P}) if its first
occurrence in s is in (the support of) an X-move. Names introduced by X in s
will be referred to as X-names in s and denoted with X(s). We define the set
AvX(s) of X-available names after s by:

AvO(s) = O(s) ∪ ν(xsy) AvP(s) = P(s) ∪ ν(psq)

Definition 8. A justified sequence s is legal if it satisfies the following condi-
tions.

• No two adjacent moves belong to the same player (Alternation).

• The justifier of each answer is the most recent unanswered question (Well-
Bracketing).

• For all tmΣ ⊑ s, the justifier of m is in ptmΣq (Visibility).

• For all t ⊑ s, ν(t) = ν(t) (Frugality).

The set of legal justified sequences will be denoted by LA.

The first three conditions are standard in games for stateful computation
without higher-order store (which invalidates visibility) or control operators
(which break well-bracketing). Frugality stipulates that names cannot be
generated in the stores ‘from thin air’ but, rather, they must occur earlier in
the support of a move. Consequently, the support of a legal sequence is that of its
underlying basic sequence, and therefore LA is a strong nominal set. Note that
frugality can be equivalently expressed as: for all tmΣ ⊑ s, dom(Σ) ⊆ ν(tm).
Our model is based on plays where stores are even more restricted: only names
available to P are allowed in stores.

Definition 9. A legal sequence s is a play if it satisfies the following additional
conditions.

• For all s′pΣ ⊑even s and a ∈ A, if a ∈ ν(p) ∩ ν(s′) then a ∈ AvP(s
′)

(P-Availability).

• For all s′mΣ ⊑ s, dom(Σ) = AvP(s
′mΣ) (P-Storage).

The set of plays over prearena A will be denoted by PA.

12



Note that the two conditions are biased towards P. Moreover, P-availability can
be equivalently restated as: for all s′pΣ ⊑even s and a ∈ A, if a ∈ O(s′) then
a ∈ ν(ps′q). It is worth observing that, given s ∈ PA, we have AvP(s) = ν(psq).

Remark 10. Note that our definition of a play is founded on that of a basic
justified sequence, which underpins game-semantic frameworks in the spirit of
Hyland and Ong [9, 14]. Similarly, all of the conditions not referring to stores
(alternation, visibility, well-bracketing) are standard. Consequently, we will
be able to reuse numerous old results, which do not concern stores, such as
preservation of visibility under composition [14].

3.4. Strategies

Definition 11. A strategy σ on a prearena A is a set of even-length plays of
A satisfying:

• If soΣpΣ
′

∈ σ then s ∈ σ (Even-Prefix Closure).

• If s ∈ σ then, for all π ∈ Perm(A), π · s ∈ σ (Equivariance).

• If spΣ1

1 , spΣ2

2 ∈ σ then spΣ1

1 = π ·spΣ2

2 , some π ∈ Perm(A) (Determinacy).

We write σ : A.

We next show how strategies are composed. First, let us set γ to be an
endofunction on justified sequences which restricts any justified sequence to a
frugal one by removing from the stores the names violating frugality. Formally,

γ(ǫ) = ǫ , γ(tmΣ) = γ(t)mΣ′

where Σ′ = Σ ↾ ν(tm). Moreover, let γ′ be an analogous function enforcing
P-storage, i.e. γ′ removes O-names violating P-storage:

γ′(ǫ) = ǫ , γ′(tmΣ) = γ′(t)mΣ′

where Σ′ = Σ ↾ AvP(tm
Σ).

We now turn to defining a suitable notion of interaction between plays.
Given arenas A,B,C, we define the prearena A→ B → C by setting:

MA→B→C =MA→B ⊎MC λA→B→C = [λA→B [ιB 7→ PQ], λC ]

IA→B→C = IA ⊢A→B→C = ⊢A→B ∪ {(ιB, ιC)}∪ ⊢C

Let u be a justified sequence on A → B → C. We define u ↾ AB to be u in
which all C-moves are suppressed, along with associated pointers. u ↾ BC is
defined analogously. u ↾ AC is defined similarly with the caveat that, if there
was a pointer from a C-move to a B-move which in turn had a pointer to an
A-move, we add a pointer from the C-move to the A-move. Below we shall often
say that a move is an O- or a P-move in X meaning ownership in the associated
prearena (A→ B, B → C or A→ C).

13



Definition 12. A justified sequence u on A → B → C is an interaction

sequence on A,B,C if γ′(u ↾ AB) ∈ PA→B , γ
′(u ↾ BC) ∈ PB→C and the

following conditions are satisfied.

• P(u ↾ AB) ∩ P(u ↾ BC) = ∅;

• O(u ↾ AC) ∩ (P(u ↾ AB) ∪ P(u ↾ BC)) = ∅;

• for each u′ ⊑ u ending in mΣm′Σ′

and a ∈ dom(Σ′) if

– m′ is a P-move in AB and a /∈ AvP(u
′ ↾ AB),

– or m′ is a P-move in BC and a /∈ AvP(u
′ ↾ BC),

– or m′ is an O-move in AC and a /∈ AvP(u
′ ↾ AC),

then Σ(a) = Σ′(a);

• for all u′ ⊑ u ending in some mΣ ,

dom(Σ) = ν(pu′ ↾ ACq) ∪ P(u′ ↾ AB) ∪ P(u′ ↾ BC) .

We write Int(A,B,C) for the set of interaction sequences on A,B,C.

The former three conditions above come originally from Laird’s work [12],
and were also applied in [24]. The first two ensure that name-privacy is not bro-
ken under composition, while the third one ensures that players do not change
parts of the store inaccessible to them. The last condition is a version of P-
storage appropriate for interactions: the “generalised Proponent” in an inter-
action is the one playing all P-moves, while the available names introduced by
the “outside Opponent” are those in the AC P-view. Note that this condition
entails frugality for the sequence u.

We next show that interactions lead to a well-defined notion of composition.
In particular, we are interested in proving that projecting an ABC-interaction
sequence on AC yields a play in A → C. As observed in Remark 10, when
stores are omitted from moves, our plays fits into the standard pattern studied,
for example, in [14]. This will allow us to obtain the non-nominal properties
of plays in the standard way. Thus, it remains to show that P-availability is
preserved.

Given u ∈ Int(A,B,C) and mΣ in u, we say that m is a generalised P-move
in u if it is a P-move in either of u ↾ AB, u ↾ BC. Accordingly, we write P(u)
for P(u ↾ AB) ∪ P(u ↾ BC). Moreover, by u≤m we mean the initial segment of
u ending in mΣ (Σ is dropped from the notation for economy).

Lemma 13. For any u ∈ Int(A,B,C),

1. ν(u) = O(u ↾ AC) ⊎ P(u ↾ AB) ⊎ P(u ↾ BC) ,

2. O(u ↾ AC) ∩ ν(pγ(u ↾ AC)q) = O(u ↾ AC) ∩ ν(pu ↾ ACq) .
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Proof. For 1, by definition of legal interactions the three components have no
common elements. So take any a ∈ ν(u) which does not belong to P(u). Then,
a must be introduced in u at AC in some O-move, so a ∈ O(u ↾ AC).
For 2, we need only show the left-to-right inclusion. Let a ∈ LHS, so a /∈ P(u) by
second condition on interactions, and suppose it first appears in pγ(u ↾ A,C)q
in some mΣ , which is the result of applying γ to some mΣ′

∈ u. If a ∈ ν(m),
we are done. Otherwise, a ∈ dom(Σ′). By the last condition on interaction
sequences and a /∈ P(u) we obtain a ∈ ν(pu ↾ A,Cq).

Our next argument uses the following notion from [14]. Given u ∈ Int(A,B,C),
the core of u, written u, is defined by:

ιΣ = ιΣ

umΣ = umΣ if m is a generalised P-move

unΣ′u′mΣ = unΣ
′

mΣ if m is an O-move in AC justified by n

We can see that u ↾ AC = pu ↾ ACq. The following result is standard.

Lemma 14. Let u ∈ Int(A,B,C), X ∈ {AB,BC} and Y ∈ {AC}.

1. If u′mΣnΣ
′

⊑ u then:

• m is an O-move in X iff n is a P-move in X,

• m is a P-move in Y iff n is an O-move in Y .

2. If u = u′mΣ with m an O-move in X then pu ↾ Xq = pu ↾ Xq.

Proof. Proof of 1 is by induction on u′, using the switching conditions for plays
in A→ B and B → C, see e.g. [8]. Part 2 is part 3 of [14, Lemma 3.2.3].

Lemma 15. Suppose u ∈ Int(A,B,C). Then, for any name a ∈ O(u ↾ AC),

1. if a occurs in some generalised P-move p in u, then a occurs in an O-move
of pu<p ↾ ACq,

2. if a ∈ ν(u) then a ∈ ν(pu ↾ ACq).

Proof. For 1, we use induction on the length of u, base case trivial. By definition,
a ∈ O(u ↾ AC) implies a 6∈ P(u), so if a occurs in u ↾ AB or u ↾ BC then it
does so as an O-name. Suppose a ∈ ν(p), with p a P-move in component X
(X ∈ {AB,BC}). By a ∈ O(u ↾ X) and P-availability of γ′(u ↾ X), a occurs in
pu<p ↾ Xq in an O-move o.

• If o is in A or C, using the previous lemma we have pu<p ↾ Xq ↾ AC =
pu<p ↾ Xq ↾ AC 4 u<p ↾ AC = pu<p ↾ ACq, where 4 is the subsequence
relation.
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• Suppose o is in B. Then o is a P -move in X. By IH, a occurs in an
O-move o′ of pu<o ↾ ACq. Because o is in pu<p ↾ Xq, by the previous
lemma o must belong to u<p. Consequently, u<o ⊑ u<p. Hence, because
o′ appears in pu<o ↾ ACq, it must also occur in pu<p ↾ ACq.

For 2, let a ∈ ν(u) and let mΣ be the first element of u containing a. If
a ∈ ν(m) then if m is in AC we are done. Otherwise, m is a generalised P -
move. Then, by 1, a occurs in some O-move o in pu<m ↾ ACq and therefore
it occurs in pu<m ↾ ACq and, since m appears in u, in pu ↾ ACq. Otherwise,
a ∈ dom(Σ) and therefore, by definition and the fact that a ∈ O(u ↾ AC),
a ∈ ν(pu ↾ ACq).

Proposition 16. If u ∈ Int(A,B,C) then γ(u ↾ AC) ∈ PA→C .

Proof. Showing that u ↾ AC satisfies alternation, bracketing and visibility fol-
lows the same lines as [14]. Frugality of γ(u ↾ AC) is by definition of γ.
For P-availability, let u′pΣ ⊑ u with p a P -move in AC and a ∈ ν(p)∩O(u ↾ AC).
We need to show that a ∈ ν(pγ(u′ ↾ AC)q), i.e. that a ∈ ν(pu′ ↾ ACq) be-
cause of Lemma 13. So let p be a P -move in component X . We have that
a /∈ P(u ↾ X), so a ∈ O(u ↾ X). By P-availability in γ′(u ↾ X) we then have
that a ∈ ν(pu′ ↾ Xq) and therefore a ∈ ν(u′) by Lemma 14. If this happens
in AC then we are done. Otherwise, a appears in some generalised P -move in
u′ ↾ B and therefore we can obtain a ∈ ν(pu′ ↾ ACq) by applying Lemma 15.
The P -storage condition is preserved because, by definition, the domains of
stores in interaction sequences contain precisely the requisite O-names. All
necessary P -names are also present, as they must be P-names in one of the
interacting strategies.

Strategy composition can now be defined as follows.

Definition 17. For strategies σ : A→ B and τ : B → C we define:

σ;τ = {γ(u ↾ AC) | u ∈ Int(A,B,C), γ′(u ↾ AB) ∈ σ, γ′(u ↾ BC) ∈ τ}

We can see that σ; τ is a set of plays in A → C, by Proposition 16. In
order to show that is satisfies the conditions for being a strategy, we relate
our current framework to that of games with full store of [12].5 In contrast to
our more economical plays, the latter relies on plays s = mΣ1

1 · · ·mΣk

k in which
dom(Σi) = ν(s≤mi

), 1 ≤ i ≤ k, i.e. the store must contain exactly the names

introduced in the play thus far. We write PFA (F stands for “full store”) for the
set containing all such plays in the arena A, which we call full plays of A, and
σ :F A if σ is a strategy on A with respect to PFA , in which case we say σ is a
full strategy.

5The game model of [12] is fully abstract for a language similar to ours but where names
can (only) store other names. The games we have presented so far are a concise presentation
of those in [12], modified in the obvious way to accommodate integers in the store instead of
names.
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Given a play s ∈ PA, we can construct the corresponding set of full plays sF

by following the copy-cat phenomenon: P copies the values of all names that
have appeared in the play but are not available to him. Formally, ǫF = {ǫ} and:

(soΣ)
F
= {s′oΣ∪Σ′

| s′ ∈ sF , dom(Σ ∪Σ′) = ν(so)}

(spΣ)
F
= {s′pΣ∪Σ′

| s′ ∈ sF , dom(Σ ∪Σ′) = ν(sp), ∀a ∈ dom(Σ′). Σ′(a) = s′(a)}

where s′(a) is the value of a in the last store of s′.

Definition 18. For each set of playsX ⊆ PA, its corresponding set of full plays
is:

XF =
⋃

s∈X

sF

In particular, for each strategy σ we have σF = {s′ ∈ sF | s ∈ σ}.

The following lemma gives some simple properties of the translation.

Lemma 19. Let A be a prearena.

1. For all s ∈ PA and s′ ∈ sF , γ′(s′) = s; for all sets X ⊆ PA, γ
′(XF ) = X.

2. For all σ : A, σF satisfies even-prefix closure, equivariance and determi-
nacy for full plays.

Proof. Part 1 is straightforward. For 2, only determinacy presents some compli-

cation. So let soΣpΣ1

1 , soΣpΣ2

2 ∈ σF and therefore γ′(soΣpΣi

i ) = s′oΣ
′

p
Σ′

i

i ∈ σ,

for i = 1, 2. By determinacy of σ, there is π such that s′oΣ
′

p
Σ′

1

1 = π · (s′oΣ
′

p
Σ′

2

2 )
and in particular s′op1 = π · s′op2 and Σ′

1 = π ·Σ′
2. We claim that Σ1 = π ·Σ2,

Indeed, dom(Σ1) = ν(sop1) = ν(s′op1) = ν(π · (s′op2)) = dom(π · Σ2). More-
over, for all a ∈ AvP(so

ΣpΣ1

1 ), Σ1(a) = Σ′
1(a) = (π · Σ′

2)(a) = Σ′
2(π(a)) =

Σ2(π(a)) = (π · Σ2)(a). Finally, for all a ∈ ν(soΣ) \ AvP(so
Σ), by defini-

tion, Σ1(a) = Σ(a) = Σ2(a). Now, by strong support, s′o = π · s′o implies
soΣ = π · soΣ and therefore soΣpΣ1

1 = π · (soΣpΣ2

2 ), as required.

In the full-store framework, there is a corresponding notion of strategy com-
position, which we denote by ;F (see Appendix A). The next result relates the
two frameworks.

Lemma 20. Suppose σ : A→ B and τ : B → C. Then (σ; τ)F = σF ;F τ
F .

Proof. The proof uses interaction sequences and composition in the full-store
framework and is delegated to Appendix A.

We can now show the following.

Proposition 21. Strategy composition is well-defined and associative:

• If σ : A→ B and τ : B → C then σ; τ : A→ C.
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• If σ : A→ B, τ : B → C and υ : C → D then σ; (τ ; υ) = (σ; τ); υ.

Proof. By Proposition 16, σ; τ ⊆ PA→C . Moreover, even-prefix closure and
nominal determinacy follow from the definition of composition. For deter-
minacy, note that by the previous two lemmata we have σ; τ = γ′((σ; τ)F )

and (σ; τ)
F

= σF ;F τ
F , where the latter is a full strategy by [12]. Thus,

if spΣ1

1 , spΣ2

2 ∈ σ; τ and s′p
Σ′

1

1 , s′p
Σ′

2

2 are corresponding full plays in (σ; τ)
F

then, by determinacy of the latter, we have s′p
Σ′

1

1 = π · (s′p
Σ′

2

2 ), which implies
spΣ1

1 = π · (spΣ2

2 ), for some π.

Finally, σ; (τ ; υ) = γ′((σ; (τ ; υ))
F
) = γ′(σF ;F (τF ;F υ

F )) = γ′((σF ;F τ
F );F υ

F ) =

γ′(((σ; τ); υ)
F
) = (σ; τ); υ, where associativity of full strategies is proved in [12].

3.5. Blindness

Although the games we constructed thus far do capture Reduced ML, they
are over-expressive for it. In particular, even if strategies are not allowed to play
or change the values of O-names which do not appear in the current P-view, they
can still express knowledge of them by behaving differently when they encounter
them again in the play. For example, there is a strategy σ : 1 → (A ⇒ Z)
containing the following two plays,

s1 = ∗ ∗ a1
(a1,0) 0(a1,0) a1

(a1,0) 0(a1,0)

s2 = ∗ ∗ a1
(a1,0) 0(a1,0) a2

(a2,0) 1(a2,0)

O P O P O P

(6)

where a1 6= a2. In order to eliminate such behaviours, we need to make strategies
blind to names that are not currently available to them. In effect, this means
slightly reducing the level of history dependence of strategies towards behaviours
of purely functional character. The condition we propose next can be seen as a
very light version of innocence [9].

Given a non-empty justified sequence s, let us write s− for s without its
last element. The following definition aims to capture plays that differ up to
renamings applied to names that O introduces in the P-view.

Definition 22. Given a prearena A, s ∈ PA, a /∈ P(s) and an O-move o in s,

• we say that a is P-new at o in s if a ∈ ν(o) and a /∈ ν(ps≤oq
−);

• in such a case, for any b ∈ A, we say that a is renameable for b at o in

s provided b /∈ P(s) and, for all s′ ⊑ s, if o occurs in ps′q then b /∈ ν(ps′q);
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• under the assumptions above, we define the renaming (a b)o · s of s by
induction on the subsequences of s:6

(a b)o · ǫ = ǫ (a b)o · (tm
Σ) =

{
((a b)o · t) ((a b) ·mΣ) o ∈ ptmΣq

((a b)o · t)mΣ o /∈ ptmΣq

where (a b) is the permutation swapping a with b.

We write s
r
∼ s′ if s can be obtained from s′ through a sequence of renamings.

Observe that, if a is P-new at m in s, a need not be fresh for s<m (the
converse holds, though, as long as a ∈ ν(m)). This reflects the fact that Reduced
ML programs cannot recognize whether a specific name has already been used
in a play. A play s in which every a that is P-new at m in s is also fresh at s<m
will be called strict.

Example 23. Consider the following plays of the prearena A → (A ⇒ 1).

s1 = a1
(a1,0) ∗(a1,1) a2

(a1,2),(a2,3) ∗(a1,4),(a2,5) a3
(a1,6),(a3,7) ∗(a1,8),(a3,9)

s2 = a1
(a1,0) ∗(a1,1) a3

(a1,2),(a3,3) ∗(a1,4),(a3,5) a3
(a1,6),(a3,7) ∗(a1,8),(a3,9)

O P O P O P

Here a2 is P-new at the third move (also a2) in s1, a2 is renameable for a3 at
that move and (a2 a3)a2 · s1 = s2. Note also that (a3 a2)a3 · s2 = s1, where the
subscript a3 stands for the third move of s2, and that s1 is strict, whereas s2 is
not.

We next show that renamings are reversible, so
r
∼ is an equivalence relation.

Lemma 24. Let s be a play, and let a be renameable for b at o in s. Then, b
is renameable for a at (a b) · o in (a b)o · s, and (b a)(a b)·o · (a b)o · s = s .
If, moreover, a is renameable for b in s at o′ 6= o then (a b)o · (a b)o′ · s =
(a b)o′ · (a b)o · s .

Proof. Note first that the name b is an O-name in (a b)o · s, since it is not
a P -name in s and o is the first move where the swap of a and b is applied.
Moreover, a cannot be a P -name in (a b)o · s, since its first possible occurrence
in (a b)o · s must be in a move that hasn’t been changed by the renaming, and
which could therefore not see a in its P -view. By P-availability, that occurrence
would be an O-move.
We have that b ∈ ν((a b) · o). Moreover, a, b /∈ ν(ps≤oq

−) and therefore b /∈
ν(p((a b)o · s)≤(a b)·oq

−) ; hence b is P -new at (a b) · o. Now, a is not present in

6We write o ∈ s to mean that the distinguished occurrence of o is present in s.
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the moves that see (a b)·o in their P-view and neither in p((a b)o · s)≤(a b)·oq
− =

ps≤oq
−. Thus, we can apply (b a)(a b)·o to (a b)o · s. The renaming restores a

in the places it had been replaced before by b, so we get back s.
Now consider o′. Since a is P -new both at o and o′ in s we have that o /∈ ps≤o′q,
which implies a is P -new at o′ in (a b)o · s. Moreover, the moves in s that see o′

in their P-view are not affected by (a b)o, since otherwise we would have a move
in s that sees both o and o′ in its P-view, which is not possible. Hence, (a b)o′
is an appropriate renaming for (a b)o · s, and similarly (a b)o is appropriate for
(a b)o′ · s. Since these renamings cannot both affect the same move in s, their
order of application does not matter.

The previous lemma allows us to define concurrent renamings, which will
turn out to be useful below. If K = {o1, ..., ok} is a set of moves of s such that
a is renameable for b in s at each oi, take:

(a b)K · s = (a b)o1 · · · · (a b)ok · s

Observe that for any play s there exists a strict play s′ (determined uniquely

up to name-invariance) such that s
r
∼ s′. We write s̃ for [s′].

Definition 25. A strategy σ : A is blind if s ∈ σ and s
r
∼ s′ imply s′ ∈ σ.

Example 26. We can now see that the plays we examined in (6) cannot both
be included in a blind strategy. For suppose s1, s2 ∈ σ. If σ satisfies blindness
then:

s′2 = (a1 a2)a2 · s2 = ∗ ∗ a
(a1,0)
1 0(a1,0)a

(a1,0)
1 1(a1,0) ∈ σ

But now observe that s1, s
′
2 ∈ σ violates determinacy of σ.

We next show that blindness is preserved under composition. Note first that
we can define P -newness and renamings for interaction sequences as follows. A
name a is P -new in u at o if o is an O-move in either of u ↾ AB, u ↾ BC, and:

a ∈ ν(o) ∧ a /∈ P(u) ∧ a /∈ ν(pu≤oq
−)

where recall that P(u) = P(u ↾ AB) ∪ P(u ↾ BC) . In such a case, (a b)o · u is
defined accordingly, for any b /∈ P(u) ∪ ν(pu≤oq−) such that:

∀u′ ⊑ u. o ∈ pu′q =⇒ b /∈ ν(pu′q)

Lemma 27. Let u ∈ Int(A,B,C) and let a be P -new at o in u. Pick a compo-
nentX ∈ {AB,BC} and set K = {o′ ∈ u | o ∈ pu≤o′q, a is P -new at o′ in γ′(u ↾ X)}.

1. For any move m in u ↾ X, (∃o′ ∈ K. o′ ∈ pu≤m ↾ Xq) =⇒ o ∈ pu≤mq .

2. For any m in u ↾ X with a ∈ ν(pu≤m ↾ Xq),
o ∈ pu≤mq =⇒ ∃o′ ∈ K. o′ ∈ pu≤m ↾ Xq .

3. For any name b renameable for a in u at o,
γ′(((a b)o · u) ↾ X) = (a b)K · γ′(u ↾ X) .
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Proof. 1 is straightforward: if there exists o′ such that o′ ∈ pu≤m ↾ Xq then
o′ ∈ pu≤mq (Lemma 15) and, since o ∈ pu≤o′q, we obtain o ∈ pu≤mq.
For 2, consider such a move m and let o′ be the first O-move in pγ′(u≤m ↾ X)q
containing a. Such a move necessarily exists because of P-availability and the
fact that a ∈ ν(u ↾ X) \ P(u) implies a ∈ O(γ′(u ↾ X)). We also have that o′ ∈
pu≤mq. Moreover, o ∈ pu≤mq by hypothesis, and therefore either o ∈ pu≤o′q
or o′ ∈ pu≤oq. Since a is P -new in u at o, it is the case that o ∈ pu≤o′q, and
hence o′ ∈ K.
Now, 1 and the fact that b is appropriate for the renaming in u imply that b is
appropriate for each of the renamings in γ′(u ↾ X): for all o′ ∈ K and u′ ⊑ u,

o′ ∈ γ′(pu′ ↾ Xq) =⇒ o′ ∈ pu′q =⇒ o ∈ pu′q

=⇒ b /∈ ν(pu′q) =⇒ b /∈ ν(γ′(pu′ ↾ Xq)) .

So take some mΣ ∈ u ↾ X with a ∈ ν(mΣ). If a /∈ ν(pu≤m ↾ Xq) then, because

of γ′, in both the LHS and RHS of 3 we obtainmΣ\(a,Σ(a)). If a ∈ ν(pu≤m ↾ Xq)

then mΣ is not affected (wrt a and b) by γ′ in both sides, and by 2 we have
that mΣ is renamed in the LHS iff it is in the RHS, as required.

Proposition 28. If σ : A→ B, τ : B → C are blind strategies then so is σ; τ .

Proof. Let u ∈ Int(A,B,C) with γ′(u ↾ AB) ∈ σ and γ′(u ↾ BC) ∈ τ , and let b
be renameable for a at o in s = γ(u ↾ AC). u can be chosen in such a way that
b /∈ ν(u) \ ν(s). We need to show that (a b)o · s ∈ σ; τ .
We claim that b is renameable for a at o in u. Indeed, a ∈ O(u ↾ AC) implies
a /∈ P(u) ; we have a ∈ ν(o) ; and a ∈ O(u ↾ AC), a /∈ ν(pγ(u≤o ↾ AC)q

−) imply
a /∈ ν(pu≤oq

−) by Lemma 15. Hence, a is P -new in u at o. If b ∈ P(u) then,
since b /∈ ν(u) \ ν(s), we have b ∈ ν(s) and in fact b ∈ P(s), which contradicts
renameability in s. Moreover, for each u′ ⊑ u with o ∈ pu′q, we have o ∈ ps′q
and therefore b /∈ ν(ps′q) , where s′ = γ(u′ ↾ AC). We need to show b /∈ ν(pu′q).
If b ∈ ν(s′) then we must have b ∈ O(u′ ↾ AC), so b /∈ ν(pu′q) by Lemma 15.
Note that b ∈ ν(u′) \ ν(s′) is not possible as it would imply b ∈ P(u). Thus, b
is appropriate for renaming in u.
Hence, it suffices to show that (a b)o · γ(u ↾ AC) = γ(((a b)o · u) ↾ AC) and
((a b)o · u) ↾ AB ∈ σ, ((a b)o · u) ↾ BC ∈ τ . The former is straightforward.
From the latter two conditions we show the case of σ. By the previous lemma
we have that

γ′(((a b)o · u) ↾ AB) = (a b)K · γ′(u ↾ AB) ,

whereK contains moves o′ such that a is P -new at o′ in γ′(u ↾ AB). Hence, since
σ is blind and γ′(u ↾ AB) ∈ σ, we have (a b)K ·γ′(u ↾ AB) ∈ σ, as required.

Since the identity strategy is blind and blind strategies compose we obtain
a category G of arenas and blind strategies. Observe that blind strategies
are uniquely determined by the underlying strict plays via renamings, i.e. two
blind strategies are equal if and only if they contain the same strict plays.
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4. Soundness

Henceforth, when writing σ : A we shall mean a blind strategy on A. Fol-
lowing [12, 1], we show that G is equivalent to the Klesli category of another
category G′ equipped with a strong monad T .

Definition 29. Let σ : A. We say that σ is single-threaded if:

• for all ιΣ ∈ PA there is ιΣpΣ ∈ σ where p is an answer;

• for all ιΣpΣs ∈ σ,

– for all Σ′ with dom(Σ′) = dom(Σ), we have ιΣ
′

pΣ
′

s ∈ σ,

– there is at most one move in s justified by p.

Thus, a strategy σ is single-threaded if: it immediately answers every initial
question without altering the store; its behaviour is independent of the values in
the initial store; and it only contains plays consisting of one thread. The latter
is the call-by-value adaptation of the standard notion of thread of [14, 7]. In
particular, a thread of a play s is a subsequence s′ of s comprising all moves
of s hereditarily justified by the same threader move. A move in s is called a
threader move if it is justified by the answer to the initial move. All this is
formalised below.

We call a play s ∈ PA total if |s| > 1 implies that s is of the form ιΣpΣ
′

s′

with p an answer move. Let s ∈ PA be a total play with |s| > 2. We define its
threader move, written thrr(s), by:

thrr(s) = m ⇐⇒ psq = ι pm s′ for some ι, p.

For m ∈ s, we also write thrr(m) for thrr(s≤m), where s is understood from the
context. The thread of s, written ⌈s⌉, is the subsequence of s containing the first
two moves of s and all moves-with-store mΣ of s such that thrr(m) = thrr(s).
Put otherwise:

⌈ιΣpΣ
′

s′⌉ = max{ιΣpΣ
′

s′′ 4 ιΣpΣ
′

s′ | ∀m ∈ s′′. thrr(m) = thrr(ιΣpΣ
′

s′)}

where 4 is the subsequence relation, and max means of maximum length. We
extend the above to all total sequences by setting ⌈s⌉ = s whenever |s| ≤ 2. Note
that, for all even-length s′pΣ with length greater than 2, thrr(s′pΣ) = thrr(s′).
Therefore, ⌈s′pΣ⌉ = ⌈s′⌉pΣ for all total sequences s′pΣ of even length.

Observe that, for total plays, psq = p⌈s⌉q. Thus, for each total play s ending
in a P-move p, P-availability implies that ν(p) cannot contain any name a ∈ O(s)
that is not already present in ⌈s⌉. We next introduce a notion of play which
restricts even further the names that can appear in P-moves by stipulating that
all names which are freshly introduced by a P-move in a thread must be fresh
for the whole play.

Definition 30. For each single-threaded strategy σ : A, we define:

σ† = {s ∈ PA | s total, ∀s′pΣ ⊑ s. ⌈s′pΣ⌉ ∈ σ, ν(p) ∩ ν(s′) ⊆ ν(⌈s′⌉)}
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Note that the last condition above is equivalent to saying that names intro-
duced by P in different threads are always distinct. That is, the condition

φ(s) ≡ s total, ∀s′ ⊑even s. ⌈s′⌉ ∈ σ, (thrr(s′) 6= thrr(s) =⇒ P(s′) ∩ P(s) = ∅)

gives σ† = {s ∈ PA | φ(s)}.
Following [12], we can show that σ† is a strategy. Moreover, we can de-

fine a lluf subcategory G′ of G containing only single-threaded strategies, with
composition ;′ expressed by:

σ;′ τ = σ†; τ

The identity in G′ is given by idA′ = {⌈s⌉ | s ∈ idA}.
We define the following lifting functor T : G′ → G′. On arenas, we have:

MTA = {∗1, ∗2}+MA ITA = {∗1}

λTA = [{(∗1, PA), (∗2, OQ)}, λA] ⊢TA = {(∗1, ∗2), (∗2, ιA)}∪ ⊢A

whereas for each σ : A→ B we set:7

Tσ : TA→ TB = {ǫ, ∗A1 ∗
B
1 } ∪ {∗A1 ∗B1 ∗B2 ∗A2 s ∈ PTA→TB | ∀ιA ∈ s. γ′(s ↾ ιA) ∈ σ,

∀ι′A 6= ιA ∈ s. P(s ↾ ιA) ∩ P(s ↾ ι′A) = ∅}

where s does not contain ∗A2 or ∗B2 , and its restriction to an occurrence ιA is
given by:

s ↾ ιA = max{s′ 4 s | ∀m ∈ s′. ιA ∈ ps≤mq}

We can now show the following.

Lemma 31. The category G′ has finite products given by ⊗ and the obvious
projections, and unit 1. Moreover, T is a strong monad such that G′ has T -
exponentials, that is, for all A,B,C there is a bijection ΛT : G′(A ⊗ B, TC) ∼=
G′(A,B⇒ C) natural in A,C.

Proof. Our development of single-threaded strategies followed closely [12], and
thus the same arguments as loc. cit. apply. Our additional claim, that T is a
strong monad, is a standard result for the lifting functor (cf. [35]).

The above is to say that G′ is λc-model [18], which gives a canonical inter-
pretation of the call-by-value λ-calculus in the associated Kleisli category. The
latter is equivalent to the category G, by the obvious bijection

Φ : G(A,B) ∼= G′(A, TB)

which adds/removes the two opening moves of TB from plays. Let us write the
strong monad T in full as T = (T, η, µ, st), and let ψ be the natural transfor-
mation:

ψA,B : TA⊗TB
∼=
−→ TB⊗TA

st
−→ T (TB⊗A)

T∼=
−−→ T (A⊗TB)

T (st)
−−−→ TT (A⊗B)

µ
−→ T (A⊗B)

7here by ιA 6= ι′
A

we mean that the specific occurrences of ιA and ι′
A

inside s are distinct.
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For each σ : A → B, τ : A → C and φ : A ⊗ B → C (in G), we define the
following strategies.

〈|σ, τ〉 : A→ B ⊗ C = Φ−1
(
A

〈Φ(σ),Φ(τ)〉
−−−−−−−→ TB ⊗ TC

ψ
−→ T (B ⊗ C)

)

Λ(φ) : A→ B⇒ C = (ΛT (Φ(φ)))†

evA,B : (A⇒ B)⊗A→ B = Φ−1
(
(A⇒B)⊗A

ΛT −1(id′A⇒B)
−−−−−−−−−→ TB

)

Moreover, G contains coproducts. For arenas A,B, we define A+B by:

MA+B =MA⊎MB , IA+B = IA∪IB , λA+B = [λA, λB] , ⊢A+B = ⊢A∪ ⊢B .

For each σ : A → C and τ : B → C, [σ, τ ] : A + B → C is given by σ ∪ τ
(modulo indexing of moves in the disjoint union MA ⊎MB).

To interpret the remaining constructs of Reduced ML in G, we follow Stark
by showing the existence of special morphisms, as described in Chapter 5 of [33]
and adjusted in Appendix B to accommodate Ω. We list those related to refer-
ence manipulation below (as morphisms in G rather than in G′

T ).

get : A → Z = {ǫ} ∪ {a(a,i)i(a,i) | a ∈ A}

set : A ⊗ Z → 1 = {ǫ} ∪ {(a, i)(a,i
′) ∗(a,i) | a ∈ A}

new : 1 → A = {ǫ} ∪ {∗ a(a,0) | a ∈ A}

As a consequence, we conclude that G is a model of Reduced ML.8 This lets
us interpret any term-in-context u,Γ ⊢ M : θ with a strategy Ju,Γ ⊢ M : θK :
Ju,Γ ⊢ θK, denoted also as JMK : Ju,Γ ⊢ θK. The interpretation is given explicitly
below. Suppose that |u| = n and Γ = {x1 : θ1, · · · , xk : θk}. We write Ju,ΓK for
the arena JuK ⊗ Jθ1K ⊗ · · · ⊗ JθkK.

• Ju,Γ ⊢ () : unitK = Ju,ΓK
t
−→ 1 , where t = {ǫ, (ā, ιΓ)∗} .

• Ju,Γ ⊢ Ω : unitK = Ju,ΓK
⊥
−→ 1 , where ⊥ = {ǫ} .

• Ju,Γ ⊢ i : intK = Ju,ΓK
t
−→ 1

i
−→ Z , where i = {ǫ, ∗ i} .

• Ju,Γ ⊢ xj : θjK = Ju,ΓK
πn+j

−−−→ JθjK .

• Ju,Γ ⊢ M1 ⊕M2 : intK = Ju,ΓK
〈JM1K,JM2K〉
−−−−−−−−→ Z ⊗ Z

σ⊕

−−→ Z , where σ⊕ =
{ǫ, (i1, i2) (i1 ⊕ i2)} .

• Ju,Γ ⊢ ifM thenN1 elseN2 : θK = Ju,ΓK
〈|JMK,id〉
−−−−−→ Z⊗ Ju,ΓK

if⊗id
−−−→ (1+1)⊗

Ju,ΓK
∼=
−→ Ju,ΓK + Ju,ΓK

[JN1K,JN2K]
−−−−−−−→ JθK , where if = {ǫ, i ∗l, 0 ∗r | i 6= 0} .

8Strictly speaking, following [33, Chapter 5], the categorical conditions of Appendix B are
satisfied by the category G′ and yield a model of Reduced ML in the Kleisli category G′

T
. Here

instead we express the model directly in G, using the bijection: G(A,B) ∼= G′(A,TB).
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• Ju,Γ ⊢ refM : int refK = Ju,ΓK
〈|t;new,JMK〉
−−−−−−−−→ A ⊗ Z

〈|set,π1〉
−−−−−→ 1⊗ A

∼=
−→ A .

• Ju,Γ ⊢ !M : intK = Ju,ΓK
JMK
−−−→ A

get
−−→ Z .

• Ju,Γ ⊢M := N : unitK = Ju,ΓK
〈|JMK,JNK〉
−−−−−−−→ A ⊗ Z

set
−−→ 1 .

• Ju,Γ ⊢MN : θ′K = Ju,ΓK
〈|JMK,JNK〉
−−−−−−−→ (JθK ⇒ Jθ′K)⊗ JθK

ev
−→ Jθ′K .

• Ju,Γ ⊢ λx.M : θ → θ′K = Λ(JMK : Ju,ΓK ⊗ JθK → Jθ′K) .

We have used two isomorphisms above: (1 + 1) ⊗ Ju,ΓK
∼=
−→ Ju,ΓK + Ju,ΓK and

1 ⊗ A
∼=
−→ A. In both cases, the strategies perform copying between instances

of the same arena (Ju,ΓK and A respectively). In the first case, the initial
move (containing a move from 1 + 1) will determine which copy of Ju,ΓK from
Ju,ΓK + Ju,ΓK will be active.

Example 32. The two terms from example (5) in the Introduction are inter-
preted (in G) by the strategies given respectively (through even-prefix closure
and orbiting) by the plays below.

s1 = ∗ a1
(a1,0) ∗(a1,k) a2

(a1,k),(a2,k)

s2 = ∗ a(a,0) ∗(a,k) a(a,k)

The fact that the interpretations are different means that our model is not
complete yet. On the other hand, by showing that the model conforms to a
slightly modified variant of Stark’s framework (Appendix B), one can conclude
Computational Soundness and Adequacy [33, Proposition 5.12].

Proposition 33. For all terms u,Γ ⊢M,N : θ, JMK = JNK =⇒ M ∼= N .

5. Definability

Recall that typing judgements u, x1 : θ1, · · · , xk : θk ⊢M : θ are interpreted
as strategies for the prearena JuK ⊗ Jθ1K ⊗ · · · ⊗ JθnK → JθK. We shall call such
prearenas denotable.

Our definability argument will rely on the fact that atoms occurring in moves
from denotable prearenas can be ordered (for instance, from left to right in moves
comprising pairs of submoves). More generally, the set of names occurring in a
play of a denotable arena can be (linearly) ordered according to their order of
appearance and, if they were introduced in the same move, using the ordering
associated with that move. We shall refer to that ordering as canonical. Note
in particular that the canonical ordering is a nominal relation. That is, if we
denote by <s the canonical ordering on a play s then, for all names a, b and
permutations π, a <s b ⇐⇒ π(a) <π·s π(b).

Definition 34. Let A be a denotable prearena.
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• σ : A is finitary if the set {[s] | s ∈ σ} is finite.

• σ : A is strongly deterministic if P(s) = ∅ for all s ∈ σ.

• A strongly deterministic σ : A is innocent if spΣ, t ∈ σ, toT ∈ PA and
psq = ptoT q imply toTpΣ∈ σ. An innocent strategy σ is finitarily innocent
if vf(σ) = {psq | s ∈ σ} is finitary, that is, the set {[t] | t ∈ vf(σ)} is finite.

Remark 35. Note that innocence implies blindness.

Using two factorizations we will show that any finitary blind strategy in a deno-
table prearena is definable. The first one eliminates violations of strong determi-
nacy with the help of new (corresponding to ref 0). The second one factors out
non-innocence (also using new). Finally, we prove a direct definability result
for finitarily innocent strongly deterministic strategies.

Lemma 36. Let A = C → D be a denotable prearena and σ : A a finitary
strategy. There exists k ∈ N and a finitary strongly deterministic strategy σ :
A
k ⊗ C → D such that (newk ⊗ idC);σ = σ. If σ is blind, then so is σ.

Proof. Because σ is finitary, there exists a bound on the number of P-names
in any play, say, k. Given a play s, let P(s) be the list containing elements
of P(s) in canonical order. Further, given s = mΣ1

1 mΣ2

2 · · ·mΣl

l ∈ PC→D and

s′ = (ā, q1, · · · , qk,m1)
Σ′

1m
Σ′

2

2 · · ·m
Σ′

l

l ∈ PAk⊗C→D, let us write s△s
′ if

• P(s) = a1 · · · a|P(s)|;

• Σ′
i = Σi ∪ {(a, 0) | a ∈ dom(Σ′

i) \ dom(Σi)} for any 1 ≤ i ≤ l.

Then one can take σ to be {s′ ∈ PAk⊗C→D | ∃s ∈ σ.(s△s′)}. Preservation of
blindness and finitariness follow immediately from the construction.

Next we prove that finitary strongly deterministic blind strategies can be
factored through finitarily innocent ones.

Lemma 37. Let A = C → D be a denotable prearena and σ : C → D a finitary
strongly deterministic blind strategy. There exists a finitarily innocent strongly
deterministic strategy σ̇ : A ⊗ C → D such that (new ⊗ idC); σ̇ = σ.

The standard way [5] of proving such results is to store the history of play
using the additional A component. This is impossible in our case, because
atoms cannot be stored. However, given a play s, we can try to work with a
numerical representation of s, where atoms are represented by integers denoting
their position in the canonical ordering associated with a play. Let us write
#(s) for such an encoding. In particular we have #(s1) = #(s2) iff [s1] = [s2].

Unfortunately, this is not yet sufficient for a successful factorization through
an innocent strategy because, given #(s) and psoΣq, it will in general be im-
possible to extract soΣ (or [soΣ ]) due to the fact that o might contain O-names
occurring in s, but not in psoΣq. Note, however, that given #(s) and psoΣq we
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can still determine s̃oΣ thanks to the absence of P-names. Furthermore, since
σ is blind and strongly deterministic (in particular plays satisfy P-availability),
we can uniquely identify pΣ

′

such that soΣpΣ
′

∈ σ (though not necessarily the

whole of soΣpΣ
′

), by referring to s̃oΣ and σ.9 Analogously, we can also deduce

s̃oΣpΣ′ . Thus, the familiar factorization technique can be employed provided
that, instead of #(s), the argument will rely on #(s̃), where #(s̃) stands for

#(s′) and s′ is a strict play such that s′
r
∼ s (by previous remarks the code is

independent of the exact choice of s′).

Proof. Let us assume that #(ǫ) = 0. Given s = mΣ1

1 mΣ2

2 · · ·mΣk

k ∈ σ and

a 6∈ ν(s), let us define ṡa ∈ PA⊗C→D to be (a,m1)
Σ′

1mΣ2

2 · · ·m
Σ′

k

k , where

Σ′
i =

{
Σi ∪ {(a,#(s̃<mi

))} i is odd,
Σi ∪ {(a,#(s̃≤mi

))} i is even.

Observe that σ′ = {ṡa | s ∈ σ, a 6∈ ν(s)} is a finitary strongly deterministic
blind strategy on A ⊗ C → D such that (new ⊗ idC);σ

′ = σ. Next we show

that the P-views of σ′ define an innocent strategy: t1o
Σ1

1 p
Σ′

1

1 , t2o
Σ2

2 p
Σ′

2

2 ∈ σ′ and

pt1o
Σ1

1 q = pt2o
Σ2

2 q imply pt1o
Σ1

1 p
Σ′

1

1 q = pt2o
Σ2

2 p
Σ′

2

2 q.
For a start, note that pt1o

Σ1

1 q = pt2o
Σ2

2 q implies o1 = o2 and Σ1 = Σ2, so we
shall simply write o and Σ to refer to them. Because Σ1, Σ2 contain the codes
of t̃1 and t̃2 respectively, we have t̃1 = t̃2. By pt1o

Σq = pt2o
Σq, we can also

conclude that t̃1oΣ = t̃2oΣ . Consequently, we also have
˜
t1oΣp

Σ′
1

1 =
˜
t2oΣp

Σ′
1

1 ,
because, by strong determinacy, only O-names from pt1o

Σq = pt2o
Σq can occur

in p1. Thus t1o
Σp

Σ′
1

1
r
∼ t2o

Σp
Σ′

1

1 . By blindness of σ′, t2o
Σp

Σ′
1

1 ∈ σ′. Because σ′

is strongly deterministic and t2o
Sp

Σ′
2

2 ∈ σ′ we have t2o
Sp

Σ′
1

1 = t2o
Σp

Σ′
2

2 . Hence

pt1o
Σp

Σ′
1

1 q = pt2o
Σp

Σ′
1

1 q = pt2o
Σp

Σ′
2

2 q.
To satisfy the Lemma we can now take σ̇ to be the smallest innocent strategy

containing σ′. Note that (new ⊗ idC); σ̇ = σ, as the interaction of σ′ and new
involves exclusively plays from σ̇.

Remark 38. The argument showing that σ′ can be used to generate an inno-
cent strategy would collapse if its definition relied on #(s≤mi

) and #(s<mi
)

respectively: the problematic plays would be those in which O reuses a name
that has disappeared from P-view.

Lemma 39. Let σ : A be a finitarily innocent strategy on a denotable prearena.
There exists a Reduced ML term u, x1 : θ1, · · · , xk : θk ⊢Mσ : θ such that

Ju, x1 : θ1, · · · , xk : θk ⊢Mσ : θK = σ.

9Recall that blind strategies are generated by their strict plays. Moreover, recall the

notation s̃ = [s′], where s′ a strict play such that s
r
∼ s′.
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Proof. We reason by induction on the size of the longest play in σ.
If σ = {ǫ}, we can take Mσ ≡ Ωθ (see Remark 3). Otherwise suppose

(ā, q1, · · · , qk)ΣOpΣP ∈ σ, where qi ∈ {∗} ∪ A ∪ Z. Note that, because σ is fini-
tarily innocent, the number of nominal equivalence classes capturing the above
plays is finite and each is determined by the values of qi (where qi ∈ Z), by which
names in (ā, q1, · · · , qk) are different/the same and by the values stored in ΣO.
Observe that each possible such scenario can be identified using =, ! and con-
stants and, using nested conditionals, one can construct a conditional statement
on x1, · · · , xk in which each but one branch corresponds to (ā, q1, · · · , qk)ΣO

such that (ā, q1, · · · , qk)ΣO is extendable to a play from σ and the last branch
is reached in all other scenarios. We shall place Ωθ in that branch, but in the
other cases we are going to construct special termsM(ā,q1,··· ,qk)ΣO (to be defined
soon) which are to be placed in the corresponding branches.

Given a store Σ = {(bi, vi) | 1 ≤ i ≤ j}, let Σ ≡ (b̂1 := v1); · · · ; (b̂j := vj),

where, for each name b, b̂ is the leftmost element of ā, x1, · · · , xk such that the
corresponding element of ā, q1, · · · , qk is b. We write Γ for x1 : θ1, · · · , xk : θk.

1. Suppose p is an answer. Then p must be an initial move of JθK.

• If θ is a ground type, we set

M(ā,q1,··· ,qk)ΣO ≡





ΣP ; () θ ≡ unit;
ΣP ; i θ ≡ int, p = i;
ΣP ;xi θ ≡ int ref, p = qi.

• If θ ≡ θ′ → θ′′ then p = ∗. Let A = Ju, θ1, · · · , θk, θ′ ⊢ θ′′K. Consider the
finitarily innocent strategy σ′ : A defined by: for all (ā, q1, · · · , qk,m)Σs ∈
PA,

(ā, q1, · · · , qk,m)Σs ∈ vf(σ′) ⇐⇒ (ā, q1, · · · , qk)
ΣOpΣPmΣs ∈ vf(σ).

By IH we obtain a term u,Γ, x : θ′ ⊢Mσ′ : θ′′. We then take

M(ā,q1,··· ,qk)ΣO ≡ ΣP ; (λx
θ′ .Mσ′).

2. Suppose p is a question. Then p is a move in JθiK and θi ≡ θ′ → θ′′.

• If θ′ is a ground type, then p ∈ {∗} ∪ Z ∪ A. Let A = Ju, θ1, · · · , θk, θ′′ ⊢
θK. Consider the finitarily innocent strategy σ′ : A defined by: for all
(ā, q1, · · · , qk,m)Σs ∈ PA,

(ā, q1, · · · , qk,m)Σs ∈ vf(σ′) ⇐⇒ (ā, q1, · · · , qk)
ΣOpΣPmΣs ∈ vf(σ).

By IH we obtain a term u,Γ, x : θ′′ ⊢Mσ′ : θ. Then we can takeM(ā,q1,··· ,qk)
ΣO ≡

ΣP ; ((λx
θ′′ .Mσ′)(xiMp)), where

Mp ≡





() θ′ ≡ unit;
p θ′ ≡ int;
p̂ θ′ ≡ int ref.
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• If θ′ ≡ θ′1 → θ′2 we proceed in two steps.

1. Let A1 = Ju, θ1, · · · , θk, θ
′
1 ⊢ θ′2K and consider the finitarily innocent

σ′
1 : A1 defined by: for all (ā, q1, · · · , qk,m)Σs ∈ PA1

,

(ā, q1, · · · , qk,m)Σs ∈ vf(σ′
1) ⇐⇒ (ā, q1, · · · , qk)

ΣOpΣPmΣs ∈ vf(σ).

By IH we obtain Γ, x : θ′1 ⊢Mσ′
1
: θ′2.

2. Let A2 = Ju, θ1, · · · , θk, θ′′ ⊢ θK and consider the finitarily innocent
σ′
2 : A2 defined by: for all (ā, q1, · · · , qk,m)Σs ∈ PA2

,

(ā, q1, · · · , qk,m)Σs ∈ vf(σ′
2) ⇐⇒ (ā, q1, · · · , qk)

ΣOpΣPmΣs ∈ vf(σ).

By IH we obtain Γ, x : θ′′ ⊢Mσ′
2
: θ.

Now we can take M(ā,q1,··· ,qk)ΣO ≡ ΣP ; ((λx
θ′′ .Mσ′

2
)(xi(λx

θ′1 .Mσ′
1
))).

Note that the above proof actually shows that Mσ can be taken to be ref-free.
Putting the three lemmas together we obtain the following.

Proposition 40. Let σ : A be a finitary strategy over a denotable prearena.
Then there exists a Reduced ML term u,Γ ⊢Mσ : θ such that Ju,Γ ⊢Mσ : θK = σ.

Thanks to the Proposition, we can now define a fully abstract model of
Reduced ML in the usual way by quotienting G by the induced intrinsic preorder
defined below.

Definition 41. Suppose σ1, σ2 : 1 → A. We define σ1 ≤ σ2 to hold iff, for any
ρ : A→ 1, σ1; ρ 6= {ǫ} implies σ2; ρ 6= {ǫ}.

It is common to view the above preorder as testing σi with ρ, where σi; ρ 6= {ǫ}
is regarded as a successful outcome.

Theorem 42. Given Reduced ML terms ⊢ M1 : θ and ⊢ M2 : θ, we have
⊢M1

⊏
∼M2 iff J ⊢M1K ≤ J ⊢M2K.

6. Program equivalence explicitly

Let σ1, σ2, ρ be as in the definition of ≤. Note that during composition of
σi with ρ there is a full symmetry between O-names and P-names, i.e. names
which are O-names in σi are viewed as P-names in ρ, and vice versa. This
can be contrasted with the general case of composition, where both strategies
may regard a name as an O-name during composition, though not a P-name.
This symmetry of roles means that, because plays of ρ satisfy P-availability, a
successful outcome can only be reached by interaction with a play of σi that
satisfies the dual condition, for all a ∈ A:

• for all s′oΣ ⊑odd s, if a ∈ ν(o) ∩ ν(s′) then a ∈ AvO(s
′) (O-Availability).
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Similarly, whenever the play s engages with ρ successfully, the following condi-
tion holds, for all a ∈ A:

• for all s′pΣoΣ
′

⊑ s, if a ∈ P(s′pΣ) \ AvO(s′pΣ) then Σ(a) = Σ′(a) (O-
Passivity).

This time this is due to the definition of composition, which stipulates that the
part of store irrelevant to one of the strategies must be copied. This means
that the plays of σi that “matter” must necessarily meet the above condition.
Finally, whenever σi; ρ 6= {ǫ}, the play witnessing this is complete, i.e. all of
its questions are answered.

Definition 43. A play is relevant if it is complete, satisfies O-availability and
O-passivity. We write rel(σ) for the set of relevant plays of σ.

We can represent relevant plays more succinctly by restricting the associated
stores to mutually available names (both O- and P-available). The outcome is
not a play any more, though it remains a legal justified sequence.

Definition 44. Given a prearena A and a sequence s ∈ LA, s is called a pro-

toplay if it satisfies the following conditions, for all a ∈ A.

• For all s′pΣ ⊑even s, if a ∈ ν(p)∩ ν(s′) then a ∈ AvP(s
′) (P -Availability).

• For all s′oΣ ⊑odd s, if a ∈ ν(o) ∩ ν(s′) then a ∈ AvO(s
′) (O-Availability).

• For all s′mΣ ⊑ s, dom(Σ) = AvP(s
′mΣ) ∩ AvO(s

′mΣ) (PO-Storage).

We write P pro
A for the set of protoplays on a prearena A.

Let γ′′ be the obvious operation on justified sequences that simply erases the
O-unavailable names in stores. Although some information about σ is seemingly
lost by applying γ′′ to rel(σ), the missing values turn out to be inessential for
testing. By O-passivity, the lost values of O-unavailable names can be uniquely
retrieved in O-moves, by copying values from the preceding P-moves. However,
more surprisingly, it does not matter what values such names have in P-moves
either. This is because the names are then P-unavailable for ρ and, during
composition, are dealt with uniformly by propagation as long as they remain
unavailable.

We take advantage of the fact that the test ρ is a blind strategy. Recall that
blind strategies are uniquely determined by their strict plays, i.e. plays in which
O-names fresh in the P-view must be genuinely fresh at the point of introduction.
Consequently, if we want to check if σi passes the ρ test, we can take advantage
of the fact that any contribution from ρ will originate from a strict play. Let
s′′ = γ′′(s′) (s′ ∈ rel(σ)) be a protoplay generated by σi. To test whether s′′

represents a renaming of a strict play from ρ, it suffices to “refresh” P-names
in s′′ and try to match it with that the strict play. The desired refreshing
operation (for P-names using O-views) is entirely dual to renamings introduced
in Definition 22, albeit defined on protoplays.
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Definition 45. Given a prearena A, s ∈ P pro
A , a ∈ P(s) and a P -move p in s,

• we say that a is O-new at p in s if a ∈ ν(p) and a /∈ ν(xs≤py
−);

• in such a case, for any b ∈ A, we say that a is renameable for b at p in

s provided b /∈ O(s) and, for all s′ ⊑ s, if p occurs in xs′y then b /∈ ν(xs′y);

• under the assumptions above, we define the dual renaming (a b)p · s of
s by induction on the subsequences of s:

(a b)p · ǫ = ǫ (a b)p · (tmΣ) =

{
((a b)p · t) ((a b) ·mΣ) p ∈ xtmΣy

((a b)p · t)mΣ p /∈ xtmΣy

We write s ∼
r
s′ if s′ can be obtained from s through a sequence of dual re-

namings. We say that a protoplay s is dually strict if, whenever a name a is
O-new at a move p in s, then a /∈ ν(s<p).

Now, for any σ : A, let us define:

σ̂ = {s ∈ P pro
A | s dually strict, ∃s′. s′ ∈ rel(σ), s ∼

r
γ′′(s′)} .

Lemma 46. For any σ1, σ2 : 1 → A, σ̂1 ⊆ σ̂2 =⇒ σ1 ≤ σ2 .

Proof. Assume σ̂1 ⊆ σ̂2 and take some ρ : A → 1 such that σ1; ρ = {∗∗}, the
latter obtained by some interaction ∗ u1 ∗Σ1 ∈ Int(1, A, 1). Let γ′(∗ u1) = ∗ s1
and γ′(u1∗Σ1) = t1∗Σ

′
1, so ∗s1 ∈ σ1 and t1∗Σ

′
1 ∈ ρ.

Note that, since all name-introductions happen in A, P(∗s1) = O(t1) and
O(∗s1) = P(t1). Moreover, P -views in ∗s1 are O-views in t1 and viceversa.
Hence, the fact that t1 satisfies P -availability and ∗u1∗Σ1 is an interaction im-
plies that ∗s1 satisfies O-availability and O-passivity; dually, t1∗Σ

′
1 satisfies

O-availability and O-passivity. Thus, ∗s1 ∈ rel(σ1). Because σ̂1 ⊆ σ̂2, there is
some ∗s2 ∈ rel(σ2) such that γ′′(∗s1) ∼

r
γ′′(∗s2). Now,

γ′′(∗s1) = γ′′(γ′(∗u1))
(∗)
= γ′(γ′′(∗u1))

(∗∗)
= γ′(∗ t1) ,

where (∗) holds because γ′ and γ′′ remove from the stores O-names and P -
names respectively and are therefore independent, and (∗∗) holds because γ′′

on 1 → A is γ′ on A → 1. Now, observing that O-novelty in 1 → A translates
to P -novelty in A→ 1, we have that, for any series of dual renamings (a b)m·,

γ′′(∗s2) = (a b)m·γ′′(∗s1) = (a b)m·γ′(∗ t1) = γ′(∗((a b)m·t1)) = γ′(∗ t2) , (7)

where we take t2∗Σ
′
2 such that t2∗Σ

′
2 = (a b)m·(t1∗Σ

′
1), so t2∗Σ

′
2 ∈ ρ. The above

implies that ∗s2 = ∗ t2, say ∗s2 = ∗v. We now construct a legal interaction
∗ u2 ∗Σ2. We first construct ∗ u2 by adding stores to ∗v as follows. Suppose
∗u′ has already been constructed and let m be the next move to be examined
in ∗v. That move corresponds to a move-with-store mΣ in ∗s2 and to another
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mΣ′

in ∗ t2. Add then to ∗u′ the move m with store Σ ∪ Σ′. The latter is a
legal store because of (7): if a ∈ dom(Σ) ∩ dom(Σ′) then a is P -available both
at mΣ and at mΣ′

, therefore it is also O-available at mΣ and so it appears
in (7). Moreover, dom (Σ ∪ Σ′) contains all names a ∈ ν(∗ u′m): each such a
is either a P -name in 1 → A (hence in dom(Σ)) or a P -name in A → 1 (hence
in dom(Σ)′). It contains no more names, because of frugality of its projections.
Thus,

dom(Σ ∪Σ′) = ν(∗u′m) = P(∗u′mΣ∪Σ′

↾ 1, A) ∪ P(∗u′mΣ∪Σ′

↾ A, 1) .

Finally, we form ∗ u2 ∗Σ2 by taking Σ2 to be the last store in u2, updated by Σ′
2.

We now have ∗ u2 ∗Σ2 ∈ Int(1, A, 1) as it also satisfies the store-change condi-
tions; the latter follows from the fact that ∗s2 = γ′(∗ u2) and t2 ∗Σ

′
2 = γ′(u2 ∗Σ2)

satisfy P -storage. We therefore have ∗∗ = γ(∗∗Σ2) ∈ σ2; ρ, as required.

In order to prove the implication in the opposite direction we need to define
the following class of strategies.

Definition 47. Let s be a play of prearena A. Define the least strategy on A
containing s by:

ρs = { π · s′′ | π ∈ Perm, ∃s′ ⊑even s. s′
r
∼ s′′ } .

In the following we denote for brevity moves-with-stores by x, y, etc.

Lemma 48. ρs defined as above is a (blind) strategy.

Proof. Blindness is obvious by construction, so we need only show that ρs is
indeed a strategy, that is, it satisfies determinacy. So let sxy1, sxy2 ∈ ρs, say
sxyi

r
∼ πi · s

′x′y′, s′x′y′ ⊑even s, for i = 1, 2. Let us set sixiŷi = π−1
i · sxyi

and π = π−1
1 ◦ π2, so s1x1 = π · s2x2. We then have that s1x1ŷ1

r
∼ s2x2ŷ2, say

s1x1ŷ1 = (a1 b1)m1
· . . . (an bn)mn

· s2x2ŷ2 . Let i1...ik be the subsequence of
1...n containing all the indices of the renamings affecting ŷ2, i.e. all i’s such that
mi ∈ p(ai+1 bi+1)mi+1

· . . . (an bn)mn
· s2x2ŷ2q. We have:

ps1x1ŷ1q = (ai1 bi1) · . . . (aik bik) · ps2x2ŷ2q .

Set π′ = (ai1 bi1) ◦ · · · ◦ (aik bik). Now let ai be the ordering of the set P(sixi),
for i = 1, 2, which is obtained from the canonical ordering on ν(sixi). Since

renamings do not affect P -names and s1x1
r
∼ s2x2, we have a1 = a2, say ai = a .

Clearly, π′ · a = a ; moreover, s1x1 = π · s2x2 implies π · a = a. Thus, we have:

[(a1, ps1x1q), s1x1] = [(a2, ps2x2q), s2x2] , [(a1, ps1x1q), ŷ1] = [(a2, ps2x2q), ŷ2] ,

and ν(ŷi) ∩ ν(sixi) ⊆ ν(ai, psixiq) , for i = 1, 2, by P-availability. Hence, by
Lemma 55 we obtain [s1x1ŷ1] = [s2x2ŷ2], and therefore [sxy1] = [sxy2].

Lemma 49. For any σ1, σ2 : 1 → A, σ1 ≤ σ2 =⇒ σ̂1 ⊆ σ̂2 .
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Proof. Suppose σ1 ≤ σ2 and take some ŝ1 ∈ σ̂1, so there is some s1 ∈ σ1 such
that ŝ1 ∼

r
γ′′(s1). s1 is of the form ∗s′1. Then, ∗s′1∗ ∈ Int(1, A, 1) apart from

the fact that some names are missing from its stores. Take then ∗u1∗Σ1 to
be the result of filling those stores with the missing names valued 0; we have
∗u1∗Σ1 ∈ Int(1, A, 1). Let t = γ′(u1∗Σ1) and form the strategy ρt : A → 1.
We have that ∗u1∗Σ1 is an interaction of σ1 and ρt , so σ1; ρt = {∗∗} and
therefore σ2; ρt = {∗∗}. So let ∗u2∗Σ2 ∈ Int(1, A, 1) with γ′(∗u2) ∈ σ2 and
γ′(u2∗Σ2) ∈ ρt. Because of the way ρt is constructed, we may choose u2 in such

a way that γ′(u2∗Σ2)
r
∼ t = γ′(u1∗Σ1). Because of duality of renamings with

dual renamings and of γ′ with γ′′, the latter implies that γ′′(∗u2) ∼
r
γ′′(∗u1),

and therefore

γ′(γ′′(∗u2)) ∼
r
γ′(γ′′(∗u1)) , ∴ γ′′(γ′(∗u2)) ∼

r
γ′′(γ′(∗u1)) = γ′′(s1) = ŝ1 .

Now, γ′(∗u2) ∈ σ2 and the fact that ŝ1 is dually strict imply that ŝ1 ∈ σ̂2, as
required.

Observe that σ̂, like σ, is saturated under renamings (extended to act on
protoplays). This makes it possible to simplify the above result along the fol-
lowing lines. We call a protoplay mutually strict if it is both strict and dually
strict. Note that by using

r
∼ and ∼

r
(in any order) we can convert a protoplay

to a mutually strict protoplay, unique up to name permutations. Given σ : A,

let ̂̂σ be {s ∈ P pro
A | s is mutually strict, ∃s′ ∈ rel(σ). s (

r
∼;∼

r
) γ′′(s′)}.

Theorem 50. Given σ1, σ2 : 1 → A, σ1 ≤ σ2 iff ̂̂σ1 ⊆ ̂̂σ2.
It follows that terms of Reduced ML are equivalent if and only if they in-

duce the same mutually strict complete protoplays. In particular, this explicit
characterisation means that the intrinsic quotient of G by ≤ is effectively pre-
sentable [30]. Note that effective presentability concerns compact elements only.
Hence, there is no contradiction between our result and the undecidability result
for contextual equivalence of finitary Reduced ML [19], because the latter uses
terms whose denotations are not compact.

Example 51. We revisit the two terms from example (5) in the Introduction.
We previously saw that their translation is given by the strategies σ1 and σ2
generated respectively by the following complete plays (for each k).

s1,k = ∗ a1
(a1,0) ∗(a1,k) a2

(a1,k),(a2,k) s2,k = ∗ a(a,0) ∗(a,k) a(a,k)

The former play is not a protoplay as it breaks PO-storage. On the other hand,
the latter one is a protoplay but is not dually strict. We compute, for i = 1, 2:

σ̂i = {s ∈ P pro
A | s dually strict, s ∼

r
γ′′(si,k)}

γ′′(s1,k) = ∗ a
(a1,0)
1 ∗(a1,k) a

(a2,k)
2

γ′′(s2,k) = s2,k ∼
r
s′2,k = ∗ a(a,0) ∗(a,k) b(b,k)
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where a 6= b and s′2,k = (a b)a · s2,k , with the P-move a being the last move
of s2,k. Let us set s′1,k = γ′′(s1,k). Note that s′1,k ∼

r
s′1,k and observe that

both s′i,k are dually strict. Thus, σ̂1 and σ̂2 comprise the orbits of s′1,k and s′2,k
respectively,

s′1,k = ∗ a1
(a1,0) ∗(a1,k) a2

(a2,k) s′2,k = ∗ a(a,0) ∗(a,k) b(b,k)

for all k, and hence σ̂1 = σ̂2. Thus, the initial terms are equivalent.

Example 52. The mutually strict complete protoplays for equivalences (2), (3)
and (4) of the Introduction are given as follows. We draw pointers only if they
do not point at the preceding moves.

(2): a1, · · · , ak are arbitrary names.

∗ ∗ a
(a1,i1)
1 0(a1,i1) a

(a2,i2)
2 0(a2,i2) · · · a

(ak,ik)
k 0(ak,ik)

(3): a1, · · · , ak are arbitrary names different from a.

∗ a(a,0) ∗(a,i) ∗ a
(a1,i1)
1 0(a1,i1) a

(a2,i2)
2 0(a2,i2) · · · a

(ak,ik)
k 0(ak,ik)

(4): a is an arbitrary name.

∗ a(a,0) ∗(a,i) ∗ ∗ 1 ∗ 1 · · · ∗ 1

7. Conclusion

We presented a fully abstract model for Reduced ML, a call-by-value higher-
order language with integer references. Along with [16, 1, 10, 11, 12, 20, 34, 35],
the paper is part of a series of works that address the bad-variable problem
present in early game models. From that perspective, the present paper elim-
inates the shortcomings of [4]. In a follow-up paper [24], we proposed a fully
abstract and effectively presentable game model for a higher-order language
with general references, which can be viewed as a bad-variable-free refinement
of [2].

Another direction we pursued concerns algorithmic representations of our
game model, from which we derived a procedure for deciding program equiva-
lence for a low-order fragment of Reduced ML (with iteration and a bounded
integer type), via an appropriate translation into automata over infinite alpha-
bets [23]. We have also carried out a similar analysis for a language with full
ground storage (i.e. references to integers, and references to references to inte-
gers, etc.), providing a full characterisation of the decidable cases [25].
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Appendix A. Correspondence with the full-store framework

We briefly recall how full strategies compose.

Definition 53. A justified sequence on A → B → C is a full interaction se-
quence of A,B,C if γ(u ↾ AB) ∈ PFA→B , γ(u ↾ BC) ∈ PFB→C and the following
conditions hold.

• O(u ↾ AC) ∩ (P(u ↾ AB) ∪ P(u ↾ BC)) = ∅;

• P(u ↾ AB) ∩ P(u ↾ BC) = ∅;

• for all u′ ⊑ u ending in mΣm′Σ′

and a ∈ dom(Σ′) if

– m′ is a P-move in A→ B and a /∈ ν(u′ ↾ AB),

– or m′ is a P-move in B → C and a /∈ ν(u′ ↾ BC),

– or m′ is an O-move in A→ C and a /∈ ν(u′ ↾ AC),

then Σ′(a) = Σ(a);

• for all u′ ⊑ u ending in mΣ , dom(Σ) = ν(u′).

The set of all full interaction sequences of A,B,C is denoted by IntF (A,B,C).

Reasoning as with ordinary plays we have that γ(u ↾ AC) ∈ PFA→C (here
one does not need to verify P-availability and P-storage). Moreover, for each
u ∈ Int(A,B,C) define the set of full justified sequences uF by ǫF = {ǫ} and:

(uoΣ)
F
= {u′oΣ∪Σ′

| u′ ∈ uF , dom(Σ ∪Σ′) = ν(uo)} (A.1)

(upΣ)
F
= {u′pΣ∪Σ′

| u′ ∈ uF , dom(Σ ∪Σ′) = ν(up), ∀a ∈ dom(Σ′). Σ′(a) = u′(a)}

where o is an O-move in A→ C, p a generalised P-move, and u′(a) is the value
of a in the last store of u′.

Full strategies σ :F A→ B and τ :F B → C are then composed as follows.

σ;F τ = {γ(u ↾ AC) | u ∈ IntF (A,B,C), γ(u ↾ AB) ∈ σ, γ(u ↾ BC) ∈ τ}

The above is shown to be well-defined in [12] (making also implicitly use of
Lemma 55).
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Lemma 20. Suppose σ : A→ B and τ : B → C. Then (σ; τ)F = σF ;F τ
F .

Proof. (⊆) Let s ∈ (σ; τ)F . There exists u ∈ Int(A,B,C) such that γ(u ↾ AC) =
γ′(s) ∈ σ; τ , γ′(u ↾ AB) ∈ σ and γ′(u ↾ BC) ∈ τ . By making appropriate
choices of Σ′ in (A.1) we can obtain uF ∈ uF such that s = γ(uF ↾ AC).
We claim that uF ∈ IntF (A,B,C). By construction, γ(uF ↾ AB) ∈ PFA→B ,
γ(uF ↾ BC) ∈ PFB→C and dom(Σ) = ν(tm) for each tmΣ ⊑ uF . Let us now

take t = t′mΣ′

m′T ′

⊑ uF with γ′(t) ending in mΣm′T .

• Suppose m′ is a P-move in X ∈ {AB,BC} and a ∈ dom(T ′) \ ν(t ↾ X).
If a ∈ dom(T ′) \ dom(T ) then T ′(a) = Σ′(a) by construction of uF . If
a ∈ dom(T ) \ ν(t ↾ X), then T ′(a) = Σ′(a), because u ∈ Int(A,B,C).

• Suppose m′ is a O-move in AC and a ∈ dom(T ′) \ ν(t ↾ AC). Observe
that by Lemma 13, a ∈ P(t ↾ AB)∪P(t ↾ BC), so a ∈ dom(T ) \ ν(t ↾ AC)
and T ′(a) = Σ′(a) follows, because u ∈ Int(A,B,C).

It remains to show that γ(uF ↾ AB) ∈ σF and γ(uF ↾ BC) ∈ τF . Indeed, we

have γ′(γ(uF ↾ AB)) = γ′(uF ↾ AB) = γ′(u ↾ AB) ∈ σ, so (γ′(γ(uF ↾ AB)))
F ⊆

σF . To finish the argument, we show γ(uF ↾ AB) ∈ (γ′(γ(uF ↾ AB)))
F
. For the

latter, it suffices to show that P-moves in γ(uF ↾ AB) copy values of unavailable
names from the store of their preceding move.
So take t ⊑ γ(uF ↾ AB) such that the last move of t is a P-move and a ∈
O(t)\ν(ptq). Then t = t′mΣ′′

m′T ′′

and, by switching, m andm′ are consecutive
in u with stores, say Σ, T respectively, and in uF with stores, say Σ′, T ′. We
want to show Σ′′(a) = T ′′(a).

• If a /∈ dom(T ) then T ′′(a) = Σ′′(n) follows from the construction of uF ,
since T ′(a) = Σ′(a).

• If a ∈ dom(T ), we appeal to the fact that u ∈ Int(A,B,C).

The case of γ(uF ↾ BC) ∈ τF is analogous. Hence s ∈ σF ;F τ
F .

(⊇) Let s ∈ σF ;F τ
F , i.e. there exists uF ∈ IntF (A,B,C) such that s =

γ(uF ↾ AC), γ(uF ↾ AB) ∈ σF and γ(uF ↾ BC) ∈ τF . Let u be the obvious
restriction of uF (only domains of stores are restricted) to fit the definition of
Int(A,B,C). We show that u ∈ Int(A,B,C). Let t = t′mΣm′T ⊑ u by due to
some t′′mΣ′

m′T ′

⊑ uF .

• Suppose m′ is a P-move in X ∈ {AB,BC} and a ∈ dom(T ) \ AvP(t ↾ X).
If a /∈ ν(t ↾ X) then T (a) = Σ(a) follows from the fact that uF ∈
IntF (A,B,C) and u is its restriction. Otherwise, a ∈ (dom(T )∩ν(t ↾ X))\
AvP(t ↾ X) and hence a ∈ O(t ↾ X)\ ν(pt ↾ Xq). Since γ(uF ↾ X) ∈ σF or

γ(uF ↾ X) ∈ τF , T (a) = Σ(a) follows from definition of ( )
F
.

• Suppose m′ is an O-move in AC and a ∈ dom(T )\AvP(t ↾ AC). Then a /∈
ν(pt ↾ ACq) so a ∈ P(t ↾ AB) ∪ P(t ↾ BC) and a 6∈ O(t ↾ AC). The latter
implies a /∈ ν(t ↾ AC) so T (a) = Σ(a) follows from uF ∈ IntF (A,B,C).

36



Because γ′(u ↾ AB) = γ′(uF ↾ AB) ∈ σ and γ′(u ↾ BC) = γ′(uF ↾ BC) ∈ τ , we
obtain γ(u ↾ AC) ∈ σ; τ . To complete the argument, we show that s = γ(uF ↾

AC) ∈ (γ(u ↾ AC))
F
. For the latter, it suffices to show that P-moves in s copy

values of unavailable names from the store of their preceding move.

So take t = t′oΣpΣ
′

⊑ s and a ∈ O(t)\ν(ptq). Let v = v′oΣ0mΣ1

1 · · ·m
Σj

j pΣj+1 ⊑
u be such that γ(v ↾ AC) = t. Since a ∈ O(t), for any X ∈ {AB,BC} we have
a 6∈ ν(v ↾ X) or a ∈ O(v ↾ X). In the latter case, because a 6∈ ν(ptq), Lemma 54
implies a /∈ ν(v) and thus, by Lemma 14, a 6∈ ν(pv ↾ Xq), ν(pv≤mi

↾ Xq) for
i = 1, · · · , j. Consequently, Σi(a) = Σi+1(a) for i = 0, · · · , j, either by the fact
that u ∈ Int(A,B,C) or by γ′(uF ↾ X) ∈ σ ∪ τ . Σ(a) = Σ′(a) follows.

Lemma 54. Let u ∈ IntF (A,B,C) be such that γ′(u ↾ AB) ∈ PA→B and
γ′(u ↾ BC) ∈ PB→C . Then, for any name a ∈ O(u ↾ AC), if a ∈ ν(u) then
a ∈ ν(pu ↾ ACq).

Proof. Identical to the proof of Lemma 15.

Lemma 55 ([35, Lemma 2.11]). Let X be a strong nominal set. For all
x1, x2, y1, y2, z1, z2 ∈ X and finite u ⊆ A such that u ⊆ ν(yi)∩ ν(zi) ⊆ ν(xi), for
i = 1, 2, if there exist permutations πy, πz satisfying

πy · (x1, y1) = (x2, y2) , πz · (x1, z1) = (x2, z2) , ∀a ∈ u. πy(a) = πz(a) = a

then there exists a permutation π such that π · (x1, y1, z1) = (x2, y2, z2) and
∀a ∈ u. π(a) = a.

Appendix B. Computational Soundness and Adequacy

Here we discuss a modified variant of Stark’s categorical framework (de-
scribed in Chapter 5 of [33]), needed to deliver Proposition 33. The adjustment
is necessary so as to incorporate the constant Ω. Since most of the framework
remains the same, we focus only on the details that have to be added or modified.

Recall the computational metalanguage for Reduced ML (without Ω) from [33,
Section 5.6]. We add to it a constant ⊥ and the associated typing and derivation
rules:

Γ ⊢ ⊥ : TUnit

Γ, y : Unit ⊢ e : TUnit

Γ ⊢ let y ⇐ ⊥ in e = ⊥ Γ; [()] = ⊥ ⊢ tt = ff
(B.1)

The translation into the metalanguage is extended with JΩK = ⊥. Moreover,
since observational equivalence is now defined in terms of equiconvergence, we
replace the (MONO+) rule by a new one.

First, we define a grammar for store terms by:

t ::= () | let x⇐ new in t | let x⇐ set(n, i) in t

where i ∈ Z. Using the above we set:

(MONO⊥)
Γ ⊢ t, t′ : TUnit ⊢ e, e′ : TUnit

Γ ; let x⇐ t in e = let x⇐ t′ in e′ ⊢ e = e′
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where t, t′ are store terms. Thus, the new rule stipulates that store terms cannot
lead to divergence.

Since our games setting provides a model for the extended metalanguage, Γ ⊢
[()] = ⊥ is not provable. This in turn implies that Γ ⊢ let x⇐ t in [()] = let x⇐ t′ in ⊥
is not provable for any store terms t, t′. Hence, using the fact that every Re-
duced ML term reduces either to a value or such a reduction is prevented by Ω,
we can prove that the translation into the metalanguage is adequate (as in [33,
Proposition 5.10]).

Next we list a complete list of abstract categorical conditions needed to
model the extended metalanguage, adapting the setting of [33, Section 5.8]. We
require a category C satisfying the following conditions.

• It is cartesian with product × and terminal object 1.

• It has a strong monad T = (T, η, µ, st), where all ηA are monic, and T -
exponentials A⇒ TB. We let ψ, ψ′ be the natural transformations:

ψA,B : TA× TB
st ′

−−→ T (A× TB)
T (st)
−−−→ TT (A×B)

µ
−→ T (A×B)

ψ′
A,B : TA× TB

∼=
−→ TB × TA

ψB,A

−−−→ T (B ×A)
T∼=
−−→ T (A×B)

where st ′A,B : TA×B
∼=
−→ B × TA

stB,A

−−−→ T (B ×A)
T∼=
−−→ T (A×B).

• It has an initial object 0 and disjoint coproduct 1 + 1 (cf. [33, page 52]).

• There is an object Z for integers and associated morphisms ⊕ : Z×Z → Z

(cf. [33, page 116]).

• There is a distinguished object A and accompanying morphisms new : 1 →
TA and eq : A × A → 1 + 1 such that:

– The following diagrams are pullbacks,

A
〈id,id〉

//

!

��

A × A

eq

��
1

tt // 1 + 1

A#A
in //

!

��

A × A

eq

��
1

ff
// 1 + 1

where tt and ff the left and right injections respectively, and A#A

and in are defined by the pullback property.

– The following diagrams commute.

1
new //

η
  ❆

❆

❆

❆

❆

❆

❆

❆

TA

T !
��
T 1

1
〈new ,new〉

//

〈new ,new〉

��

TA× TA

ψ

��

TA× TA
ψ′

// T (A× A)

A
〈id,!;new〉

//

!;ff

��

A × TA
st // T (A × A)

Teq

��

1 + 1
η

// T (1 + 1)

The above correspond to Stark’s (DROP), (SWAP) and (FRESH)
rules [33, Figure 3.3].
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• There is a distinguished morphism ⊥ : 1 → T 1 making the following
diagrams commute.

T 1
〈!;⊥,id〉

//

!;⊥
$$❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

T 1× T 1

ψ;∼=

��
T 1

1
⊥ //

⊥

��

T 1

T(ff )

��

T 1
T(tt)

// T (1 + 1)

The diagrams correspond to the inference rules for⊥ we introduced in (B.1).
The first one ensures that combining two computations where the first is
diverging yields divergence, while the second one renders equating termi-
nation and divergence inconsistent.

• There are distinguished morphisms get : A → TZ and set : A × Z → T 1
such that the following diagrams commute.

A × Z
〈π1,set〉

//

〈π2,set〉 $$❏
❏

❏

❏

❏

❏

❏

❏

❏

A × T 1
st;∼=

// TA

Tget;µ

��
Z × T 1

st;∼=
// TZ

Z × (A × Z)

id×π1

��

id×〈π1,set〉
// Z × A × T 1

st;∼=

��

Z × A

∼=;set
// T 1 T (A× Z)

T set;µ
oo

A × Z
〈!;new,set〉

//TA × T 1
ψ′;∼=

33

ψ;∼=
++
TA

(A#A)× Z × Z
(in×id);∼=

// A × Z × A × Z
set×set

//T 1× T 1
ψ′;∼=

33

ψ;∼=
++
T 1

The diagrams in the first line correspond to Stark’s (READ) and (WRITE)
rules respectively from [33, Figure 5.6], while the ones in the second and
third line correspond to (SWAP′) and (SWAP′′) respectively.

• In order to validate the (MONO⊥) rule, we also require that the diagram
below commutes,

Z
〈!;new,id〉;st′

//

!;η
&&◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

T (A × Z)

T set ;µ

��
T 1

(B.2)

and, additionally, that a particular mono requirement be satisfied. We
define the set of setting morphisms :

Sting = {An
〈id,!;h〉;∼=
−−−−−−→ (A × Z)n

setn

−−−→ (T 1)n
ψn
−−→ T 1 | h : 1 → Z

n, n ≥ 0}

where ψn : (T 1)n → T 1 is given inductively by ψ0 = η and:

ψi+1 : T 1× (T 1)i
id×ψi
−−−−→ T 1× T 1

ψ
−→ T 1
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We stipulate that, for all f ∈ Sting and all g, g′ : 1 → T 1, if the following
diagram commutes

A
n

〈f,!;g〉
//

〈f,!;g′〉

��

T 1× T 1

ψ;∼=

��
T 1× T 1

ψ;∼=
// T 1

then g = g′.

Following [33, Section 5.8] one can show that any category C as above is a
model for the metalanguage and thus a computationally sound model of Re-
duced ML. Moreover, when C is non-degenerate, i.e. 0 6∼= 1, the model is also
computationally adequate.

The rule which we need to additionally demonstrate is (MONO⊥). First,
note that using (B.2) and the (DROP), (SWAP), (SWAP′), (SWAP′′) and
(WRITE) rules we can derive

Γ ⊢ t, t′ : TUnit ⊢ e, e′ : TUnit

Γ ; let x⇐ t in e = let x⇐ t′ in e′ ⊢ let x⇐ t1 in e = let x⇐ t′1 in e
′

for all store terms t, t′; with t1 obtained from t by dropping all its new constructs
and the corresponding set ’s, and similarly for t′1. Hence, t1 and t′1 are mapped
into setting morphisms in C and, by our mono requirement, we obtain e = e′.
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