
Compositional Model Extraction for
Higher-Order Concurrent Programs

D. R. Ghica1 and A. S. Murawski2?

1 School of Computer Science, Univ. of Birmingham, Birmingham B15 2TT, UK
2 Oxford University Computing Laboratory, Oxford OX1 3QD, UK

Abstract. The extraction of accurate finite-state models of higher-order
or open programs is a difficult problem. We show how it can be addressed
using newly developed game-semantic techniques and illustrate the solu-
tion with a model-checking tool based on such techniques. The approach
has several important advantages over more traditional ones: precise ac-
count of inter-procedural behaviour, concise procedure summaries and
economical extracted models.

1 Introduction and background

Automated verification of software systems is one of the most urgent problems
in computer science. This hardly needs to be argued for, as we are exposed to
a world increasingly dominated by software. The theoretical and practical diffi-
culty of the problem is well known. In general, the problem is undecidable but,
even subject to simplifying assumptions and approximation techniques which
make it decidable, the complexity poses a substantial challenge. Nevertheless,
theoretical developments combined with an increase in available computational
power give grounds for optimism, and automated verification of software sys-
tems is becoming increasingly feasible, to the point that it is about to become a
meaningful part of industrial software development [1].

The most effective methods of automated software verification turn out to be
based on model checking (MC) [2], in particular on finite-state model checking.
A software system is represented as (or approximated by) a finite-state machine
(FSM) and its interesting properties are expressed as temporal properties of
the FSM. The challenges that need to be tackled include efficient extraction of
models and automatic derivation of smaller but safe approximations. Some of
the most advanced MC frameworks available centre around these issues [3–6].

For programming languages with procedures, especially higher-order proce-
dures, the extraction of an FSM representation or approximation is especially
difficult because one needs to account for the often subtle interaction between
procedures and other computational features such as state, concurrency or con-
trol. We can illustrate this point with a very simple example. Consider the fol-
lowing (second-order) procedure p taking as argument procedure c:

? Supported by the UK EPSRC (GR/R88861/01) and St John’s College, Oxford.

int p(void c(int d)) { int x=1; c(2); return x }.

In virtually any programming language if p returns a value then that value
will be 1. There should be no way that the non-local procedure c, taken as
an argument, can modify the value of the locally-scoped variable x. However,
producing a FSM representation of this procedure, which makes it obvious that x
and c cannot interact, turns out quite difficult. The same issues arise in modeling
open programs, i.e. programs with procedures which are not defined locally.
In both cases the obstacle is that operational techniques, which are ordinarily
employed for model extraction, only apply for closed, ground-type terms.

Dealing with issues pertaining to inter-procedural interactions such as the one
illustrated above is the subject of numerous lines of research: data-flow analysis,
control-flow analysis, effect analysis, locality analysis and so on. Many of these
analyses are syntactic or operational, and it is quite awkward to integrate them
into a MC framework. However, they are essential in modeling and verifying
higher-order programs. The problem of model extraction is particularly difficult
in the presence of concurrency, because the naive model based on interleaved
execution is very computationally expensive.

The research programme we are pursuing proposes a new kind of analysis,
called algorithmic game semantics, which subsumes inter-procedural analysis
and is compatible with FSM representation and model-checking. This analysis
focuses on finding concrete representations for game-semantic models (or game
models, for brevity) of programming languages. Having a semantics-directed ap-
proach to model construction has several important advantages:

Consistency A semantics-directed approach provides a unified framework which
encompasses and supersedes the techniques mentioned earlier in a uniform,
substantially simplified fashion.

Correctness The model extraction is correct (and in fact complete) by con-
struction, relative to a specified notion of observation. In principle, any inter-
procedural analysis compatible with the specified notion of observation can
be derived from the semantics. For example, we will see that game models
immediately validate the earlier observation about the interaction between
local state and non-local procedures.

Concreteness We can construct a concrete FSM representation of the be-
haviour of a higher-order program, which is independent of the syntax. Once
the model is constructed we can apply standard model-checking methods to
verify its properties efficiently.

Compositionality Models are constructed inductively on the structure of the
program, i.e. the model of a program P is constructed out of the models
of its subprograms Pi. Most importantly, in constructing the models for
subprograms Pi’s we need not know the larger context in which they will be
used. The beneficial consequences of a compositional method are:
– an ability to model and verify open programs, i.e. programs which must

function in an unknown environment (for example libraries);
– the possibility to break up a larger system in smaller systems which can

be modeled and verified independently (scalability);

– modeling procedures independently and incorporating their models effi-
ciently into the model of a larger program (procedure summaries) [7].

Code-level specification Program properties are described at code-level using
assertions, rather than at model-level using temporal logics.

Note that a semantics-directed approach to model extraction was not feasible
using the traditional styles of semantics extant before the introduction of game
semantics, i.e. operational and denotational. Operational semantics is concrete
enough, but has virtually no meta-theory, is not compositional and cannot model
open programs. Denotational semantics, on the other hand, meets these require-
ments but is abstract and essentially non-finitary. Game semantics seems to
combine the advantages of the two in a way that is particularly promising for
automated verification.

Game semantics was introduced in order to tackle the long-standing full ab-
straction problem for the functional language PCF [8, 9]. The framework proved
to be very useful for constructing semantics for a variety of programming lan-
guages involving diverse computational features such as state [10], control [11],
concurrency [12] and more. The first steps in the direction of application of game
semantics for program analysis were taken by Hankin and Malacaria [13]. The
first application to model checking was proposed by Ghica and McCusker [14],
and further developed by Ghica [15]. A model-checker based on these ideas was
implemented in [16] with very positive results: it illustrates the ability to model
open second-order programs by verifying invariants of abstract data type imple-
mentations (ADT) and it shows how the compositionality of the model construc-
tion allows the modeling of data-intensive programs such as sorting programs.

Contribution

The model checking technique described in [16] is for a second-order sequential
procedural language. In this paper we substantially expand the expressivity of
the programming language we model, by adding higher-order procedures, shared-
variable concurrency and semaphores. The immediately relevant theoretical de-
velopments which led to this new model checking technique are a game model
for shared-variable concurrency [12] and a type system used to identify decidable
terms in the language [19].

Note that in this paper we focus almost exclusively on the problem of model
extraction and representation. In order to tackle the other standard problems of
MC (specification and efficient verification) we rely on the commercially-available
model-checker FDR [17].

2 The language SCC

We consider a higher-order call-by-name procedural language with parallel com-
position and binary semaphores. Its types are generated by the grammar given
below

β ::= com | int | var | sem θ ::= β | θ → θ,

where com is the type of commands, int is a finite data-type of expressions which
can take values from the set { 0, · · · ,max } (max > 0), var is the type of variables
holding values from { 0, . . . ,max } and sem is the type of binary semaphores. The
syntax of the language is defined by the standard λ-calculus rules (λx.M,MN)
augmented with rules for arithmetic, branching, iteration (while M do N), vari-
able manipulation (assignment M :=N , dereferencing !M , variable definition
with initialisation newvar X:=i inM), parallel composition (M1 ||M2) and bi-
nary semaphore manipulation (grb(S), release(S), semaphore definition with ini-
tialisation newsem S:=i in M , where S:=0 means that the semaphore is released
initially).

The semantics of the language is defined using a (small-step) transition re-
lation Σ ` M, s −→ M ′, s′. Σ is a set of names of variables denoting memory
cells and names of semaphores denoting locks; s, s′ are states, i.e. functions
s, s′ : Σ → N, and M,M ′ are terms.

We say that a term M may terminate from state s, written M, s ⇓, if there
exists a terminating evaluation at start state s: ∃s′, M, s −→∗ c, s′, with c ∈
{ 0, · · · ,max , skip }. If M is closed and M, ∅ ⇓ we write M ⇓. We consider the
program approximation and equivalence relations induced by this angelic notion
of termination. They are defined contextually as follows. Two terms Γ ` M1

and Γ ` M2 are deemed may-equivalent (written Γ ` M1
∼= M2) iff ∀C[−] :

com, C[M1] ⇓ if and only if C[M2] ⇓, where C[Mi] are closed programs of type
com. The corresponding notion of program approximation is defined by: Γ `
M1

@∼ M2 iff ∀C[−] : com, C[M1] ⇓ implies C[M2] ⇓ (where as before C[Mi] are
closed programs of com type). Note that the two notions apply to terms with
free identifiers (open terms) and are defined with respect to all possible uses
(instantiations of the free identifiers).

Although we consider finite data-types and iteration rather than general
recursion, it turns out that both ∼= and @∼ are undecidable even for terms with
free identifiers of first order. Indeed, in [19] we show that, unlike in the sequential
case, it is impossible to decide the equivalence or approximation of terms of the
shape p : com→ com `M : com. The reason is that functions of type com→ com
can use their argument in any number of concurrently running threads, which
is powerful enough for encoding the halting problem for counter machines as
an equivalence query. In order to recover decidability one needs to weaken the
meaning of free identifiers and impose bounds on the number of concurrent
threads of execution.

To formalise this sort of constraint specification we introduced a new type
system, called Syntactic Control of Concurrency (SCC) [19]. Types of that sys-
tem are the same as before except that they are annotated with numeric bounds.
Thus an SCC typing judgment has the shape x1:θn1

1 , . . . , xk:θnk

k `r M : θ where
θ is generated by the grammar θ ::= β | θn → θ, n ∈ N. The numeric bounds
concern the number of concurrent threads of execution that can arise during
various stages of computation.

The key rules are the four rules below. Parallel composition and application
increase the degree of concurrency, whereas sequential composition (and its it-

erated form, the while loop) does not affect the bounds in any way. Technically
this is achieved by using disjoint contexts for || and application (unlike in the
rule for sequential composition). The bounds for shared variables can then be
added up using a special contraction rule.

Γ `r M1 : com Γ `r M2 : com

Γ `r M1;M2 : com

Γ `r M1 : com ∆ `r M2 : com

Γ, ∆ `r M1 ||M2 : com

Γ `r M : θn → θ′ ∆ `r N : θ

Γ, n∆ `r MN : θ′
Γ, x1 : θm, x2 : θn `r M : θ′

Γ, x : θm+n `r M [x/x1, x/x2] : θ′

n∆ is the environment ∆ in which all the outermost bounds have been multiplied
by n.

Bounds have an intuitive assume-guarantee interpretation. A bound n is an
assume (resp. guarantee) if it occurs in the left-hand scope of an even (resp.
odd) number of→ (the turnstile ` is also considered an arrow for this purpose).
Assumes concern the behaviour of the program context and guarantees that of
the program. Intuitively, if the environment behaves according to the assumes,
the program’s behaviour satisfies the guarantees. For example, SCC can derive:

f : (comn → com)2, x : com2n `r f(x) || f(x) : com,

where n (occurring in the type of f) is the only assume. SCC is made flexible
by the use of subsumption: assumes can be decreased and guarantees increased.

Given an SCC typing derivation of M and a context C[−] such that C[M] is
closed, we can verify whether C[−] is consistent with the assumes of M simply by
checking if `r C[M] can be derived from the typing derivation of M . Given Γ `r

M1 and Γ `r M2 sharing the same assumes, we now define new approximation
and equivalence relations, denoted by @∼ r and ∼=r. The definitions are analogous
to those of @∼ and ∼= with the exception that the quantification ranges over all
contexts C[−] that respect the assumes of M1 and M2.

Unlike @∼ and ∼=, @∼ r and ∼=r are decidable, which can be proved using
game semantics. @∼ r and ∼=r can then be shown to correspond to containment
and equality of the sets of the complete plays generated by the two terms in
question. These in turn can be represented by regular languages. Thus the game
model for SCC seems an ideal foundation for a model-checking tool: it is sound,
complete (for @∼ r and ∼=r) and decidable [19].

The primary interest is, of course, to verify programs written in the original
type system, without bounds on concurrency. Imposing the numerical bounds
brings about two limitations. First, only terms with redexes of order less than
two are guaranteed to admit an SCC typing. There exist known programs, albeit
contrived, that do not admit any SCC typing and thus cannot be analysed us-
ing the technique proposed here, e.g.: (λg.g(λx.g(λy.x)))(λf.f(fskip)). Second,
bounds on concurrency in the environment (i.e. the assumes) must be imposed
somewhat arbitrarily, and the resulting analysis is sound only within the assumed
bounds. Fortunately, the type system SCC will (automatically) certify whether
in given execution contexts free identifiers are bound to terms that satisfy the
bounds.

3 CSP representation of strategies

Game semantics interprets programs as strategies in two-player games between
O (Opponent) and P (Proponent), who represent the context and the program
respectively. Strategies can be viewed simply as sequences of moves (actions) of
the two players, which makes it possible to employ automata-theoretic techniques
to their analysis. Strategies corresponding to SCC terms can be represented by
regular languages. In this section we show how to do that using CSP [17].

CSP is a particularly convenient formalism for expressing strategies, because
it features primitives for (selectively synchronised) parallel composition and hid-
ing, the two operations on which composition of strategies is based. Additionally,
we will take advantage of CSP channels (to indicate the source of a move), the
flexibility to define new alphabets for multiple tagging (to indicate and compare
membership in threads) and substitution (for re-tagging). CSP has been used
before to represent strategies, but only for sequential programs [18].

First we briefly review the game-theoretic notions involved in the interpre-
tation of terms. Due to space restrictions we omit many technical details, and
only try to give the flavour of the approach. Formally, games can be regarded as
triples G = 〈MG, λG, Pmax

G 〉 where MG is the set of available moves, λG : MG →
{O, P } indicates the ownership of moves and Pmax

G ⊆M∗
G is the set of complete

(maximal) positions. All other positions are simply prefixes of complete posi-
tions, so we can define the set of positions on G as PG = { s | ∃t ∈ Pmax

G .s ≤ t }.
Below we list the complete positions in the games corresponding to base types
(the initial moves are O-moves, the final ones are P-moves; 0 ≤ i ≤ max):

JcomK JintK JvarK JsemK
run · done q · i read · i grb · okg

write(i) · ok rls · okr .

SCC higher-order types have shape θn → θ′, but for technical reasons it is useful
to decompose such types using more elementary type constructors ⊗ (interleaved
product), !◦ (iteration), and ((linear function space): θn → θ′ = (

⊗
n !◦θ) (θ′.

The definitions of the three game constructions are:

(MG) M!◦G = MG,MG1⊗G2 = MG1(G2 = MG1 + MG2

(λG) The constructions of !◦G and G1 ⊗ G2 preserve ownership of moves. In
G1 (G2 moves originating from G2 have the same owners as in G2, whereas
O-moves (resp. P-moves) from G1 are P-moves (resp. O-moves) in G1 (G2.

(Pmax
G) Pmax

!◦G consists of sequences of complete positions from Pmax
G (Pmax

!◦G =
{ s1 · · · sn |n > 0 and ∀1≤i≤nsi ∈ Pmax

G }). Pmax
G1⊗G2

contains interleavings of
a position from Pmax

G1
with a position from Pmax

G2
. Pmax

G1(G2
is similar except

that the interleavings have to start and end with moves from G2.

Game semantics interprets programs as strategies over games defined by the
associated types (strategies are simply prefix-closed sets of positions). A term-
in-context x1:θn1

1 , . . . , xk:θnk

k `r M : θ is then interpreted by a strategy for the
game Jθn1

1 K ⊗ · · · ⊗ Jθnk

k K (JθK. Suppose θ = αml

l → · · · → αm1
1 → β. Because

the sets of moves M!◦G = MG and MG1⊗G2 = MG1(G2 = MG1 + MG2 , the
game corresponding to a type consists of disjoint copies of games for base types.
Hence, MJθn1

1 K⊗···⊗Jθnk
k K(JθK =

∑
i=1,k MJθni

i K +
∑

j=1,l MJαmj
j K + MJβK.

A major design decision in employing CSP to represent strategies concerns
the way all the disjoint sums + are interpreted. For the instances of + distin-
guished above we are going to use k + l + 1 different channels (one for each of
the components). The disjoint sums involved in the construction of θni

i or α
mj

j

will be tackled differently by using subscripts for (and numeric tags for ⊗ (to
enumerate the threads in the game !◦G ⊗ · · · ⊗ !◦G). In general the moves will
have the shape mc1,...,cv

.d1.dw (abbreviated as mc.d), where ci, dj ∈ N are
indices identifying the type-component of a higher-order type (the cis) and the
thread-component of a nested set of threads (the dis). To be precise, in order
to represent moves of MJθnK we will use the alphabet A(θn) which is defined as
follows. For base types we take A(β) = MJβK and further:

A(θn) = {mc.i.d | mc.d ∈ A(θ), 1 ≤ i ≤ n }

A(γn → · · · → γ1 → β) =
n⋃

i=1

{mi,c.d | mc.d ∈ A(γi) } ∪ A(β).

Concretely, the structure of an action used to represent a move is
identifier .moverank .thread . The channel identifier represents the free identifier
associated with the move, or special identifier “main” if the move is associated
with the term type. The rank is a tag representing the type component (from
right to left) associated with the move. Finally, the list of thread indices identify
the threads and the (nested) sub-threads containing the move.

We are going to define CSP processes whose traces will coincide with strate-
gies denoting terms in such a way that complete positions comp(JΓ `r MK) will
be followed by special action

√
. This will enable us to compare complete posi-

tions defined by terms and, by the theorem below, verify program equivalence
and approximation. Because we use tags for identifying threads, in order to com-
pare strategies we will have to introduce a canonical way of tag usage, e.g. lowest
unused. The convention can be enforced by putting the processes corresponding
to terms in parallel with a separate CSP process that acts as a “name server”.

Theorem 1 ([19]). Given Γ `r Mi : θ (i = 1, 2) let us write comp(JΓ `r

MiK) for the set of complete positions in JΓ `r MiK. Then Γ ` M1
@∼ rM2 iff

comp(JΓ `r M1K) ⊆ comp(JΓ `r M2K) and Γ ` M1
∼=r M2 iff comp(JΓ `r

M1K) = comp(JΓ `r M2K).
CSP processes corresponding to terms can be defined by induction on their

structure. Free identifiers x : θ1 `r x : θ are interpreted by the copy-cat strategy
in which O-moves are simply copied by P between the two copies of JθK (possibly
with a delay) subject to the exchange of moves being a position in the relevant
game. The behaviour of this strategy resembles that of an unbounded buffer. Its
CSP process can be defined inductively on the structure of types.

Suppose θ = θnk

k → · · · → θn1
1 → β. ID(L,Rk, · · · , R0, θ) returns a process

representing Jx : θ1 `r x : θK in such a way that the moves from Jθ1K are

PLUS(A1,A2,A,b) = A.q -> A1.q -> A1?x -> A2.q -> A2?y -> A.((x+y)%b) -> SKIP

EQ(A1,A2,A,b) = A.q -> A1.q -> A1?x -> A2.q -> A2?y

-> A.(if x==y then 1 else 0) -> SKIP

ASSIGN(A2,A1,A) = A.run -> A2.q -> A2?y -> A1.write.y -> A1.wok

-> A.done -> SKIP

PAR(A1,A2,A) = A.run -> ((A1.run -> A1.done -> SKIP)

||| (A2.run -> A2.done -> SKIP));(A.done -> SKIP)

SEQCOM(A1,A2,A) = A.run -> A1.run -> A1.done -> A2.run -> A2.done

-> A.done -> SKIP

IFCOM(A0,A1,A2,A) = A.run -> A0.q -> A0?y -> if (y==0) then

(A2.run -> A2.done -> A.done -> SKIP)

else (A1.run -> A1.done -> A.done -> SKIP)

WHILE(A1,A2,A) = A.run -> WHILE_AUX(A1,A2,A)

WHILE_AUX(A1,A2,A) = A1.q -> A1?y -> if (y==0) then (A.done -> SKIP)

else (A2.run -> A2.done -> WHILE_AUX(A1,A2,A))

GRAB(A1,A) = A.run -> A1.grb -> A1.gok -> A.done -> SKIP

RELEASE(A1,A) = A.run -> A1.rls -> A1.rok -> A.done -> SKIP

CELL(A,m) = (A.read?b -> A.m.b -> CELL(A,m))

[] (A.write?v?b -> A.wok.b -> CELL(A,v)) [] SKIP

SEM(A,m) = if (m==0) then (A.grb?b -> A.gok.b -> SEM(A,1) [] SKIP)

else (A.rls?b -> A.rok.b -> SEM(A,0) [] SKIP)

Fig. 1. CSP representation of some strategies

transmitted on channel L, those from Jθni
i K on channel Ri and those from JβK

on R0. Let Pi = IDaux(LL,RR, θi) (1 ≤ i ≤ k) for some fresh channel names
LL,RR, where IDaux(LL,RR, θi) is defined below. For 1 ≤ i ≤ k, 1 ≤ j ≤ ni

define Pi,j = Pi[[RR.mc.d ← L.mi,c.j.d, LL.mc.1.d ← Ri.mi,c.j.d]]. Let P ′ =
|||ki=1|||ni

j=1STAR(Pi,j), where STAR(P) = SKIP [] (P ;STAR(P)). Then return
[]m1m2∈PJβK(R.m1 → L.m1.1→ P ′); (L.m2.1→ R.m2 → SKIP).

IDaux(L,R, θ) returns a process representing Jx : θ1 `r x : θK in such a
way that the moves from Jθ1K are transmitted on channel L and those from
JθK on R. It can be defined recursively as follows. Suppose θ = θnk

k → · · · →
θn1
1 → β. Let Pi = IDaux(LL, RR, θi) (1 ≤ i ≤ k) for some fresh channel

names LL,RR. For 1 ≤ i ≤ k, 1 ≤ j ≤ ni define Pi,j = Pi[[RR.mc.d ←
L.mi,c.j.d, LL.mc.1.d ← R.mi,c.j.d]]. Let P ′ = |||ki=1|||ni

j=1STAR(Pi,j), where
STAR(P) = SKIP [] (P ;STAR(P)). Then return []m1m2∈PJβK(R.m1 → L.m1.1→
P ′); (L.m2.1→ R.m2 → SKIP).

The CSP representation of some of the key constants of the language is
given in Fig. 1. Using different channels for moves of Jαmj

j K makes interpreting
application relatively easy, because it suffices to use the channel corresponding
αml

l to synchronise the process corresponding to the function term with ml

interleaved copies of that corresponding to the argument. Suppose P1, P2 are
the CSP processes representing JΓ `r M1 : θ1K and JΓ `r M2 : θ2K respectively
and Ri

0 are the channels on which moves from the right copies of respectively

JθiK, i = 1, 2 are transmitted. Then the process P representing Γ `r M1¤M2 is:

P = ((P1 |||P2) [|R1
0, R

2
0|] PROC¤(R1

0, R
1
0, R0)) \ {|R1

0, R2
0|},

where PROC¤(· · ·) is the CSP representation of the ¤ binary operator (+, =, ;,
:=, etc), as given in Fig. 1. Operators of different arity (if-then-else, grab, release,
etc.) are treated analogously.

Application is parallel composition synchronised on the actions corresponding
to the type of the argument, followed by the hiding of those actions. Contraction
amounts to renumbering threads: m threads (indexed by 1, . . . ,m) on one chan-
nel and n threads on another (with indices from 1, . . . , n) have to be renumbered
as threads indexed 1, · · · , m + n on a new channel, done by CSP substitution.

For example, the main processes generated in the representation of the strate-
gies for f : com2 → com, x : com ` fx : com are:

P8 = ||| j:{0..1} @ STAR(ADD(ADD(P7,j,C7,C3),j,C5,C6))
P9 = (P8[|{|C3|}|]P3)\{|C3|}
ADD(P,j,IN,OUT) = P[[IN.done.x<-OUT.done.((x+j)%(3))|x<-{0..2}]]

[[IN.run.x<-OUT.run.((x+j)%(3))|x<-{0..2}]]
[[IN.done_1.x<-OUT.done_1.((x+j)%(2))|x<-{0..1}]]
[[IN.run_1.x<-OUT.run_1.((x+j)%(2))|x<-{0..1}]]

In the above, process P8 generates 2 interleavings of the argument (represented
by P7, not shown) using auxiliary processes STAR (which iterates its argument)
and ADD (which serves as the renaming server). Process P9 is the actual ap-
plication (in which P3 represents the free variable f , not shown) consisting on
synchronisation on channel C3 followed by the hiding of C3.

Variable and semaphore introduction can be represented by application of
special (higher-order) constants newvarm and newsemm: newvar x:=m in M ≡
newvarm(λx.M), and newsemx:=m in M ≡ newsemm(λx.M). The applications
are modeled by parallel composition with hiding using the CSP processes CELL(· · · ,m)
and SEM(· · · ,m) respectively.

4 Tool support and case studies

Using translation to CSP we can employ FDR to verify several classes of prop-
erties: program equivalences (∼=r) and inequivalences, approximation (@∼ r), as-
sertions, invariants and other safety properties.

In our examples, the channel names associated with free identifiers will always
have a name related to the identifier, int$i will stand for the type { 0, . . . , i−1 }.
We also use n-ary semaphores (n > 1), which can be easily added to SCC, writing
sem$n for the corresponding type (sem$1 is identical to the type sem of binary
semaphores). In the programs below, the assumed bounds on the behaviour of
the environment, e.g. p : com2 → int, are represented as p:com{2}->exp.

We implemented a tool which takes as input SCC terms (only the assumes
are actually required), infers the missing guarantee bounds then compiles the
term in the CSP process algebra. The FDR model-checker is invoked to verify
safety properties or to check (may) equivalence of terms.

0 1 2 3
4

5

6
7

8
9

10

11
12

13 14

6∼=r

0 1 2 3
4

5

6
7

8

Fig. 2. Two inequivalent processes

4.1 Warm-up example

Let us illustrate the model with a classic example from the literature [20]:

p : com → int → com ` newvar x:=0 in p(x:=x + 1; x:=x − 1)(x) 6≡ p skip 0.

The non-local procedure p can increment then decrement the local variable x
or dereference it, but has no other access to it. Therefore, in a sequential pro-
gramming language the equivalence stands. However, in a concurrent language
the equivalence may fail because the arguments can generate race conditions.
Indeed, if we give p the SCC typing comm → intn → com for some m,n > 0,
FDR identifies a trace which can occur in the LHS but not in the RHS (we
present it along with a move-by-move interpretation):

main.run start execution, first main thread
p.run.1 start executing p’s main thread
p.q1.1.1 start executing p’s right argument, first thread
p.run2.1.1 start executing p’s left argument, first thread
p.11.1.1 p’s right argument in first thread produces 1

We can see that the reason for the equivalence failing was a race condition.
SCC is call-by-name, i.e. the arguments are thunks, so the right argument may
begin to be evaluated before the evaluation of the left argument has completed
(p.ok2.1.1). In fact, the diagrammatic representation of the processes produced
by FDR shows quite clearly that the two processes are not similar (Fig. 2).

4.2 Verifying algorithm implementations

Consider the code in Fig. 3, implementing the tie-breaker algorithm [21]
as a procedure which takes as arguments two critical regions, two non-critical
regions and two termination conditions (LHS). We can verify the algorithm by
comparing it against a simpler implementation which assumes the existence of
semaphores in the language and serves as a specification (RHS). By compiling
the two implementations into CSP, we can use FDR to verify that, indeed, they
are equivalent.

4.3 Verifying ADT implementations

One of the principal advantages of our approach is that we can model open
programs, such as ADTs. For example, let us consider the stack implementa-
tion given in Fig. 4, where n is the size of the stack and empty, overflow are
(unspecified) user-defined procedures to handle usage errors. The implementa-
tion stores the stack elements in an array and uses a semaphore to protect the
changes to the array as well as the variable crt that indicates the top of the
stack. However, it is not actually thread-safe and contains a non-trivial (but
common) error which we will “discover” using our model-checker. In order to
model and verify the ADT we consider the program VERIFY push pop top,
where VERIFY : (int → com)1 → com1 → int1 → com plays the role of the
most general environment. After generating the game model with FDR we can
check the stack ADT for safety properties such as buffer over-runs or assertion
failures. For instance, if we introduce an additional free identifier segf : com (seg-
mentation fault) and arrange for segf to be invoked for buffer overrun errors,
the FDR will identify the following safety violation:

main.run start execution
VERIFY .run.1 start running VERIFY
VERIFY .run3.1.1 call push
VERIFY .q3,1.1.1.1 push requests an argument
VERIFY .q1.1.1 call top
VERIFY .03,1.1.1.1 provide an argument to push
VERIFY .run2.1.1 call pop
segf .run a violation has occurred.

The reason for the violation is the fact that only the changes to the buffer and
the top of the stack have been protected by a semaphore. As seen in the trace, a
violation can still occur if top starts executing on a one-element stack, then pop
is executed concurrently between the empty-stack check and the dereferencing
of the buffer. A thread-safe implementation must protect with semaphores the
entire scope of the stack methods, including the testing for empty and full buffer.

1 mutex1(crtc1:com, crtc2:com, nonc1:com, nonc2:com, b1:int$2, b2:int$2) =

2 int in1, in2, last;

3 while b1 do {

4 in1:=1; last:=1; while (in2 & last=1) do skip; crtc1; in1:=0; nonc1 }

5 || while b2 do {

6 in2:=1; last:=2; while (in1 & last=2) do skip; crtc2; in2:=0; nonc2 }

7 ∼= mutex2(crtc1:com, crtc2:com, nonc1:com, nonc2:com, b1:int$2, b2:int$2)=

8 sem s; while b1 do {grab(s); crtc1; release(s); nonc1}

9 || while b2 do {grab(s); crtc2; release(s); nonc2}

Fig. 3. The tie-breaker algorithm vs semaphores

empty:com, overflow:com, VERIFY:(int->com){1}->com{1}->int{1}->com |- 1

int buf[n], crt; sem s; 2

let size:int = n 3

isempty:int = (crt = 0) 4

isfull:int = (crt = size) 5

push:(int->com) = fun x : int. 6

if isfull then overflow 7

else (grab(s); buf[crt]:=x; crt:=crt+1; release(s)) 8

top:int = 9

int tmp; 10

if isempty then (empty; 0) 11

else (grab(s); tmp:=buf[crt-1]; release(s); tmp) 12

pop:com = 13

if isempty then empty else (grab(s); crt:=crt-1; release(s)) 14

in VERIFY push pop top : com. 15

Fig. 4. A bounded-stack implementation

5 Higher-order procedures: producer-consumer

Our final example will examine a producer-consumer algorithm [21]: the proce-
dure accepts as arguments a producer and a consumer function along with a
parameter indicating when termination should occur. The value returned by the
producer function is stored in a circular buffer. The consumer function takes a
value from the circular buffer and performs some (unknown) action. The main
procedure executes p copies of the producer process in parallel with c copies
of the consumer process, each in a loop controlled by the argument b1 or b2.
Information in the form of numbers from 0 to i − 1 is shared using an n-place
buffer. The values of n, p, c, i are constants.

In the implementation shown in Fig. 5, semaphores s and t are used to
prevent race conditions between the producers and, respectively, the consumers.
Note that a producer and a consumer may access the buffer concurrently. N -ary
semaphores full and empty make the producers and the consumers wait if the
buffer is full, respectively empty.

This procedure is interesting because it is not possible to reduce it meaning-
fully to a first-order program. The SCC typing of the prodcon procedure means
that the analysis requires that the consume procedure uses its argument in at
most one thread of execution, which is not an unreasonable restriction. We can
perform the same safety analyses as described before, and the implementation
in Fig. 5 does not produce violations. We can also perform various safety tests
using the FDR-specific idiom, refinement [17].

However, in the case of a complex program such as this, the real challenge
lies in constructing the model, so we will use this example primarily to illustrate
how the state space of the model is affected by the various constants occurring in

1 prodcon(produce:int$i, consume:int$i{1}->com, b1:int$2, b2:int$2) =

2 int$i buf[n], front, rear;

3 sem$n full=n, empty;

4 sem s, t;

5 dopar j := 1,p while b1 do {

6 int$i tmp := produce;

7 grab(empty); grab(s);

8 buf[rear] := tmp;

9 rear := (rear + 1) mod n;
10 release(s); release(full) }

11 || dopar j := 1,c while b2 do {

12 grab(full); grab(t);

13 int$i tmp := buf[front];

14 front := (front + 1) mod n;
15 release(t); release(empty);

16 consume(tmp) }

Fig. 5. A higher-order producer-consumer procedure

the program. We will also compare the size of the resulting model, as produced
by FDR, with the size of a naive model generated by state exploration and
interleaving of basic operational steps. (According to the operational semantics
of the language each thread needs around 30 such steps.)

The results of the comparison are given in Tbl. 1. The workspace column
indicates the largest intermediate model generated in the course of creating the
final model. It is clear from the data above that the savings achieved using an
observational model, which hides state changes that are not externally observ-
able, are substantial. This is consistent with our earlier analysis of data-intensive
algorithms. We can also see the importance of compositional model construction
and concise procedure summaries, because a client of the prodcon procedure
can now be modeled using the very compact observational model. Inlining the
procedure even a couple of times would generate models of unmanageable size.

Our experiments also confirm that increasing the amount of observable con-
currency in the system has a far worse effect over model size than increasing
the amount of data available to the system. The last case is perhaps the most
interesting. The very large naive model state space is due to increasing the size of
variable tmp which occurs in 4 threads. But the variable is local, hence invisible
from outside its scope, so it does not contribute directly to the final model.

6 Conclusions

Game semantics provides a new technique for software model extraction which,
as we have seen, has several advantages. The semantics-directed nature of the
approach ensures correctness and completeness by construction and a compo-
sitional, incremental way of generating the model. What makes game models

substantially different from more traditional models is a focus on observational
behaviour, i.e. on the interaction between a program and its context, and hiding
the non-observable details such as internal state changes.

Our experiments show that game semantics leads to much more compact
models than those obtained by naive interleaving. We believe that further gains
in efficiency are possible with the help of partial-order reduction techniques [23].
However, their incorporation into game semantics has not been investigated yet,
especially the subtle relation between partial-order reduction and composition,
and we leave it for future work.

Software verification using game models is still in its infancy but the initial
developments are promising. However, we are some distance away from providing
true competition to industrial-level tools. The following developments, which are
within reach, will however bring us closer to realistic applications:

Real languages The language we study here is realistic and expressive, but it
is ultimately an academic exercise. We believe game-semantic techniques are
now mature enough so that we can soon tackle a real programming language,
such as a substantial subset of Java or C.

Liveness The game model for SCC is derived from an angelic notion of ter-
mination which corresponds to trace equivalence. This does not account for
deadlock or live-lock. Upgrading the semantic model to handle these phe-
nomena is the subject of on-going research.

Algorithmics So far we have used off-the-shelf model checkers which do not ex-
ploit the features of our semantics perfectly. FDR, for example lacks features
which are common in modern model checkers, such as BDD representation.
SPIN [6] is a powerful model-checker, but (unlike FDR) is essentially state-
ful. Moreover, neither of the two supports composition, i.e. creating a model
from two independently generated models (although FDR uses compositional
reductions internally).

Refinement Our use of data abstraction in this model checker is relatively
informal. The problem of automatically abstracting and refining the model
is critical for software verification, and is dealt with separately [22].

n p c i naive model game model FDR workspace time (s)

3 1 1 1 40,000 114 2,554 112

4 1 1 1 62,500 143 5,168 142

3 2 1 1 1,000,000 1,684 39,758 247

3 1 2 1 1,000,000 1,735 43,206 351

3 1 1 2 5,120,000 464 4,632 223

2 2 2 1 14,062,500 6,478 495,621 1,733

3 2 2 1 25,000,000 13,813 760,389 4,889

2 2 2 2 3,600,000,000 24,489 1,763,637 54,617
Table 1. Benchmark results

References

1. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and static driver verifier:
technology transfer of formal methods inside Microsoft. In: IFM 2004, LNCS 2999
1–20

2. Clarke, E.M., Grumberg, O., Peled, P.: Model Checking. The MIT Press, Cam-
bridge, Massachusetts (1999)

3. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software
model checking framework. In: ESEC / SIGSOFT FSE (2003) 267–276

4. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: CAV 2001, LNCS 2102 260–264
5. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A model checker

for concurrent software. In: CAV 2004, LNCS 3114 484–487
6. Holzmann, G.J.: The Spin model checker. IEEE Trans. on Soft. Eng. 23 (1997)

279–295
7. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent pro-

grams. In: POPL (2004) 245–255
8. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information

and Computation 163 (2000)
9. Hyland, J. M. E., Ong, C.-H. L.: On full abstraction for PCF: I, II and III. Infor-

mation and Computation 163 (2000)
10. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game

semantics for Idealized Algol with active expressions. ENTCS 3 (1996)
11. Laird, J.: Full abstraction for functional languages with control. In: LICS (1997)

58–67
12. Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. In:

FOSSACS 2004, LNCS 2987 211–225
13. Hankin, C., Malacaria, P.: Generalised flowcharts and games. In: ICALP (1998)

363–374
14. Ghica, D.R., McCusker, G.: Reasoning about Idealized algol using regular lan-

guages. In: ICALP 2000, LNCS 1853 103–116
15. Ghica, D.R.: A Games-based Foundation for Compositional Software Model Check-

ing. PhD thesis, Queen’s University, Kingston, Canada (2002)
16. Abramsky, S., Ghica, D. R., Murawski, A. S., Ong, C.-H. L.: Applying game se-

mantics to compositional software modeling and verification. In: TACAS’04, LNCS
2988 421–435

17. Roscoe, W.A.: Theory and Practice of Concurrency. Prentice-Hall (1998)
18. Dimovski, A., Lazic, R.: CSP Representation of Game Semantics for Second-Order

Idealized Algol. In: ICFEM 2004, LNCS 3308 146–191.
19. Ghica, D.R., Murawski, A. S., Ong, C.-H. L.: Syntactic control of concurrency. In:

ICALP’04, LNCS 3142 683–694
20. Brookes, S.: The essence of Parallel Algol. In: LICS (1996) 164–173
21. Andrews, G.: Concurrent Programming: principles and practice. Addison-Wesley

Publishing Company (1991)
22. Dimovski, A., Ghica, D.R., Lazic, R.: Data-Abstraction Refinement: A Game

Semantic Approach In: SAS’05, LNCS 3672 102-117
23. Rajeev, A., et. al.: Partial-Order Reduction in Symbolic State-Space Exploration.

Formal Methods in System Design 18(2): 97-116 (2001)

