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Abstract—Robust human gait recognition is challenging because of
the presence of covariate factors such as carrying condition, clothing,
walking surface, etc. In this paper, we model the effect of covariates as
an unknown partial feature corruption problem. Since the locations
of corruptions may differ for different query gaits, relevant features
may become irrelevant when walking condition changes. In this case,
it is difficult to train one fixed classifier that is robust to a large
number of different covariates. To tackle this problem, we propose a
classifier ensemble method based on the Random Subspace Method
(RSM) and Majority Voting (MV). Its theoretical basis suggests it is
insensitive to locations of corrupted features, and thus can generalize
well to a large number of covariates. We also extend this method
by proposing two strategies, i.e., Local Enhancing (LE) and Hybrid
Decision-level Fusion (HDF) to suppress the ratio of false votes to true
votes (before MV). The performance of our approach is competitive
against the most challenging covariates like clothing, walking surface,
and elapsed time. We evaluate our method on the USF dataset and
OU-ISIR-B dataset, and it has much higher performance than other
state-of-the-art algorithms.

Index Terms—Classifier ensemble, random subspace method, local
enhancing, hybrid decision-level fusion, gait recognition, covariate
factors, biometrics

I. INTRODUCTION

Compared with other biometric traits like fingerprint or iris,
the most significant advantage of gait is that it can be used
for remote human identification without subject cooperation. Gait
analysis has contributed to convictions in criminal cases in some
countries like Denmark [1] and UK [2]. However, the performance
of automatic gait recognition can be affected by covariate factors
such as carrying condition, camera viewpoint, walking surface,
clothing, elapsed time, etc. Designing a robust system to address
these problems is an acute challenge. Existing gait recognition
methods can be roughly divided into two categories: model-
based and appearance-based approaches. Model-based methods
(e.g., [3]) employ the parameters of the body structure, while
appearance-based approaches extract features directly from gait
sequences regardless of the underlying structure. This work falls
in the category of appearance-based methods, which can also work
well on low-quality gait videos, when the parameters of the body
structure are difficult to estimate precisely.

The average silhouette over one gait cycle, known as Gait
Energy Image (GEI), is a popular appearance-based representation
[4]. The averaging operation encodes the information of the binary
frames into a single grayscale image, which makes GEI less sensi-
tive to segmentation errors [4]. Several GEI samples from the USF
dataset [5] are shown in Fig. 1. Recently, Iwama et al. evaluated
the effectiveness of several feature templates on a gait dataset
consisting of more than 3000 subjects. They found that good
performance can be achieved by directly matching the GEI tem-
plates, when there are no covariates [6]. However, it is error-prone
when covariates exist. Therefore, many researchers have been
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Fig. 1. GEIs of the same subject from the USF dataset [5]. The leftmost
(a) is the gallery GEI in normal condition, while the rest (b)-(g) are probe
GEIs with covariates (b) viewpoint, (c) walking surface, (d) viewpoint
and walking surface, (e) carrying condition, (f) carrying condition and
viewpoint, (g) elapsed time, shoe type, clothing, and walking surface

formulating various feature descriptors to capture discriminant
information from GEIs to deal with different covariates. In [4],
Han and Bhanu utilized Principle Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) to extract features from the
concatenated GEIs. To extract gait descriptors, Li et al. proposed
a Discriminant Locally Linear Embedding (DLLE) framework,
which can preserve the local manifold structure [7]. By using
two subspace learning methods, Coupled Subspaces Analysis
(CSA) and Discriminant Analysis with Tensor Representation
(DATER), Xu et al. extracted features directly from the GEIs
[8]. They demonstrated that the matrix representation can yield
much higher performance than the vector representation reported
in [4]. In [9], after convolving a number of Gabor functions with
the GEI representation, Tao et al. used the Gabor-filtered GEI
as a new gait feature template. They also proposed the General
Tensor Discriminant Analysis (GTDA) for feature extraction on
the high-dimensional Gabor features [9]. To preserve the local
manifold structure of the high-dimensional Gabor features, Chen
et al. proposed a Tensor-based Riemannian Manifold distance-
approximating Projection (TRIMAP) framework [10]. Since spa-
tial misalignment may degrade the performance, based on Gabor
representation, Image-to-Class distance was utilized in [11] to
allow feature matching to be carried out within a spatial neigh-
borhood. By using the techniques of Universal Background Model
(UBM) learning and Maximum A Posteriori (MAP) adaptation,
Xu et al. proposed the Gabor-based Patch Distribution Feature
(Gabor-PDF) in [12], and the classification is performed based
on Locality-constrained Group Sparse Representation (LGSR).
Compared with GEI features (e.g., [4], [8]), Gabor features (e.g.,
[9], [11], [12]) tend to be more discriminant and can yield higher
accuracies. However, due to the high dimension of Gabor features,
these methods normally incur high computational costs.

Through the “cutting and fitting” scheme, synthetic GEIs can
be generated to simulate the walking surface effect [4]. In [13],
the population hidden Markov model was used for Dynamic-
Normalized Gait Recognition (DNGR). Both methods can yield
encouraging performance against the walking surface covariate.
In [14], Wang et al. proposed Chrono-Gait Image (CGI), with
the temporal information of the gait sequence encoded. Although
CGI has similar performance to GEI in most cases [6] [14], it
outperforms GEI in tackling the carrying condition covariate [14].
In [15], through fusing gait features from different cameras, it was
found that short elapsed time does not affect the performance
significantly in a controlled environment. Clothing was instead
deemed as the most challenging covariate [15]. Based on a gait
dataset with 32 different clothes combinations, Hossain et al.
proposed an adaptive scheme for weighting different body parts
to reduce the effect of clothing [16]. Yet it requires an additional
training set that covers “all” possible clothes types, which is less
practical in real-world applications.

Most of the previous works have satisfactory performance
against some covariates like carrying condition, shoe type, (small
changes in) viewpoint, etc. However, so far it still remains an
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open question to tackle covariates like walking surface, clothing,
and elapsed time in less controlled environments. As such, our
aim is not only to build a general framework that can generalize
to a large number of covariates in unseen walking conditions,
but also to address these open issues. Based on GEIs, we model
the effect caused by various covariates as an unknown partial
feature corruption problem and propose a weak classifier ensemble
method to reduce such effect. Each weak classifier is generated by
random sampling in the full feature space, so they may generalize
to the unselected features in different directions [17]. This concept,
named Random Subspace Method (RSM), was initially proposed
by Ho [17] for constructing decision forests. It was successfully
applied to face recognition (e.g., [18]). In our previous works [19],
[20], we employed this concept in gait recognition. Empirical
results suggested RSM-based classifier ensemble can generalize
well to several covariates. However, more theoretical findings and
experimental results are needed to support this gait recognition
method, especially on addressing the aforementioned open issues.
Our contributions in this work can be summarized as follows:

1) Modelling of Gait Recognition Challenges: Based on
GEIs, we model the effect of different covariates as a partial
feature corruption problem with unknown locations.

2) Classifier Ensemble Solution and its Extensions: Through
ideal cases analysis, we provide the theoretical basis of the
proposed classifier ensemble solution. To tackle the hard
problems in real cases, we further propose two strategies,
namely, local enhancing and hybrid decision-level fusion.

3) Performance and Open Issues Solving: On the USF
dataset, our method has more than 80% accuracy, more than
10% higher than the second best. It has very competitive
performance against covariates such as walking surface and
elapsed time. On the OU-ISIR-B dataset, the 90% plus
accuracy suggests our method is robust to clothing.

4) Parameters and Time Complexity: Our method only has a
few (i.e., 3) parameters, and the performance is not sensitive
to them. Our method also has low time complexity. On the
USF dataset, with the high-dimensional Gabor features, the
training time can be within several minutes while the query
time per sequence can be less than 1 second.

The rest of this paper is organized as follows, Section II
discusses the gait recognition challenges, and provides classifier
ensemble solution and its extensions. Details of the random
subspace construction, local enhancing, and hybrid decision-level
fusion are provided in Section III-V. Our method is experimentally
evaluated and compared with other algorithms in Section VI.
Section VII concludes this paper.

II. PROBLEM MODELLING AND SOLUTION

Metric-learning methods are popular for gait recognition. The
learned metrics (e.g., in [4], [7], [8], [9], [10], [21], [22], [23]),
used as feature extractors, may reduce the effect of covariates to
some extent. However, an effective metric can only be learned
based on representative training set, while this assumption may
not hold in real-world scenarios. Since most of the walking
conditions of query gaits are unknown, the training set collected
in normal condition cannot represent the whole population. In this
case, overfitting may occur. To build a model that generalizes to
unknown covariates, in this section we first model the effect of
covariates as a partial feature corruption problem with unknown
locations, and then we provide the theoretical analysis of the pro-
posed RSM-based classifier ensemble solution and its extensions.

Fig. 2. An example of modelling the covariate effect by image difference
between the gallery GEI (i.e., Fig.1(a)) and a probe GEI (i.e., Fig.1(e))

Fig. 3. From left to right: difference images between the gallery GEI
Fig.1(a) and the probe GEIs Fig.1(b)-Fig.1(g)

A. Gait Recognition Challenges

We model the effect of covariates by difference images between
the probe and gallery. Given a subject with the gallery GEI
Igallery , and the probe GEIs {Iprobei }Fi=1 in F different walking
conditions, we define the corresponding difference images as:

Îi = Iprobei − Igallery, i ∈ [1, F ], (1)

as shown in Fig. 2. Several examples of Îi corresponding to
different walking conditions are also illustrated in Fig. 3. For
an unknown walking condition i, Îi indicates the corrupted gait
features with unknown locations. Before matching, we need to
find a feature extractor T ∗ that can suppress Îi, i.e.,

T ∗ = argmin ‖ÎiT‖2, i ∈ [1, F ], (2)

where T can extract features in the column direction of Îi. How-
ever, the locations of corruptions may differ for different walking
conditions, as shown in Fig. 3. Given such non-deterministic
nature of Îi, from (2) we can see that it is difficult to find a fixed
T ∗ that can extract effective features that can generalize to a large
number of different covariates. In light of this, an effective T ∗

should only extract the relevant features dynamically for different
walking conditions.

B. Problem Formulation

For high dimensional gait feature templates, PCA is usually
used for dimension reduction (e.g., [4], [14]). In this work, we
instead use the matrix-based two-dimensional PCA (2DPCA) [24]
because of its lower computational costs and higher performance.

Let T be the 2DPCA transformation matrix consisting of
the leading d non-zero principle components such that T =
[t1, t2, ..., td]. Since [t1, t2, ..., td] are pairwise orthogonal vectors,
(2) can be written as:

T ∗ = argmin
d∑

j=1

‖Îitj‖2, i ∈ [1, F ]. (3)

It is difficult for traditional 2DPCA with a fixed T ∗ =
[t1, t2, ..., td] to reduce the effect of F different walking condi-
tions. In (3), since the terms ‖Îitj‖2, j ∈ [1, d] are non-negative,
it is possible to reduce the effect of covariates by selecting a subset
of [t1, t2, ..., td] to form a new feature extractor.

To see the reduced effect of covariates, we form different feature
extractors by randomly selecting 2 projection directions from
[t1, t2, ..., td]. In Fig. 4, we report the corresponding normalized
Euclidean distances from the gallery sample in Fig.1(a) to the
probe samples in Fig.1(b)-Fig.1(g), respectively. We can see
the effect of covariates in Fig.1(b)/Fig.1(e) can be reduced by
using [t2, t35], while the effect in Fig.1(g) can be reduced based
on [t15, t61]. These observations empirically validate that it is
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Distances between
gallery GEI Fig.1(a)
and probe GEIs
corresponding to:

Fig. 4. Normalized Euclidean distances from gallery sample Fig. 1(a) to
probe samples Fig.1(b)-Fig.1(g) based on different projection directions

possible to select subsets of [t1, t2, ..., td] as feature extractors to
reduce the effect of covariates. However, the optimal subset may
vary for different walking conditions due to the non-deterministic
nature of Îi.

Therefore, we formulate the problem of reducing the effect of
unknown covariates as a dynamic feature selection problem. For
an unknown walking condition, we assume the irrelevant features
(mainly corresponding to the corrupted pixels, as indicated by Îi)
exist in m(0 < m < d) unknown non-negative terms of (3). We
aim to dynamically select N ∈ [1, d] relevant features (mainly
corresponding to the uncorrupted pixels) for classification. It is
obvious that the probability of selecting N relevant features is 0
when N > d−m. When N ∈ [1, d−m], by randomly selecting
N features out of d features, the probability of not choosing the m
irrelevant features P (N) follows the hypergeometric distribution
[25]. This can be expressed as the ratio of binomial coefficients:

P (N) =

(
d−m
N

)(
d−(d−m)

N−N

)(
d
N

) =
(d−m)!(d−N)!

d!(d−m−N)!
, N ∈ [1, d−m].

(4)
P (N) is a generalization measure that is related in someway to the
performance of the matching algorithm. Classifiers with greater
P (N) tend to generalize well to unseen covariates, and vice versa.

Lemma 1. Let d,m,N be the numbers of the total features,
irrelevant features (with 0 < m < d), and randomly selected
features, respectively, then P (N) in (4) is inversely proportional
to N in the range N ∈ [1, d−m].

Proof: It can be proved using mathematical induction. From
(4), it is easy to see that P (N+1)/P (N) = 1−m/(d−N) < 1
for N ∈ [1, d−m]. This completes the proof of the lemma.

It is preferable to set N to smaller values, which can yield
greater P (N), according to Lemma 1. Specifically, when N �
d, the hypergeometric distribution can be deemed as a binomial
distribution [25], we have

P (N) =

(
N

N

)
pN (1− p)(N−N) = pN , N � d, (5)

where p is the probability of randomly selecting one relevant
feature. Since p = 1−m/d, (5) can be written as:

P (N) = (1−
m

d
)N , N � d, (6)

which clearly reflects the simple relationship between P (N) and
the other parameters when we set N � d.

C. Classifier Ensemble Solution and its Extensions

We use a classifier ensemble strategy for covariate-invariant
gait recognition. After repeating the random feature selection

process L times (L is a large number), L base classifiers with
generalization ability P (N) (see (6)) are generated. Classification
can then be performed by Majority Voting (MV) [26] among the
labeling results of the base classifiers.

Given a query gait and the gallery consisting of c classes, we
define the true votes Vtrue as the number of classifiers with correct
prediction, while the false votes {V i

false}c−1
i=1 as the incorrectly

predicted classifier number distribution over the other c−1 classes.
Given that, through MV, the final correct classification can be
achieved only when Vtrue > max{V i

false}c−1
i=1 .

Ideal Cases Analysis: We make two assumptions in ideal cases:
1) When irrelevant features are not assigned to a classifier

(referred to as unaffected classifier), correct classification
should be achieved.

2) When irrelevant features are assigned to a classifier (referred
to as affected classifier), the output label should be a random
guess from the c classes, with a probability of 1/c.

Given L classifiers, in the ideal cases the true votes V̄true can be
approximated as the sum of the number of unaffected classifiers
P (N)L (based on the law of large numbers [27]) and the number
of affected classifiers:

V̄true ≈ round

(
P (N)L+

(1− P (N))L

c

)
. (7)

Similarly, in the ideal cases the false votes should correspond to
the number of affected classifiers for the other c−1 classes. Based
on assumption 2), its maximum value, max{V̄ i

false}c−1
i=1 , can be

roughly expressed as the corresponding mean value:

max{V̄ i
false}c−1

i=1 ≈ mean{V̄ i
false}c−1

i=1 ≈ round

(
(1− P (N))L

c

)
.

(8)
Correct classification can be achieved when V̄true >
max{V̄ i

false}c−1
i=1 . From (7) and (8), it is obvious that this condi-

tion can be met when P (N) > ε (ε is a small positive number).
From ideal cases analysis, it can be seen that we only care

about the number of unaffected classifiers, instead of which ones
are. According to (6), by setting N to a small number to make
P (N) > ε, the corresponding classifier ensemble method is
insensitive to the locations of corrupted features (since V̄true >
max{V̄ i

false}c−1
i=1 , as supported by (7) and (8)). Therefore, it is

robust to a large number of covariates as long as the irrelevant
feature number is not extremely large (i.e., m < d in (6)).

Real Cases Analysis: Here the two assumptions made in the
ideal cases analysis do not hold precisely: 1) unaffected classifiers
do not always make the correct classification; 2) although the af-
fected classifiers would result in label assigning in a relatively ran-
dom manner, it is difficult to estimate max{V i

false}c−1
i=1 precisely.

However, in real cases we can deem V̄true and max{V̄ i
false}c−1

i=1

from ideal cases analysis as the upper bound and lower bound,
respectively, i.e.,

Vtrue ≤ V̄true,

max{V i
false}c−1

i=1 ≥ max{V̄ i
false}c−1

i=1 .
(9)

Since correct classification can be achieved only when Vtrue >
max{V i

false}c−1
i=1 , our objective is to increase Vtrue and decrease

max{V i
false}c−1

i=1 . Since it is difficult to estimate max{V i
false}c−1

i=1

precisely, we relax the objective by decreasing
∑c−1

i=1 V
i
false. Then

we can reformulate our objective as a problem of suppressing Γ
defined as:

Γ =

∑c−1
i=1 V

i
false

Vtrue + ε
, (10)
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where ε is a small positive number to avoid trivial results. To
suppress Γ in (10), we extend the classifier ensemble method by
proposing two strategies:

1) Local Enhancing (LE): If we use the output labels of all the
L classifiers as valid votes such that L = Vtrue +

∑c−1
i=1 V

i
false,

then according to (10) we can get Γ ∝ L/(Vtrue + ε). Since L
is a constant, the first strategy is to increase Vtrue. To realize it,
based on supervised learning, for each subspace we extract more
discriminant features in order to enhance the classification perfor-
mance. We name the second-stage supervised feature extraction
(after the first-stage random feature selection) as Local Enhancing
(LE). Details of LE used in this work are presented in Section IV.

2) Hybrid Decision-level Fusion (HDF): The second strategy
is to decrease

∑c−1
i=1 V

i
false by dynamically eliminating classifiers

corresponding to the irrelevant features, before MV. Irrelevant
features would lead to label assignment in a relatively random
manner. Based on the same irrelevant features, a classifier pair
corresponding to two different LE methods would produce two
random labels, which are unlikely to be the same. Based on
the “AND” rule, classifier pairs with different output labels are
deemed as invalid votes and simply discarded. Although this
scheme may also decrease Vtrue to some extent, it significantly
reduces the value of

∑c−1
i=1 V

i
false to suppress Γ in (10). Details

of HDF are presented in Section V.

III. RANDOM SUBSPACE CONSTRUCTION

We construct the feature space using 2DPCA, from which we
can generate L feature extractors. Given n gait templates (e.g.,
GEIs) {Ii ∈ RN1×N2}ni=1 in the training set (i.e., the gallery), we
can compute the scatter matrix S∗ = 1

n

∑n
i=1(Ii − µ)T (Ii − µ),

where µ = 1
n

∑n
i=1 Ii. The eigenvectors of S∗ can be calculated,

and the leading d eigenvectors associated with non-zero eigen-
values are retained as candidates T = [t1, t2, ..., td] ∈ RN2×d to
construct the random subspaces. By repeating L times the process
of randomly selecting subsets of T (with size N � d), the random
subspaces {Rl ∈ RN2×N}Ll=1 are generated and can be used as
random feature extractors. Then a gait template I ∈ RN1×N2 can
be represented as a set of random features {Xl ∈ RN1×N}Ll=1

such that
Xl = IRl, l = 1, 2, ..., L. (11)

Note the random feature extraction is only performed in the
column direction of I , with the dimension reduced to RN1×N .

IV. LOCAL ENHANCING (LE)

The random features can be used for classification directly.
However, these features may be redundant and less discriminant
since 1) the random feature extraction process based on (11) is
performed only in the column direction and 2) the random feature
extractors are trained in an unsupervised manner, without using
the label information. As a result, these features may lead to
high computational costs and low recognition accuracies. Local
enhancing is used to address this issue, as discussed in Section
II-C. In each subspace, we further extract more discriminant
features based on two different supervised learning methods, i.e.,
two-dimensional LDA (2DLDA) [28], and IDR/QR [29]. In this
paper, these two types of feature extractors are referred to as
local enhancers (i.e., LE1 and LE2), and the process of training
2DLDA-based LE1 and IDR/QR-based LE2 are summarized in
Algorithm 1 and Algorithm 2, respectively. More details about
2DLDA and IDR/QR can be found in [28] [29].

In the lth subspace, a gait template I with extracted random
feature matrix Xl (or the corresponding concatenated vector X̂l)

Algorithm 1 2DLDA-based LE1

Input: Training set (i.e., the gallery) {Ii ∈ RN1×N2}ni=1 in c
classes, random feature extractors {Rl ∈ RN2×N}Ll=1, and the
number of LE1 projection directions M ;

Output: LE1-based feature extractors {W l ∈ RN1×M}Ll=1;
Step 1: Random feature extraction on training set
Xl

i = IiR
l, i = 1, 2, ...n, l ∈ [1, L];

for l = 1 to L do
Step 2: For {Xl

i}ni=1, letting µl be the global centroid, Dl
j

be the jth class (out of c classes) with sample number nj

and centroid ml
j ;

Step 3: Calculating Sl
b =

∑c
j=1 nj(m

l
j − µl)(ml

j − µl)T ;
Step 4: Calculating Sl

w =
∑c

j=1

∑
Xl

i∈D
l
j
(Xl

i −ml
j)(X

l
i −

ml
j)

T ;
Step 5: Setting W l = {φi}Mi=1, which are the M leading
eigenvectors of (Sl

w)−1Sl
b.

end for

Algorithm 2 IDR/QR-based LE2

Input: Training set (i.e., the gallery) {Ii ∈ RN1×N2}ni=1 in c
classes, random feature extractors: {Rl ∈ RN2×N}Ll=1, and
the number of LE2 projection directions M ;

Output: LE2-based feature extractors {V l ∈ RS×M}Ll=1, where
S = N1N ;
Step 1: Random feature extraction on training set
Xl

i = IiR
l, i = 1, 2, ...n, l ∈ [1, L];

Step 2: Concatenating Xl
i ∈ R

N1×N to X̂l
i ∈ R

S , i =
1, 2, ..., n, l ∈ [1, L];
for l = 1 to L do

Step 3: For {X̂l
i}ni=1, letting µ̂l be the global centroid, D̂l

j

be the jth class (out of c classes) with sample number nj

and centroid m̂l
j ;

Step 4: Constructing the set of within-class centroids: C =
[m̂l

1, m̂
l
2, ..., m̂

l
c], and performing QR decomposition [30] of

C as C = QR, where Q ∈ RS×c;
Step 5: After setting ej = (1, 1, ..., 1)T ∈ Rnj , computing
Hl

b = [
√
n1(m̂l

1 − µ̂l),
√
n2(m̂l

2 − µ̂l), ...,
√
nc(m̂

l
c − µ̂l)],

Hl
w = [D̂l

1 − m̂l
1e1

T , D̂l
2 − m̂l

2e2
T , ..., D̂l

c − m̂l
cec

T ];
Step 7: Calculating Sl

B = Y TY , where Y = (Hl
b)

TQ;
Step 8: Calculating Sl

W = ZTZ, where Z = (Hl
w)TQ;

Step 9: For (Sl
W )−1Sl

B , calculating its M leading eigenvec-
tors, U = {φi}Mi=1;
Step 10: Setting V l = QU ;

end for

can be enhanced by W l (the output of Algorithm 1) or V l (the
output of Algorithm 2) through

xl = (W l)TXl, l ∈ [1, L], (12)

or
x̂l = (V l)T X̂l, l ∈ [1, L]. (13)

xl (resp. x̂l) are the enhanced random features by LE1 (resp.
LE2), and they can be used for classification in the lth subspace.

Based on the (enhanced) random features, we also reconstruct
the GEIs corresponding to Fig. 1(a)-1(g), which can be found in
this paper’s supplemental material.

V. HYBRID DECISION-LEVEL FUSION (HDF)

Given the random feature extractors {Rl}Ll=1, the correspond-
ing LE1-based {W l}Ll=1, and LE2-based {V l}Ll=1, we can extract
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(a) (b)

Fig. 5. Images from (a) the USF dataset [5], and (b) the OU-ISIR-B dataset [16]

TABLE I
12 PRE-DESIGNED EXPERIMENTS ON THE USF DATASET

Exp. A B C D E F
# Seq. 122 54 54 121 60 121

Covariates V H VH S SH SV

Exp. G H I J K L
# Seq. 60 120 60 120 33 33

Covariates SHV B BH BV THC STHC

Abbreviation note: V-View, H-Shoe, S-Surface, B-Briefcase, T-
Time, C-Clothing

TABLE II
DIFFERENT CLOTHING COMBINATIONS IN THE OU-ISIR-B DATASET

Type s1 s2 s3 Type s1 s2 Type s1 s2
3 RP HS Ht 0 CP CW F CP FS
4 RP HS Cs 2 RP HS G CP Pk
6 RP LC Mf 5 RP LC H CP DJ
7 RP LC Ht 9 RP FS I BP HS
8 RP LC Cs A RP Pk J BP LC
C RP DJ Mf B RP Dj K BP FS
X RP FS Ht D CP HS L BP Pk
Y RP FS Cs E CP LC M BP DJ
N SP HS - P SP Pk R RC -
S Sk HS - T Sk FS U Sk PK
V Sk DJ - Z SP FS - - -

Abbreviation note: RP - Regular pants, BP - Baggy pants, SP - Short pants, HS
- Half shirt, FS - Full shirt, LC - Long coat, CW - Casual wear, RC - Rain
coat, Ht - Hat, CP-Casual pants, Sk - Skirt, Pk - Parker, DJ - Down jacket, Cs
- Casquette cap, Mf - Muffler, si - ith clothes slot

the sets of LE1-based (resp. LE2-based) features from a gait
template using (11), and (12) (resp. (13)). Based on the new
gait descriptors, for the lth subspace let [φl

1, φ
l
2, ..., φ

l
c] be the

centroids of the gallery. For a query sequence P l (including np

gait cycles) with the corresponding descriptors [pl1, p
l
2, ..., p

l
np

],
the distance between P l and the jth class centroid φl

j is defined
as: δ(P l, φl

j) = 1
np

∑np

i=1 ‖p
l
i − φl

j‖, j ∈ [1, c]. Nearest Neigh-
bour (NN) rule is employed for classification. Let {ωj}cj=1 be
class labels of c subjects in the gallery, then the output label
Ωl(P l) ∈ {ωj}cj=1 of the lth base classifier can be expressed as:

Ωl(P l) = argmin
ωj

δ(P l, φl
j), j ∈ [1, c]. (14)

Then we use HDF to identify the query gait P = {P l}Ll=1. For
simplicity reasons, let {Ωl

LE1(P l),Ωl
LE2(P l)}Ll=1 be the output

labels of the classifier pairs corresponding to LE1 and LE2. HDF
can be performed by assigning the class label to Ω̄(P ) with:

Ω̄(P ) = argmax
ωj

L∑
l=1

Θl
ωj
, j ∈ [1, c], (15)

where

Θl
ωj

=

{
1, if Ωl

LE1(P l) = Ωl
LE2(P l) = ωj ,

0, otherwise,
j ∈ [1, c]. (16)

It can be seen that
∑c

j=1

∑L
l=1 Θl

ωj
≤ L. When there are

a large number of irrelevant features for the query gait P ,
most of the corresponding votes can be eliminated such that∑c

j=1

∑L
l=1 Θl

ωj
� L. In this case,

∑c−1
i=1 V

i
false of (10) can

be significantly reduced while Vtrue of (10) are less affected. As
such, Γ of (10) can be effectively suppressed.

VI. EXPERIMENTS

In this section, first we describe the two benchmark databases,
namely USF [5] and OU-ISIR-B [16] datasets. Then we discuss
the parameter settings and the time complexity of our method.
Performance gain analysis by using the proposed LE and HDF
strategies is also provided, followed by the algorithm comparison.

A. Datasets

The USF dataset [5] is a large outdoor gait database, consisting
of 122 subjects. A number of covariates are presented: camer-
a viewpoints (left/right), shoes (type A/type B), surface types
(grass/concrete), carrying conditions (with/without a briefcase),
elapsed time (May/Nov.), and clothing. Based on a gallery with
122 subjects, there are 12 pre-designed experiments for algorithm
evaluation, which are summarized in Table I. The second gait
database, namely, the OU-ISIR-B dataset [16], was recently con-
structed for studying the effect of clothing. The evaluation set
includes 48 subjects walking on a treadmill with up to 32 types
of clothes combinations, as listed in Table II. The gallery consists
of the 48 subjects in standard clothes (i.e., type 9: regular pants
+ full shirt), whereas the probe set includes 856 gait sequences
of the same 48 subjects in the other 31 clothes types. Several
images from the USF and OU-ISIR-B datasets are shown in Fig.
5. For both datasets, the gallery is used for training. In this
work, we employ two templates separately, namely, GEI (with
the default size 128×88 pixels) and downsampled Gabor-filtered
GEI (referred to as Gabor, with size 320× 352 pixels).

We employ rank-1/rank-5 Correct Classification Rate (CCR) to
evaluate the performance. Considering the random nature of our
method, the results of different runs may vary to some extent.
We repeat all the experiments 10 times and report the statistics
(mean, std, maxima and minima) in Table III and Table VII for
both datasets. The small std values (listed in Table III and Table
VII) of the 10 runs indicate the stability of our method. Therefore,
throughout the rest of the paper, we only report the mean values.

B. Parameter Settings and Time Complexity Analysis

There are only 3 parameters in our method, namely, the
dimension of random subspace N , the base classifier number
L, and the number of projection directions M for LE1/LE2. As
discussed in Section II-B, we should set N to a small number for
great generalization ability P (N). The classifier number L should
be large, since our classifier ensemble solution is based on the
law of large numbers [27] (see Section II-C). Like most subspace
learning methods, the performance should not be sensitive to the
number of projection directions M for LE1/LE2 (unless it is
extremely small). On the USF dataset (Exp. A-L) we check the
average performance sensitivity to N , M , and L, based on Gabor
and GEI templates, respectively. By empirically setting L = 1000
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Fig. 6. On the performance sensitivity to the parameters on the USF dataset: (a) N is the dimension of the random subspace; (b) M is the number
of projection directions of LE1/LE2; (c) L is the classifier number

TABLE III
PERFORMANCE STATISTICS IN TERMS OF RANK-1 CCRS (%)

FOR 10 RUNS ON THE USF DATASET

- maxima minima std mean
GEI + RSM 52.44 50.73 0.62 51.45

GEI + RSM(LE1) 64.08 62.36 0.49 63.01
GEI + RSM(LE2) 62.79 59.81 0.91 61.72
GEI + RSM-HDF 70.90 69.20 0.50 70.01

Gabor + RSM 67.58 66.30 0.46 67.06
Gabor + RSM(LE1) 75.29 73.89 0.49 74.56
Gabor + RSM(LE2) 74.95 73.45 0.36 74.27
Gabor + RSM-HDF 82.12 80.30 0.53 81.17

TABLE IV
RUNNING TIME (SECONDS) ON THE USF DATASET

- Training Time Query Time Per Seq.
GEI + RSM(LE1) 91.42 0.58
GEI + RSM(LE2) 28.66 0.26

Gabor + RSM(LE1) 320.09 0.60
Gabor + RSM(LE2) 32.79 0.31

and M = 20, we run our methods with N set within the range
[2, 6]. The results in Fig. 6(a) indicate that the performance is not
sensitive to N . Based on L = 1000, and N = 2, we conduct
experiments with M = [20, 40, 60, 80, 100]. The results in Fig.
6(b) suggest that the performance is stable for M with different
values. By setting N = 2 and M = 20, we can also see from
Fig. 6(c) that the performance is not decreasing with respect to the
increasing number of classifiers. These observations are consistent
with our expectation that the performance is not sensitive to these
3 parameters. For the rest of this paper, we only report the results
based on N = 2, M = 20 and L = 1000.

We analyze the time complexity for training the L LE1/LE2-
based classifiers. For a LE1-based classifier in Algorithm 1, it
takes O(nNN2

1 ) (resp. O(cNN2
1 )) for Sl

w (resp. Sl
b) and O(N3

1 )
for eigenvalue decomposition. N1 is the template’s row number
(i.e., N1 = 128 for GEI, N1 = 320 for Gabor), while n and c are
the number of training samples and classes, respectively. Since, in
our case, n > c and n > N1, the time complexity for generating L
LE1-based classifiers can be written as O(LnNN2

1 ). For a LE2-
based classifier in Algorithm 2, it takes O(c2S) for the QR de-
composition, where S = NN1. Calculating Sl

B and Sl
W requires

O(c3) and O(c2n), while calculating Z and Y requires O(nSc)
and O(Sc2). Solving the eigenvalue decomposition problem of
(Sl

W )−1Sl
B takes O(c3) and the final solution V l is obtained

by matrix multiplication, which takes O(cSM). Since in our
case n > c and S > c, the time complexity for generating L
LE2-based classifiers is O(LnSc), which can also be written as
O(LnNN1c). We run the matlab code of our method on a PC
with an Intel Core i5 3.10 GHz processor and 16GB RAM. For the

USF dataset, we report the training/query time (with L = 1000)
in Table IV. Note the classifiers are trained in an offline manner
and can be used to identify probe sets with various covariates. It
is clear that LE2 is very efficient when the dimension is large. For
example, based on Gabor templates, LE2 only takes about 1/10
of LE1’s training time.

C. Performance Gain Analysis and Algorithms Comparison

Based on GEI and Gabor templates, we evaluate the effect of
suppressing the ratio of false votes

∑c−1
i=1 V

i
false to true votes

Vtrue, as defined in (10) by using LE and HDF. For a probe set
with K gait sequences, according to (10) we define Γ̂ as

Γ̂ = median

{ ∑c−1
i=1 V

i
false

Vtrue + ε

}K

k=1

, (17)

which is used to reflect the general ratio over the whole probe set.
We set ε = 1 to avoid the trivial results. Over the 12 probe sets (A-
L) on the USF dataset, the distribution of Γ̂ and the performance
are reported in Fig. 7 and Table V. We can observe that, LE1/LE2
can reduce Γ̂ to some extent, and RSM(LE1)/RSM(LE2) is less
sensitive to covariates such as viewpoint, shoe, and briefcase (A-
C, H-J). On the other hand, RSM-HDF can significantly suppress
Γ̂ and yields competitive accuracies in tackling the hard problems
caused by walking surface and elapsed time (D-G, K-L).

On the USF dataset, we also compare our method Gabor+RSM-
HDF with the recently published works, with the rank-1/rank-5 C-
CRs reported in Table VI. These works include Baseline [5], Hid-
den Markov Models(HMM) [31], GEI+Fusion [4], CSA+DATER
[8], DNGR [13], Matrix-based Marginal Fisher Analysis (MMFA)
[21], GTDA [9], Linearization of DLLE (DLLE/L) [7], TRIMAP
[10], Image-to-Class [11], Gabor-PDF+LGSR [12], CGI+Fusion
[14], Sparse Reconstruction based Metric Learning (SRML) [23],
and Sparse Bilinear Discriminant Analysis (SBDA) [22]. From
Table VI, we can see that in terms of rank-1 CCRs, our method
outperforms other algorithms on all the 12 probe sets. Our method
has an average rank-1 CCR more than 10% higher than the second
best method (i.e., Gabor-PDF+LGSR [12]), and also the highest
average rank-5 CCR. It is significantly superior than others on the
challenging tasks D-G, and K-L, which are under the influences
of walking surface, elapsed time and the combination of other
covariates. Although these walking conditions may significantly
corrupt the gait features, our proposed HDF scheme (based on
LE1 and LE2) can still suppress Γ of (10), leading to competitive
accuracies. We notice that our method only has 42% rank-1 CCRs
for probe sets K-L. In these cases, elapsed time is coupled with
other covariates like walking surface, clothing, and shoe, as listed
in Table I. These walking conditions may significantly increase
the number of irrelevant features m, which would result in a
lower P (N) in (6). According to Section II-C, a lower P (N)
would lead to a higher Γ in (10), which contributes negatively to
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Fig. 7. Over the 12 probe sets on the USF dataset, the distribution of Γ̂ (i.e., the general ratio of false votes to true votes)

TABLE V
RANK-1 CCRS (%) OF OUR METHODS ON THE USF DATASET

Exp. A B C D E F G H I J K L Avg.
GEI + RSM 89 93 82 24 27 16 16 83 69 54 18 9 51.36

GEI + RSM(LE1) 95 94 86 42 50 23 35 88 88 72 26 19 62.88
GEI + RSM(LE2) 96 94 82 40 46 27 29 87 83 72 19 18 61.70
GEI + RSM-HDF 98 95 88 54 60 37 44 90 93 83 33 21 70.16

Gabor + RSM 96 94 87 47 45 24 38 96 97 85 25 27 67.13
Gabor + RSM(LE1) 100 95 93 62 63 42 50 97 96 89 23 29 74.65
Gabor + RSM(LE2) 98 94 93 60 58 39 47 97 97 92 34 31 74.09
Gabor + RSM-HDF 100 95 94 73 73 55 64 97 99 94 42 42 81.15

TABLE VI
ALGORITHMS COMPARISON IN TERMS OF RANK-1/RANK-5 CCRS (%) ON THE USF DATASET

Exp. A B C D E F G H I J K L Avg.
Rank-1 CCRs

Baseline [5] 73 78 48 32 22 17 17 61 57 36 3 3 40.96
HMM [31] 89 88 68 35 28 15 21 85 80 58 17 15 53.54

GEI + Fusion [4] 90 91 81 56 64 25 36 64 60 60 6 15 57.66
CSA + DATER [8] 89 93 80 44 45 25 33 80 79 60 18 21 58.51

DNGR [13] 85 89 72 57 66 46 41 83 79 52 15 24 62.81
MMFA [21] 89 94 80 44 47 25 33 85 83 60 27 21 59.90
GTDA [9] 91 93 86 32 47 21 32 95 90 68 16 19 60.58

DLLE/L [7] 90 89 81 40 50 27 26 65 67 57 12 18 51.83
TRIMAP [10] 92 94 86 44 52 27 33 78 74 65 21 15 59.66

Image-to-Class [11] 93 89 81 54 52 32 34 81 78 62 12 9 61.19
Gabor-PDF + LGSR [12] 95 93 89 62 62 39 38 94 91 78 21 21 70.07

CGI + Fusion [14] 91 93 78 51 53 35 38 84 78 64 3 9 61.69
SRML [23] 93 94 85 52 52 37 40 86 85 68 18 15 66.50
SBDA [22] 93 94 85 51 50 29 36 85 83 68 18 24 61.35

Gabor + RSM-HDF (Ours) 100 95 94 73 73 55 64 97 99 94 42 42 81.15
Rank-5 CCRs

Baseline [5] 88 93 78 66 55 42 38 85 78 62 12 15 64.54
GEI + Fusion [4] 94 94 93 78 81 56 53 90 83 82 27 21 76.23

CSA + DATER [8] 96 96 94 74 79 53 57 93 91 83 40 36 77.86
DNGR [13] 96 94 89 85 81 68 69 96 95 79 46 39 82.05
MMFA [21] 98 98 94 76 76 57 60 95 93 84 48 39 79.90
GTDA [9] 98 99 97 68 68 50 56 95 99 84 40 40 77.58

DLLE/L [7] 95 96 93 74 78 50 53 90 90 83 33 27 71.83
TRIMAP [10] 96 99 95 75 72 54 58 93 88 85 43 36 77.75

Image-to-Class [11] 97 98 93 81 74 59 55 94 95 83 30 33 79.17
Gabor-PDF + LGSR [12] 99 94 96 89 91 64 64 99 98 92 39 45 85.31

CGI + Fusion [14] 97 96 94 77 77 56 58 98 97 86 27 24 79.12
SBDA [22] 98 98 94 74 79 57 60 95 95 84 40 40 79.93

Gabor + RSM-HDF (Ours) 100 98 98 85 84 73 79 98 99 98 55 58 88.59

the performance. Nevertheless, experimental results suggest our
method is robust to most covariates in the outdoor environment.

D. In Tackling the Clothing Challenges

Clothing was deemed as the most challenging covariate [15],
and there are only a few works that have studied the effect of
various clothes types. Recently, Hossain et al. built the OU-ISIR-B
dataset [16] with 32 combinations of clothes types, as shown Table
II. Based on an additional training set that covers all the possible
clothes types, they proposed an adaptive part-based method [16]
for clothing-invariant gait recognition. On this dataset, based on

Gabor templates, we evaluate our methods RSM(LE1), RSM(LE2)
and RSM-HDF. The statistics of our methods over 10 runs are
reported in Table VII. Compared with the part-based method [16],
Gabor+RSM-HDF can yield a much higher accuracy, as shown in
Table VIII. It is worth noting that different from [16], our method
does not require the training set that covers all the possible clothes
types and can generalize well to unseen clothes types.

We also study the effect of different clothes types, and the
rank-1 CCRs for 31 probe clothes types are reported in Fig. 8.
For most of the clothes types, our method can achieve more than
90% rank-1 accuracies. However, the performance can be affected
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TABLE VII
PERFORMANCE STATISTICS IN TERMS OF RANK-1 CCRS (%) FOR 10

RUNS ON THE OU-ISIR-B DATASET

- maxima minima std mean
Gabor + RSM(LE1) 89.49 86.92 0.76 87.92
Gabor + RSM(LE2) 87.97 86.80 0.36 87.52
Gabor + RSM-HDF 91.00 90.07 0.32 90.72

TABLE VIII
ALGORITHMS COMPARISON IN TERMS OF RANK-1 CCRS (%) ON THE

OU-ISIR-B DATASET

Part-based method [16] Gabor + RSM-HDF (Ours)
63.9 90.7
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Fig. 8. Performance distribution with respect to 31 probe clothes types
on the OU-ISIR-B dataset

with several clothes types that cover large parts of the human
body. In this case, a large number of irrelevant features m would
result in a higher Γ in (10), which would hamper the performance
(as discussed in Section VI-C). Specifically, the results are less
satisfactory when the following 3 clothes types are encountered:
1) clothes type R, (i.e., raincoat) with a rank-1 CCR of 63.3%; 2)
clothes type H, (i.e., casual pants + down jacket) with a rank-1
CCR of 52.1%; 3) clothes type V, (i.e., skirt + down jacket) with a
rank-1 CCR of 52.2%. Nevertheless, in general the results suggest
that our method is robust to clothing.

VII. CONCLUSION

In this paper, we model the effect of covariates as a partial
feature corruption problem with unknown locations and propose
a RSM-based classifier ensemble solution. The theoretical basis
suggests that its insensitivity to a large number of covariates in
ideal cases. To tackle the hard problems in real cases, we then
propose two strategies, i.e., LE and HDF, to suppress the ratio of
false votes to true votes before the majority voting. Experimental
results suggest that our method is less sensitive to the most
challenging covariates like clothing, walking surface, and elapsed
time. Our method has only 3 parameters, to which the performance
is not sensitive. It can be trained within minutes and perform real-
time recognition in less than 1 second, which suggests that it is
practical in real-world applications.
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