Reachability in pushdown register automata

A.S. Murawski', S. J. Ramsay', and N. Tzevelekos?

1 University of Warwick
2 Queen Mary University of London

Abstract. We investigate reachability in pushdown automata over infinite alpha-
bets: machines with finite control, a finite collection of registers and pushdown
stack. First we show that, despite the stack’s unbounded storage capacity, in terms
of reachability/emptiness these machines can be faithfully represented by using
only 3r elements of the infinite alphabet, where r is the number of registers.
Moreover, this bound is tight. Next we settle the complexity of the associated
reachability/emptiness problems. In contrast to register automata, where differ-
ences in register storage policies gave rise to differing complexity bounds, the
emptiness problem for pushdown register automata is EXPTIME-complete in all
cases. We also provide a solution to the global reachability problem, based on
representing pushdown configurations with a special register automaton. Finally,
we examine extensions of pushdown storage to higher orders and show that reach-
ability is undecidable already at order 2, unlike in the finite alphabet case.

1 Introduction

Recent years have seen lively interest in automata over infinite alphabets, driven by
applications in quite diverse areas where abstraction by a finite domain was deemed
unsatisfactory. A case in point are markup languages [[18/4], most notably XML, which
permit the use of potentially unbounded data values in documents and allow queries
to perform comparison tests on such data. A similar scenario occurs in reference-based
programming languages, such as object-oriented [[6/2/12]] or ML-like languages [16/17],
where memory is managed with the help of abstract addresses (reference names) that
can be created afresh, compared for equality but little else. Other examples include
array-accessing programs [1] as well as programs with restricted integer parameters [[7].

Such applications call for a robust theory of automata over infinite alphabets, which
will match our understanding of the finite-alphabet setting. Thus the limits will be
exposed and a complexity-theoretic guide established for applications. A lot of the
groundwork, surveyed in [203]], was already dedicated to uncovering a notion of “reg-
ularity” in the infinite-alphabet case. One way to extend the concept of finite mem-
ory to such a setting consists of introducing a fixed number of registers for storing
elements of the alphabet [13]]. Another strand of work aimed to identify the infinite-
alphabet “context-free” languages. Cheng and Kaminski [§]] introduced context-free
grammars over infinite alphabets and defined a corresponding notion of pushdown au-
tomata. Segoufin presents a similar definition in [20], albeit couched in a way suitable
to process data words.

Our paper is devoted to studying exactly such computational scenarios through a
study of pushdown register systems (PDRS), devices in which registers are integrated

with a pushdown store. Although of foundational nature, the work is largely motivated

by the pertinence of such machines to software model checking [6l2], and in particu-

lar their application to game-semantics-based verification [17]. We present several new

results on the complexity of reachability testing. Altogether they fill a gap in the the-

ory of “context-free” languages over infinite alphabets and demonstrate the impact of

pushdown or higher-order pushdown storage on the complexity of reachability testing.
More specifically, we make the following contributions.

Alphabet distinguishability A finite-memory automaton [13] with r registers can store
r elements of the infinite alphabet at any instant. In fact, such automata are only capable
of remembering r elements of the infinite alphabet over the course of a run — for any
accepting run one can construct another one involving only 7 elements of the alphabet.
Even though pushdown register systems have no bound on the number of elements of
the alphabet that can be stored at any instant, we show that, over the course of a run,
they can nevertheless remember at most 37 of them. More precisely, we show that for
any run of a PDRS with r registers there exists an equivalent run involving only 3r
elements. Moreover, no smaller number is enough: we exhibit a family of PDRS whose
runs require remembering at least 3r elements.

Reachability testing The above-mentioned result yields an obvious methodology for
reductions to the finite-alphabet setting, which immediately implies decidability of
associated reachability problems, and language emptiness. While the decidability of
emptiness has already been proved in [8] using context-free grammars, we believe we
are the first to provide exact complexity bounds for the problem, namely, EXPTIME-
completeness.

In the pushdown-free setting, language nonemptiness was known to be NL-, NP-
and PSPACE-complete, depending on the register discipline. In contrast, in the push-
down case, such distinctions do not affect the complexity: even if identical elements
can be kept in different registers, the problem can still be solved in EXPTIME, while it
is EXPTIME-hard already in the case where only distinct elements are allowed. In the
last case, the hardness proof is technically involved since sequences of distinct names
do not provide a supportive framework for representing memory content (as needed in
reduction arguments using computation histories).

We also show how one can conduct global reachability analysis, which asks for a
representation of all configurations from which a specified set of configurations can be
reached. In the finite-alphabet case, it is well known that, if the target set is regular,
the set of configurations from which the target is reachable can be captured by a finite
automaton [5]. We prove an analogous result in the infinite-alphabet setting using a
variant of register automata.

Higher-order Higher-order pushdown automata [[15]] take the idea of pushdown storage
further by allowing for nesting. Standard pushdown store is considered to be order 1,
while the elements stored in an order-k (k > 1) pushdown store are (k—1)-pushdown
stores. In the finite alphabet setting this leads to an infinite hierarchy of decidable mod-
els of computation with a (k—1)-EXPTIME-complete problem at order k. We examine
how the model behaves in the infinite alphabet setting, after the addition of a fixed
number of registers for storing elements of the infinite alphabet.

We first observe that one can no longer establish a uniform bound on the number
of symbols of the infinite alphabet that suffice to represent arbitrary runs. The existence
of such a bound would immediately imply decidability of the associated reachability
problems by reduction to the finite-alphabet case (as for pushdown automata). The lack
of a bound is not sufficient for establishing undecidability: indeed, the decidable class
of data automata from [4] contains an automaton that can recognize all words consisting
of distinct letters. Still, we show that the reachability problem for higher-order register
pushdown automata is undecidable, already at order 2 and with a single register.

2 Basic definitions

Let us assume a countably infinite alphabet D of data values or names. We introduce a
simple formalism for computations based on a finite number of D-valued registers and
a pushdown store. Writing [r] for {1,--- ,r}, by an r-register assignment we mean an
injective map from [r] to D. We write Reg,. for the set of all such assignments.

Definition 1. A pushdown r-register system (r-PDRS) is a tuple S = (Q, q1,71,0),
where:

— @ is a finite set of states, with q; € Q being initial,

— 71 € Reg, is the initial r-register assignment,

- and § C Q x Op, x Q is the transition relation,
with Op,. = {4, push(i), pop(i) | 1 <i <7} U{pop®}[|

The operations executed in each transition have the following meaning: — the ¢°
operation refreshes the content of the ith register; — push (i) pushes the symbol currently
in the 4th register on the stack; — pop (i) pops the stack if the top symbol is the same as
that stored in the ith register; — pop® pops the stack if the top of the stack is currently
not present in any of the registers. This semantics is given formally below.

Definition 2. A configuration of an r-PDRS S is a triple (¢, 7,s) € @Q X Reg, x D*.
We say that (q2, T2, s2) is a successor of (q1, 1, S1), written (g1, 71, $1) F (g2, T2, s2),
if (q1, 0p, q2) € 6 for some op € Op,. and one of the following conditions holds.

- op=1i% V). 1(i) £ 1)), V] #i.12(j) = 11(j) and s2 = s1.

— op = push(i), 7o = 71 and so = 11(1)s1.

— op = pop(i), 7o = 11 and 71(1)s2 = s1.

— op = pop®, T2 = 71 and, for some d € D, Vj.71(j) # d and dss = s1.
A transition sequence of S is a sequence p = Ky, - - - , ki, of configurations with k; -
Kjy1, forall 0 < j < k. We say that p ends in a state q if q;, = q, where qy, is the state
in k. We call p arun if kg = (qr, 77, €).

Remark 3. r-PDRS is meant to be a minimalistic model allowing us to study reachabil-
ity in the infinite-alphabet setting with registers and pushdown storage. Existing related
models [8]], [20] feature transitions of a more compound shape, which can be readily
translated into sequences of PDRS transitions.

For instance, a transition of an infinite-alphabet pushdown automaton [8]] typically
involves a refreshment (:*) followed by pop (pop(5)) and a sequence of pushes (push(j)).

3 For technical reasons, it is convenient to have e-transitions. However, to keep the definition
minimal, we observe that they can be simulated with push(1) followed by pop(1).

This decomposition leads to a linear blow-up in size for translations of reachability
questions into the 7-PDRS setting. For register pushdown automata [20], an additional
complication is their use of non-injective register assignments. Observe, though, that
transitions in the non-injective framework can be easily mimicked using injective reg-
ister assignments provided we keep track of the partitions determined by duplicated
values in the original automaton. The book-keeping can be implemented inside the
control state, which leads to an exponential blow-up in the size of the system, because
the number of all possible partitions is exponential. Note that the number of registers
does not change during such a simulation. Another difference is that register pushdown
automata [20] are tailored towards data languages, i.e. a stack symbol is an element of
D paired up with a tag drawn from a finite set. From this perspective, 7-PDRSs use a
singleton set of tags. Still, richer tag sets could be encoded via sequences of elements of
D (for example, to simulate the ith out of k tags, we could push sequences of the form
didg for dy,dy € D with d; # ds). This reduction is achievable in polynomial time.
Following [[13i8l18]], we mostly use injective register assignments. This is done to
allow us to explore whether the restriction still leads to asymptotically more efficient
reachability testing, as in the pushdown-free case. On a foundational note, injectivity
gives a more essential treatment of freshness with respect to a set of registers: non-
injective assignments can easily be used to encode PSPACE computations that have
little to do with the interaction between finite control (and pushdown) and freshness.

Name permutations There is a natural action of the group of permutations of D on
stacks, assignments, runs, etc. For instance, given permutation 7 : D — D and an
assignment 7, the result of applying 7 to 7 is the register assignment 7 - 7 given by
{(i,7(d)) | (i,d) € 7}. Similarly, 7 - s = w(dy,) - - - w(dy) for any stack s = d,, - - - dy
while, on the other hand, 7 - ¢ = ¢ for all states q. Hence, 7 - (¢, 7,8) = (¢, 7 7,7 - §).

Note that, as long as our constructions involve finitely many names, they will always
have a finite support: we say that a set S C D supports some (nominal) element x if, for
all permutations 7, if 7(n) = n for all n € S then 7 - © = x. Accordingly, the support
v(x) of x is the smallest set S supporting x. For example, v(7) = 7({1,--- ,r}), for
all assignments 7. On the other hand, the support of arun p = ko F -+ F K, is
v(p) = U?:o v(kj), i.e. it consists of all elements of D that occur in it.

The finite-support setting can be formally described by means of nominal sets [[11].
In particular, closure results such as the following hold. For transition sequence p =
Ko F -+ F Kp, we take - p to be the sequence 7 - kg, -+ , T - K.

Fact 4 (Closure Under Permutations) Fix an r-PDRS and let p be a transition se-
quence and 7 : D — D a permutation. Then w - p is also a transition sequence.

3 Distinguishability
Devices with r registers but without pushdown storage, such as finite-memory au-
tomata [[13]], can take advantage of the registers to distinguish r elements of D from
the rest. Consequently, any run can be replaced with a run that ends in the same state,
yet is supported by merely r elements of the infinite alphabet [13| Proposition 4].

With extra pushdown storage, an r-PDRS is capable of storing unboundedly many
elements of D. Nevertheless, the restricted nature of the stack makes it possible to place

a finite bound on the size of the support needed for a run to a given state, which is again
a function of the number of registers.

Lemma 5 (Limited Distinguishability). Fix an r-PDRS. For every transition sequence
p = (qo0,70,€) F™ (qn,Tn,€), there is a transition sequence p' = (qo,7),€) F"
(qn, 7)., €) with 7§, = 10, T}, = T and |v(p)]| < 3r.

Proof. The proof is by induction on n. For n < 1 the result is trivial. Otherwise,
the difficult case arises when the transition sequence is of the form: (qg, 70, €) F*
(Qks Ths €) F"7F (g, Tn, €) With 0 < k < n. It follows from the induction hypothesis
that there are sequences: p1 = (qo, 7, €) F* (qx, 7}, €) and pa = (qi, 74, €) F"7F
(gn,), €) with 7y = 79, 7}, = Ty, T4, = T} and which each, individually, use no more
than 3r names. Let N D v(79) U (1) Uv(7,) be a set of names of size 3r. We aim to
map v(p1) and v(p2) into N by injections 4 and j respectively. For ¢ we set i(a) = a
forany a € v (7o) Uv(7) and otherwise choose some distinct b € N\ (v(19) Uv(7y)).
Similarly, for j we set j(a) = a for any a € (v(7) U v(7,)) and otherwise choose
some distinct b € N \ (v(7x) U v(7,,)). Note that these choices are always possi-
ble because |v(p1)| < |N| > |v(p2)|. Finally, we extend ¢ and j to permutations
m; and 7; on D. Since transition sequences are closed under permutations (Fact [):
(g0, i - T0,€) FF (qr,mi - T = 75 - Thy€) FVF (g, mj - T, €) is a valid transition
sequence with m; - 79 = 79, 7; - T, = 7, and which is supported by a subset of N. O

Corollary 6. Fix an v-PDRS S and a state q of S. If there is a run of S ending in q
then there is a run of S ending in q that is supported by at most 3r distinct names.

The 3r bound given above is optimal in the sense that there exists an 7-PDRS such
that all runs to a certain state will have to rely on 3r elements of D.

Lemma 7 (Most Discriminating r-PDRS). There exists an r-PDRS (Q, qr, 71, €) and
q € Q such that |v(p)| = 3r for any run p ending in q.

Proof. Consider the following high-level description of an -PDRS. The machine pro-
ceeds as follows:

1. Push registers in numerical order, twice, to obtain stack 77(r) - - - 77 (1)77(r) - - - 77 (1).
Refresh registers by performing ¢® for all 1 < ¢ < r. Let the new assignment be 7.
Perform pop® r-times, thus ensuring that, for each 1 < 4,5 < r, 77(i) # 71 (J).
Push all registers in numerical order, to obtain stack 71 (r) - - - 7y (1) 77 (r) - - - 77 (1).
Refresh all registers. Let the new assignment be 5.

Perform pop® 2r-times, thus, for each i, , j, 72(7) # 71(j) and 72(¢) # 77(5)-
Silently transition to state q.

Now observe that the conditions in steps 3 and 6 and the fact that register assignments
are injective ensure that |v(77) Uv(m) Uv(m2)| = 3r. Hence, any run reaching ¢ is
supported by exactly 3r distinct names. a

NN A LD

Remark 8. The 3r bound given above can be adapted to the automata presentations
of [8l20] yielding bounds 3r 4+ ©(1). An adaptation of Lemmaimproves upon Exam-
ple 6 of [8], where a language requiring 2r—1 different symbols was presented.

Being able to bound the number of registers is useful for obtaining reachability algo-
rithms as it allows us to remove the complications of the infinite alphabet and reduce
problems to the well-studied finite alphabet setting (e.g. Theorem).

4 Reachability is EXPTIME-complete

We consider the following decision problem.
r-PDRS REACH: Given an r-PDRS P and g € @, is there a run of P ending in ¢?

We shall show that the problem (and its counterparts for all the other closely related ma-
chine models) is EXPTIME-complete. Note that reachability is equivalent to language
non-emptiness in the automata case.

Theorem 9. r-PDRS REACH as well as language emptiness problems for infinite-
alphabet pushdown automata [8] and register pushdown automata [20] are solvable
in exponential time.

Proof. Lemmal[j]yields an exponential-time reduction of 7-PDRS REACH to the classic
reachability problem for pushdown systems over finite alphabets [S]: one can simply
replace the r D-valued registers with » {1, -, 3r}-valued registers, which are then
incorporated into the finite control (this leads to a singly-exponential blow-up of the
state space). Since the latter problem is solvable in polynomial time, it follows that
r-PDRS REACH is in EXPTIME.

By Remark 3] the emptiness problem for infinite-alphabet pushdown automata [8]]
can be reduced to -PDRS REACH in polynomial time, immediately yielding the EXP-
TIME upper boun(ﬂ For register pushdown automata [20] we have an exponential-time
reduction to r-PDRS REACH, which does not yield the required bound. However, re-
call that the translation into 7-PDRS preserves the number of registers, so Lemma [3]
still implies a linear upper bound for the number of D-values needed for finding an
accepting run. Consequently, we can reduce language emptiness of register pushdown
automata to a reachability problem for pushdown systems at an exponential cost. Since
the latter is in P, the former is in EXPTIME. O

The bound given above turns out to be tight. To show this, we will simulate poly-
nomial-space Turing machines with a stack (aka polynomial-space auxiliary pushdown
automata [9]]), which have an EXPTIME-complete halting problenﬂ

Theorem 10. »-PDRS REACH is EXPTIME-hard.

Proof (sketch). For simplicity, let us assume binary tape alphabet. The main challenge
in the proof is the modelling of n tape cells using p(n) registers, for a polynomial p.
Recall that register assigments are injective, so it is not clear which registers represent
0’s and which represent 1’s. Thus, to encode n bits by, --- ,b, € {0,1}, we shall use
a special encoding scheme based on 2n names r1, - - - , 73, € D stored in registers and
an auxiliary “mask” of names my, - - - ,mg, € D that will be stored on the stack. The
registers and masks will be related by {re;_1,72;} = {maj_1,mg;} and b; = 0 will

4 A careful reading of the argument for emptiness in [8] also yields an exponential upper bound,
albeit by passage through two different kinds of grammars. Here, because of Lemmal[5] we can
give a direct argument instead.

5 A reduction from the more familiar alternating polynomial-space Turing machines would also
be possible, but Cook’s model is closer to 7-PDRS, which allows us to concentrate on the main
issue of encoding binary memory content without the need to model alternation.

be represented by the case ro;_1 = maoj_1,72; = maj;. Note that, due to injectivity,
both 7;’s and m;’s cannot be present in registers at the same time and hence the latter
will be pushed on the stack. However, the stack is also needed for pushing and popping
ordinary stack symbols by the Turing machine, so masks will not always be at the top
of stack at the time when they are needed for decoding®} We overcome this obstacle
by employing 3 different masks for encoding memory: one is used whilst simulating
push-transitions (push-mode), one for pops (pop-mode) and an auxiliary one to ensure
continuity between the different instances of masks. Let us call these masks My, Mo
and M3 respectively.

In push-mode, instead of popping M; from the stack in order to compare it with the
registers and hence decode the memory, we will be guessing it and pushing the guess
onto the stack, on the understanding that the correctness of each guess (call it M 1)isto
be verified later in the corresponding pop steps. Moreover, in push-mode we will also
be pushing the mask M5 so that it is readily available for pop-mode. When it is time to
switch to pop-mode, the tape content so far encoded with mask A will be re-encoded
with Ms so that the forthcoming pop-move can be simulated with M,. During pop-
transitions, in addition to stack symbols and the mask M used for decoding, we will
also pop the accompanying guessed mask M, and verify its correctness by comparing
it with the last unverified M, which is stored in registers apart from the simulated
memory. Because at the bottom of the stack we have the actual mask M, such equality
comparisons will eventually assert that Ml = M, for all guesses M 1.

A final complication arises when we want to switch from pop-mode to push-mode.
We said that, when popping, we verify the guesses M. Thus, if a push follows a pop,
the mask M, that resides in the registers needs to be pushed back on the stack so that
it can be verified later once we return to pop-mode. At the same time, we need to store
in our registers some content X, so that X and M 1 encode the current tape content.
However, the formation of X destroys M 1 in tpe registers. To prevent the information

from being lost, we shall make another guess M; and use the third mask M3 to help us
check later that the guess was correct (more precisely, on the stack we shall store Mg

and some Mg such that M; = M iff Mg = M3). Whether Mg = M3 really holds will
be verified in a subsequent pop step. a

The EXPTIME-hardness carries over to the language emptiness problem associ-
ated with both infinite-alphabet pushdown automata [8] and register pushdown au-
tomata [20]. Since the latter (but not the former) allow for storage of identical values in
different registers, their EXPTIME-hardness can also be established more directly by
encoding relative to two fixed data values for 0 and 1. These different policies for regis-
ter management are known to lead to different complexity bounds for emptiness testing
in the absence of pushdown store: NP-completeness [19ﬂ (injective assignment) vs
PSPACE-completeness (non-injective assignment) [10]. Perhaps surprisingly, we have

® For example, after simulating a push-transition, the mask used for realising the transition will
be hidden by the pushed symbol and thus unavailable to support the next transition.

7 This result is affected by the fact that registers initially contain a special undefined value, which
greatly helps to model boolean assignments. Without that, the emptiness problem is reducible
to that for finite automata and, consequently, NL-complete.

shown the presence of pushdown store cushions the differences and there is no gap
analogous to that between [8]] and [20].

5 Global reachability

We now move on to investigate global reachability for »-PDRS. We show that, given
an 7-PDRS P and a representation C of a set of configurations of P, one can construct,
in exponential time, a representation of the set of configurations Pre% (C) from which
‘P can reach a configuration in C. To that end we extend the methodology of Bouajjani,
Esparza and Maler [3] to the infinite alphabet setting.

The developments in this section rely on an auxiliary variant of (stack-free) register
automata which feature symbolic transitions representing multiple rearrangements of
registers. In order to describe them, let us introduce r-register manipulations, which
are partial functions R € [r] x [r] < {0, 1} such that R=1{1} is a partial injection. We
denote the set of all such partial functions by RegMan,. and use R’ to refer to R~'{b},
forb € {0,1}. Given R, S € RegMan,., we define R ; S as follows.

Covs o)L (SToRY() =
(B3 9)) = {o 3k € [r]. (RM(i) = k A S°(K) = j) V (R°(i) = k A SY(k) = §)

Moreover, given i € [r], we shall write R;e for the partial function defined by, for all
J € [r], Rie(j,i) = 0and, for all j # i, R;s(j,7) = 1.

Register manipulations can be seen as abstract predicates on register assignments. In
particular, given two register assignments 7, 7/, we write 7 R 7/ just if, for all (i, j) €
dom R, R(i, j) = 0 implies 7(¢) # 7'(j) and R(4, j) = 1 implies 7(i) = 7/(j).

Definition 11. A register-manipulating r-register automaton (r-RMRA) is a tuple
(Q, F, A) with Q a finite set of states, F C Q a subset of final states and A C @ x
OP,. x Q the transition relation, with OP,. = [r] + {e} + RegMan,..

The operations of RMRAs generalise the stack-free operations of PDRSs: i € [r] spec-
ifies reading a name already present in the ¢th register, ® reads a locally fresh name and

R € RegMan,. is an internal action such that if ¢ EiN ¢’ then any configuration (g, T)
may transition to any configuration (g, 7') satisfying 7 R 7’. In what follows, we will
start RMRAs from various initial configurations, so we do not include an initial state or
register assignment in their specifications.

Definition 12. Given an r-RMRA A = (Q, F, A), a state ¢ € Q and an r-register
assignment T, we set: L(A)(q, 7) = {w € A* | wisaccepted by A from (q, T)}.
Moreover, given an r-PDRS P = (P, qr, 71, 0) such that P C @, we say that A
represents the P-configuration (p, T, s) whenever s € L(A)(p, 7). We write C(A) for
the set of ‘P-configurations represented by A.

Given an r-RMRA characterising a set of configurations of an r-PDRS P, our aim is
to construct another RMRA that represents exactly those configurations of P that can
reach configurations in C(A), i.e. we aim to construct a representation of Pre}, (C(A)).

We shall do this in the “saturation” style of the classical construction of [S]] but we
need more notation in order to deal with the infinite alphabet. Given R € RegMan,., we

say that R is consistent with the statement ¢ = j (respectively ¢*) just if R(4, j) # 0
and i € dom R' V j € ran R! implies R'(i) = j (resp. i ¢ dom R') and in that
case we write R || ¢ = j (resp. R || *). So, the meaning of R || i°, is that ¢ in
the situation before R may be locally fresh with respect to the situation after R. If
R || i = j (resp. R || i*) then we write R[i = j] (resp. R[i*]) for RU {(4, j) — 1}
(resp. RU{ (¢, j) — 0| j € [r]}). Note the difference between R;» and R[i®]. We write
q LBy q' just if there is some finite, possibly empty, sequence (g;);c[n] such that ¢; = ¢

and g, = ¢’ and, forall ¢ € [n — 1], ¢; LN giviand Ry ;- Ry 1 = R.
Definition 13. Given an r-PDRA P and an r-RMRA as above and with the additional

assumption that A contains no transitions to states in P, we construct another r-RMRA
SAT(A) by induction (note that op ranges over OP,.):

op. i® ’ push(di) , R« J ’
PP pop PP P gy T T
oD ; (N) e (4) Rlimj] (éd

P——0D ——p — /
SAT(A) p SAT(A) p SAT(A)

push(@) , R« hd / pop(i) pop®
P PP g T s ! . PP - p=P “
R[Z.] , 1 i , A% ° | v

—_— —_— P——D

p SAT(A) q p SAT(A) p SAT(A)

where we additionally require R || i = j in rule (ii), and R || i® in rule (iii).

The above construction can be carried out in exponential time. To see this, consider
that there are at most |QQ x OP,. x Q| many transitions added, which is at most expo-
nential in the size of the input. For each transition, computation is either trivial or, in

(i4) and (i4i), involves computing all instances of p’ ﬁ* g. The number of such

instances is at most exponential in the size of the input and computing each one reduces
to graph reachability.

Theorem 14. Given r-PDRA P and r-RMRA A as above, C(SAT (A)) = Prep (C(A)).

We can thus verify more involved reachability queries such as checking whether
one can reach a configuration represented by A from a given configuration. To that
end, we can construct the corresponding SAT (A) and perform a membership test. To
implement the latter in nondeterministic space, given a source configuration (g, 7, w),
we need O(log |@sat(4)| + p(r) + log |w]) bits to track the state, register assignment
and position in w respectively. This is polynomial space in P, A, w which, along with
the construction of SAT(.A), yields an exponential-time reachability testing routine.

Finally, let us remark that RMRAs are no more expressive than register automata
with nondeterministic reassignment [14]. An r-RMRA A = (Q, F, A) can be seen
as an r-register automaton with nondeterministic reassignment (r-RA,,;.) if A C @ x
OP,. x Q,withOP_ = [r]+{ R |i €[r] }.

Lemma 15. For any r-RMRA A, one can construct a (2r+1)-RA,,, A such that, for
each A-configuration r there exists a A-configuration i satisfying L(A) (k) = L(A)(R).

6 Higher-order pushdown automata

We now consider state reachability at higher orders, defining pushdown register au-
tomata as a register-equipped analogue of the classical definition of [[15]. We shall see
that not only does the added expressive power of nested stacks preclude giving a uni-
form bound on the number of distinct data values needed to reach a given state but,
moreover, the state reachability problem itself is undecidable.

A 1-stack is just a finite sequence of elements of D. For n > 1, an n-stack is a finite
sequence of n—1-stacks. We consider the following operations on 1-stacks:

e pushi{a;,...,a1) = {a,q;...,a;y) forany a € D
o pop1(ai, aj—1,...,a1) = (a-1,...,a1)
e topr{as,ai—1,...,a1) =

and, in connection with n-stacks for n > 1:

o push§(s;,...,s1) = (push$ s;,81-1,...,51)

e pushg(sy,...,s1) = (pushg s;, 81-1,...,51)if2 <k <n
o pushg(s;,...,s1) = {(s1,81,...,81)ifk=n

o Popr(Si,--.,81) = (POPK S, S1—1,.-.,51) Iif 1 <k <n

o POPE(Sty...,51) = (Si—1,...,51)ifk=n

o top1(sy,...,81) = topy 8

noting that every operation except push{ is undefined when applied to an empty stack.
Finally, we write (), for the k-stack defined as ¢ when k = 1 and (();_1) otherwise.

Definition 16. An order-n pushdown r-register system (r-nPDRS) is an r-PDRS
with the vocabulary of operations Op,. extended in the following way:

Op; = Op, U {pushy, popi |2 <k <n}

A configuration of an r-nPDRS is a triple (q, T, s) with q and T as before and s now an
n-stack. The initial configuration is (qr, 71, ()n)- A configuration (qa, T2, s2) is said
to be a successor of a configuration (g1, 1, s1) just if there is some op € Op, such
that (q1, op, q2) € 6 and one of the following is true:

- 0op = ’i., Vj Tg(i) 7é Tl(j), VJ # ZTQ(]) : Tl(j) and S1 = Sa.

— op = push(i), 2 = 11 and sy = push?(l) s1.

— op = pop(i), T2 = T, topy s1 = 71(i) and sy = pop; s1.

— op = pop®, 7o = 11, V. 71(J) # top: s1 and s2 = pop; $1.

— op = pushy, k > 1, 79 = 7 and so = pushy, sy.

— op = popg, k > 1, 79 = 11 and s; = popy, S1.

In this section we aim to show that, for all » and n > 1, r-nPDRS have undecidable
reachability problems by showing undecidability for » = 1 and n = 2. For 1-2PDRS,
we will write a configuration (¢, {1 — a}, s) generally as (g, a, s). The following ex-
ample shows how data held on a 1-stack of a 1-2PDRS can be copied and interrogated.

Example 17. The following family of 1-2PDRS demonstrates the inability to give a
uniform bound on the number of distinct data values needed by 1-2PDRS for reaching
a designated state (for 7-PDRS that bound is 3r). For every k£ € N, there is an 1-2PDRS
needing more than k£ names in order to reach state py:

10

push(1) push(1) 1* push(1l) pushs
qo0 a1 q2 a3 v’z a5 \pof)(l)

le\m 5
pop® pop® pop(1) pop(l) v
Pk <—- -+ —— 49 <——(8

Po g8 <——4qr7 pop

The idea is as follows, let the initial register assignment be the single element #. When-
ever the machine is in state ¢, its 2-stack is of the form ({a,,...,a1,#,#)), for
m > 0, with a; # a; # # for all ¢ # j. The use of ## serves to mark out the bottom
of stack. On each iteration of the cycle starting in g2, an additional data value is pushed
onto the singleton 1-stack (upon leaving state g3) which is then verified to be different
from all the others. This verification is implemented by first taking a copy of the 1-stack
using pushe, then checking that the data value in the register is different from all other
names on the stack using pop®. Note that, in state gg, the automaton must guess and
verify that it has reached the bottom of stack markers. Now, the top copy of the 1-stack
will be exhausted and the machine simply discards it with pops, restoring the invariant
and returning to state ¢o. Finally, note that the automaton can transition from g» to py,
only if it has gathered at least £ non-# names in its stack.

To show the undecidability of the state reachability problem for higher-order PDRS,
we reduce from the emptiness problem for weak pebble automata, which is known to
be undecidable [[18I21]]. We find it convenient to use pebbles, because the push and pop
instructions have a direct analogue in placing and lifting a pebble, whereas a reduc-
tion from, say, the halting problem for Turing machines, seems awkward because it is
difficult to update elements inside stacks.

Theorem 18. The state-reachability problem for r-nPDRS is undecidable for any n > 0.

Proof (Sketch). Given a weak k-PA A, we construct a 1-2PDRS S that first guesses a
word w and then checks that w € £(.A) by simulating an accepting run of .4 on w. To
simulate .4 running on input w in some state ¢ with head pebble m < k and where each
of its placed pebbles ¢ € {1,...,m} is over some position p(4) of w, the construction
has S in a configuration of shape: ((q, m), d, {({Cmy- .-, C1,Qnybpy ... a1,b1,#,#))).
The state component (g, m) of the configuration records both the state and the index of
the head pebble of A4; d is the data value stored in the single register. The stack com-
ponent, which is a 2-stack containing a single 1-stack, records the input word and posi-
tions of the pebbles. The input w is encoded by the indexed word (a,, b,) - - - (a1, b1),
in which w = b,, - - - by and, for all 4, j € [n], a; # b; and, when i # j, a; # a; (such
distinctness can be guaranteed by using the technique of Example [T7). The positions
of the pebbles are encoded by the vector ¢, - - - ¢1, with ¢; = a; iff p(i) =n — j + 1.
Finally, the pair #+#, where # is different from any other element, is a device to mark
bottom of the stack.

Under this encoding scheme, the placement of a new pebble is simply copying the
top element of the 1-stack and the lifting of the head pebble is simply popping the top
element of the 1-stack. To move the head pebble right and, more generally, to check
the applicability of a given transition of A, requires interrogating the data structure held
on the stack. However, since all the relevant data from the simulation is encoded into

11

the state of S and its single 1-stack (no relevant data is encoded in the register), by
using pushs and pops this data can be preserved, interrogated (which will likely result
in elements being discarded) and then restored without any overall loss of information.

For example, to simulate moving the head pebble m right, S first pops the top of
its 1-stack, ¢, (encoding p(m)), into its register. It then takes a copy of the whole 1-
stack using pushs, thus preserving a snapshot of the simulation. In the working copy
it discards the vector ¢,, - - - ¢; and then loops, repeatedly using pop® to discard each
element of the indexed word until it finds (a;, b;), the unique pair such that a; = ¢,
the value in its register (discarding of the top of stack can be arranged by allowing a
transition to be made on either of pop(1) or pop®). Finally it discards a,; and b; and
replaces the contents of its register by the new top of 1-stack, a;_1, which encodes the
position one place to the right of the head pebble. The working 1-stack can then be
discarded using pop- and new head position, a;_1, pushed onto the restored 1-stack.
Checking applicability of transitions is similar. a

References

1. R. Alur, P. Cerny and S. Weinstein. Algorithmic analysis of array-accessing programs. ACM
Trans. Comput. Log., 13(3), 2012.
2. M.F Atig, A. Bouajjani and S. Qadeer. Context-Bounded Analysis for Concurrent Programs
with Dynamic Creation of Threads. Log. Meth. Comput. Sci., 7(4), 2011.
3. H. Bjorklund and T. Schwentick. On notions of regularity for data languages. Theor. Comput.
Sci., 411(4-5), 2010.
4. M. Bojariczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic
on data words. ACM Trans. Comput. Log., 12(4), 2011.
5. A.Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Appli-
cation to model-checking. In CONCUR, 1997.
6. A. Bouajjani, S. Fratani, and S. Qadeer. Context-bounded analysis of multithreaded pro-
grams with dynamic linked structures. In CAV, 2007.
7. A. Bouajjani, P. Habermehl and R. Mayr. Automatic verification of recursive procedures
with one integer parameter. Theor. Comput. Sci., 295: 85-106, 2003.
8. E. Y. C. Cheng and M. Kaminski. Context-free languages over infinite alphabets. Acta Inf.,
35(3):245-267, 1998.
9. S. A. Cook. Characterizations of pushdown machines in terms of time-bounded computers.
J. ACM, 18(1):4-18, 1971.
10. S. Demri and R. Lazi¢. LTL with the freeze quantifier and register automata. ACM Trans.
Comput. Log., 10(3), 2009.
11. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing, 13, 2002.
12. R. Grigore, D. Distefano, R. L. Petersen, and N. Tzevelekos. Runtime verification based on
register automata. In TACAS, 2013.
13. M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2), 1994.
14. M. Kaminski and D. Zeitlin. Finite-memory automata with non-deterministic reassignment.
Int. J. Found. Comput. Sci., 21(5), 2010.
15. A.N. Maslov. Multilevel stack automata. Probl. of Inf. Transm., 12,1976.
16. A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. In ESOP, 2011.
17. A.S.Murawski and N. Tzevelekos. Algorithmic games for full ground references. ICALP, 2012.
18. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alpha-
bets. ACM Trans. Comput. Log., 5(3), 2004.
19. H. Sakamoto and D. Ikeda. Intractability of decision problems for finite-memory automata.
Theor. Comput. Sci., 231(2), 2000.
20. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL, 2006.
21. T. Tan. On pebble automata for data languages with decidable emptiness problem. J. Comput.
Syst. Sci., 76(8), 2010.

12

A Proof of Limited Distinguishability

The proof is by induction on n. When n < 1, the result is trivial. Otherwise, we distin-
guish two cases.
In the first case, the transition sequence is of the form:

(quT(J,E) F (Q1;7'1,d) Fn72 (Qn—laTn—lvd) - (Qna'rnae)

in which the first transition is by push(4) (so d = 7 (1)), the last transition is by pop(j)
or pop® and the stack does not empty until the final transition. Since d is never popped
from the stack during the middle segment, also (g1, 71,€) "2 (¢n_1,Tn_1,€) is a
valid transition sequence and hence, from the induction hypothesis, there is a transition
sequence between the same two configurations using fewer than 3r names. By adding
d to the bottom of every stack in this sequence one obtains another valid transition
sequence: (q1,71,d) V"2 (¢n-1,7)_1,d) with 7{ = 7y and 7/,_; = 7,_1, and the
new sequence features < 3r names. It follows that the latter can be extended to the
required:

(q037_076) F ((h;T{,d) }_n72 (qnflv,r:z—lvd) = ((Janaﬁ)

since neither push(i), nor pop(j)/pop® change the registers.
Otherwise, the transition sequence is of the form:

(q()a 70, E) Fk (Qk7 Tk E) Fnik (Qna Tns 6)
with 0 < k < n. It follows from the induction hypothesis that there are sequences:

P1 = (qu 7-(/)a 6) Fk (Qka Tlg’ 6)
P2 = (Qk’ T]/w 6) l_n_k (Q’ﬂv T’r/w 6)

with 7§ = 79, 7}, = Tn, T, = T} and which each, individually, use no more than 3r
names. Let N D v(19) U v(7) U v(7,) be a set of names of size 3r. We aim to map
v(p1) and v(p2) into N by injections 4 and j respectively. For ¢ we set i(a) = a for
any a € v(719) U v(7g) and otherwise choose some distinct b € N \ (v(70) U v(71)).
Similarly, for j we set j(a) = a for any a € (v(7%) U v(7,)) and otherwise choose
some distinct b € N \ (v(7) U v(7,)). Note that these choices are always possible
because |v(p1)| < |N| > |v(p2)|. Finally, we extend ¢ and j to permutations 7; and 7
on D. Since transition sequences are closed under permutations (Fact)

(qu’/T'L' : 7—076) '_k (qk;ﬂ-i T = Ty Tk,E) |_n7k: (QHvﬂ-j . Tn;G)

is a valid transition sequence with 7; - 79 = 79, 7; - 7, = 7,, and which is supported by
a subset of V.

B Proof of EXPTIME-hardness for 7-PDRS reachability

In this section we show that the emptiness problem for auxiliary pushdown automata
(AuxPDA) working in binary tape of size n and stack alphabet of size k can be reduced
in polynomial time to (6n + k + 1)-PDRS reachability. We first give an outline of the
proof argument and then delve into the details of the necessary constructions for the
reduction.

13

B.1 Argument outline

Let us assume an auxiliary pushdown automaton M working in binary tape of size n
and a stack alphabet of size k. We can assume WLOG that every transition of M per-
forms a single push or pop (but not both) along with a read/write by the head followed
by a head movement. Moreover, let us assume that the stack alphabet of M includes a
distinguished symbol $ marking the bottom of the stack and that, additionally, M starts
with $ on the stack and halts when it is popped ($ is not used otherwise). Finally, we let
the tape of M initially contain only 0’s.

We shall construct a (6n + k + 1)-PDRS S such that M terminates iff S reaches a
designated “final” state. The registers of S will be divided into 4 groups:

7 = [rolm 7o) 7))

of sizes k+1, 2n, 2n and 2n respectively.

— 7(0y Will contain D-values coding the k stack symbols and an auxiliary symbol #.
It will be left untouched throughout the simulation.

— 7(1) and 72y will be used to encode the n-bit tape of M during push- and pop-
transitions respectively.

- 7(3) will have an auxiliary role and in particular will ensure the integrity of the tape
when changing from pop- to push-transitions.

More precisely, we utilise the following encoding of the n-bit tape in 7(;y. First of all,
we will make sure that, for all 1 < j < n and all reachable 7,

{ray (25 = 1), 71y (29)} = {7r1y(25 — 1), 711y (2) }-)]

Then, given reachable assignments 7, 7, we can define the n-bit tape 71y [7(1)] by

Ty [Fy] () = 0 iff 701y (24) = 7(1)(27)

foralll < j < n,Wecall %<1> the mask of the encoding. For example, writing a register
assignment as a word,
(abed)bacdl =10.

We will use similar encoding schemes with respect to 73, and 73y (the role of the latter
will be explained later). In particular, during push-mode, the tape will be represented by
7(1y[T1(1y]; during pop-mode, by 7(9)[77(2)]. Note that S will effectively operate only
on the names contained in 7.

During its operation, S will maintain a stack in the form:

S'L X3

0|50y [T12)| S [T1¢2)| Sy
s = S |3 |15 |15 2)
with [s{},| = |77(9)| = [s{s)| = 2n and [s}y,| = 1 (and arbitrary 7). The top stack

symbol is in the top-left corner, the element below it on the stack is on its right, 32031 is

14

below s’@ etc. Each sj@ above corresponds to a non-# stack symbol (as specified by
T(0)):

Recall that 71y will be used to represent the tape during push-transitions using 77 ;
as a mask. However, we will not be able to keep the mask readily available at all timesﬁ
and S will keep on guessing it instead. The guesses, to be verified later, will be stored as
sz 1y To represent the tape at pops, we will use the mask 77 (). Our simulation will make

sure that this is correctly stored on the stack during pushes. Finally, the 513> TI(2) si3>

will be used to support the simulation when it switches from pops to pushes. sj<3> will
also be a mask.
There will also be “exceptional” rows, which have the form:

% = Flalrebuleks) v

where # the encoding of # in 77). These rows will be used to verify the correctness

of s{3> , as we discuss later.

Thus, in each row we store a stack symbol and 5 masks. The purpose of the masks
is to help us determine the tape content of M. On the other hand, the current stack of
M can be recovered by projecting out the first column of s and erasing any occurrence
of #

We next define the different steps of the simulation. Initially, there is an initiali-
sation step pushing a row s on the stack; S reaches its final state precisely when it
successfully pops s”. Recall that every transition of M includes a push or a pop action.
Accordingly, the states of S have two modes: a push-mode and pop-mode. Each transi-
tion of S non-deterministically guesses the mode of the next state (of S). S simulates
the push-transitions of M using 71, [sin] as its tape; it simulates the pop ones using
T2y [T1 <2>] as its tape. The simulation only goes through if the masks of these encodings
are correct, that is, if slm =TI for all ¢. Put otherwise, in an accepting computation

of &, all masks slm that appear on the stack must be equal to 77 1).

Initialisation S starts off by pushing the following row:

= Blnomenelmnelne)] S

Recall here that the tape is assumed to be initially empty and 77 ;) [s?l>] =0---0.

Push-mode During this phase, S uses 7(1) to represent the tape of M while 7y, 72y, 7(3)
stay unchanged. Assuming S has stack content as in (2)) or (3) and the current register
assignment is:

=110 Ty [T2y [T3]

the current tape content (according to the simulation) is:

t= T<1>[821>] .

% Due to injectivity of assignments, the content 7(1) and the mask 771y cannot be stored in
registers at the same time. Moreover, the mask cannot be stored in the stack either at this point
as S will itself need to push stack symbols on the stack, since it is simulating a push-transition
of M.

15

Moreover, by construction, we shall have T(2) = TI(2)-

. . 2Y,%,push(C .
Now suppose M is to perform a push-transition ¢ M q', where x is the

currently scanned symbol to be overwritten with y, the head movement is indicated by
z € {L,R, N} and C is the stack symbol to be pushed. Assume that the current head
position is 1 < j < n (S will keep track of it in its state). In order to simulate the
transition, S first needs to retrieve 7(1) [slm] (7). One way to do that would be to simply

pop slm off the stack. However, that would be catastrophic for our simulation since
there is no guarantee at this point that s’@ is a correct mask (i.e. equal to 771)); popping

it would destroy it, thus annihilating any possibility of verifying its correctnessr_;] Thus,
instead, S will guess what the value of sil might be and operate according to the
guess. Moreover, the guess will be pushed on the stack for subsequent verification in
the pop-mode.

More precisely, S will first push the word 72) 7(3)7(2)7(3)- It then produces a guess
sg)l of the mask szm which is consistent with reading x at the current head position,

in that 7, [8251](.]) = . This is achieved by non-deterministically pushing consec-

utive pairs of elements of 71y, subject to the previous requirement and the constraint
expressed by equation (IJ). It next performs the operations of M (as instructed by y and
2) according to the tape 71 [sﬁr;]. Thus, after these operations, the register assignment
and top of the stack read

7 = [Ty [mre 7]
s o= sy melrelne)]

where 7'</1> [sgﬂ is the new tape content (in particular, we have written y in bit 7).

Finally, S chooses the kind of the next transition. If it is a push, then Cis pushed
on the stack (the name corresponding to C'). Otherwise, before switching to pop-mode,

it has to transfer its tape-encoding from 71y to 7). We achieve this by simultaneously

;31 from the stack into T</1> and changing 77 (5 into T</2> so that 7'<’2> [Tr(2)] =

7'(’1) [s?'ﬁl] This can be executed by popping szi')l(Qj) and comparing it with T<’1> (29)

for each bit 1 < j < n and, then, depending on the outcome, swapping the contents
of registers 25—1 and 2j in each of T<’1> and 72y in order to reflect the desired change.

Finally, we push sﬁ@l back on the stack, followed by C to arrive at

moving sl(

™ = [ty [l [0

$itl — ’C

sty 1|7 e o)

with 7'</2> [T1(2)] = T</1> [3@)1]'

® Note that pushing initially Tr(1y an indefinite amount of times is not a viable solution for
having it available on the stack as a mask, since the push operations of M would just bury
these masks in the stack.

16

Pop-mode S now uses 73 as the tape. Let the current configuration of S have stack
as in (2)) and let

=1 Ty Ty Ty

so that 72y [77(2)] is the represented tape content.

e T Y%, c
Suppose that M’s head scans position j and the next transition is to be ¢ %

q', where s’@ — (. Recall that (1) 31@, e 8:<ll> are guesses from previous push tran-
sitions (or from exceptional pushes, still to be discugsed), while s(<)1> = TI(1) by @). To
verify the guesses, it suffices to verify that 71y = s’m and, at the next pop, verify that
Ty = s@l, etc. Thus, S will first pop C from the stack and then pop szm, simul-
taneously checking that it equals 71y (otherwise it will block). Next we pop 77z to
determine 79 [77(2)] and perform the instruction (=, y, z) by changing 72y to T<,2> (and
updating the head position in the state). Thus, we obtain

7 =l [me] s = [T [sa]re 5]

having verified that 7(1) = s{;,.

Next, S guesses the kind of the next transition. If it is to be a pop, S pops the
remainder of s¢’. Otherwise, S should switch to push-mode and in particular change its
tape-storing routine from 75y to 7). That is, 71y needs to be updated to 7'<’ 1) such that
7(1y[F(1)] = ¢, for appropriate mask 7(1), where t = 7/, [71 ()] is the current tape. Also,
having now preserved its value according to the encoding, T<’2> should be changed back
10 77 (2y.

We are now faced with the following obstacle. Updating 71y to 7'</1> would make
us lose the current Ty This would break our simulation as, although S has verified
Ty = slm, it remains to check that 7y is the same as all those guessed masks still
on the stack, i.e. 5251, ey Sh)’ Since entering push-mode requires that we overwrite
the contents of 71y, we would like to preserve its current assignment on the stack.
However, doing this directly is impossible since we need to obtain 779y from lower
down the stack in order to decode the current tape contents 7/,,. We overcome this by
storing in the stack a guess for 71y, along with auxiliary masks which will allow us to
verify this guess when popping. Moreover, we shall pick 71y = 7(1y. Thus, S operates
next as follows.

— It first pops 51@ and stores it in 7¢3.

— Then, it pops TI(2) and stores it in 7'<’2> and, at the same time, it copies ¢ in T(1) and
7(3), that is, it updates them to 7'<’1> and 7'<’3> respectively, such that ¢t = T<’1> [Ty] =
T8

— It pushes 775y back on the stack.

— It then makes a guess T<N1> of 7(1y and pushes it on the stack. While doing so, it

updates 7/, to the mask sl<§> satisfying 7, [77,] = 7(5, [siéﬂ

— Finally, it pushes #Si?Z)TI(?) on the stack.

17

Thus, we end up with

7 = [ro Ty |m@ sl

sy = [#lsiylmo|mh[me s

and the automaton switches to push-mode. Note that T</1> uses 71y as a mask, yet we

have 7'(”1) on the stack instead. Nevertheless, by construction, ’7'<//1> = 71y iff sl@ = 51@.

Thus, when popping the row s;E, the automaton will additionally check that s’@z s§3>
and thus verify that the correct mask 7'(”1 has been stored on the stack.

Finally, we discuss the case when 52 is in pop-mode and the top of the stack is as
in (3). In such a case, the pop transition of S is taken independently of M. In particular,

let 7= o[Ty [T [T3y

— & starts by popping # and SZ@, and stores the latter in 73.

— Next, it pops 772 and slm, and checks that the latter is equal to 7(y).
— Finally, it pops 772y and s§3>, and checks that the latter is equal to 82?/» (which is

now stored in 7¢3).

Thus, according to our discussion above, S correctly verifies the continuity of the masks
S?U while consuming the row .

Altogether, the above construction yields a (6n+ k + 1)-PDRS S of polynomial
size with respect to n. Moreover, S pops s iff it makes consistent guesses for masks
used in its first component and, therefore, faithfully simulates the operations of M
leading to popping the terminating symbol from its stack.

B.2 Details of the construction

Let M = (Q, q;,T, 6) be an AuxPDA operating on binary tape of size n and stack al-
phabet {1,--- ,k}, with $ € {1,-- |k} being a distinguished bottom-of-stack symbol.
M has initial state ¢, and let us assume its transition relation is of the following type,
§ C Q x Op), x Q, with

Op}, = {0,1}* x {L, R, N} x {push(i), pop(i) | 1 <i < k}.

That is, in every transition, M reads a bit = from its current head position, writes back
y, moves the head (Left, Right, or No-move), and pushes or pops a symbol from the
stack. Moreover, we assume that M has initial tape 0 - - - 0 and initial stack $, and M
halts when it pops $ from the stack ($ is not used otherwise).

We construct a (k + 1 + 6n)-PDRS S such that M pops $ from the stack iff S
reaches a designated state ¢/. In particular,

S=(@Qx{L - ,n}p x {14} U{ar} Q' a1, 71,0")

where each state of the form (g, 7,) [resp. (¢, 7,1)] is said to be in push-mode [pop-
mode]. The index j indicates the position of the head on the tape of M. Thus, at its
initial position, M reads the first bit of the tape and can only perform a push. Q' is a
set of auxiliary states of polynomial size in n, which we gradually specify below. The

18

initial assignment 77 is arbitrary; we divide the registers into 4 groups (of sizes k + 1,
2n, 2n and 2n respectively) and write register assignments 7 in the form:

T = T<0) o T<1> b T<2> o T<3>

We moreover stipulate that, throughout the operation of S, the values of its group-0
registers remain fixed and, foreachi =1,2,3and 1 < j < n,

{7y (27 = 1), 70y (29)} = {7106y(25 — 1), 7100y (29) } -

The discipline imposed above is instrumented so as to encode an n-size tape in each of
T(1y, T(2)> T(3)- In particular, for each i = 1,2, 3 and 2n-components 7;y, 7(;), W€ can
define an n-tape 7 [7;] by setting,

Ty [Ty] (3) = 0 3ff 7045y (25) = 713y (25)

forall 1 < j5 < n.Wecall %@ the mask of the encoding. Our PDRS S will simulate the
operations of M using just such an encoding. On the other hand, the stack is grouped
into rows of two possible forms:
st = 31<0> 5 sl<1> 5 sl<2> 5 sl<3> : sl<2> : 523> %)

sy = #u szé> 1S9y 1 S(y 1 S{gy it S(y) (6)
where the first component has size 1, and the rest have size 2n. In rows of the form (3)),
we stipulate that s’@ =+ # Here # = T1(0) (k+1) is a symbol we use precisely for dis-
tinguishing stack rows like (6), which we call exceprional rows. Note that components
with index (2) and (3 are repeated in (@); while components with index (2) are repeated
in (6). The index i in s*, s, denotes the i-th row of the stack. The i-th row is on top of
the (—1)-th, etc. At the bottom of the stack we will store the row:
SO == TI<O>($) o TI<1> o 7’[<2> o 7’[<3> s T[<2> o T]<3> (7)
where recall that $ € {1,--- , k} is the empty stack symbol.

We proceed to define 6. As explained in the main text, we divide the operations of
S into operations performed in push-mode and pop-mode. In push mode, the automaton
uses component (1) of its registers for encoding the tape, using a mask which it needs
to push on the stack at every step. As different push-steps do not share their masks
(the registers store the encoded tape, not the mask used), these may in general differ. S
correctly simulates the operations of M if the same mask is used in every push-step.
Thus, S stores on the stack the mask used for each such step and, when in pop-mode,
it verifies the consistency of those chosen masks. In particular, we impose that in every
correct computation of S, all masks used in push-mode coincide with 7). In pop-
mode, the automaton verifies the consistency of the push-mode masks and uses instead
the (2)-component of the registers for storing the tape. The mask used for that encoding
is 772y, which is guaranteed to be readily available on the stack as, by construction
every 31@ appearing on the stack (in rows (3)) or (6)) will satisfy s’@ =TI(2)-

19

We next proceed to the formal definition of the transitions of S. We define 4’ as the
least relation containing the following transitionsm

Push-mode. The automaton starts its operation by storing s on the stack. That is, we
include in ¢’ the transition sequences

push(y 9323y Pushy($)
qr (QI»Ovi)a

Pu3h<1,2,3,2,3> PUSh<o>($)
qr (q1707T)a

which simply push on the stack the contents of registers {$} U{k+2,--- ,6n+k+1}
in the required fashion and guess whether the next state is going to be in push- or pop-
mode.

We next move to ordinary push transitions. For each (¢, z, y, z, push(i),¢’) € § and
j€{1,---,n}, we include the following transition sequences.

push (s 3 03y guess 1y (q',5,2,y,2)

(q7j’¢') (q,7j+z7i7‘l’)/

. . push gy (2) .
(q/a.] +Z717\|()I $> (ql J + Z;\I/)

, push gy (3)

switch(q',j+z,i,T) ,
y SMGIEEY) (1 ziy EOE (g ez, 1)

(q/7 J+Z7 ia J/
with j + 2 = j — 1if z = L, etc. All primed states are taken from Q’. Moreover,
guess1y(q', j, ,y, z) is the gadget:

push 1y (2n, 2n—1) push 1,(2j+2,2j+1) = pushy(2j—2,2j-3)

J
= T Y,

;T /
q, Qo1 - q] - qul g

pushyy(2n—1,2n) push 1y (2j+1,2j+2) push 1, (2j—3,2j—2)

with each ¢; being some (¢', j, =, y,2,i,1); € Q',fori =1,--- ,n,and q5 = (¢, j +
z,14,])’. The transition sequence x H{D y assumes that j-th bit of the tape (as encoded
in (1)) is x, pushes the corresponding mask registers on the stack (according to the value
of x), and changes the value of the j-th bit to y:

push< >(2] 1,29) ifz=0,y=0
oy = push()(24—1,20); flipy () fx=0,y=1
push 1y(24,25-1) ifr=1y=1
push<1)(2j,2] D flipy(j) ifx=1,y=0

19 Some notation: we write push (i) for push(i), push (i) for push(k+1+1), etc. Sim-
ilarly for pops, and for referring to registers in general: e.g. ji5y = (k+1+2n+7)°. We

. t1;t2 ’ .- t1 o t2 ’ . .
write ¢ ——— ¢ for the sequence of transitions ¢ — ¢ — ¢', choosing some unique

¢" € Q'. Finally, we push sequences from right to left, i.e. write push ; (i1, - ,im) for
push gy (im); - -+ ; push;y (i1), and let push,;, abbreviate push ;y (1, -+, 2n) (push full i-th
component), while e.g. push ; 5y stands for push 5y; push ;. Dually for pops (in particular,
we pop sequences left-to-right).

20

The transition sequence flip ;) (4) (¢ = 1,2) simply flips the j-th bit of the tape in the
(iy component of the registers:

ﬂip(w () =
pUSh@) (25—-1,24); (Qj)ziﬁ (21—1)?@? (QJ)Zi)QPOP(i) (24,25-1)

Thus, the transition sequence starts by performing a push of the (2)(3)(2)(3)-components
on the stack. It then guesses a mask for T(1)» S&Y s and pushes it on the stack, while
at the same time it updates 7,1y to 7'<’ 1) according to the write instruction y. At that point,
it guesses whether it needs to switch to pop-mode. If it guesses that it should remain
in push-mode, then it simply pushes the stack symbol i (i.e. its representation in 77)).
Otherwise, it performs a switch by using switch(q’, 4,4, 1), which is the following gad-
get.

pop (1)(2,1); Pop (1y(2n, 2n—1);
flip (1)(1); flip 9)(1) flip (1y(n); flip (2y(n)
, T , T~ , pushgy o
qO ql q'n (Q7.77717T)
~_ ~_ 7
pop (1y(1,2) pop (1y(2n—1,2n)

Here each ¢/ is some (¢, j,4,1), € Q@ (¢ = 1,--- ,n) and ¢}, = (¢',j+=2,1,{)". The
above allows us to switch our tape-storing routine from the (1)-component of the reg-
isters to the (2)-component: S pops the mask 52'1'31 from the stack and stores it in the
(1)-component of the registers and, while doing so, it copies the value of 7'</1> [s7F1]
onto 7(gy. This is achieved via the flip oy (i) transitions, in case 7'<,1>[5i+1] = 1 (up-
per arcs); and by their alternatives, which leave 75 (2¢) and 75y (2i — 1) untouched, if
7y [s"+1] = 0 (lower arcs).

Pop-mode. For each (q, z,y, z, pop(i),q') € and j € {1,--- ,n}, include the follow-
ing transition sequences,

Pop oy (1) pop(1y read(2y(q’,j,%,y,2)

(¢:7:1) (q,j+=z1)
. clear(zy clear(sy clears, .
(d'd+21) — : = (¢,j+21)
. switch(q,j+z,1) . push gy (k+1))
(¢, d+2,1) === (¢, j+2,1) ——— (¢"j+21)

with 7 + z as above and all primed states taken from Q’. Note that, be definition, pop a
pops the (1)-component of the top of the stack and checks that it is the same as the
(1)-component of the registers. On the other hand, read 2y (¢, j, 7, y, z) is the gadget:

pop(2y(2,1) pop (o) (25—2,2j—3) Pop (2 (2542, 2j+1)
e — T Y , =)
dp q 4j_1 —> ¢ Ty
~ 7 ~—_ 7 ~_ 7
Pop(3)(1,2) pop n(2j—3,2j-2) POp (5 (25+1,25+2)

21

with ¢f, ¢}, -+ , ¢, € Q’E The transition sequence x »—>Z2> y is given by:

pop 9y (2j—1,2j) ifr=0,y=0
Pop 2y (25—1,27); flip 5y () ifz =0,y =1
pop (9y(24,25—1) ifr=1y=1

(21723 1); flipg) () ifx=1,9=0

Y
pop s

Thus, the transition sequence starts by popping the stack symbol ¢ and checking that
the last guessed mask for 71y stored in registers equals the one stored at the top of
the stack. It then continues to pop the mask 79 for 79, focussing specifically in
the values determining the value of its j-th bit. It verifies that 7(9)[77(2)](j) = 2 and
updates the latter to y (yielding some T</2>). At this point, it guesses whether the next
state is going to be in pop-mode. If it guesses so, it simply pops the remaining top-row
from the stack (without looking at the popped values). The latter is accomplished by
the clear;y gadgets:

pop(;y(2,1) pop;y(2n,2n—1)

o _—a ,

/ /

q a q
0 ~_7 1 ~ 7 "
pop<,i>(1,2) Pop (4 (2n—1,2n)

for appropriately chosen ¢, - ,q,, € Q’. We specifically stipulate that if ¢ = $ (the
symbol signifying termination) then S will necessarily guess to stay in pop-mode and,
instead of reaching state (¢’, j + z, 1), it will drive itself to a designated state ¢ € Q’.

If, on the other hand, the automaton guesses that the next state is in push-mode,
it makes a switch of modes, using the switch(q’, j,]) gadget, and pushes the special
symbol 77 gy (k+ 1) on the stack. The switch(q’, j,) gadget is decomposed as follows.

/pop—in<3> pop-in<2>©-in<1,3> push<2>

(¢’ j+z,1)

guess<1>©—in<3> push s o)

(¢ j+z.1)

Recall that at this point in the simulation, the register assignment and top of stack
of § are as follows:

il

T/ = T](()) . T<1> o 7'</2> s 7'<3) s = S7é3> b T[<2> . Si<3>
As described in the main text, the utility of the above is to:

— First pop s§3> and store it in 7(3) (via pop-in sy).

— Then, pop 772y and store it in 7'<’2> and, at the same time, copy t = 7'<’2> [71(2)]
in 71y and 73y, that is, update them to 7'<’1> and 7'<’3> respectively, such that ¢ =
Ty lrm] = 103 [SZ@] (via pop-in gy ©-in i 3y)-

! From this point forward we generally refrain from giving explicit names to auxiliary states, for

simplicity. Such names can be given, similarly as in the push-mode case, in order to show that
Q' has size polynomial in the size of M.

22

— Push T1(2) back on the stack (via push<2>).
— Then make a guess T<N1> of 7(1y and push it on the stack. While doing so, update T</3>

to the mask sz;> satisfying 7, [7/},] = 7(5, [31@] (via guess 1y & copy-in sy).

— Finally, push on the stack 52;’) 12y (push s oy).
The pop-in) gadget simply performs a pop-into place for component (3):

pop (3y(2,1); flip 3y(1) pop (3)(2n, 2n—1); flip 35(n)

Y
n
~_ ~_
pop 5y(1, 2) pop (5y(2n—1, 2n)

for designated ¢, - - - , ¢}, € Q. Next, pop-in 5y & copy-in y 3 is the following gadget,
resembling the previously described switch(. .., 1).

POP (2)(2,1); flip 9(1); Pop (2y(2n, 2n—1); flip (9y(n);
flip (1)(1); flip (5)(1) Jlip (1y(n); flip (5y(n)
A /\
v @G oo @,
~_ 7 ~_
Pop (2y(1,2) pop (9y(2n—1,2n)

Lastly, the guess<1>©-m<3> gadget is similar to pop—z'n<2>©-in<173>, only that
instead of reading (i.e. popping) a mask from the stack, it guesses and pushes it:

push 1y(2n, 2n—1); flip 5y(n) push 1y(2, 1); flip 55(1)
/—\ /\
/ / /
qn qn_l. .. e qO
/ ~
push 1y(2n—1, 2n) push1y(1,2)

That is, it makes a guess for the mask at component (1) and pushes it on the stack while
updating component (3).

In order to conclude the definition of ¢’, we need to add pop-transitions for consum-
ing rows starting with the “exceptional” symbol k£ + 1. As explained in the main text,
the purpose of these transitions is simply to verify the continuity of the masks used in
the (1)-component of S, using also information stored in the two (3)-components of the
given stack row. In particular, S must verify that those two (3)-components are equal.
We therefore add the following transition sequences in S,

pop oy (k+1) pop-in gy clearzy Pop(1y clearizy POP 3y

(¢,5:1)

foreveryg € Qandj € {1,--- ,n}.

We claim that S reaches ¢} iff M pops $ from its stack. Note first that, if M has
a computation leading to a pop-$, then S can simulate it by making sure it makes all
guesses right, and thus reach ¢%. Conversely, as argued above, S may only reach its

(¢,5,1)

23

final state if all its guesses on used masks are correct. But any such run would faithfully
simulate a run of M leading to pop-$, by construction. Finally, observe that the M — S
reduction is poly-time. In particular, S has 6n + k + 1 registers and a state space of size
polynomial in the number of transitions in M. O

C PDRA Saturation soundness and completeness

We now aim to show that C(SAT(A)) = Prep(C(A)), i.e. that the saturated automaton
completely characterises the set of configurations reaching the target set. First we show
soundness:

Lemma 19. If (p, 7, w) F* (¢, 7/, w') and w’ € L(A)(p', T') thenw € L(SAT(A))(p', 7).

Proof. Let the witness to the first premise be k, the proof is by induction on k. When
k = 0 the result follows from rule (N). When k = n + 1, the transition sequence has
the form:

(p’ T, w) '_ (p//’ T”, w//) '_’n, (p/7 7_/7 w/)
it follows from the induction hypothesis that w” € L(SAT(A))(p”, 7") (*). We con-
tinue by analysing the initial transition.

— If the initial transition is by p LN p’ then 7”7 = 7[i — a] and w” = w for some
a fresh for 7. By part (i) of the construction also (p, 7) F (p”, 7') and hence
w € L(SAT(A))(p, 7).

— If the initial transition is by p push(@), p” then 7 = 7" and w” = 7(i)w. By (*)
there must be some transition sequence (p”/, 7) F* (¢, o) F (¢’, o) in SAT(A)
with the final transition the only transition to read an input: 7(7), and

w € L(SAT(A))(¢’, o). This final transition must be justified either by (1) ¢ EN q
or (2) ¢ > ¢. In both cases, the initial part of the sequence must be justified by

some register manipulations p’’ ?R(;)»* q. We distinguish between the two cases:
T
(1) In the first case, necessarily 7(i) = o(j) and, therefore, R || ¢ = j. It

follows from part (ii) of the construction that (p, 7) F (¢’, o) and hence
w € L(SAT(A))(p, 7).

(2) In the second case, necessarily 7(i) ¢ v(o) and, therefore, R || i°. It fol-
lows from part (iii) of the construction that (p, 7) F (¢’, o) and hence w €
L(SAT(A))(p, 7). ‘

— If the initial transition is by p pop(@), p’ then 7 = 7" and w = 7(i)w” and it

follows from part (iv) of the construction that w € L(SAT(A))(p, 7).

— If the initial transition is by p por’, p" then 7 = 7" and w = aw” for some a fresh

for 7. It follows from part (v) of the construction that w € L(SAT(A))(p, 7). O

Corollary 20. Pre;,(C(A)) C C(SAT(A))

For completeness, i.e. to see that SAT(.A) does not accept any word which is not
the stack component of some configuration reaching the target set, we first generalise
the quantity Pre, (C(A)). Define P% (.A) as follows:

L(A)(g, 7) q& P

Pr(A)(g, 7) = {{S | (¢, 7, s) € Prep(C(A))} qeP

24

(recall that P is the set of states of the PDRA P). Observe that, if ¢ € P and w €
L(A)(g,) then (¢, 7,w) € C(A), which implies w € {s | (¢, 7, s) € Prep(C(A))}.

Lemma 21. Transitions in SAT (A) preserve P%,(A):

- Ifq ﬁ ¢, wePLA), 7")and T R 7' then w € PH(A)(q, 7).

- Ifqg W ¢ and w € PL(A)(¢, 7) then T(i)w € P%(A)(q, 7).

- Ifq SA'I'.W) ¢, wePL(A), 7)and a & v(T) then aw € PL(A)(q, 7).

Proof. By induction on the construction of SAT(A) and case analysis on the last rule
used in it:

(N) Note that, by our initial assumption, .4 contains no incoming transitions to states
. . R
in P. Thus, in every case, ¢’ ¢ P. Suppose now ¢ 7> ¢, w e PLA)(, 1)

and 7 R 7. Then, w € £(A)(q’,7') and therefore, since (q,7) — (¢’,7') in A,
w € L(A)(q,). Thus, using also our previous observation, w € P%(A)(q, 7).
The other cases are shown in a similar manner.

(i) If the construction is concluded by (i) then assume p %) p’ andletw € PL(A)(p', 7')

and 7 R;e 7', with p = g¢. It follows from the assumption that (p, 7, w)
(p', 7', w) whenever 7’ = 7[i — a] for some fresh a. Since this is true of any T
such that 7 R;e 7’ the result follows.
.. push(i) / R &« . . 1 J A
(i) Assume p —>P p’, also p —>SAT(A) ¢",R||i=jandq —>SAT(A) q’, with
p=q.Letw € PL(A)(¢, 7') andlet 7 R[i = j] 7. It follows from the induction
hypothesis that 7/(j)w € P%(A)(¢”, 7’) and, since R[i = j] is stronger than
R, that 7'(j)w € PH(A)(p/, 7). Since 7(i) = 7/(j), it follows from the first
assumption that w € P%(A)(p, 7).
push(i) R« -0 " . ’ * ;o
SATCL q",R||i*and q W ¢ Letw € P5(A) (¢, ')
and 7 R[i®] 7’. Since 7(i) is fresh for 7/, it follows from the induction hypothe-
sis that 7(7)w € P%(A)(¢”, 7') and, since R[:®] is stronger than R, that 7(i)w €
P%(A)(p/, 7). Finally, it follows from the first assumption that w € P%(A)(p, 7).

(iv) Assume p p—ﬁ@é p'.Letw € P%(A)(p', 7). Then by definition 7(i)w € P%(A)(p, 7).

(iii) Assume p

(v) Assume p % p'. Let w € PL(A)(p/, 7) and let a be fresh for 7. Then by
definition aw € PL(A)(p, 7). O

Corollary 22. C(SAT(A)) C Prek(C(A))
Proof. Let (p, 7) b --- F (¢, 7') with p € P be a transition sequence of SAT(.A)

accepting some word w. Since ¢ is necessarily a final state, ¢ € £(A)(q, 7') and then it
follows from Lemma 21| that w € Pre},(C(A)). O

25

D From register-manipulating RAs to RAs with non-deterministic
reassignment

In this section we show that RMRAS are no more expressive than RA,,,.s. We show
this by a series of reductions, starting from RMRAs and reducing to more restricted
machines until we reach RA,,,s.

Definition 23. An r-RA of type X, for X € {I,1I, 111}, is a triple A = (Q, F, A),
ACQ x OPX x Q, with:

(I) OPL = [r] + {@} 4+ { Rue | & C [r] }, where Rye is the partial function given by,
foralli € [rland j € o, R, (J) =0, and Rye(i,i) = 1 forall i ¢ a.
() OPp = [r] + {o.2} + { R | € [1] }.
(1) O, = [r] +{e} + { RE [i € [r]} + { Rie [0 € [1]}-

RAs of types I and II are special cases of RMRAs. Type-1II RAs are variants in which the
+

R" P . ..
semantics of transitions ¢ —— ¢’ is identical to that of sequences of RMRA-transitions:

Rin 7 ’
g—-5gq

Let A = (Q, F, A) be an r-RMRA. We construct an r-RA A" = (Q’, F', A’) of
type I as follows. We take

Q=Qx(rl=0F) F={(¢/eQ|qeF}

and include in A’ precisely the transitions given belowE]

— For each ¢ 25 ¢/ and m, f : [r] =5 [r] and Rae such that R || (m; Rye), add
RQ/.
(¢.f) =

A
=% (¢, f) with o' = (77; f)(a) and f' = 7% f.

— For each ¢ 714» q and f : [r] =N [r] add (g, f) % (d, f)-

—Foreachq?q’andf:[r] — [r] add (¢ f)f(q',f).

The idea is that the second component f of a given state (q, f) of A’ maps register
locations of configurations in A in state g to register locations of configurations of A’
in state (¢, f). For example, the first clause of the construction above says that, if there
is an R transition in A from ¢ to ¢’ and R can be decomposed as some permutation of
locations 7 followed by some refreshes R, then, in A’, (¢, f) can transition to (¢, f”)
on R,se. Since R may refresh those locations in o which are themselves given by
permuting locations according to m, it follows that the corresponding register locations
are given in A’ by starting from «, undoing 7 and then consulting f.

Now, let A; and As be register automata (of any denomination). We say that a
relation R between configurations of Ay and A5 is a simulation if, whenever 1R ko,

— if k1 is final then so is ko;
12 Here we view the bijection 7 as an r-manipulation with component 7° empty and 7! = 7.

Moreover, we write R || (7; Rqe) for the condition “RU (7; Rqe) is a valid r-manipulation”.

26

— if k1 F%, w1 (withz € DU {e}) then kg F% k5 and k) Rk5.
We say that R is a bisimulation if both R and R ~! are simulations.

Lemma 24. Let A be an r-RMRA and A’ be the type-I r-RA A’ constructed as above.
Then, the relation

R={g7),(qf,7)|T=[f;7}

isa bisimulatiorm

Proof. Note first that both R and R~ relate final configurations to final ones, Now, let
(¢, 7)R(q, f, 7).
Suppose (q,7) F (¢’,7"), due to some ¢ L ¢, so TRT. We let 7 [r] = [r]

be such that, for all i, 4, (i,5) € « iff 7(¢) = 7/(j), and « be an enumeration of the
elements of [r]\ran(r). Since 7 R7’, we have R || (7; Rye). Thus, (¢, f) % (d, 1)

and so (¢, f,7) = (¢, f',#'), for f/ = =% fand o/ = (7~ %; f)() and any 7/ such
that 7R+ 7. We take 7/ = f~1;7; 7/ and proceed to show 7R/« 7. We have:

Roe(i,j) =1 = i=j ¢ (r " f)(a)

— (M) = (Fhm0G) ¢ a
L (5 Rae) (710, (F 5 m) () = 1
G (G = (L G) = #6) = 7()

where (1) is by definition of 7; R« and (2) is by definition of 7 and .. Moreover,

Ran(i,) =0 22 je (r ! @) = (F5m() €a

(4) - . 1. Ny A

= T((fThmG) AT(fTH@) = 7(5) #7()
where (3) is by definition of R+ and (4) is by definition of o. Now, observing that
7 ="t f; Y m 7 =1/, we obtain (¢, 7")R(d, f', 7).
Conversely, if (¢, f,7) F (¢, f',7'), due to some (g, f) % (¢, f") via some ¢ %
¢, then f/ = 771 fand o/ = (77 1; f)(«) and 7R« 7', for some 7 and « such that
R || (m; Rye). Note that 7; R,e is maximal, in the sense that R || (7; Rye) implies
R' C (m;Rae)t. Now, (q,7) & (¢/,7') for all TR7'. We take 7/ = 7~ 1; f;7 and
proceed to show 7R7’. We have:

R(i,j) =1 = (mRae)(i,j) =1 = (i) =j¢a
= f)=@"5NH0) ¢ (@) =d
= Ra(f(),(x 1 £)(5) =1

@) = (L NG) = @) =)

13 Throughout this section we write (¢, f, 7) rather than the more cumbersome ((g, f), 7).

27

Moreover, since , if R(4,j) = 0 then either j € « or w(i) # 7, and

(Geava(@)#j) = (x5 NH0) e @ L)V)G) # f@D)
6) sy — . Nl el .)
= (L 1)) #7(f@) = T'() #7()
where (5) and (6) follow from 7 R,«7’. Now, observing that f'; 7' = 7~ 1; f; #' = 1/,
we obtain (¢', 7" YR(q', f', 7).
The cases of the other transitions are straightforward. a

Now, let A = (Q, F, A) be an r-RA of type I. We constructa 2r-RA A" = (Q', F, A)
of type II accepting the same languages as A by simply decomposing the R, .-labelled
transitions of A into constituent R;.-labelled ones. Note that, because of possible name-
reuses in the composition R;s; - - ; R;s , the latter is not equivalent to Ry;, ... ;e To
avoid unintentional name-reuse, we add additional r registers to record old names that
should not be reused in a transition. In particular, we take

Q=@Qx([132))+Q F={af)eQ |qeF}

A Ryl imy®
whereQ:{(t,l@f)E(Ax[r]x@)|t:q%q’, k < m}is asetof

auxiliary states that will be used for breaking down transitions of the form ¢ Ej—’% q.
Here [r] 5 [2r] denotes the set of (total) injections from [r] to [2r]. Welet ® = { f €
[2r] = [2r] | dom(f) = [r +i], 0 < i < r} be re-indexing functions that allow
us to locate the r registers of A inside the 2r registers of A’ (i.e. the ith A-register is
to be found in the f(i)th A’-register), but also specify the names that should not be
reused at this point (all names in A’-registers ran(f) \ f([r])). Then, the transitions

Ry v im 3 .
of A’ are obtained by dividing transitions of the form ¢ % ¢’ into m steps,

where at each step j we stipulate that a fresh name should be introduced in register i;,
with freshness specified with respect to the range of the re-indexing function f stored in
the current state of .A’. These re-indexing functions need to be updated along the way.
Moreover, sometimes the fresh names may actually be already resident in the part of
the 27 registers that is not covered by f.

Lemma 25. Let A be a type-1m-RA and A’ be the type-II 2r-RA constructed as above.

For all A-configurations (q,7), L(A)(q,7) = LA) (g, {t—i|ie[r]}, 7).

Proof. We here give the full definition of A’. Note first that, by convention, given tran-
Rl ... Jim = . :

sition t = ¢ % ¢ and f : [r] = [2r], we write (¢,0, f) for (g, f). Given

| € @, we let fg be the least number in [2r] \ dom(f), and fg to be the least number
in [2r] \ ran(f). We build A’ as follows.

Risy iy)
—Foreacht:q%q’and(t,k,f) € Q with0 < k < m—1 and
|f] <r+E, add:

28

o (t,k f) (t k+1, f) with f' = f[fe — f(ix), ix — fe], and

o forcach j € [2r] \ ran(f), (t, . 1) 5o (6L S > FGin) i 7).

Rg; ... im }®
Foreacht:q%q,m>0, and (¢t,m — 1, f) € Q’, add:

o (tym—1,) == (¢, £ 1 1)) with f = flim > £], and
e foreach j € [27‘] \ran(f), add (t,m —1 f) > (¢’ flim = 4] T [r])s

For each ¢ % q',add (g, f) i> (%f)-

For each ¢ —> ¢ and f, add (g, f) (q -
For each ¢ ’+ ¢ and f, add (g, f) o (q , f) and, for all j € [2r] \ ran(f), add

(g, f) (q f)-

. . . Rge
Now, according to the argument given above, we can see that, for each transition ¢ T

¢, f : [r] = [2r] and pair of r- and 2r-assignments 7, 7 such that 7 = f; 7, if (¢, 7) F
(¢',7") then (q, f,7) F* (¢, f',7), for 7/, f’ such that 7/ = f’; 7'. Also, conversely, if
(g, f,7) F* (¢, f',7) then (q,7) F (¢, f; 7). Our statement then follows from these
two observations. a

Finally, let A = (Q, F, A) be an 7-RA of type II. We construct a type-III (r+1)-RA
=(Q', F', A’) as follows. We take

o~

Q=Qx(r]=[r+1) F={gf)eQlqecrF}
and include in A’ precisely the transitions given below. Here, the idea is to simulate
the j—) transition by using the extra (r+1)th register to generate a locally fresh element
of the infinite alphabet and then read exactly that element from the input word. Given

£+ [r] = [r+ 1] we write f, for the unique element of the set [r + 1] \ ran(f). For
allge Qand f : [r] = [r + 1J:

For each g % ¢’ add (g, f) —=2> (g,) and (4, £) > (g, fli = fo])-
L2 @.n.

Ry
For each ¢ j) q add (q, f) % (¢, f) and (q, f) % (¢, f)
For each ¢ % q" add (q, f) % (@, f)

For each ¢ % q' add (q, f)

Lemma 26. Let A be a type-II 7-RA and A’ be the type-III (r+1)-RA constructed as
above. Then, the relation

R={q7), (¢ f,7)|T=[f;7}

is a bisimulation.

29

Proof. Note first that both R and R~! relate final configurations to final ones. Now let
(¢, 7)R(q, [, 7).

Suppose (¢, 7) F (¢’,7'), due to some ¢ Lo, ¢, so 7" = 1[i — a] for some
fresh a € D.If a = 7(fe) then, from (g, f) % (q, f[i = fol), we have (q, f,7) F
(g, f',7) with f" = f[i — fg]. Moreover, since 7 = f;7, we also have 7/ = f’; 7,
so (¢, 7 YR(q, f',7). If a # 7(fs) then 7 = f;7 implies that a is fresh for 7. Thus,
(q, 1) m (¢, f) implies (q, f,7) & (¢, f,7') with 7/ = 7[f(¢) — a]. Moreover,

Tl = f; 7' s0 (qla T,)R(qla fa ’TA_,)
Ry(iye .
Conversely, suppose (q, f,7) F (¢, f',7'), due to (g, f) % (¢, f), itself due to

some ¢ Loy ¢'. Then, f' = fand 7/ = 7[f(i) — a], some a ¢ ran(7), and we can
see that ((;j) (¢, 7") with 7/ = 7[i = a] and (¢/, 7")R(¢', f, 7). If the transition is
dueto (g, f) % (¢, fli = fg]) then, since 7(f,) ¢ ran(r), we have (¢,7) F (¢, 7')
with 7/ = 7[i = 7(fg)] and (¢', 7)R(¢, [, 7).

Suppose (q,7) F* (¢/,7), due to ¢ i) q'. Then, if a = 7(fs), from (g, f) —>}:f

(¢, f) we obtain (q, f,7) F* (¢, f,7) and, since 7 = 7/, (¢',7")R(¢, f,7). On
RT

the other hand, if a ¢ ran(7), we use the transition (¢’, f) LN (¢, f) to obtain

A/
(q,f,7) F* (¢, f,7"), with 7/ = 7[fs — a], and we can see that (¢, 7)R(¢, f,7').
Also, using essentially the same argument, we can show that if (g, f,7) F* (¢, f,7/),
with a fresh or a = 7(fg), then (¢, 7) F* (¢/, 7) with (¢/, T)R(¢, f, 7).
The cases of the other transitions are straightforward. a

Summing up, we have the following.

Theorem 27. Let Abe anr-RMRA. We can construct a (2r+1)-RA,, fli of size O(2PUAD)
for some polynomial p, such that, for each A-configuration k there is a A-configuration

iv such that L(A) (k) = L(A) (k).

Proof. By consecutively applying the three previous lemmas, and using the fact that
bisimilarity implies language equivalence, we obtain the statement for 4 a type-III
(2r+1)-RA of exponential size. From the latter we obtain a (2r+1)-RA,,,. by simply

. o R,t . " R;e 3
breaking each transition of the form ¢ —— ¢’ into two transitions: ¢ —— - 5.
A

Epsilon transitions can be removed using the standard procedure of computing epsilon
closures for each state. a

E Proof of Theorem

For the full definition of pebble automata we direct the reader to [18]]; we here recall
only an outline. A weak k-pebble automaton (k-PA) is a tuple (Q, qo, F, T') where @
is a finite set of states of which qq is initial and F' C () are final, and 7" is a finite set of
transitions. Each transition is of the form o« — f3. In general « has shape (i, d, P, V, q)
or (i, P, V, q) specifying: the index of the head pebble; (possibly) the data value under

30

the head; the set of pebbles whose position coincides with the head; the set of pebbles
on the same data as the head; and the state respectively. The shape of 3 is (¢, A) with
q the state to be moved to and A € {stay, right, place, lift} the pebbling action to
perform. Given a word w, a configuration of such a machine on w is a tuple (i, g,)
where 6 : {1,...,i} — {1,---,|w|} specifies the locations of the currently placed
pebbles. WLOG we assume that |w| > 0. The initial configuration is (1, g, 6p) with
0o(1) = 1[7]

We now consider a particular kind of data structure which will be very useful to the
undecidability argument.

Indexed stacks We say that a 1-stack is in m-padded index form just if it has the fol-
lowing shape:
Cm *++C1 G by -+ a1 by #4F

in which #, a;,b;,c; € D for all j. Furthermore, for all j and k: a; # #, a; # b,
and aj = a, = Jj = k. Also, for all j there is j’ such that ¢; = a;,. Such 1-stacks
are composed of three segments. The first segment ## is a bottom of stack marker
(such as in Example. The second segment a,,b,, - - - a1by represents the indexed word
(a1,b1) - - (an,by), where the names a4, - - - , a,, are called the indices and by, - -- , b,
are the values of the word. Finally, the third segment is a sequence of m indices.

Stacks in padded index form support a kind of dereferencing operation which allows
a 1-2PDRS to retrieve the data value stored at some constant offset £ from one of
the indices. For m-padded index stacks the operation is implemented by the following
gadget, which we call deref (m, k):

pop(1) pop(1)

Do pop(1) n — L/\p pushs »
pOp.v/ tm +mu - ! 0
pop® pop*

' 1° pop(1) pop2
pop* \> P2+m+k —> P3+m+k —> Pd+m+k —> P5+m+k

Starting from state pg with a; in its register, the machine first saves a copy of the
working 1-stack. In the current copy, it discards the top segment and then the segment
anby, - - - aj41bj41 It then transitions to state po.,, (consuming a;) and then discards
the next k-elements of the stack. Having traversed the constant offset it then refreshes
the contents of its register and verifies that the new assignment is exactly the element
on top of its 1-stack. Finally, it restores the original 1-stack.

The following result is easily verified by inspecting the construction.

Lemma 28. Let (py, a, (s)) be a configuration of an 1-2PDRS containing deref (m, k)

and in which s is an m-padded index with s(i) = a an index, for some ZPE] Then
(po; @, () B* (Pspmtk; b, 8") iff b= s(i + k + 1) and s" = (s).
' Our definition differs slightly from [18] in that the latter uses 6 with range {0, --- , |w| + 1},

with positions 0 and |w| + 1 corresponding to end-markers. Here we do not treat end-markers,
hence the different range for . End-markers can be treated in the same way as constants (cf.
the following section).

'S Here we write s() for the ith element of the 1-stack s; s(0) = top; s.

31

Using deref it is possible to implement useful operations associated with the index
structure. In particular, with index a assigned to the register, lookup(m) = deref (m, 0)
looks up the value associated with index a and pred(m) = deref (m, 1) finds the pre-
ceding index of a.

E.1 Simulation of k-PA without constants

Given a k-PA A = (Q, qo, F, T), we construct a 1-2PDRS S = (Q’, qr, 71, 0) that
first guesses a non—empty{f] word w and then checks that w € £(.A) by simulating an
accepting run of A on w.

For clarity of exposition, we shall assume that .4 does not recognise constants: i.e.
there are no transitions of the form (i, d, P, V, q¢) — (. As we demonstrate in the fol-
lowing section, the proof can be extended to account for such transitions by modelling
constants as sequences of identical data values of a fixed length.

The state space @’ of S consists of the set

{(¢,7)lge Qand1 < j <k}

of primary states, the set {qépy) |t = (i, P,V,q) — B € T} and the set {q’(fq,’A) |t =
a = (¢'yA) € T}; as well as a number of auxiliary states which will be specified
implicitly in the description to follow.

We say that a configuration x of S is proper just if it is of the form:

((q7 m)7 d7 <<cm7 .. '7cl7an7bn7° .. 7a17b17#7#>>)

with w = by, - - - b;. We map proper configurations of S to configurations of A on w
by the following surjection:

[kKl=(m,q, {j—n—-i+1|1<j<mAc;=a;})

In other words, proper configurations have m-padded indexed stacks where the index
structure represents the input word, and the padding records the positions of the m (so
far) placed pebbles.

The computation of S consists of two parts. First an initialisation phase computes
the initial guess of the word w and puts S into a proper configuration x with [k] =
(1, qo, Bp) running on w. The second part is a loop in which the machine guesses an
applicable A-transition & — [and simulates it.

Initialisation. Starting from its initial configuration, S begins in the same way as the
system from Example [I7]by pushing its initial register assignment twice to form a bot-
tom of stack marker. Then, starting from state g2, it loops nondeterministically building
an indexed representation of the word w on its top 1-stack. On each iteration, when the
system is in state go, its 2-stack has shape ((a;, b, - - , a1, b1, #, #)) with singleton
1-stack in 0-padded index form.

From state g2, S can either choose a new data value b;,; followed by a new index
a;+1 and return to state go, or it can transition to state (qo, 1) as described below. In the

16 Given PA A, it is straightforward to construct PA LA’ such that A’ accepts a word iff A’ accepts
anon-empty word and £L(A) = 0 iff L(A") = 0.

32

first case, the machine uses two gadgets to ensure that the choices respect the desired
invariant. We describe the gadget that ensures that the choice of b, is different from
any index below; the gadget to ensure that a;.1; is different from all other stack elements
is exactly as in Example

. push(1 ush pop(1
1 ()Q4 pushz as ()QG

q2 q3
10 (] pOp(l)
/ lp@ /pop®

dio q9 qs q7

q11 5
PoP2 ~ pop(1) ~ pop(1)

The path from ¢, to g4 guesses the next data value x;4; and places it at the top of the
1-stack. The remainder of the gadget is used to ensure that the guess does not coincide
with one of the indices. The machine first takes a copy of the current 1-stack and then
checks that every other data value on the stack is different from z; ;. Finally, it restores
the original 1-stack.

After iterating the loop on g2 some number of times and thus choosing the word w,
the machine then makes an extra copy of the top of the 1-stack and enters state (go, 1).
It follows from this construction that, for all d and s: (q1, #, ()2) F* ((q0, 1), d, s) iff
there exists some word w such that [((qo, 1), d, s)] = (1, qo, 6p) running on w.

Simulation loop. At the start of each iteration of the simulation loop, S is in some proper
configuration £ = ((q, m), (s)) with s = {(Cpm,...,C1,an,bn,...,a1,b1,#,#). It
guesses an applicable transition t = (m, P, V, q) — (¢/, A) and moves to state g PV
To verify the applicability of the transition S must check the applicability of the P and
V' components.

To check applicability with respect to the V' -component, S needs to check that V'
contains precisely those pebbles in positions which contain the same data value as that
of the mth pebble. Put otherwise, assuming ¢, = a,,,/, wemusthave V = {j | Vj'.¢c; =
aj; = by = by }. Thus, for each 1 < j < m, S will find the 5 such that
¢j = aj, and then check the condition: bj; = b,y <= j € V. Thus, S first copies
the head position (currently on the top of stack) into its register by executing two 1°
operations followed by pop(1) and push(1). Note that, because 1° will always choose
a data value that is fresh with respect to the current register contents, two occurrences of
this operation are used sequentially to ensure that the correct data value can be guessed,
even if it is already stored in the register. It then uses a copy of the lookup(j) gadget
to retrieve the data value indexed by the head pebble and performs push(1) to put the
data on the top of stack. Then, for each 1 < j < m in sequence, S uses a copy of the
following gadget to check that the value indexed by c¢; (the data value under pebble j)
is the same as that on the top of stack justif j € V:

pop*® pop®
pushs 1° 1° S
Ug — U] —> U9 —> U3 ce Uq4m—j
~_ 7

pop(1) ... 1% pop() pop(1) lpop(l)

N

4 N
" push() T Tpop(r) | pop2 Pz

33

This gadget copies the current 1-stack and then guesses and checks the position c; of
pebble j. It then uses a copy of the lookup(j — 1) gadget to store the data value indexed
by pebble j in its register. Next it restores the old 1-stack (which has the data value
under the head pebble on the top of stack) and: if 7 € V then it verifies that the data
value at the top and the data value in its register are the same (dotted arrow); if j € V
then it verifies that these data values are different (dashed arrows). At the end of the
sequence of m copies of the gadget, S discards the redundant data value from the top
of stack.

Checking applicability with respect to the P component is much simpler: S needs
to check that, for each 1 < j < m, ¢; = ¢,, <= j € P. This is achieved by the
gadget:

pushz — 1* pop(l) tm-1 t 2
Uo Uy Uz u3 cos = U4 ——> U34m
where each ¢ is pop(1) if j € P, and pop® otherwise.

At the end of both sequences of gadgets, S transitions to state qf gAY By construc-
tion, we have £ F* (¢7, 4, d, §') iff d = ¢y, 8" = (s) and (m, P, V, q) is applicable
to [x].

In state qfq,, A S simulates the action of A executing A and then moves to simu-
lating state ¢'. If A is stay, then S simply transitions to state (¢’, m). If A is lift-pebble,
then S discards the top of stack and transitions to (¢’, m—1). If A is place-pebble then
S pushes an extra copy of the top of the current 1-stack onto the current 1-stack and
transitions to (¢’, m+1). Finally, if A is move right, S pops the current pebble position
(top of stack) into its register and then copies the current 1-stack using pushs. It then
uses a copy of the pred(m—1) gadget to reassign to its register the next index in the
sequence and then restores the saved 1-stack, pushes the assignment and transitions to
state (¢, m). The simulation loop then begins again.

It follows from the definition of the simulation loop that, for each proper configu-
ration k, and each configuration ' in a primary state, x =* «’ iff ' is also proper and
[£] F* [+']. Hence, L(A) is non-empty iff there is a final state ¢ € F and a pebble
index m such that S has a run ending in state (g, m).

E.2 Simulation of k-PA with constants

Every pebble automaton induces a finite set of constants {c,...,¢;} C D U {>, <}
which are those elements of D (and the start and end of word markers, where applicable)
which are mentioned (by the s component) of transitions in 7". Furthermore, the words
accepted by a pebble automaton are delimited by markers <, >. Both of these aspects,
which were omitted from the treatment in the main text, are addressed here through
an encoding of constants. Since 1-2PDRS has only one register, it does not have a
native ability to recognise all such constants and so this must be encoded. However, it
is straightforward to do so using fixed length sequences of identical data values.

To extend the construction from Theorem [I8] we simulate constants appearing in
the guessed word w. To this end, we consider an extended definition of m-padded index
form stacks which have the following shape:

cm...clanun...alul#...#
——

! + 2 times

34

Here, the individual data values b; are replaced by words u; of length [4 1. We require
that each index a; is distinct from every other as before and also that each a; is distinct
from any data value in any u;. Each word u; encodes either a particular constant or an

anonymous data value. The encoding is as follows. We require each u € {uy,,...,u1}
to be composed of two segments u = b; - - - bya;41—; - --a; withe > 0,anda) = --- =
aj41—; 7 by = --- = b;. The quantity ¢ determines the value represented by the word:

[bi-braipi—i--a1] = .
c;i_1 otherwise

{bi wheni =1

Also, the bottom of stack marker has been lengthened to size [+ 2 so that it is distin-
guished among the other segments. In this way it is effectively treated as the [+ 1st
constant.

The operations over padded index stacks must be changed to reflect the more in-
volved encoding. Both lookup and pred are much the same as before, but because
lookup also needs to decode the value it finds at a given index before returning, the
code for the two diverges. The extended pred(m) gadget is simply deref (m, ! + 1),
since the offset from one index to the next is now length [4+ 1. The new gadget for
lookup is as follows:

pop
onp(l) pop(1)
POP(l) —. +—_ pushy
10 P2+m <—P1+m*_/~ - Vpl Do
< pop® pop®

P3+m

pop(l)\ pop(1) pop(1) - .pop(l)

Pa+m Ps5+m P5+m+1
pop*® J pop*® J pop*® l
/ / /
Patm P54m e Psym+i
po| pons| -
Pdata Pey cee DPc,

This gadget starts in the same way as deref (m, k) but, after popping off the desired
index and reaching state ps..,, it then proceeds to count the number of consecutive
identical data values, thus establishing the number ¢. The result is recorded in its state
space. Consumers of this operation, such as the simulation loop, can be straightfor-
wardly (but tediously) modified to take into account whether or not a constant was
discovered and do comparisons between values first according to the record in the state
space and second (if both values are anonymous data) according to equality of data
values.

35

When simulating transitions, S must only choose some applicable (i, P, V, q) —
if there are no other applicable transitions (i', P’, V', ¢') — B’. Observe that if configu-
rations (i, P, V, ¢q) and (i',d, P', V', ¢") are both applicable to the current configuration
k,theni =i, P = P, V' =V and ¢’ = q, since these are all determined by k. So we
modify S so that when, checking applicability of (i, P, V, q), it looks up and decodes
(as above) the value (word of length [4 1) u under the head pebble and checks that it is
not any constant d s.t. (¢, d, P, V, q) is the antecedent of some other transition.

Finally, initialisation must be changed so that a word containing encoded constants
can be guessed and stored as a padded index stack. We show the extended gadget for
choosing a word u;4; (having already chosen wq,...,u; for [> 0), the gadget for
choosing a new index is similar to the one without constants.

a2
! l push(l) push(1l) push(l) push(1l)
a3 e q2+1—i s q3+1
push(l)l push(l)l
check(l + 1) check (i) check(l+1)
push(1) 1°
a

push(1) pop(1)
. 1* push(l)

i a3)

From state g, and with its 2-stack of shape ((a;, ui, ..., a1,u1, #,...,#)) (0 < 1), the

top row of the gadget allows the machine to non-deterministically choose a new data
value a, a number ¢ and push ¢ copies of a onto the top of stack. It must then check that
this data value a does not concide with any of the existing indices a1, ..., a; which is
accomplished using a copy of the check(i) gadget, to be described below. At the end of
the check(i) gadget, the stack of the machine is the same as at the start, i.e of shape:

<<a7'"aa7al7ul7~'~7a17ula#a'"7#>>
—— ——
% times I + 2 times

and all that remains is to choose some b, push [+ 1 — i copies of b onto the stack and
check that @ # b and that also b is different from any existing index. This is accom-
plished by the remaining part of the gadget.

In order to ensure that the word is properly delimited by the endmarkers, S is modi-
fied to always choose u; such that [u;] = < and to add an extra step of choosing a final
encoded data value u,,41 and index a,,41 such that Ju,4+1] = >.

When started from a configuration whose top 1-stack is in extended m-padded in-
dex form, the check(m) gadget ensures that the data value in the machine’s register is
different from any index in the stack.

36

N -
N 2
Q s}
Ny =
N7

pop® \
.dod

pop® pop*
pushz s e

Uy — Uy

U24m —> U3+m+1

pop(l) pop(1) | e

0 pop(l) pop(l
UT+m—+21 wu6+m+2l <—() - <—()u4+m+l

The gadget first preserves the working 1-stack and then discards the m-padding values.
It then cycles, alternating between checking that an index is fresh for the value in its
register and discarding a length [+ 1 word u; encoding a data value or constant. At
some point it guesses that it has met the bottom of stack and verifies the guess. Finally
it restores the preserved stack.

37

	Reachability in pushdown register automata

