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Abstract. We present CONEQCT: a contextual equivalence checking tool for
terms of IMJ∗, a fragment of Interface Middleweight Java for which the prob-
lem is decidable. Given two, possibly open (containing free identifiers), terms of
the language, the contextual equivalence problem asks if the terms can be dis-
tinguished by any possible IMJ context. Although there has been a lot of prior
work describing methods for constructing proofs of equivalence by hand, ours is
the first tool to decide equivalences for a non-trivial, object-oriented language,
completely automatically. This is achieved by reducing the equivalence problem
to the emptiness problem for fresh-register pushdown automata. An evaluation
demonstrates that our tool works well on examples taken from the literature.

A dedicated webpage for the tool is: http://bitbucket.org/sjr/coneqct.

1 Introduction

Two phrases of a programming language are contextually equivalent if occurrences of
the first phrase in any program can be replaced by the second phrase without affecting
the result of the program. The notion plays a fundamental role in a variety of verification
tasks: it can be used to support proofs of correctness for program transformations, code
optimisations, refactoring and updates. However, due to quantification over all possible
contexts in which a phrase can be inserted (“in any program”), contextual equivalences
are notoriously difficult to establish directly. Over the years, both semantic (e.g. domain
theory) and operational (e.g. traces, bisimulations, logical relations) methods have been
used to provide techniques to overcome the problem, yet decidability results have been
scarce. Our tool, which targets a fragment of Middleweight Java augmented with inter-
faces, capitalises on recent progress in game semantics as well as automata theory over
infinite alphabets.

In recent years game semantics has led to the construction of fully abstract models
for a whole range of programming languages. Although originating from the tradition
of denotational semantics, they have a concrete flavour, which makes them suitable for
representations as formal languages. The particular model for Java [10], that we take
advantage of in this paper, is built over an infinite set of names (used to model ob-
ject references), suggesting the use of automata over infinite alphabets as a framework
for representing the denotations. Indeed, in the companion research paper [8], we have
identified a fragment of Java, called IMJ*, whose game semantics can be captured using
(visibly) pushdown register automata over infinite alphabets with fresh-symbol genera-
tion [9]. The automata are equipped with a finite set of registers for storing elements of
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the infinite alphabet as well as a pushdown store. In the present tool paper we present
the implementation of the associated decision procedure.

Our input language IMJ∗ is a fragment of Interface Middleweight Java (IMJ) [10].
It is a stripped down version of Middleweight Java (MJ) [4], designed to expose the
interactions of MJ-style objects with the environment through the addition of interfaces.

Example 1 ([12]). Consider the interfaces IntRef = {val : int}, I = {m : IntRef →
IntRef} and terms {IntRef, I} | ∅ ` M1,M2 : I given below. Note that a and b are de-
clared locally, i.e. they play the role of private fields. As both are unknown to the envi-
ronment, the first call tom in any computational scenario will make the if-condition fail
and a will be exposed to the environment as a result. Consequently, it can be recorded
by the context and used in subsequent interactions with the terms. For M1, this makes
it possible to satisfy the branching condition, which will reveal the second private name
b. In contrast, M2 will never reveal b, however many times the object is used. Hence,
the terms are not contextually equivalent. This example appears as inp11.imj in Table 1.

M1 ≡
let a = new { :IntRef;} in
let b = new { :IntRef;} in
new { :I; m: λc. if c = a then b else a}

M2 ≡
let a = new { : IntRef;} in
let b = new { :IntRef;} in
new { :I; m: λc. if c = b then b else a}

2 Tool Architecture

The tool decides contextual equivalence by compiling the pair of input terms to their
game semantics and checking that they are assigned the same meaning. This is a com-
plete method for deciding equivalence due to the full abstraction result in [10], which
states that two terms are observationally equivalent iff they are assigned the same sets
of (complete) plays by the game model.

The plays are sequences of moves that trace out the possible interactions of a term
with its environment. For example, the program may play a move call a.m(v)Σ , which
represents a call with argument v to methodm of an object named a in the environment,
at a point in the execution where the externally observable part of the heap is described
by Σ. A play can be viewed as a word over an alphabet, but the alphabet is infinite
since there is no bound on the number of objects that can be created (and hence the
set of objects names a). In IMJ, objects names can only be tested for equality, and
in [8], it is shown that a special kind of visibly pushdown register automaton, called
an IMJ Automaton (IMJA) suffices to exactly characterise the set of plays assigned
to an IMJ∗ term by its game semantics. In this representation, the move above will
have shape call r.m(w)S , where r is the index of a register of the automaton which
contains the name of the object a, w is a symbolic representation of v and S of Σ. Even
though Σ may be unbounded, IMJ∗ terms modify only bounded fragments of the heap,
represented by S. Checking that two sets of plays are equal is then reduced to checking
IMJA language equivalence (strictly speaking, up to saturation of stores S to their full
size corresponding to Σ).
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Fig. 1. Overview of tool architecture.

Checking language equivalence of IMJA proceeds through a series of intermediate
constructions, ultimately concluding with a fresh-register pushdown automaton (FP-
DRA). Due to the properties of the translation, the two IMJA are language equivalent
iff the FPDRA is (language) empty. An overview is shown in Figure 1. The tool reports
the main characteristics of each of the intermediate constructions (e.g. number of states,
number of registers) and the time taken to construct them.

From IMJ∗ Terms to IMJA. The first transformation is from the pair input terms to a
pair of IMJA. This translation is extensively documented in [8] and our implementation
is faithful to that description, so we shall not discuss it further here. As soon as the
IMJA are produced, we remove states that are not graph-reachable from the initial state
or backwards-graph-unreachable from an accepting state (by graph-reachable we mean
reachable in the finite transition graph of the IMJA).

From IMJA to IMJ2A. The strategy for checking language equivalence of IMJA is to
construct a kind of symmetric difference automaton, which accepts exactly those words
that are in one of the two IMJA but not in the other, which is called an IMJ2 Automaton
(IMJ2A) in [8]. This is possible, because IMJA operate over a visibly pushdown al-
phabet [2] and, hence, their stacks can be synchronised. Overall, the translation in ibid.
ensures that the pair of IMJA represent the same interactions (plays) iff their IMJ2A
translate is empty.

From IMJ2A to FPDRA. IMJ2A are defined in terms of the underlying transitions of the
two constituent IMJA. Because they refer to two sets of registers, emptiness checking
is not straightforward: in order for the automata to synchronise, matching names have
to be used as labels. The following is an example of an IMJA2 transition:

(q1, q2)
call r1.m()S1 , call r2.m()S2

−−−−−−−−−−−−−−−−−→ (q′1, q
′
2)

This transition describes how if the two underlying IMJA have reached states q1 and q2
respectively and, moreover, the same object name is contained in register r1 of the first
IMJA and register r2 of the second IMJA and there is a correspondence between the
names contained in the registers of the two IMJA which makes S1 and S2 correspond,
then they will both consume this call move and step into states q′1 and q′2 respectively.

The tool compiles away such special transitions by tracking register correspon-
dences. These are pairs of maps which describe how registers from the two constituent
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IMJA are represented by registers from the FPDRA under construction. This is achieved
by a least fixed point computation: the two initial states are extended with the identity
correspondence (representing the fact that initially both IMJA have the same register
assignment) and transitions are simulated to obtain a register correspondence at the end
of the transition given one at the start. A transition such as the one above can then be
compiled into a set of simpler transitions that do not have a semantics that is specialized
to representing plays of IMJ∗ terms. For example, if a correspondence has r1 from the
first IMJA and r2 from the second being represented by the same register of the new
FPDRA and, lifted to stores, makes S1 and S2 correspond, then the above transition
degenerates to (q1, σ, q2)

ε−→ (q′1, σ, q
′
2). Since we are only interested in emptiness of

the IMJ2A, i.e. the impossibility of reaching a final state, the particular letter that is
read is irrelevant, which explains why the degenerate transition is an epsilon transition.
The result of this fixed point computation is a fresh pushdown-register automaton (FP-
DRA) [9], that is, a register automaton [11] (RA) with global-fresh transitions and a
pushdown stack.

FPDRA Reachability Check via Saturation. Finally we decide the emptiness of the
FPDRA by using an extension (to handle global freshness and empty registers) of the
saturation algorithm described in [7]. This procedure constructs an RA that represents
all the possible configurations of the FPRDA that can reach accepting states. In relation
to [7], the main addition is the use of a tagging technique for specifying elements of the
registers and the stack that are required to be globally fresh, which allows us to simulate
global freshness via local freshness for reachability purposes (cf. [9]). Consequently,
equivalence of the two terms is reduced to checking whether an initial configuration of
the FPDRA is accepted by the RA, which is solved by graph reachability.

3 Evaluation

We evaluated CONEQCT on examples drawn from the literature around contextual equiv-
alence for high-level languages [1,3,5,6,8,12,13], adapted to IMJ∗ syntax. (The website
of the tool contains a more detailed listing.) For equivalences, the papers contain manu-
ally constructed proofs based on logical relations or environmental bisimulations. Their
full automation would be challenging, because they require witness relations that have
to be guessed. In contrast, CONEQCT is automated and also detects inequivalences.

The tool is written in F# and we evaluated it on Microsoft’s .NET Framework 4.5.2,
running on a machine with an Intel Core i7 1.8GHz processor and 8GB of RAM. The
results of the evaluation are shown in Table 1. The first column gives the file name of the
inputand the second states whether the input is an equivalence (Y) or an inequivalence
(N). The next four columns give the number of states in the intermediate constructions.
The number of states in the IMJ2A is omitted since it is always a simple function of
the number of states in the two constituent IMJA automata. Column seven gives the
number of registers in the FPDRA and hence RA, and column eight gives the total time
for processing the input in milliseconds (mean ± s.e.; n = 10).

A couple of interesting observations can be made regarding the results. First, in
many instances of equivalence, the number of states in the RA is 0. This indicates that
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Table 1. Results of the evaluation

Input Eq? IMJA 1 IMJA 2 FPDRS RA Regs Time (ms)
inp1.imj Y 26 82 1688 0 7 1833± 11

inp2.imj Y 1 1 0 0 0 253± 10

inp3.imj Y 32 32 428 0 6 355± 11

inp4.imj Y 21 22 61 0 2 292± 10

inp4b.imj N 21 12 76 41 2 301± 10

inp5.imj Y 18 3 5 0 4 293± 9

inp6.imj Y 26 26 292 0 4 322± 12

inp7.imj Y 76 16 1078 972 4 445± 13

inp7b.imj N 76 11 418 404 4 373± 11

inp8.imj Y 17 11 124 0 4 289± 1

inp9.imj Y 33 11 287 141 4 326± 1

inp9b.imj N 17 11 138 134 4 320± 2

inp10.imj Y 96 96 1528 0 4 1344± 9

inp10b.imj N 42 96 2476 2468 4 1256± 30

inp11.imj N 92 32 796 796 7 584± 4

inp12.imj Y 11 9 26 0 2 266± 1

inp13.imj Y 13 13 111 0 4 299± 1

inp14.imj Y 13 13 37 0 2 21908± 291

inp15.imj Y 34 242 8714 0 7 3647± 49

inp15b.imj N 34 242 10725 10725 7 4095± 44

inp16.imj Y 272 137 17888 0 8 16499± 155

inp16b.imj N 56 137 11833 11833 8 4731± 123

the corresponding FPDRA has no accepting states. This happens if, as a result of the
fixed point computation, the exploration of register correspondences reveals that it is
not possible for the IMJ2A to accept a word. For example, this will be the case when
the compilation of the two terms happens to yield identical IMJA.

A second observation regards the time taken. One of the most time expensive ex-
amples is input 14, yet the various intermediate constructions are all relatively small.
Further investigation reveals that the vast majority of the time is spent constructing the
two IMJA. Although the two IMJA that are constructed are ultimately small, as part of
their construction far larger automata are built but then later restricted and have many
unreachable states pruned away. It will be interesting future work to understand how to
ensure that time is not wasted producing such expensive yet transient constructions.

Further Directions. Whilst we have shown that the tool performs well on the kinds of
examples seen in the literature, we see further directions which would make this line of
work more generally applicable. We aim to optimise the handling of time-intensive au-
tomata constructions, and to empower CONEQCT with predicate abstraction, allowing
it to reason symbolically not only about object names but also basic data values.
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