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Abstract. Integrating human and computer activity in semi-automated
timetabling is a difficult problem. This paper attributes this difficulty
to the choice of computational paradigm, and introduces an alterna-
tive framework for computer-based modelling in which to create an in-
strument for timetabling. The potential use of such an instrument (the
‘Temposcope’) is illustrated in connection with work-in-progress on a
modest practical case study in timetabling (the scheduling of project
oral presentations). The adoption of this framework is associated with
a radical shift in perspective on the user-computer relationship, from
realist to idealist users, and from the computer as an abstract machine
to the computer as a physical device. This shift suggests new modes
of human-computer co-operation with potentially broad implications for
computer-supported timetabling.

1 Introduction

Timetabling has long been a target for automation. Finding an optimal solution
to many variants of the timetabling problem has been shown to be an NP-
hard problem [4]. This has stimulated much interest in heuristic methods aimed
at sub-optimal solution. These include approaches based on graph colouring,
simulated annealing, genetic algorithms and constraint satisfaction [8].

As technology has advanced, the role of the computer in recording, manag-
ing and presenting large and complex data sets has become as significant as its
capacity for computation. This has motivated a more holistic view of how the
computer can support timetabling activity. Timetabling can not only be regarded
as an abstract algorithmic problem, but as integrating data capture, data mod-
elling, data matching, report generation, and the storage of timetabling results
(see e.g. Optime! and Schedule Expert?). This broader framework potentially
offers more scope for the integration of manual and automatic timetabling ac-
tivity. The major issue to be addressed is that the advantages of automation are
typically gained at the expense of the qualities that human intelligence brings
to manual timetabling and management of the timetabling process.

! http://www.asap.cs.nott.ac.uk/optime/
2 http://schedulexpert.com



The objective of this paper is to outline and illustrate principles that can as-
sist more intimate human-computer co-operation. In particular, these principles
make it possible to create a single computer-based instrument that can simulta-
neously serve two complementary functions: supporting the cognitive model of
the human timetabler working without computer assistance for matching, and
providing state representations for automatic and semi-automatic timetabling
activity. We review work in progress on constructing such an instrument (the
‘Temposcope’) in connection with an actual timetabling task, and indicate
the potential implications for novel manual, semi-automatic and automatic ap-
proaches.

2 Perspectives on Computer-Aided Timetabling

2.1 Humans vs Computers

The contributions that humans and computers can make to the timetabling task
are very different in character. In order to take account of both its “hard” formal
and “soft” qualitative aspects, a co-operative approach seems appropriate. In this
connection, one of the most challenging issues is to give computer support to the
mental engagement that is involved in expert manual timetabling. This can be
best appreciated by examining timetabling from a human-centred perspective.

In the manual timetabling process, human judgements are influenced by im-
precisely specified factors that express themselves implicitly through exploratory
activity. The manual timetabler explores different possible organisations of re-
sources and makes qualitative judgements about them. This may involve an
appreciation of issues of logistics, such as: the use and disposition of rooms; per-
sonal knowledge of people’s scheduling preferences; aesthetic judgements about
the quality of a solution. The judgements made stem from knowledge that eludes
specification for various reasons: because it is tacit, too costly to articulate or
because it emerges during or after the construction of the timetable.

The manual timetabler may also develop ad hoc representations of data that
are situation-specific. In manual timetable construction, a mental grasp of the
timetabling activity is gained through the construction of physical artefacts that
serve a cognitive role: pieces of paper, a board representing the timetable, lists of
events to be scheduled, etc. that are manipulated as the construction proceeds.
The way in which the manual timetabler interacts with these artefacts is far less
closely circumscribed than interaction with a conventional computer program.
For instance, the timetabler may decide to staple pieces of paper together, to
colour them or to organise them in piles in ways that are suggested by the
situation rather than preconceived. Such opportunistic extension of functionality
is obstructed by conventionally constructed computer software, especially where
optimised algorithmic processes have been implemented.

The products of this manual activity resemble the results of scientific ex-
periment prior to the identification of an appropriate theory. They are loosely
connected, but typically elude comprehensive coherent organisation. Having ac-
cess to automatic timetabling software, or to integrated suites for data input and



report generation can to some degree complement open-ended exploration, but
it is no substitute for it. Even an efficient and powerful timetabling algorithm
cannot emulate the human awareness of a situation that experiment affords. The
typical end result is that the human timetabler has to forego any possibility of
close cognitive integration of manual and automated timetabling activity.

If it is to be possible to exploit the advantages of automation and yet re-
tain the qualities that human interaction brings, it is essential to integrate the
manual and the automatic steps in timetable construction. Whatever activity is
delegated to the computer must also be comprehensible to the timetabler. The
timetabler must be able to invoke, monitor, suspend and intervene in computa-
tional processes.

Current semi-automated systems rarely support this high degree of inte-
gration. This paper argues that the difficulty of integrating human and com-
puter processing at a cognitive level stems from the traditional computational
paradigms used in current practice. The significant difference between the cog-
nitive models of a user and the builder of a program is well recognised [3]. It
has motivated software development methodologies for user-interface design, for
instance (cf [7]). It is also apparent from the difficulties encountered in integrat-
ing object-oriented analysis and design [6]. We attribute this problem to the fact
that existing approaches to computer programming in all their varieties (declar-
ative, procedural, object-oriented, genetic) rely essentially upon circumscription
of the application prior to automation. This paper aims to show how to give
automated support to applications with situated® character such as timetabling
without circumscribing the domain. This is the aspiration of the ‘Empirical Mod-
elling’ (EM) approach introduced in this paper — to allow a modeller to develop
computer artefacts whose interpretation and evolution remains open-ended.

2.2 Realists vs Idealists

Some aspects of the semi-automatic timetabling activity can be described by an
interactive algorithm in which the nature of the human input is predetermined.
Others encompass activity where the interactions are informed by human intelli-
gence about the world in ways that are not preconceived. The profound difference
between these two varieties of semi-automated activity reflects two views of the
human timetabler, as realist or as idealist.

The realist timetabler is a pragmatist. For the realist, the purpose of the
computer is to save work. The characteristic sentiments of the realist are that
time is precious, that this timetable is good enough, that people can adapt to
the limitations of the automatically generated timetable. The computer’s role in
the realist’s view is not to make the timetabling task more satisfying, but less
frustrating and arduous.

The idealist timetabler is a perfectionist. For the idealist, there is no com-
pletely satisfactory timetable — it can always be improved. Even as the timetable

3 The term ‘situated’ is used here to activities that are intimately bound up with their
surrounding human environment, and can be directly affected by this environment
in unpredictable ways.



is being constructed, the idealist sees ways in which it can be improved, and
indeed sees beyond into ways in which the ways in which the timetable is be-
ing constructed can also be improved. These possible improvements cannot be
preconceived because they emerge during the timetabling activity, and depend
upon the special idiosyncrasies of the particular timetable being constructed.
The computer’s role in this context is less clear, but the idealist would like to
dictate the terms, directing and understanding the computer activity and deriv-
ing satisfaction from constructing still better and more ambitious timetables.

The realist timetabler is content to rely on an algorithmic approach. This
may be a batch algorithm in which knowledge of the constraints is pre-coded.
Alternatively, it may be an interactive algorithm in which the observation of the
external situation is to be interpreted in a preconceived manner and follows a
specified pattern (cf. Fig. 1). The idealist rejects full automation and adopts a
semi-automated approach. As in manual timetabling, the requirements for the
timetable are subject to change even as the timetable is being constructed, and
are affected by observations of the current state of the timetable and the external
situation that involve no preconceptions about their nature or interpretation (cf.
Fig. 1).
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Fig. 1. Realist and idealist perspectives on timetabling

A useful analogy may be drawn between the perspectives of the realist and
the idealist and two modes of exploration of a region that are aimed at finding the
most congenial view. The realist, armed with helicopter and altimeter, is content
to find the top of a high mountain, in the knowledge that this will generally
provide a reasonable vantage point. The idealist recognises that the best view
cannot necessarily be assessed by measurement alone, nor conveniently found by



using powerful technology. Whatever means the idealist adopts in their search,
the activity involved is open-ended and is at all times shaped and guided by
interaction with the environment.

The research in this paper is in the first instance motivated by the outlook
of the idealist human timetabler. Such a timetabler is at all times concerned
with the relationship between the timetable and its intended role in the external
context. Their evaluation of the quality of the timetable is more critical and
potentially more subjective than can be represented by imposing a set of formal
constraints or quality metrics upon an algorithmic solution. For this approach
to be appropriate, the timetabling problem must be of an appropriate scale.
Too small a timetabling problem makes it possible to separate the generation
of timetables from their evaluation (e.g. to generate all plausible timetables
satisfying hard and quantifiable soft constraints, and allow the timetabler to
select the most suitable). Too large a timetabling problem limits the scope for
situated evaluation during the construction, unless perhaps this is managed by
calling upon feedback from all the potential users, as is typically done when
constructing a university lecture timetable. In practice, there is no option but
to be a realist if the scale of the timetabling problem is too great.

There are practical merits in the idealist perspective. Through a better un-
derstanding of the timetable generated, it may be possible to adapt the timetable
more effectively, and such adaptation is generally necessary. In this way, some of
the investment in analysis and evaluation can be repaid. The idealist approach
may also suggest ways (possibly situation-specific) to improve on algorithmic
methods. In general, the idealist is less concerned with improving efficiency than
with delivering quality, and with related issues of evaluation, comprehension and
maintenance. In supporting the idealist stance, our particular focus of interest
in this paper is on achieving a more effective and seamless integration of human
and automatic processing in timetabling.

2.3 Computer Support for the Idealist

The classical theory of computation promotes a narrow view of the role that a
computer-based model can serve. Specifically, such a model is typically identi-
fied with a computer program having a preconceived function that is realised
by a formally specified input-output behaviour. The automation of preconceived
functions is precisely what the realist expects of the computer: the computer
performs a labour-saving task to the user’s specification, as far as possible re-
ducing the need for effort and creative interpretation in use. Computer-based
models that are interpreted solely in this closed and prefabricated fashion are
peripheral to the idealist’s agenda. The idealist is essentially concerned with ob-
servation and exploration that is either not amenable to such automation, or has
yet to be automated in this fashion. In particular, should the idealist conceive
an interest in some novel aspect of the timetabling task and then proceed to
devise an automatic process to address this aspect, their focus of interest will
shift to new concerns. In effect, the imagination of the idealist can inform the



designs of the realist in specific aspects, but this will not exhaust the issues that
can stimulate the idealist’s imagination.

A useful analogy may be made with the way in which a design concept can
evolve. A watch that was explicitly designed merely to show the time may have
a button-operated built-in light. An opportunistic user might conceive the idea
of operating the light button in order to attract a moth in a darkened room. A
designer might subsequently devise a watch for entomologists that was designed
both to tell the time and attract insects. Such a device could be conveniently
used to perform more elaborate functions, such as monitoring the frequency of
visits by a particular insect, estimating the time taken to locate the light source,
or photographing insects. The idealist perspective is essentially concerned with
those uses of a device that are not routine or automated; the realist perspective is
concerned with the extent to which it is practical and appropriate to encapsulate
such uses in a new device.

The conceptual framework of the idealist is distinguished from that of the
realist by a focus on situation rather than process. A situation is particular to
immediate current experience, whilst a process is concerned with sequences of
situations that reliably follow a particular abstract pattern. In the design of
the entomologist’s watch, for instance, the idealist’s perspective is associated
with the opportunistic use of a standard watch in a particular situation, and
the realist’s perspective with identifying a process by which insects might be
reliably attracted to an illuminated watch. Though both the idealist and real-
ist perspectives are combined in effective design (for instance, in the systematic
investigation of insect responses to a variety of situations that leads to the iden-
tification of a process for attracting insects), the situated activity of the idealist
does not necessarily precede design.

The computer-based interactive situation model (ISM) to be described in this
paper, unlike a computer program that is conceived with specific processes in
mind, is intended to represent situations. A detailed discussion of the principles
used in constructing an ISM is postponed until Sect. 4, but some appreciation of
the distinctive nature of such a model is important both in interpreting the ac-
count of timetabling activities which follows, and in relating this to alternative
approaches. Unlike a conventional program, an ISM is constructed and inter-
preted in a way that is directly shaped by particular situations rather than only
being constrained by abstract input-output processes and context-independent
computational semantics.

A precedent for computer-based models with such semantics is to be found
in the spreadsheet. Plausible ways in which spreadsheets could be exploited in
timetabling convey some of the essential principles discussed in this paper, albeit
rather crudely. For instance, it is possible to use a spreadsheet to express how
the violation of a constraint depends upon the configuration of a timetable, and
to explore this dependency. Such a spreadsheet can be used in an interactive
and opportunistic manner to investigate particular situations and constraints
without conceiving a systematic process to address all constraints. The blend
of human interaction and automated activity that is supported by the spread-



sheet is distinctive. Possible activity includes open-ended experiment, both in the
external world and within the spreadsheet, that can shape the timetabler’s un-
derstanding of the timetabling problem and of the interpretation of the values in
the spreadsheet itself. With appropriate dependencies in place, the spreadsheet
can be used to assist timetable comprehension through experimental interac-
tion whilst at one and the same time allowing processes and behaviours, such
as are associated with timetabling algorithms, to be conveniently prototyped.
Such use of the spreadsheet as a timetabling application is restricted by the
computational overheads involved in realising algorithms through automating
human interaction with the spreadsheet. In contrast, efficient algorithms and
conventional programs to implement constraint satisfaction would require cus-
tomised data representations and optimisations that relied upon restricting user
interaction.

In broad terms, the EM approach to computer-based modelling can be viewed
as generalising principles illustrated in the spreadsheet so as to create computer-
based artefacts whose semantics resembles that of the physical models that an
engineer or an experimental scientist constructs. The analysis that informs the
creation of an ISM relies on identifying observables (cf. the cells in a spreadsheet),
dependencies (cf. the definitions that relate spreadsheet cells) and agency (cf.
the actions that are involved in introducing and redefining cells that are associ-
ated with spreadsheet development and use). In practical use of the many ISMs
that we have developed at Warwick over several years, the readiness with which
ISMs can be adapted to serve different roles is their most striking feature. Em-
pirical evidence suggests that this adaptability is a fundamental rather than an
accidental characteristic of our approach. It seems that analysing observation,
agency and dependency has a central role in the way in which we construe situ-
ations, and accordingly in shaping our expectations of what sort of interactions
and state-changes are plausible in any given situation. The aspiration of the EM
approach, realised persuasively — if only partially — with our current modelling
tools, is to create computer-based models that imitate observation, agency and
dependency in their referents through integrating the construction of a model
with the analysis of its referent.

The mode of construction of an ISM makes it radically different from a
timetabling application that is implemented by a conventional computer pro-
gram. In developing such a timetabling application, there should ideally be
interaction between two people with quite distinct perspectives: one who un-
derstands the states and processes in the underlying computer program, and
another who is familiar with the characteristics of the timetabling problem and
the constraints and heuristics governing its solution. Since the environment for
the timetabling task is subject to evolve due to changes in surrounding processes,
resources, and adaptation to the introduction of automatic scheduling itself, it
would be helpful if the expert timetabler could either make appropriate changes
to the underlying program or at least understand changes made by the program-
mer. This is a difficult process, since it involves implicit interaction between the
two very different mental models of the timetabler and the programmer. The



virtue of the framework of observables, agency and dependency that is used to
construct the ISM is that it offers explicit handles for comprehension by both
participants. Firstly, the form of the code of the model itself directly embodies
significant information about its semantics (cf. the way in which the definitions
of spreadsheet cells discloses information about the external observables they
represent). Secondly, the model is amenable to experiment in an open-ended
fashion that allows hypotheses about relationships amongst observables to be
framed and tested (cf. the insight into the significance of spreadsheet values that
can be gained through experiment). On this account, the ISM may serve as a
most appropriate vehicle through which the timetabler and the programmer can
communicate.

3 Developing a Timetabling Instrument

3.1 The Timetabling Application

The potential for applying EM techniques and tools to timetabling will be briefly
outlined with reference to work in progress on a real application. This application
involves timetabling a week of oral presentations for final-year project students.
Each presentation requires a timeslot of 30 minutes duration between 9 am and
5 pm from Monday to Friday. The presentation is attended by the project su-
pervisor, the second assessor, and a moderator (cf. Fig. 2). In assigning staff to
moderation and assessment roles, the need for staff to be suitably qualified as
examiners for the specified project and the need to balance workloads are sig-
nificant — and sometimes conflicting — considerations. There are generally two
rooms available in each timeslot, so that two presentations can run in parallel.
The number of project students is presently of the order of 120, but is increasing
year by year.

The administrative task of managing the presentation timetable is currently
carried out with modest computer support, having several aspects: the collection
of data on availability of staff and students, the assignment of second assessors
and moderators to each project, and the preparation and publication of the
timetable. Much of the data is communicated and recorded electronically, but,
currently, the construction of the timetable is largely done manually. As an
additional complication, there are often unexpected changes to the availability
of staff and students, both throughout the period during which the timetable
is under construction, and during the week of presentations itself. Exceptional
projects that have to be scheduled outside the normal rooms also occur, for
example, because of non-standard equipment needs.

The size and nature of the timetabling problem is such that automation is
desirable. By the time all the relevant data has been collected, the time available
for constructing the timetable is quite short. A simple conventional program to
process the relevant data and construct a timetable is already available. This
can generate solutions, but is quite unsuitable for use when any subsequent
modifications to the timetable have to be made, since any change to the data
results in a complete reconstruction of the timetable. Previous experience of
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Fig. 2. The case-study context

manual construction of the timetable also reveals a number of qualitative and
logistic issues, important in developing a satisfactory timetable, that are difficult
to take into account when automating the task. For instance, it is useful to avoid
fragmenting commitments of staff time, to eliminate delays introduced by staff
having to switch between venues, and to organise presentations thematically.
Many of these issues could be more easily considered in the past, when student
numbers were smaller, and manual timetabling was more appropriate.

3.2 The Temposcope

The product of our current work in progress is a prototype “timetabling in-
strument”, named the Temposcope?, designed to support the preparation of the
presentation schedule. The construction of the Temposcope has similarity with
the development of a new scientific instrument, such as the microscope [5]. There
are three principal roles in this construction: confirming that the instrument is
operating as intended (the designer role), ensuring that the instrument is prop-
erly situated in an appropriate environment (the technician role), and becoming
familiar with the most effective ways to use the instrument (the user role). Dur-
ing the earliest stages of the development, it can be difficult to distinguish the
problems relating to these three roles. Once this distinction has become clear,
there is scope for refining the instrument. This involves making it easier to set
up, simplifying its internal mechanisms, and providing more effective modes of
interaction.

This section informally describes the steps that have been taken so far to-
wards building our Temposcope, and indicates the potential for future use. The

* an instrument for Timetabling with Empirical Modelling for Project Orals.



terms in italics have a special meaning to be elaborated in later sections of the
paper.

3.3 Setting up the Temposcope

As the analogy with a scientific instrument suggests, the purpose of the Tem-
poscope is to make it easier for the timetabler to access and manipulate observ-
ables of interest. For instance, in constructing the timetable, the timetabler will
be concerned about such observables as ‘whether a staff member is available in
a certain timeslot’, or ‘whether a staff member has been double-booked’. The
timetabler may decide that it is necessary to change the moderator for a ses-
sion, and will be aware that this has potential implications for availability and
workload, but will need to check the status of the appropriate observables. The
Temposcope is intended to make it easier to identify the relevant observables and
determine their current status. In fact, the state of the instrument itself should
reflect the status of such observables accurately at all times, and it should be
more convenient for the timetabler to consult the state of the instrument rather
than the state of the real world.

Figure 3 outlines the structure of the Temposcope. The timetable data at
the centre of the figure comprises information about the availability of staff and
students, an assignment of examiners to each student (SAM), and an assignment
of students to slots (TT). This data — which might be obsolete, inconsistent
or partially complete — determines the state of the timetable with which the
timetabler is currently concerned. Many significant observables associated with
the timetable data can be derived using functional dependencies. These observ-
ables relate to issues such as the completeness and feasibility of the schedule
for each member of staff and student, the suitability of the examiners, the con-
straints imposed by rooms, and the relative workloads of staff.

For the realist timetabler, a timetabling instrument is a tool that, once devel-
oped to an appropriate level of sophistication, can deal with all the observables
of interest. As far as the realist is concerned, how the instrument is constructed
is immaterial. For the idealist, in contrast, it is important that the timetabling
instrument can be refined to take account of newly conceived observables, and
that it is constructed so that such refinement is possible even during use. It
would be desirable (but to our best present knowledge surprising!) if the ideal-
ist timetabler were able to carry out such a refinement unaided, but ensuring
that correction and refinement do not interfere with its use is a more significant
concern. In the Temposcope, this is achieved by using principles similar to those
that enable the user of a spreadsheet to revise the tax rate without suspending
a complicated financial analysis. Indeed, our timetabling instrument is almost
entirely constructed by formulating functional dependencies.

Figure 4 is a screenshot that shows the Temposcope in operation. The instru-
ment was assembled from several simple mechanisms, each of which relates to
a different aspect of the timetabling task. One component, for instance, is con-
cerned with calculating current availability from the declared availability and
assignments for each staff member, and is declared by a functional dependency.
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Fig. 3. Outline structure of the Temposcope

This mechanism was developed before the complete instrument was assembled,
and tested with simple abstract data. In the Temposcope itself, the mechanism
operates on data of a more subtle origin: the staff schedule is functionally de-
termined by the matching of students to slots and the allocation of examiners,
whilst the timeslots have to take account of room information. The first stage
in assembling the complete timetabling instrument involved checking the depen-
dencies and interactions between such sub-mechanisms.

For this purpose, our instrument was first applied to data extracted from an
old timetable. This comprised a list of records detailing the names of 29 (a subset
of the 120) students, together with their project titles, examiners, and scheduled
slots. The declared availability of staff was recovered from old documentation.
In bringing the timetabling instrument into an appropriate state, several seman-
tic problems in the legacy data were identified. These highlighted invalid date
information for three students whose projects had been rescheduled, and several
discrepancies between the declared availability of staff and the actual schedule.
Unlike a timetabling machine that might typically refuse to process such incon-
sistent input, our timetabling instrument is intended only to disclose the status
of observables, whether or not they are consistent. The timetabler is alerted
to such problematic issues through the commentary interface in Fig. 4, where
some students have no allocated slot, and some staff are declared unavailable.
A more interesting anomaly in the data was created by a student who was be-
ing jointly supervised. For this student, the pseudonym CSSGM was introduced
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Commentary window

for the joint supervisors CS and SGM. This had further implications, which are
discussed below.

Because the data in the old timetable was well-understood and documented,
it provided a good environment for testing and improving the timetabling instru-
ment. This involved performing many experimental interactions, and seeing how
far expectations were confirmed by the changes of state of the instrument. Exam-
ple interactions used to check the consistency of the instrument included chang-
ing the availability of staff members and students; moving a student to another
slot, and changing the examiners. Such experimentation revealed a significant
omission in checking the consistency of the timetable data: there was no explicit
indication that a member of staff had been double-booked. Another dependency
was introduced to make this inconsistency accessible. The old timetable data
also provided a means to classify projects and add information about the suit-
ability of their examiners. This was done by dividing projects into two classes
and setting up dependency relations to identify the supervisors or assessors of a
project in each class as suitable for examining all the projects in that class. It is
important to note that all the changes to the state of the instrument described
here, whether they concern experimental interaction or correcting and improv-
ing the instrument, were achieved by attaching new values or dependencies to
existing observables, or by formulating new dependencies.

The above discussion deals with the basic set-up and use of the timetabling
instrument. It is a rational reconstruction that does not reflect the ambiguities



that arose whilst it was unclear whether the source of an inconsistency was the
data (technician’s role), a fault in the instrument (designer’s role), or a user error
in observation or interaction (user’s role). More significant use of the instrument
could only begin after confidence in making such judgements had been gained.

3.4 Manual Timetabling with the Temposcope

The first exercise undertaken was manual re-timetabling based on the old time-
table data. For this purpose, the obsolete timetable, currently defined by a list
of (student_name, slot) pairs, was replaced by the empty list, and all other
timetable data left unchanged. To find a suitable slot for a particular student
involves finding their examiners and determining when they are all available,
taking account of declared availability and any previous scheduling assignments.
The dependencies introduced for this purpose are as follows:

curr_student = ...
Supervisor, Assessor, Moderator is”’ f_of (curr_student);
common_AVAIL_of_S+A+M is f_of (AVAILs_of (SAM), ASSGNs_of (SAM));

5

where AVAIL refers to slots where availability is declared, and ASSGN to slots to
which staff are assigned.

Since the actual scheduling of examiners is dependent upon when the exam-
inee is scheduled, there is a further dependency to be recorded, viz.

ASSGN_of _supervisor[curr_student] is f_of(curr_student, TT, SAM);

With these dependencies in place, a simple way to complete the table man-
ually is to move the focus of the curr_student observable from student to
student, making and revising assignments as appropriate. As an improvement
on this blind search, a simple heuristic can be used. A single dependency intro-
duces the number of possible slots currently available to each student as a new
observable. The assignment of slots can then proceed automatically, for exam-
ple, by following the normal practice of scheduling the most tightly constrained
students first.

Whilst exploring activities of this kind, a hidden fault in the instrument
emerged. The definition of ASSGN_of_supervisor above had been formulated
so that it relied on consistent indexing between the two basic records in the
timetable data — a consistency that was guaranteed when both records were
extracted from legacy data, but which could no longer be assumed. The correc-
tion of this fault involved reformulating a dependency, and validating the result
by revisiting the experimental interactions carried out at the previous stage of
development. (Such re-validation is only in general required when revising rather
than adding dependencies.)

Significant extensions of the original requirement can be addressed even af-
ter the instrument is well developed. In order to illustrate this, the issue of

% is denotes a functional dependency, = an assignment



room availability was deliberately neglected at earlier stages. The richness of the
observations supported by the timetabling instrument allows several different
approaches. It is possible to deal with room availability using a similar approach
to that used for staff and students. However, if the restriction imposed by rooms
relates purely to the number of parallel sessions, it is simpler to observe the
number of sessions timetabled for each slot. If, in addition, particular projects
have to be scheduled in particular rooms, the availability of the associated stu-
dents can be expressed as dependent upon the availability of these rooms. By
using strategies of this kind, and exploiting the combination of manual and au-
tomatic activity, the timetabler can deal with such situation-specific problems of
scheduling for which it would be inappropriate or impossible to develop a generic
solution.

3.5 Automated Timetabling with the Temposcope

In its present state, the timetabling instrument is ready for prototype use in
connection with this year’s timetabling task. The introduction of automated rou-
tines is simple. The manual process of switching the focus of the curr_student
observable, for instance, can be performed by an iterative procedure:

for i = 1 .. class_size {
curr_student = i;
if (is_slot_available & none_allocated) update TT[curr_student];

}

A possible result of executing this iteration is depicted in the screen shot in
Fig. 4. From this display, it is apparent that all but two students are scheduled.
One of these students cannot be scheduled because of an inconsistency in the
original legacy data. The other is unavailable because the spurious examiner
CSSGM introduced earlier has been given no availability (amongst other things).
This issue can be addressed by introducing another dependency:

avail_of_CSSGM is intersection_of (avail_of_CS, avail_of_SGM);

The timetabler can then allocate a slot for this student either manually, or
by invoking the automatic iteration for a second time. The approach to handling
an anomalous feature of the timetable data illustrated here is very different in
character from redesigning a machine to accept a wider range of inputs. Both the
timetabler and the instrument are involved in accommodating such a feature,
and the timetabler has to exercise special discretion in interacting with the
instrument and interpreting its response. For instance, it is not appropriate to
modify the availability of CSSGM through the button interface — the availabilities
of CS and SGM must be modified instead.

The timetable-related activities described above address only the first stage
in the development of an effective timetabling instrument. They are nonetheless
representative of activities that can continue in an open-ended fashion towards
the creation of more powerful instruments. The future agenda for this project



will feature studies in practical use of the instrument, with particular reference
to the role and potential impact it can have in the administrative processes asso-
ciated with timetabling. One key issue concerns identifying the most significant
observables and displaying them effectively, with reference both to observables
familiar to every timetable user and to those newly introduced by the ideal-
ist timetabler. Another, for which a framework has already been established by
our existing software tools, involves distributing the timetabling instrument for
co-operative use across a computer network.

4 Empirical Modelling: Principles, Techniques and Tools

The work in progress outlined in Sect. 3 uses a collection of principles, techniques
and tools developed at the University of Warwick under the umbrella name
Empirical Modelling (EM). The research has a human-centred focus that was
motivated in Sect. 2.

The key concepts of EM® are the observable, dependency and agent [1].
These frame a form of analysis of applications that is radically different from
a functional or object-oriented approach. Limited precedents for this kind of
analysis are to be found elsewhere: in the analysis of functional dependencies in
relational database design, and in the dependency analysis involved in creating
a spreadsheet.

The central idea of EM is the construction of an Interactive Situation Model
(ISM) [2], of which the Temposcope is an example. An ISM supplies the modeller
with patterns of interaction that resemble those observed when experimenting
with its referent. Like a spreadsheet, an ISM has an uncircumscribed set of useful
interpretable states and interactions. How these states are manifest, and what
interactions are invoked, is highly dependent on the situation and motivation of
the modeller. The legitimacy of an interaction is determined in a situated rather
than an abstract manner, by direct consideration of the external referent. This
is similar to the way in which the definitions of spreadsheet cells are framed
according to expectations about how the values of observables are interrelated.
The precise usage and evolution of an ISM remains open-ended, and is typi-
cally shaped by value judgements and pragmatic issues. The role of the ISM
is closely associated with modelling activities of an empirical nature that — in
other approaches — precede formal specification.

An ISM is experienced as an open environment rather than a closed system.
Like a spreadsheet, it is encountered in a particular state and invites exploratory
interactions. The particular state of an ISM is determined by a family of def-
initions (a definitive script) that resembles the network of definitions of cells
that lies behind the spreadsheet interface. As in defining the cells of a spread-
sheet, each definition explicitly or implicitly specifies the value of an observ-
able via a functional dependency. A typical implicit definition takes the form
x is f(a,b,c), where x, a, b and c are associated with observables in the ref-
erent, a, b, and c are defined elsewhere in the script, and £ is an operator that

® see http://www.dcs.warwick.ac.uk/modelling/



reflects the way in which the value of x is perceived to depend upon the values of
a, b and c. Semantically, the relationship x is f(a,b,c) is to be interpreted as
referring to expectations about the consequences of changes to observables a, b
and c, rather than as an equational constraint. It expresses the observation that
if the value of a, b or c is changed, then the value of x changes according to the
dependency x is f(a,b,c), and that the change to the value of x conceptually
belongs indivisibly to the change to a, b or c. In effect, neither the ISM nor
its referent can be observed in a state in which a, b or ¢ has changed but the
concomitant change in x has yet to occur.

The script of an ISM serves as the basis for an exceedingly rich state-
transition model. Transitions from state to state are associated with the in-
troduction of a new definition or the modification of an existing definition. Only
a small proportion of the possible transitions from a state are of interest —
indeed many are not interpretable, but it is difficult to preconceive which, or
to constrain their interpretation. In EM, transitions are frequently ascribed to
agents. This gives support for semantic distinctions that are typically ignored in
abstract computational accounts. For instance, in the matching process involved
in constructing a timetable, there is a distinction between commitments volun-
teered by a member of staff and commitments subsequently introduced by the
timetabler. In the ISM, transitions are associated with agent action, as mediated
either through a single definition, or through several redefinitions to be executed
in parallel. Automatic agents can be modelled in the ISM by introducing ac-
tions that are triggered according to the current values of script observables. All
such activity involving definition in the ISM takes place at the discretion of the
modeller, who can always intervene in any state in the role of a supreme agent,
with power to introduce definitions in a potentially arbitrary and unrestricted
manner. In this manner, human and automated activities in the ISM are closely
integrated.

The construction of the ISM illustrates a number of significant features. It
allows development to proceed interactively in an incremental fashion in such
a way that there is continuity and a close correlation between the observables
from one version of the ISM and another. The roles that the modeller and the
computer play in maintaining the semantic integrity of the model are much more
balanced than in a conventional program. Recall that the phantom combination
examiner CSSGM was given availability in Sect. 3.5 by introducing a new depen-
dency on the availabilities of CS and SGM, but that it was not appropriate to
modify this availability directly. The interface does not enforce this constraint
— it is up to the modeller to interact with the ISM in a way that respects this
relationship. This illustrates a more general principle: the modeller in general
wants the freedom to experiment, and to make small adjustments to the ISM
that are particular to the situation rather than generic in character. It is more
convenient and more appropriate to achieve these aims by using the ISM with
discretion in a semi-automatic mode than to re-engineer the model to accommo-
date exceptions.



The software tool that we use to create computer-based artefacts such as the
Temposcope is a special-purpose interpreter (the EDEN interpreter) that has
been developed for constructing ISMs. It may seem that some aspects of the
modelling task could be addressed more directly using conventional packages,
but the use of EDEN involves subtle and significant differences. For instance,
dependency relationships that are associated with views and reports are dynam-
ically maintained, and are typically mediated to the user through visualisation
that is dynamically refreshed. EDEN offers far greater scope for establishing
dependencies amongst internal data values of all kinds, as well as dependencies
between such values and the geometric, textual and iconic elements on the screen.
These dependencies can also be reconfigured on the fly, and be distributed to
users on a network of workstations.

The characteristics of the EDEN environment are illustrated in the screenshot
of the Temposcope ISM in Fig. 4. There are three principal elements in the screen
display. These are:

1. the EDEN input window, in which the values and definitions attached to
variables in the current script can be interrogated, and through which new
definitions, functions and actions can be entered into the script to change
the current state of the ISM. It is the primary interface through which the
ISM is constructed.

2. an interface window whose contents are functionally determined by the un-
derlying data set (and the lists of staff and student names in particular)
and the current script, that provides a simple interface for visual feedback
and mouse interaction. The interface window can serve many different func-
tions according to the configuration of the script. For instance, in Fig. 4,
the grid of cells can be used to display the timetable, to display and modify
data about the availability of staff, or to display quantitative information
relating to the particular cells. In Fig. 4, the pair of numbers currently on
display indicates the number of staff who have declared themselves available
in that timeslot, together with the number of staff who have been scheduled
in this slot. The values of these numbers are specified by definitions, and are
updated automatically.

3. a commentary window in which information about the current state of the
ISM is displayed through textual output as interactively requested by the
modeller or output by EDEN actions. The commentary window is the most
convenient medium through which to get informal feedback about the state
of the model. For instance, it can be used for interactions that have a topical
short-term interest in connection with singularities in the state resulting
from invalid input or misconceptions about the external state.

5 The EM Approach — Ideal for the Idealist?

The immediate practical objective of our current work in progress is to see
to what extent our computer instrument can be used to assist human-driven



timetabling for project orals. This section discusses some of the issues that arise
in using the Temposcope in an approach to timetabling that emphasises man-
ual rather than automatic scheduling. It also considers the distinctive merits
and limitations of the new computational principles that are being exploited.
Finally, it speculates on the broader significance and potential implications of
empowering the idealist timetabler.

5.1 Assisting the Manual Timetabler

The primary motivation for developing the Temposcope is best appreciated
by considering the state of mind of the idealist timetabler engaged in man-
ual timetabling. Such a timetabler will typically have created some portion of
the final timetable. Their current understanding of the timetabling problem will
encompass much more than is apparent from the partially completed grid, how-
ever. They may be on the point of identifying a new goal that could enhance
the quality of the timetable, such as removing an inconvenient gap in a staff
member’s schedule. They will be aware of where conditions are close to critical
in some respect: for instance, because there is limited scope about the schedul-
ing of a particular combination of staff members, or limited discretion over who
can otherwise serve as a second assessor. They may also be aware of particular
reasons why a specific matching of project to timeslot has been made. Current
knowledge of a situation of this nature is difficult to record formally, whether
on paper or in a computer model. Exploratory interaction with the Temposcope
provides the timetabler with a means to revisit the experience of the current
situation that is informing their judgement. This is useful both in confirming in-
tuitions about what is feasible, and in communicating the reasons for decisions
to others.

The distinction between use of the Temposcope and a fully automated ap-
proach is highlighted by the support it gives for monitoring manual timetabling
activity where there is temporarily inconsistency. Automatic support for time-
tabling typically imposes hard constraints upon all scheduling activity, whether
explicitly performed by the user or carried out automatically. In contrast, the
Temposcope is always open to interaction in which the modeller is free to re-
define observables arbitrarily — in particular to venture scheduling assignments
whether or not they are physically realisable. An experienced timetabler may
well tolerate anomalies of this kind in a partially completed timetable, and pend
certain problems for resolution at a later stage. This is feasible and appropriate
only if the timetabler is fully engaged with the task, and has a sound awareness of
the rationale for the decisions that have informed the construction to the present
point. As the case study in Sect. 3 illustrates, flexible use of the Temposcope in
this manner does not prevent the timetabler from exploiting a more orthodox
strategy: an interface can be provided in which the modeller’s input is restricted
to scheduling actions that do not violate constraints, or to invoking scheduling
agents that respect the constraints. It is on this basis that the instrument can
support close integration of manual and automatic timetabling.



Many of the practical problems of constructing a timetable manually stem
from the difficulty of recovering the mental contexts encountered in the con-
struction process. Such contexts are associated with experiential aspects of the
timetabling activity rather than more mundane and abstract knowledge about
the current status of constraints. For instance, if the display representations of
timetabled project orals are colour coded so as to reflect their subject matter, the
appearance of the screen itself may be the trigger that prompts the timetabler to
a particular train of thought. As the manual timetabler moves in and around the
solution space, the Temposcope not only relieves the timetabler of error-prone
checking of constraints, but enables states to be conveniently re-created in ways
that restore the experiential cues.

5.2 Paradigms for Computer Support

An experiential emphasis in computer use is evident in current trends. Our
ISM-based approach has more in common with modelling the cognitive artefacts
used for timetabling than implementing efficient automatic timetabling routines.
As in all applications where computerisation of manual processes is concerned,
it is not necessarily appropriate to imitate existing processes and artefacts. In
general, computer-based artefacts are more versatile than physical or mechanical
artefacts, and admit more flexible transformations. The ever-increasing support
for construction of artefacts that computer-based technology offers is reflected in
developments in software that can be used in timetabling. For instance, relational
databases, spreadsheets and visual programming techniques are now routinely
used in combination to store the current data about availability of resources,
and to create reports and views to represent this information in the many ways
that are appropriate to the timetabling task and the needs of its developers and
users.

The extent to which new technologies and practices can deliver a more satisfy-
ing integration of human and automatic activity depends crucially upon our con-
ceptual perspective on computer use. In this respect, the computational frame-
work in which the Temposcope operates is significant. The classical theory of
computation does not directly address the role of the computer as a physical
device. A traditional programming paradigm is not so well suited to the ide-
alist stance. The programming process involves a number of separate phases:
requirements, specification, design, implementation. It is hard to integrate these
phases, whether or not they are executed to a rigid pattern. The idealist modifies
the requirements for the timetable whilst it is being constructed. This can be
achieved in the manual activity because the timetabler is always able to exam-
ine a physical representation of the partial timetable that can be interpreted in
relation to its real-world significance.

Some key differences between a realist and idealist perspective on computer
support, as they relate to timetabling, are summarised in Table 1. The sharp
distinctions drawn between the realist and idealist perspectives in this table are
intended to clarify two complementary views of the practical use of computers.
It is impossible to conceive computer use that is so much oriented towards the



idealist that it operates beyond the limits of any administrative environment,
and involves no preconceived interfaces or user goals. Similarly, all computer use
requires some element of informal engagement with the experience of the user,
and invokes the computer both as an abstract computational machine and as a
physical device and instrument. The effective integration of human and computer
activities can be seen as giving conceptual integrity to these two perspectives
within a single framework.

5.3 Empowering the Idealist

The concepts behind the Temposcope indicate the potential for a radically differ-
ent relationship between human and computer activities. This is associated with
a shift in perspective on the nature of the user — from realist to idealist, and in
the role of the computer — from abstract machine to physical device. This can be
illustrated by considering broader implications for the administrative processes
that surround timetabling.

The traditional practice in automation is to separate concerns as far as possi-
ble — for instance, in the context of our case study, by presuming that compre-
hensive and reliable knowledge of staff availability is guaranteed, and that the
assignments of second assessor and moderator are fixed prior to embarking on
the timetabling exercise. The administrative activity is phased to conform to a
pattern that guarantees that as far as possible the human and computer roles can
be performed routinely and efficiently. A realist timetabler would prefer to work
within a systematic framework where simplifying administrative constraints ap-
ply. The idealist timetabler, who is first and foremost committed to delivering
a timetable of the highest quality, and derives satisfaction from the task alone,
has a different — and truly unrealistic — stance towards peripheral matters of
expediency. When seeking the timetable that best meets many different criteria,
the freedom to revise decisions and to respond opportunistically to changing
circumstances is appreciated rather than deplored. In effect, the change in user
profile from realist to idealist is associated with a fundamental change in attitude
to the unpredictability and unreliability of experience. The concept of an idealist
timetabler does indeed demand idealised human qualities and characteristics: to
be striving for excellent intelligence in relation to all the pertinent issues, to be
meticulous and diligent, and to be indulgent where there is uncertainty about
the reliability of information supplied.

The idealisation invoked here is unlike perfect knowledge in the logical sense.
For example, the idealist timetabler is not assumed to know whether a given par-
tially completed schedule can or cannot be consistently completed. On the con-
trary, the underlying assumption in EM is that all knowledge is incomplete and
imperfect, and liable to be revised and improved in the future. The timetabling
task is not viewed as having a precisely specified perfect solution, but many
possible solutions, some more perfect than others. Rather than attempting to
eliminate subtleties and obscurities by constraining the real-world problem, the
modeller accepts the impossibility of finding a comprehensive solution and under-
standing of problems, and focuses on creating artefacts that assist in grappling



Table 1. Two perspectives on computer-assisted timetabling

The Realist
(Conventional) Perspective

The Idealist
(ISM-Based) Perspective

uses abstract state and data rep-
resentation.

follows a hidden algorithm.

offers a system for a specified in-
tended use.

is difficult to adapt to unforeseen
uses.

is efficient and optimised.

is scalable to large problems.

uses batch-style interaction and
is as fully automated as possi-
ble: set up an input, run the al-
gorithm, examine the results.

is easy to use via an “accessible”
user interface.

accepts only perfect, clean (or
very high quality) input.

involves computer activity that
is interpreted by the user accord-
ing to preconceived conventions.

treats the computer as an ab-
stract computational device with
formally defined mathematical
semantics.

uses personal and situated data representations.

supports timetabling activity under the com-
plete control (and ideally within the compre-
hension) of the timetabler, with as much au-
tomation as desired.

offers an open-ended model, “environment” or
“instrument” that the modeller can shape in
ways that are not pre-determined, and can use
for ad hoc experimentation.

is highly flexible (albeit only in the hands of an
experienced modeller).

aims at quality rather than efficiency, although
some optimisation is possible through run-time
analysis of the dependency tree.

offers limited scope for large-scale situated eval-
uation, unless perhaps the evaluation is per-
formed in parallel by many people using a dis-
tributed ISM.

uses spreadsheet-style interaction that gives rich
support for modelling functional dependencies.
The level of support for procedural activity
ranges from purely manual to fully automatic
at the timetabler’s discretion.

uses an interface that is (ideally) built and
adapted interactively to the modeller’s own per-
sonal and situated requirements. (An interface
which admits any possible change to the model
is difficult to conceive — by definition, inter-
faces restrict possibilities.)

accepts “arbitrary” input and assumes that all

knowledge in the model is subject to future
revision.

involves computer activity that is freely and dy-
namically interpreted by the modeller according
to the current situation.

treats the computer as an artefact, with a se-
mantics that is mediated interactively and ex-
perientially.




with realistic complexity and confusion. The most significant aspects of an ISM
are that it is open-ended, and, in so far as it represents experiences of the referent,
these are consistent with experiment and observation. In this way, it provides
the appropriate environment to complement the unattainable aspirations of the
idealist.

6 Conclusions

This paper has outlined work in progress on timetable construction in a novel
conceptual framework. Though the specific techniques considered are surely not
without precedent in approaches to timetabling, there is here a more significant
agenda attached to their exposition. The shift of perspective towards analysis
based on observables, dependency and agency that is commended in EM cannot
be viewed as merely proposing new features to be imported into existing compu-
tational paradigms. The full justification and evidence for this claim is beyond
the scope of this paper (cf [1]). In practical terms, the full benefits of constructing
an ISM can only be appreciated within a computational framework in which de-
pendency maintenance and agent interaction can be used pervasively to address
all associated matters of interface design, visualisation and data management.

Though the Temposcope is still unrealistically simple, it illustrates in essence
several of the key features of the timetabling instrument and its potential appli-
cations. These include the potential for semi-automated activity, for exploring
timetabling heuristics that could improve the efficiency or quality of the construc-
tion process, and for then implementing new automatic timetabling strategies.
It can be the nucleus for a much more elaborate ISM that addresses matters of
user-interface design for a semi-automatic timetabling application, for instance.
It could also be readily extended by attaching new dependencies so as to pro-
vide reporting facilities giving information on marks awarded, and profiles of
staff performance in supervisory and examining roles.

One of the most challenging issues for our future work is to create an ac-
ceptable interface to the timetabling instrument. To appreciate the scale of this
problem, it is helpful to compare an ISM with an engineer’s prototype. It is quite
typical for such a prototype to be precariously constructed, in some respects in-
complete or not fully engineered and possibly not even fully understood. Interac-
tion with the prototype cannot be easily delegated — it often involves intimate
knowledge of the significance and context for each interaction. It is hardly ap-
propriate to instruct the engineer to put a proper interface on the prototype so
that it is easy for just anyone to interact with it. The subtlety and sensitivity
of an engineer’s interaction with the prototype is to some extent a reflection of
the degree of thought associated with its conception. Perhaps one of the most
important characteristics of an ISM is that, like the prototype, it does not easily
sustain mindless interaction.
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