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What I do these days

● Framework and tools for making mobile apps 
using HTML/CSS and JavaScript

● Service for pushing out updates to users 
without requiring app store review

● Check us out at: https://trigger.io/

https://trigger.io/


  

Overview of this talk

● The Why
– My perspective on Empirical Modelling

– Why bother with the browser?

● The What
– Qualitative view of JsEden

– Comparison with already existing tools

● The How
– Available technological options

– Overview of JavaScript

– Architecture of JsEden

– Implementing dependency

– Implementing support for the EDEN like language

● Plans for further development
– Issues that need to be resolved

– Collaborative modelling

– Persistance/versioning of models

– JsEden in contexts other than the browser?



  

The Why

Where I try to convince you that this was worth 
doing at all



  

What do I think Empirical Modelling is about?



  

Isn't it obvious?



  

What do I think Empirical Modelling 
is about?
● Simples: Interactively building one thing to 

help reason about another thing

● We call these the model and the referent (the 
thing that the model refers to)

● In particular, how can we use computers for 
this task?



  

How do people do Empirical 
Modelling?
● Several tools that already exist can support the activity of 

Empirical Modelling
– Spreadsheets

– Tkeden (Modelling with definitive scripts)
● EDEN (the language)
● EDEN (the virtual machine)

– Cadence (Modelling with process like definitions)
● DASM (the language)
● DOSTE (the virtual machine)

● The thing in common with all of these is the immediate 
effect of interactions with the model



  

Why I was interested in EM

Overall, I'm interested in anything that makes creation of interactive 
media on a computer more accessible to humans

● Constructivism
– Knowledge is not a universal substance, but a personal construction gained 

through experience

● Computers
– Had been learning to program for the past 3 years so was interested in 

creating software already

● Interactivity
– EM seems to be about making the behaviour of software more tangible and 

relatable to everyday experience



  

Why try to do this in the browser?

● In my opinion it's easier for people to engage 
with a web page (less steps to getting there)

● Depending on choice of implementation there 
are other benefits from a development point of 
view and for the end user



  

The What

Where I point out what it is that was actually done



  

Summary of JsEden

● JsEden is a tkeden like environment that you can use to 
create models in the browser

● The “JS” refers to the fact that the environment is built on 
top of JavaScript

● The “EDEN” part refers to the fact that models use a 
similar world view to EDEN, and supports an EDEN like 
language (unlike tkeden/dtkeden/webeden which all 
make use of the EDEN virtual machine directly)



  

User view of JsEden



  

How does this support EM?

● Permits the same method of model 
construction as tkeden: modelling with 
definitive scripts

● A model built through MWDS revolves around 
Observation, Agency and Dependency.



  

What is MWDS?

● Creation of a computer based model where:
– All state is described as observable quantities

– All change is due to agency (action) or 
dependency

– A change in some observable due to dependency 
is indivisible from change in the observable it is 
defined in terms of



  

Examples of observable quantities

● The temperature of a cup of coffee
● The speed of a moving object



  

Examples of agency

● A speaker causing your boredom levels to 
change during a presentation

● A magnetic field causing movement of a 
paperclip across a desk



  

Examples of dependency

● The gravitational potential energy of an object 
is dependent on it's mass



  

How does JsEden compare to 
already existing tools?

● tkeden
– Same conceptual framework, different implementation

● webeden
– Same conceptual framework, both in browser, different architecture and 

implementation

● Cadence
– Different conceptual framework (modelling through moment-to-moment transition 

functions)

– Attempting to step into more visual mechanisms for model construction

● Spreadsheet modelling
– Scripting language rather than grid, ability to define machine based agents (though 

VB may also permit this?)



  

The How

Where I explain how things were done, and how 
they might have been done



  

Main technical questions

Need to decide:
– Is the bulk of the dependency maintenance logic 

going to execute on the user's machine or as a 
service?

– What technologies allow us to execute code in the 
browser?



  

Where does the dependency 
maintenance code run?

Two possible approaches:
– Bulk of computation happens on a remote machine, changes 

to the model state are communicated to a thin client in the 
browser over a network.

– All computation happens on the client's machine. The user 
downloads the dependency maintenance engine which is 
somehow embedded into a web page.



  

Serverside

+ Can reuse already existing dependency 
maintenance software

+ Scalable both vertically and horizontally

- Requires internet connection throughout 
modelling

- Lag when waiting for updates to come over 
wire

- Increased infrastructure costs



  

Clientside

+ No network induced latency

+ Ability to work offline

+ Infrastructure is just hosting, so scalable and 
cheap

+ One user doesn't effect QOS for another

- May not be able to re-use already existing 
software (Need a supported runtime in the 
browser)



  

What technology can we use on the 
clientside

● Embedded Flash Application

● Embedded Java Application

● Other 3rd party plugins (e.g. NaCL, Unity)

● JavaScript



  

What technology can we use on the 
clientside

● Really it comes down to JavaScript vs an embedded 
application using a 3rd party plugin.

● JavaScript requires no plugins, and is rising in popularity 
(buzzword is HTML5)

● JavaScript works on more devices – tablets/mobile have 
poor or no support for Java or Flash based sites



  

I ended up choosing JavaScript

+ No plugins required

+ Great visualisation APIs, including the DOM

+ Bright future compared to most plugins

- Modern browser required (though IE6-8 can use 
Google Chrome Frame as a workaround)

- Performance? JavaScript has come a long way 
with e.g. JIT compilation, but Java is probably the 
best here. DOM interaction still overpowers 
everything anyway so probably irrelevant.



  

Other sort of reasons

● Personal preference/interests

● I could kind of see how it would work

● Other new languages built on top of JavaScript 
so I can benefit from other people's work



  

Wait, what's JavaScript?

● It has nothing to do with Java (except maybe some 
minor syntactic resemblance)

● JavaScript is code that can be included directly in a 
HTML document, to add logic to the page

● Capable of responding to events in the page (e.g. a 
mouse click)

● Capable of modifying the content of a HTML document 
through the DOM (Document Object Model)



  

Example JavaScript

<!doctype html>
<html>

<head>
<script type=”text/javascript”>
  window.onload = function () {
    document.body.innerHTML = 'Hello world';
  };
</script>
</head>

<body>
</body>

</html>
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Whirlwhind overview of the 
language
● Dynamic, weak, duck typing
● The important data types are:

– Number, String, Boolean

– Function

– Object (and Array, which is really just Object)

● Garbage collected
● Allows reasonable mix of imperative, object 

oriented and functional styles



  

What do I mean by imperative style

● JavaScript programs are generally a sequence of 
statements:

var x = “Hello”;

x = x + “, World!”;

console.log(x);

● Mutable variables
● Explicit control flow



  

What do I mean by object oriented 
style
● Object type is basically a value with a user defined interface:

var o = {

  quack: function () {

    console.log(“quack”);

  }

};

o.quack(); // prints quack

o.bark(); // type error
● No compile time guarantees. Prototypal inheritance rather than 

class based.



  

What do I mean by functional style

● Support for first class functions:

var square = function (x) {

  return x;

};

console.log([1,2,3].map(square));
● Higher order functions hence possible and natural to 

define
● Not strictly mathematical functions though, no 

constraints on side effects



  

tl;dr

JavaScript is a surprisingly flexible language 
that allows you to add more interesting 
behaviour to web pages



  

Overview of JsEden architecture

● JavaScript library to bring support for dependency 
and EDEN style agents (aka. triggered actions)

● Translator to compile EDEN-like notation to 
JavaScript.

● Libraries to support creation of visual interfaces for 
user interaction.



  

Overview of JsEden architecture



  

Supporting  MWDS in JavaScript

● Before we can translate EDEN to JavaScript 
we need to tackle the following:
– How do we store the values of observables?

– How do we store the definitions of observables 
described using a formula

– How do we store EDEN style agents

– How do we allow agents to observe model 
observables for change



  

Recap: What is dependency?

● Dependency is a way of reasoning about observations in change
● To an observer, changes in certain observables causes indivisible 

change in others
● While modelling, this comes down to defining one observable as a 

formula referring to other observables

– A is B + C;
● Need to have a clear idea about what the observers are and what 

the observables are before we can implement dependency



  

What can we consider to be an 
observer in a JsEden model

1. Human observers of a model
– Observation of external behaviour

2. EDEN style triggered actions
– Observation of observables for changes



  

What can we consider to be an 
observable in a JsEden model
● We could try to store the values of 

observables in regular JavaScript mutable 
variables

● Problems:
– Need notification about changes

– Need support for atomic transitions of more than 
one observable



  

Symbol table data type

● Rather than trying to use the JavaScript 
symbol table as our set of observables, use a 
value to represent the set of observables for a 
model

● Basically just a hash table where observable 
names are the keys, mapping to a structure 
containing the value and metadata for an 
observable



  

Observable data type

● Object type that stores the value for the 
observable

● Stores both the symbols that this observable 
depends on and vice versa

● If defined using a formula, stores this formula 
as a function, which is evaluated when 
dependencies change



  

More detail on these types in 
JsEden
● The symbol table stores observables in a hash 

table, and exposes a method for getting 
access to them:

var symbols = new SymbolTable();

var temperature = symbols.lookup('temperature');



  

More detail on these types in 
JsEden
● The observable type exposes methods for 

querying and updating the value of an 
observable:

var temperature = symbols.lookup('temperature');

temperature.value(); // currently undefined

temperature.assign(21); // update the observable



  

More detail on these types in 
JsEden
● The observable type exposes methods for 

definition:
var potential = symbols.lookup('potential');

var mass = symbols.lookup('mass');

potential.define(function () {

return mass.value();

});

potential.dependsOn(mass);



  

More detail on these types in 
JsEden
● The observable type exposes methods for 

observation:
var watcher = symbols.lookup('watcher');

var mass = symbols.lookup('mass');

watcher.assign(function () {

console.log(“Mass changed to: “, mass.value());

});

watcher.observes(mass);



  

How is the EDEN language 
supported?
● Simply translate from one EDEN language to 

JavaScript
● Translator is just a JavaScript function so easy 

to include in the JsEden environment
● Translator is defined using a BNF and a 

corresponding translation function is 
generated using a parser generator (called 
Jison)



  

Fin
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