

Supporting Empirical Modelling in
the Browser

Speaker: Tim Monks

Mathematics BSc (University of Warwick)
Computer Science & Applications MSc (University of Warwick)

Software Engineer at Trigger
https://trigger.io/

What I do these days

● Framework and tools for making mobile apps
using HTML/CSS and JavaScript

● Service for pushing out updates to users
without requiring app store review

● Check us out at: https://trigger.io/

https://trigger.io/

Overview of this talk

● The Why
– My perspective on Empirical Modelling

– Why bother with the browser?

● The What
– Qualitative view of JsEden

– Comparison with already existing tools

● The How
– Available technological options

– Overview of JavaScript

– Architecture of JsEden

– Implementing dependency

– Implementing support for the EDEN like language

● Plans for further development
– Issues that need to be resolved

– Collaborative modelling

– Persistance/versioning of models

– JsEden in contexts other than the browser?

The Why

Where I try to convince you that this was worth
doing at all

What do I think Empirical Modelling is about?

Isn't it obvious?

What do I think Empirical Modelling
is about?
● Simples: Interactively building one thing to

help reason about another thing

● We call these the model and the referent (the
thing that the model refers to)

● In particular, how can we use computers for
this task?

How do people do Empirical
Modelling?
● Several tools that already exist can support the activity of

Empirical Modelling
– Spreadsheets

– Tkeden (Modelling with definitive scripts)
● EDEN (the language)
● EDEN (the virtual machine)

– Cadence (Modelling with process like definitions)
● DASM (the language)
● DOSTE (the virtual machine)

● The thing in common with all of these is the immediate
effect of interactions with the model

Why I was interested in EM

Overall, I'm interested in anything that makes creation of interactive
media on a computer more accessible to humans

● Constructivism
– Knowledge is not a universal substance, but a personal construction gained

through experience

● Computers
– Had been learning to program for the past 3 years so was interested in

creating software already

● Interactivity
– EM seems to be about making the behaviour of software more tangible and

relatable to everyday experience

Why try to do this in the browser?

● In my opinion it's easier for people to engage
with a web page (less steps to getting there)

● Depending on choice of implementation there
are other benefits from a development point of
view and for the end user

The What

Where I point out what it is that was actually done

Summary of JsEden

● JsEden is a tkeden like environment that you can use to
create models in the browser

● The “JS” refers to the fact that the environment is built on
top of JavaScript

● The “EDEN” part refers to the fact that models use a
similar world view to EDEN, and supports an EDEN like
language (unlike tkeden/dtkeden/webeden which all
make use of the EDEN virtual machine directly)

User view of JsEden

How does this support EM?

● Permits the same method of model
construction as tkeden: modelling with
definitive scripts

● A model built through MWDS revolves around
Observation, Agency and Dependency.

What is MWDS?

● Creation of a computer based model where:
– All state is described as observable quantities

– All change is due to agency (action) or
dependency

– A change in some observable due to dependency
is indivisible from change in the observable it is
defined in terms of

Examples of observable quantities

● The temperature of a cup of coffee
● The speed of a moving object

Examples of agency

● A speaker causing your boredom levels to
change during a presentation

● A magnetic field causing movement of a
paperclip across a desk

Examples of dependency

● The gravitational potential energy of an object
is dependent on it's mass

How does JsEden compare to
already existing tools?

● tkeden
– Same conceptual framework, different implementation

● webeden
– Same conceptual framework, both in browser, different architecture and

implementation

● Cadence
– Different conceptual framework (modelling through moment-to-moment transition

functions)

– Attempting to step into more visual mechanisms for model construction

● Spreadsheet modelling
– Scripting language rather than grid, ability to define machine based agents (though

VB may also permit this?)

The How

Where I explain how things were done, and how
they might have been done

Main technical questions

Need to decide:
– Is the bulk of the dependency maintenance logic

going to execute on the user's machine or as a
service?

– What technologies allow us to execute code in the
browser?

Where does the dependency
maintenance code run?

Two possible approaches:
– Bulk of computation happens on a remote machine, changes

to the model state are communicated to a thin client in the
browser over a network.

– All computation happens on the client's machine. The user
downloads the dependency maintenance engine which is
somehow embedded into a web page.

Serverside

+ Can reuse already existing dependency
maintenance software

+ Scalable both vertically and horizontally

- Requires internet connection throughout
modelling

- Lag when waiting for updates to come over
wire

- Increased infrastructure costs

Clientside

+ No network induced latency

+ Ability to work offline

+ Infrastructure is just hosting, so scalable and
cheap

+ One user doesn't effect QOS for another

- May not be able to re-use already existing
software (Need a supported runtime in the
browser)

What technology can we use on the
clientside

● Embedded Flash Application

● Embedded Java Application

● Other 3rd party plugins (e.g. NaCL, Unity)

● JavaScript

What technology can we use on the
clientside

● Really it comes down to JavaScript vs an embedded
application using a 3rd party plugin.

● JavaScript requires no plugins, and is rising in popularity
(buzzword is HTML5)

● JavaScript works on more devices – tablets/mobile have
poor or no support for Java or Flash based sites

I ended up choosing JavaScript

+ No plugins required

+ Great visualisation APIs, including the DOM

+ Bright future compared to most plugins

- Modern browser required (though IE6-8 can use
Google Chrome Frame as a workaround)

- Performance? JavaScript has come a long way
with e.g. JIT compilation, but Java is probably the
best here. DOM interaction still overpowers
everything anyway so probably irrelevant.

Other sort of reasons

● Personal preference/interests

● I could kind of see how it would work

● Other new languages built on top of JavaScript
so I can benefit from other people's work

Wait, what's JavaScript?

● It has nothing to do with Java (except maybe some
minor syntactic resemblance)

● JavaScript is code that can be included directly in a
HTML document, to add logic to the page

● Capable of responding to events in the page (e.g. a
mouse click)

● Capable of modifying the content of a HTML document
through the DOM (Document Object Model)

Example JavaScript

<!doctype html>
<html>

<head>
<script type=”text/javascript”>
 window.onload = function () {
 document.body.innerHTML = 'Hello world';
 };
</script>
</head>

<body>
</body>

</html>

Example JavaScript

<!doctype html>
<html>

<head>
<script type=”text/javascript”>
 window.onload = function () {
 document.body.innerHTML = 'Hello world';
 };
</script>
</head>

<body>
</body>

</html>

Example JavaScript

<!doctype html>
<html>

<head>
<script type=”text/javascript”>
 window.onload = function () {
 document.body.innerHTML = 'Hello world';
 };
</script>
</head>

<body>
</body>

</html>

Example JavaScript

<!doctype html>
<html>

<head>
<script type=”text/javascript”>
 window.onload = function () {
 document.body.innerHTML = 'Hello world';
 };
</script>
</head>

<body>
</body>

</html>

Whirlwhind overview of the
language
● Dynamic, weak, duck typing
● The important data types are:

– Number, String, Boolean

– Function

– Object (and Array, which is really just Object)

● Garbage collected
● Allows reasonable mix of imperative, object

oriented and functional styles

What do I mean by imperative style

● JavaScript programs are generally a sequence of
statements:

var x = “Hello”;

x = x + “, World!”;

console.log(x);

● Mutable variables
● Explicit control flow

What do I mean by object oriented
style
● Object type is basically a value with a user defined interface:

var o = {

 quack: function () {

 console.log(“quack”);

 }

};

o.quack(); // prints quack

o.bark(); // type error
● No compile time guarantees. Prototypal inheritance rather than

class based.

What do I mean by functional style

● Support for first class functions:

var square = function (x) {

 return x;

};

console.log([1,2,3].map(square));
● Higher order functions hence possible and natural to

define
● Not strictly mathematical functions though, no

constraints on side effects

tl;dr

JavaScript is a surprisingly flexible language
that allows you to add more interesting
behaviour to web pages

Overview of JsEden architecture

● JavaScript library to bring support for dependency
and EDEN style agents (aka. triggered actions)

● Translator to compile EDEN-like notation to
JavaScript.

● Libraries to support creation of visual interfaces for
user interaction.

Overview of JsEden architecture

Supporting MWDS in JavaScript

● Before we can translate EDEN to JavaScript
we need to tackle the following:
– How do we store the values of observables?

– How do we store the definitions of observables
described using a formula

– How do we store EDEN style agents

– How do we allow agents to observe model
observables for change

Recap: What is dependency?

● Dependency is a way of reasoning about observations in change
● To an observer, changes in certain observables causes indivisible

change in others
● While modelling, this comes down to defining one observable as a

formula referring to other observables

– A is B + C;
● Need to have a clear idea about what the observers are and what

the observables are before we can implement dependency

What can we consider to be an
observer in a JsEden model

1. Human observers of a model
– Observation of external behaviour

2. EDEN style triggered actions
– Observation of observables for changes

What can we consider to be an
observable in a JsEden model
● We could try to store the values of

observables in regular JavaScript mutable
variables

● Problems:
– Need notification about changes

– Need support for atomic transitions of more than
one observable

Symbol table data type

● Rather than trying to use the JavaScript
symbol table as our set of observables, use a
value to represent the set of observables for a
model

● Basically just a hash table where observable
names are the keys, mapping to a structure
containing the value and metadata for an
observable

Observable data type

● Object type that stores the value for the
observable

● Stores both the symbols that this observable
depends on and vice versa

● If defined using a formula, stores this formula
as a function, which is evaluated when
dependencies change

More detail on these types in
JsEden
● The symbol table stores observables in a hash

table, and exposes a method for getting
access to them:

var symbols = new SymbolTable();

var temperature = symbols.lookup('temperature');

More detail on these types in
JsEden
● The observable type exposes methods for

querying and updating the value of an
observable:

var temperature = symbols.lookup('temperature');

temperature.value(); // currently undefined

temperature.assign(21); // update the observable

More detail on these types in
JsEden
● The observable type exposes methods for

definition:
var potential = symbols.lookup('potential');

var mass = symbols.lookup('mass');

potential.define(function () {

return mass.value();

});

potential.dependsOn(mass);

More detail on these types in
JsEden
● The observable type exposes methods for

observation:
var watcher = symbols.lookup('watcher');

var mass = symbols.lookup('mass');

watcher.assign(function () {

console.log(“Mass changed to: “, mass.value());

});

watcher.observes(mass);

How is the EDEN language
supported?
● Simply translate from one EDEN language to

JavaScript
● Translator is just a JavaScript function so easy

to include in the JsEden environment
● Translator is defined using a BNF and a

corresponding translation function is
generated using a parser generator (called
Jison)

Fin

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

