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ABSTRACT. We discuss 1-factorizations of complete graphs that “match”
a given Hadamard matrix. We prove the existence of these factorization-
s for two families of Hadamard matrices: Walsh matrices and certain

Paley matrices.

INTRODUCTION

A 1-factor of a graph GG (of even order) is a set of independent edges span-
ning the vertices of G. A 1-factorization of G is a partition of the set of
edges of GG into 1-factors.

Given a complete graph with an even number of vertices, it is not difficult
to show that there exists a 1-factorization. Let n be an even integer and
consider the complete graph K™. To find a factorization of K™ into 1-
factors, select n— 1 vertices and place them on the vertices of a n— 1 regular
n — 1-gon, and place the remaining vertex at the centre of the polygon. To
get the first 1-factor, pick any vertex of the polygon and select the edge
joining it to the vertex at the centre. For the remaining vertices, select the
edges that are perpendicular to the line passing through the centre and the
vertex already joined to it. For the remaining 1-factors, just select the n — 2
clockwise rotations of the first factor (see figure 1).
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FIGURE 1. 1-factorization of K°.
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However, for the factorizations that we will consider, there will be restric-
tions on which edges can be selected for each factor. These restrictions will
be defined in terms of the rows of a Hadamard matrix. A Hadamard matrix
is a matrix with orthogonal rows (and orthogonal columns) whose entries
are 1 or —1. Thus if H is a Hadamard matrix of order n, then h;; € {1, —1}
and

HH* =nl,

where [, is the identity matrix of order n. It is easy to check that if n > 2
a Hadamard matrix can only exist if n is a multiple of 4. We will consider
Hadamard matrices for which the first row consists of a vector all of whose
entries are 1. Note that for any Hadamard matrix, it is always possible to
transform this matrix to a matrix with the first row as desired by multiplying
each column by the corresponding sign. We adopt this as the normalized

version of a given Hadamard matrix. Hence, we will always assume that

(1 1 - 1)

+£1 +£1 --- =1

is of the form

+1 41 - 41
In order to simplify our notation, we make the convention that the indices
of the rows of a Hadamard matrix start from O so that the second row is

(h11, ha2, . .., h1,) and subsequently up to the n-th row (h(,—1)1, Rn—1)2,
R hnflyn)I

hin—1y1 hm-1)2 = hn-1m

Given a Hadamard matrix H we want to find a 1-factorization { F}, F5, ...,
F,,_1} of K™ such that either each factor satisfies the restriction R1 below

or each factor satisfies R2:
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(R1) If an edge e belongs to the factor [}, then the vertices incident to

that edge must have opposite sign in the row k:
e = {Z,j} cF, = hkzhk] < 0.

(R2) If an edge e belongs to the factor [}, then the vertices incident to

that edge must have same sign in the row k:
e = {Z,j} el — hkzhk’] > 0.

Let us illustrate the problem of finding a factorization satisfying restriction
(R1) for the following example,

1 1 1 1

1 -1 1 -1
H =

1 1 -1 -1

1 -1 -1 1

We want to find a 1-factorization { F, F, 3} of the complete graph on 4
vertices K* satisfying restriction (R1). For the row (1,—1,1, —1), there
are 4 edges we could potentially select; {1,2},{2,3},{3,4}, and {1,4}.
However, the only factors satisfying restriction (R1) are {{1,2},{3,4}}
and {{1,4},{2,3}}. We do the same analysis for the third row and we see
that the only two possible factors are {{1,3},{2,4}} and {{2,4},{1,3}}.
Finally, for the forth row we see that the only possible choices are {{1, 3},

{2,4}} and {{1, 2}, {3,4}}.

O

Hence, from the 8 possible combinations of these pairs of edges a feasible

1-factorization of K* satisfying the requirements is
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o= {{1,4},{2,3}},
Fo= {{1,3},{2,4}},
F3 = {{17 2}7 {37 4}}

TN

For the general case of an arbitrary Hadamard matrix the problem seems to
be far more complex than for the simple example: however we conjecture
that it is always possible to find 1-factorizations satisfying the two different
restrictions.

We can regard the problem as an integer programme. We have a variable
Ty 4,5y for each row k and pair of columns {7, j}. We want the variable to
be either one or zero according as the edge {7, j} belongs to the factor Fj.

Hence, in the (R1) case, we want to find integer values x;, ; j; such that

O lf h]m' == hkj

0.1) 0< T {i,5} < )
1 if hyy # ha

and for each edge {7, j} in the complete graph K"
n—1

0.2) Zxk,{i,j} =1,
k=1

and foreachk € {1,...,n—1}andj € {1,...,n}

(0.3) > whpgy =1
i#j
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If instead of (0.1) we ask the variables to satisfy

0 if by # I

0.4) 0 < apijy < ;
1 if By = hyy

then the solution to the integer programme will be equivalent to finding a
1-factorization satisfying restriction (R2).
The linear relaxation of the integer programme is easily seen to be feasible

and the Hadamard condition is just what is needed. Choose

2 i hyy # ha
TN b =y
Since each row of H is orthogonal to the first row, for each k, i there are n/2
values of j such that the entries of the row k at the ¢-th and j-th columns
have opposite sign and therefore xy (; 1 = % for exactly n/2 values of j.
Thus restriction (0.3) is satisfied.
On the other hand, each pair of columns of H is orthogonal. Hence, for
each {1, j} there are n/2 rows below the first one for which the entries in
the i*" and j* columns have opposite sign and therefore again xy, (; j; = 2
for exactly n/2 values of k. Thus, restriction (0.2) is satisfied.

For the same sign case (restriction (R2)), we choose

—— /;_1 if hyi = hy;
0 if hy; # Ry

xk7{l7]} =

In the 2 remaining sections of the paper we solve the 1-factorization prob-
lems for two families of Hadamard matrices: the Walsh matrices in Section

1 and certain Paley matrices in Section 2.

1. FACTORIZATIONS FOR WALSH MATRICES

The Walsh Matrices are constructed via an inductive process originally due
to Sylvester. Given a Hadamard matrix /7 of order n we can construct a new

Hadamard matrix of order 2n by defining the following matrix by blocks

(i 5)
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Hence, we define

and we define inductively

for each integer m > 1.

Theorem 1.1. Let m > 1 be an integer and n = 2™. There exist 1-
factorizations of K" satisfying restrictions (R1) and (R2), respectively.

Proof. The proof is by induction. We want to show first that there are such
1-factorizations for Ho

11 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

We already saw that there is a factorization satisfying restriction (R1) in our
example. On the other hand it is easy to see that there is one and only one
possible choice for a factorization satisfying restriction (R2).

Our inductive hypothesis states that there exist such factorizations satisfying
(R1) and (R2) for H,,_;. As is common in this kind of induction we need
both types of factorization for H,,_; to obtain each factorization of H,,, but

there is a strange additional issue to consider in one case.

H, = ( Huor | Hinos ) .
Hypoy | —Hp

To find a factorization for H,, satisfying (R1) we decompose each of the

Now

H,,_ blocks in the top 2! rows selecting edges of opposite sign. For
the bottom 2™~! rows we do as follows. The 2™~! + 1 row consists of a
block of 2™~ positive entries and then a block of 2"~! negative entries.
We select the edges {i,7 +2™ '} foralli € {1,...,2m 1},
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For the remaining rows, using our inductive hypothesis, we select edges
of the form {i,j + 2™ '} where the pair {i, j} appears in a factorization
of H,,_ satisfying restriction (R2). This gives us a factorization of H,,
satisfying restriction (R1).

To find a factorization of H,, satisfying restriction (R2), we decompose
each of the H,,_; blocks in the top 2™ ! rows selecting edges of the same

2m=1 1 1 row consists

2m—1

sign. For the bottom 2™ ! rows we do as follows. The
of a block of 2™~ positive entries and then a block of negative en-
tries. We swap this row with any of the rows above, let’s say the row 2!,
choosing the same edges on our new row 2™ ! that we already selected in

the old row 21,

To select edges in our new 21 4+ 1 row, we select edges of the form
{i,i + 2™ '} which have the same sign since they come from the same

entry in the matrix H,,_;.

For the remaining rows, we select edges of the form {i, j + 2™ '} where
the pair {7, j} appears in a factorization of H,,_; satisfying restriction (R1).

This gives us a factorization of H,,, satisfying restriction (R2). U
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We are grateful to the referee for pointing out that the method used in the
proof of Theorem 1.1 can easily be generalised. The proof shows that for
n > 2, if there are 1-factorizations of H,, satisfying (R1) and (R2) respec-
tively then there are 1-factorizations of H,, (X) H; satisfying (R1) and (R2).
A generalisation of this argument can be used to show that for any m < n,
if there are 1-factorizations of H,, and H,, satisfying (R1) and (R2) then
there are 1-factorizations of H,, (X) H,, satisfying (R1) and (R2).

2. FACTORIZATIONS AND THE FINITE FIELD Z,

In this section we find 1-factorizations of the complete graph with restric-
tions defined in terms of matrices constructed using finite fields Z, where
p is a prime. This construction is due to Paley and we refer the reader to
Paley’s article for a more detailed explanation of the construction [1]. We

shall use a very slight variation of the usual Paley matrices. We first set

u=((5)

where (%) is the Legendre symbol. When p = 3 (mod 4), the Paley matrix

H,, is defined to be
0 e
H, = +1

where e = (1,1,...,1) € RP and [ is the identity matrix of order p + 1.

The main theorem of this section is the following in which a “near-primitive

root” modulo p is just the square of a primitive root.

Theorem 2.1. Let p be a prime such that p = 3 (mod 4), then we can find a
1-factorization of the complete graph KP*! satisfying restriction (RI) with
respect to the Paley matrix of order p + 1.

If in addition we assume that 2 is a near-primitive root modulo p, then we
can find a 1-factorization of the complete graph KP*' satisfying restriction
(R2).

It is natural to try to prove this theorem in the following way. Since the
rows of M are just cyclic permutations of the first row it seems reasonable

to find a 1-factor corresponding to the second row of H, and then cycle
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it to obtain one 1-factors for the other rows just as in the example at the
start of the article. This will work provided our 1-factor contains, within
the matrix M, exactly one edge {i,j} of each possible length: i — j =
+1,42,...,£(p — 1)/2. So we are led to consider the following problem

which makes sense regardless of whether p is congruent to 1 or 3 modulo 4:

Problem 2.2. let p be any prime number, and K?*! the complete graph with
vertex set Z,U{c} where c is an additional point that we will call the centre.
We adopt the convention that the length of any edge containing the centre is

infinity, that the vertex 0 is a residue and that the centre c is a non-residue.

(P1) Is there a 1-factor of KP*! such that each edge selected is either in-
cident to two quadratic residues or incident to two non-residues, and
such that the lengths of the edges are all different to one another?

(P2) Is there a 1-factor of KP*! such that each edge selected is incident
to a quadratic residue and a non-residue, and such that the lengths

of the edges are all different to one another?

There are two easy cases. The first one is when p = 1 (mod 4) and we want
to join quadratic residues to quadratic residues, and non-quadratic residues
to non-quadratic residues. The second one is when p = 3 (mod 4) and we
want to join residues to non-residues. These two case are done using the fol-
lowing observation: —1 is a quadratic residue if and only if p = 1 (mod 4).
Hence, when p = 1 (mod 4), we can select the edges of the form {r, —r}
where € {1,..., 7%1}, and by our previews observation, r and —r are
either both quadratic residues or both non-quadratic residues. The length
of the edge {r, —r} is 27 and all these lengths are clearly different to one
another for r € {1,..., 7%1} We do exactly the same selection of edges
when p = 3 (mod 4) but in this case we know we join quadratic residue to

non-quadratic residues by our observation.

Hence, we have the following theorems

Theorem 2.3. Let p be a prime such that p = 1 (mod 4), then there exists a
I-factor of the complete graph with vertex set Z, U {c} consisting of edges
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12
11 0
10 1
9 2
7 .\ 4
6 5

FIGURE 4. Joining quadratic residues no quadratic residues
and non-quadratic residues to non quadratic residues for p =

13.
10
9 0
8 1
c
7 2
6 3
5 4

I

FIGURE 5. Joining quadratic residues to non-quadratic

residues for p = 11.

of all possible lengths matching residues to residues, and non-residues to

non-residues.

Theorem 2.4. Let p be a prime such that p = 3 (mod 4), then there exists a
I-factor of the complete graph with vertex set Z,, U {c} consisting of edges

of all possible lengths matching residues to non-residues.

We now turn to the difficult cases. First, let p be a prime such that p =
1 (mod 4). In this case, we want to join residues to non-residues. Let
be a primitive root modulo p. We shall consider edges of the form e, =
{aF x¥+1} where k = 0,...,p — 1. Each of these edges joins a residue to
a non-residue. The length of the edge is 2" — 2* = 2¥(x — 1). These

numbers are all different as k& runs from 0 to p — 1 but we wish to exclude
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the possibility that the edges that we choose include an opposite pair +y.
The edges e; and e, have opposite lengths if

i = 1 = pl1/2

Our aim will be to select ’%3 which are different from one another and
their negatives. These will join p — 3 elements of Z;, and we wish to leave
unjoined two elements: a residue r that we shall connect to 0 and a non-
residue, n that we shall connect to the centre.

We therefore need to ensure that £ is not one of the lengths that we have
selected. Now if 7 = x* then we will not use the edge {z*, z**!} whose
length is z*(z — 1) = r(x — 1) and this will indeed be 7 provided z = 2.
Henceforth we assume this to be the case (which necessarily means that
p = 5 (mod 8)). It then doesn’t matter which residue we choose for r so we
take r = 1 = 2 and n = —2 = 2(P*1/2 We have used the vertex r = 1

and the length 1. We select the remaining edges to be

29 @ / 23
\ ®

. 24
2@ T "/.25
26

FIGURE 6. The figure shows the Cayley graph associated
with Z; for the generator 2 and the selection of edges for the
case p = 13. The edges we select for the perfect matching

are the solid lines joining quadratic residues to non-residues.
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e ={2,4} = {2',2%
es ={8,16} = {2°2}

€y = {2%_3,—1} - {2%52%}
2

and

ez = {2°7%,2°7%}

By inspection (see figure 6), we see that the lengths of the edges that we
have selected are not equal nor equal to their negatives and we have not
used the edges of length 4=1 which are eq and e,,_,. We are thus at liberty to
join 1 to O.

The second difficult case is that of a prime p = 3 (mod 4) and we want
to join quadratic residues to quadratic residues and non-residues to non-
residues. In this case we will assume that there a primitive root x modulo
p such that 2 = 2 (which necessarily implies that p = 7 (mod 8)). Since
p = 3 (mod 4) we know that —1 is not a quadratic residue.

We shall consider edges of the form ey, = {2?*, 22**1} which join qua-
dratic residues and edges of the form egy (p—1)/0 = {—2%, —z2*+D}

= {g%+=1)/2 g2(k+1)+(P=1)/21 which join non-residues. The length of e;,

2(k+1) _ 2k _ ka( 2k

is x 2% — 1) = 2°* and the length of exj (p—1)/2 is —x
These lengths are all different as k& goes from 0 to (p — 3)/2 since the neg-
ative of the length of ey, is equal to the length of ey (,—1)/2. The lengths
of edges joining quadratic residues to quadratic residues are all different to
one another and their negatives and the same is true for the edges joining
non-residues to non-residues.

Our aim is to select (p — 3)/2 which are different from one another and

their negatives. These will join p — 3 elements of Z; and we wish to leave
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two elements alone: a quadratic residue  which we shall connect to 0 and
a non-residue n which we shall connect to the center c.

We need to ensure that 41 is not one of the lengths that we have selected.
We again take 7 = 1 and n = —zP+3 = 22+P=1/2 = _2 We select the

remaining edges to be

FIGURE 7. This figure shows Cayley graph associated with
* : 2 —-1)/2v _

Z for the generating set {2, 2®~1/2} = {2 —1} and the

selection of edges incident to either two quadratic residues

or two non-.residues, in solid blue and red lines respectively,

for the case p = 23.

eo = {2,4} = {2% 2"}
ee = {8,16} = {a°% 2%}

ep-5 = {xp_5, xp_?’}
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and
€eliy = {—a?, —a"}
Crlig = {—2% =2}
€riiy 3 = {—aP7?, —aP7 1}

By inspection (see figure 7), we see that the lengths of the edges that we
have selected are not equal or equal to their negatives and we have not used
the edges of length £1 which are ey and ep-1.

2

To sum up, we have the following theorems.

Theorem 2.5. Let p be a prime such that p = 1 (mod 4) and 2 is a primitive
root modulo p. Then there exists a l-factor of the complete graph with
vertex set Z, U {c} consisting of edges of all possible lengths matching

residues to non-residues.

Theorem 2.6. Let p be a prime such that p = 3 (mod 4) and 2 is a near-
primitive root of p. Then there exists a perfect matching of the complete
graph with vertex set Z,, U {c} consisting of edges of all possible lengths

matching residues to residues, and non-residues to non-residues.

Even though the proofs of Theorems 2.5 and 2.6 required an additional
assumption on p, (concerning the number 2) we believe that they should be
true in general. Theorem 2.5 is stated for primes p of the form 8% + 5 for
which 2 is a primitive root modulus p. It was pointed out to us by Peter
Moree that under GRH there are infinitely many primes of this form and
that these have a natural density which is a rational multiple of the Artin
constant. This is an example of a generalisation of Artin’s conjecture asking
for the density of primes p in an arithmetic progression such that an integer
2 1s a primitive root modulo p. This was first found by Moree in his article
[2].

On the other hand, theorem 2.6 is stated for primes of the form 8%k + 7 for
which there is a primitive root x modulo p such that z? = 2. In this case

the question is whether there are infinitely many primes in an arithmetic
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progression for which a given integer ¢ is a near primitive root. It was
pointed out to us by Moree that this situation has not been worked out in
the literature but that in our specific situation it would require no new ideas
to do it.

To finish we remark that Problem 2.2 has a natural generalization.

Problem 2.7. Let AU B be a partition of the cyclic group C,, where n is odd.
Is it always possible to find a set of (n — 1)/2 edges {z,y} with z,y € C,,,
whose n — 1 lengths +(z — y) include each non-zero element of C,, exactly

once and so that each edge joins either two elements of A or two of B.

We do not know of any counterexample to this problem: indeed we know
of no counterexample even if we replace C,, with any finite group of odd

order.
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