Open Problems

Zdeněk Dvořák: Let \mathcal{G} be a class of graphs of bounded expansion, does there exist c_k such that for all G in \mathcal{G} there is an ordering of V(G) which demonstrates for all k that $\operatorname{col}_k(G) \leq c_k$?

This is known to be true when G is closed under topological minors.

Zdeněk Dvořák: Define $\chi_{(t)}(G)$ as the minimum number of colours in a colouring such that the union of any $p \leq t$ colour classes has tree depth at most p. Are there nice bounds on $\chi_{(t)}(G)$? In particular, is $\chi_{(t)}(G)$ polynomial in t for planar graphs?

It is known that $\chi_{(t)}(G) \leq wcol_{2^t}(G) + 1$. If G does not contain K_r as a minor then $wcol_k(G) = O(k^{r-1})$.

Solved by Patrice Ossona de Mendez and Sebastian Siebertz: there are polynomial bounds for any class of graphs avoiding some minor.

Mirna Džamonja: Let $A \subseteq \mathbb{R}$, $\mathcal{F} \subseteq [A]^{<\mathbb{N}}$ is $\frac{1}{2}$ -dense if for all $B \in [A]^{<\mathbb{N}}$, there is a $C \subseteq B$ such that $C \in \mathcal{F}$ and $|C| \ge \frac{1}{2}|B|$.

Suppose \mathcal{F} is $\frac{1}{2}$ -dense and closed under subsets. Does there exist $D \in [A]^{\mathbb{N}}$ so that for all $B \in [D]^{<\mathbb{N}}$, $B \in \mathcal{F}$?

The statement is false for countable sets: consider the set \mathcal{F} of subsets X of \mathbb{N} such that $|X| \leq \min X$. It is also known to be false in ZFC with the continuum hypothesis.

Mirna Džamonja: Is $MSO(\mathbb{R}, <)$ with set quantification restricted to Borel sets decidable?

Shelah proved in 1985 that $MSO(\mathbb{R}, <)$ is undecidable with arbitrary set quantification; on the other hand, $MSO(\mathbb{Q}, <)$ is decidable.

Agelos Georgakopoulos: For which notions of convergence do uniform random graphs on n vertices from a proper minor closed class of graphs, converge? Is it true in FO^{local} ?

It is known that the uniformly random n-vertex planar map converges in the Benjamni-Schramm sense.

Jan Obdržálek: If D is a graph class interpretable in a class of nowhere dense graphs, then the FO model checking for D is in FPT.

This is known to be true for graph classes interpretable in a class of graphs with bounded maximum degree.

Patrice Ossona De Mendez: Let H be a connected graph, the H-colouring problem asks whether a graph is homomorphic to H. Consider Erdős-Rényi random graph $G \in G(n, \frac{d}{n})$; say the H-colouring problem is non-trivial if $\epsilon \leq \mathbb{P}(G \text{ has a } H \text{ colouring}) \leq 1 - \epsilon \text{ for some } \epsilon > 0.$

Is it true that the following are equivalent?

- The *H*-colouring problem has a coarse threshold, i.e., there exists a non-trivial interval of *d*'s such that the *H*-colouring problem is non-trivial.
- For all $\varepsilon > 0$ and d such that the problem is non-trivial, there is a polynomial time algorithm for the H-colouring problem that works with probability at least 1ϵ .
- Either H is bipartite or for all d such that the problem is non-trivial there exists odd k such that $G \to H$ if and only if $C_k \not\to G$ with high probability.
- **Sylvain Schmitz** A conjecture by Sławomir Lasota published in *Decidability Border for Petri Nets with Data: WQO Dichotomy Conjecture* (Proc. Petri nets 2017, vol. 9698 of Lect. Notes Comput. Sci., pp. 20–36): Let A be a countable relational structure over a finite vocabulary and $Age(A, \leq)$ be its set of finite induced substructures, where \leq is the induced substructure order.

Assuming A is homogeneous and has the amalgamation property and under some basic effectiveness assumptions, is the coverability problem in data Petri nets over A decidable if and only if $Age(A, \leq)$ is a well-quasi-ordered?

Szymon Torunczyk: Let \mathcal{G} be a class of graphs closed under induced subgraphs. If \mathcal{G} is not NIP then FO model checking is not in FPT for \mathcal{G} . A class \mathcal{G} is not NIP if there first order formula $\varphi(x_1,\ldots,x_k,y_1,\ldots,y_k)$ such that for every n there exists a graph G in \mathcal{G} such that the bipartite graph $\varphi(G)$ with the vertex set $V(G)^k \cup V(G)^k$ contains a powerset graph of order n, i.e., it has a high VC dimension.

If \mathcal{G} closed under subgraphs and not nowhere dense, then FO model checking is not in FPT for \mathcal{G} .

Jan Volec: Does there exist c > 0 such that for every simple directed graph D with average outdegree d we have $\alpha_A(D) \ge c\frac{n}{d}\log_2 d(1-o(1))$? Here, $\alpha_A(D)$ stands for the number of vertices of the largest acyclic subgraph of D.

A result of Shearer from 1988 asserts this to be true for triangle-free graphs. It is also easy to prove for tournaments with a larger multiplicative constant.