TCC Homological Algebra: Assignment #2

David Loeffler, d.a.loeffler@warwick.ac.uk

22/11/19

This is the second of 3 problem sheets. Solutions should be submitted to me (by email, or via my pigeonhole for Warwick students) by **noon on 6th December**. This problem sheet will be marked out of a total of 20; the number of marks available for each question is indicated. Questions marked [*] are optional and not assessed.

Note that rings are not necessarily commutative, but are always assumed to be unital (i.e. having a multiplicative identity element 1), and ring homomorphisms are assumed to map 1 to 1. The notation <u>Ab</u> denotes the category of abelian groups, and <u>R-Mod</u> the category of left modules over the ring *R*.

- 1. Let <u>FAb</u> denote the full subcategory of <u>Ab</u> whose objects are finite abelian groups.
 - (a) [1 point] Show that <u>FAb</u> is an abelian category. (You may assume that <u>Ab</u> is abelian.)
 - (b) [2 points] Show that the only injective object in <u>FAb</u> is 0. (Hint: if *G* is a non-zero injective, consider homomorphisms from cyclic groups to *G*.)
- 2. [3 points] Let \mathcal{C} be an abelian category, Σ a set, and for each $\sigma \in \Sigma$, let M_{σ} be an object of \mathcal{C} . We define $\prod_{\sigma \in \Sigma} M_{\sigma}$ to be the limit of the diagram consisting of the objects M_{σ} with no morphisms between them, and $\bigoplus_{\sigma \in \Sigma} M_{\sigma}$ its colimit, assuming these limits exist.
 - (a) Show that if M_{σ} is projective for all σ , then so is $\bigoplus_{\sigma \in \Sigma} M_{\sigma}$.
 - (b) Show that if M_{σ} is injective for all σ , then so is $\prod_{\sigma \in \Sigma} M_{\sigma}$.
 - (c) Show that $\operatorname{Hom}_{\mathcal{C}}(\bigoplus_{\sigma\in\Sigma}M_{\sigma},Z)=\prod_{\sigma\in\Sigma}\operatorname{Hom}_{\mathcal{C}}(M_{\sigma},Z)$ for any object Z of \mathcal{C} .
- 3. [3 points] Let \mathcal{C} be an abelian category and A^{\bullet} , B^{\bullet} cochain complexes over \mathcal{C} . Define a complex $\mathcal{H} = \underline{Hom}(A^{\bullet}, B^{\bullet}) \in \operatorname{Ch}(\underline{Ab})$ by $\mathcal{H}^i = \prod_{j \in \mathbf{Z}} \operatorname{Hom}_{\mathcal{C}}(A^j, B^{j+i})$.
 - (a) Show that the maps $d^i_{\mathcal{H}}:\mathcal{H}^i o \mathcal{H}^{i+1}$ defined by

$$d_{\mathcal{H}}^{i}\left((f^{j})_{j\in\mathbf{Z}}\right) = (f^{j+1} \circ d_{A}^{j} - (-1)^{i}d_{B}^{j+i} \circ f^{j})_{j\in\mathbf{Z}}$$

are well-defined, and satisfy $d_{\mathcal{H}}^{i+1} \circ d_{\mathcal{H}}^{i} = 0$.

- (b) Show that $\ker(d^0_{\mathcal{H}}) = \operatorname{Hom}_{\operatorname{Ch}(\mathcal{C})}(A^{\bullet}, B^{\bullet}).$
- (c) Show that $\operatorname{im}(d_{\mathcal{H}}^{(-1)})$ is the null-homotopic maps.
- 4. [2 points] Let X, Y be two objects in an abelian category C, and I^{\bullet} , J^{\bullet} injective resolutions of X, Y respectively. Let $f^{\bullet}: I^{\bullet} \to J^{\bullet}$ a morphism of complexes which induces the zero map $X \to Y$ on H^0 . Show that f^{\bullet} is null-homotopic.

[Hint: We are looking for maps $s^i: I^i \to J^{i-1}$ for all i such that f = ds + sd. For $i \le 0$ the target of s^i is the zero object, so the first nontrivial step is to construct $s^1: I^1 \to J^0$ compatible with f^0 . Then look for an opportunity to induct on i.]

- 5. [2 points] Give an example of a morphism in $Ch(\underline{Ab})$ which is a quasi-isomorphism, but not a homotopy equivalence.
- 6. [2 points] Show that if $F: \mathcal{C} \to \mathcal{D}$ a left-exact functor between abelian categories, and $0 \to A \to B \to C \to 0$ is an exact sequence with A injective, then $0 \to F(A) \to F(B) \to F(C) \to 0$ is exact. [Hint: We are **not** assuming that C has enough injectives, so it is not enough to say that $R^1(F)(A) = 0$.]

- 7. [1 point] Let $\mathcal{C}, \mathcal{D}, \mathcal{E}$ be abelian categories and $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ additive functors. Assume \mathcal{C} has enough injectives, G is exact, and F is left-exact. Show that $R^i(G \circ F) = G \circ R^i(F)$ for all i, as functors $\mathcal{C} \to \mathcal{E}$.
- 8. [3 points] Let $G = C_2 = \{1, \sigma\}$.
 - (a) Show that

$$\dots \mathbf{Z}[G] \xrightarrow{\sigma-1} \mathbf{Z}[G] \xrightarrow{\sigma+1} \mathbf{Z}[G] \xrightarrow{\sigma-1} \mathbf{Z}[G]$$

is a projective resolution of the trivial module Z as a Z[G]-module.

- (b) Hence compute the cohomology groups of
 - i. **Z** with the trivial *G*-action;
 - ii. **Z** with the generator σ acting as -1.
- 9. Let R be a ring, A, B objects of R-Mod, and $\sigma \in \operatorname{Ext}^1(A, B)$, represented by a homomorphism $f \in \operatorname{Hom}(A, Z^1(I^{\bullet}))$ where I^{\bullet} is an injective resolution of B.
 - (a) [1 point] Show that the module

$$E = \{(x, a) \in I^0 \oplus A : d(x) = f(a)\},\$$

with the obvious maps from B and to A, defines an extension of A by B; and show that the equivalence class of this extension depends only on σ and not on the representative f.

(b) [*] Show that this construction an inverse of the map

(equivalence classes of extensions)
$$\rightarrow \operatorname{Ext}^1(A, B)$$

that we defined in lectures.