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Abstract

A description of the short time behavior of solutions of the Allen-Cahn equation with a
smoothened additive noise is presented. The key result is that in the sharp interface limit so-
lutions move according to motion by mean curvature with an additional stochastic forcing. This
extends a similar result of Funaki [9] in spatial dimension n = 2 to arbitrary dimensions.

Resumé

On étudie le comportement de la solution de l’équation de Allen-Cahn perturbée par un bruit
stochastique additif et regularisé. Il est demontré que, dans la limite d’un interface singulier, les
solutions évoluent selon la courbure moyenne avec un renforcement stochastique additionel. Ceci
généralise un résultat de Funaki [9] pour la dimension spatial d = 2 à une dimension quelquonque.

Keywords: Stochastic Reaction-diffusion equation, Sharp interface limit, Randomly perturbed
boundary motion.

1 Introduction and main result
1. Setting and main result: For a small parameter ε > 0 consider the following stochastic Allen-
Cahn equation in an open domain D in Rn for some n ≥ 2:

∂

∂t
uε(x, t) = ∆uε(x, t) + ε−2f(u(x, t)) + ε−1ξε(t) (x, t) ∈ D × [0,∞)

∂

∂ν
uε(x, t) = 0 x ∈ ∂D (1.1)

uε(x, 0) = uε0(x) x ∈ D.

Here f(u) = −F ′(u) is the negative derivative of a symmetric double-well potential. For fixing
ideas, assume that F (u) = (u2−1)2

4 and f(u) = u− u3. In particular F has two global minima at
±1 and solutions of the dynamical system ẋ = f(x), that start outside of zero, converge to one of
these minima. The expression ξε(t) denotes a noise term defined on a probability space (Ω,F ,P).
The noise ξε(t) is constant in space and smooth in time. For ε ↓ 0 the correlation length goes to
zero at a precise rate and

∫ t
0
ξε(s)ds converges to a Brownian motion pathwisely. The details of

the construction and further properties can be found below.

We study the short time evolution of developed surfaces for (1.1). More precisely let Σ0 the
boundary of a set U0 be compactly embedded in D of class C2,α for some α > 0. Assume that
the initial configuration uε(x, t) is close to −1 on U0 and close to +1 on D \ U0 with a transition
layer of order O(ε). We show that for short times there exist two phases and the evolution of the
phase boundary follows two influences - the tendency to minimize the boundary and a stochastic
effect. The main result is:
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Theorem 1.1. Consider the problem (1.1) with the noise term ξε(t) as constructed below. In
particular suppose that the approximation rate γ verifies γ < 2

3 . Then for any compactly embedded
hypersurface Σ0 = ∂U0 of class C2,α there exist initial conditions uε, a positive stopping time τ
and randomly evolving closed hypersurfaces (Σ(t))0≤t≤τ such that the following hold:

(i) The surfaces (Σt)0≤t≤τ evolve according to stochastically perturbed motion by mean curva-
ture, e.g. the normal velocity V at each point is given by

V = (n− 1)κ− c0 ˙W (t).

(ii) sup0≤t≤τ ‖uε(x, t)− χΣt‖L2(D) → 0 almost surely as ε goes to zero.

Here κ denotes the mean curvature of the surface at a given point. The constant c0 is given by

c0 =
√

2∫ 1

−1

√
F (u)du

.

The function χΣt is a step function taking the value −1 in the interior and +1 on the exterior.
The precise meaning of the geometric evolution will be given in the next section.

The noise scaling ε−1ξε(t) can be interpreted as follows: Consider the stochastic equation

∂v

∂t
= ∆v + f(v) + εξε(t). (1.2)

Equation (1.1) can be obtained from this equation by diffusive scaling: u(x, t) = v(ε−1x, ε−2t).
The intuition is that in (1.2) surfaces should move with velocity V = (n− 1)κ+ c(εξε(t)). Here c
is the speed of a travelling wave solution corresponding to a perturbation of the potential through
εξε(t). Then after rescaling one obtains as normal velocity V = κ + ε−2 × ε1c(εξε(t)) such that
the random term becomes a quantity of order O(1). The significant observation is that the noise
term does not rescale. Actually this observation is characteristic for our result. Even in the limit
the Brownian motion can be considered pathwise and there is nowhere any need to work with
stochastic integrals.

2. The white noise approximation: Let (W (t), t ≥ 0) be a Brownian motion defined on a
probability space (Ω,F ,P). For technical reasons extend the definition of (W (t), t ≥ 0) to negative
times by considering an independent Brownian motion (W̃ (t), t ≥ 0) and setting W (t) = W̃ (−t)
for t < 0. Then (W (t), t ∈ R) is a gaussian process with independent stationary increments and
a distinguished point W (0) = 0 a.s. Let ρ be a mollifying kernel i.e. ρ : R → R+ is smooth and
symmetric with ρ(x) = 0 outside of [−1, 1] and

∫
ρ(x)dx = 1. For γ > 0 set ρε(x) = ε−γρ( xεγ ).

Then the approximated Brownian motion W ε(t) is defined as usual as

W ε(t) = W ∗ ρε(t) =
∫ ∞
−∞

ρε(t− s)W (s)ds.

Note that it is only here that the Brownian motion at negative times is needed. So actually
only negative times in (−εγ , 0] will play a role. The parameter γ determines how quickly the
approximations converge to the true integrated white noise. We will always assume

γ <
2
3

in order to have the needed pathwise bounds on the white noise approximations.

Proposition 1.2. Let ξε(t) = Ẇ ε(t) denote the derivative of W ε. Then the following properties
hold:

(i) ξε(t) is a stationary centered gaussian process with E[ξε(t)2] = ε−γ |ρ|2L2 .
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(ii) The correlation length of ξε(t) is 2εγ i.e. if |s−t| ≥ 2εγ then ξε(t) and ξε(s) are independent.

(iii) If γ < γ̃ for every positive time T there exists a non-random constant C such that

P
[
∃ε0 s.th. ∀ε ≤ ε0 sup

0≤t≤T
|ξε(t)| ≤ Cε−

γ̃
2

]
= 1.

In particular for γ < 2
3 for ε small enough

ξε(t) ≤ Cε− 1
3 . (1.3)

Proof. One can write

ξε(t) =
∫ ∞
−∞

d
dt
ρε(t− s)W (s)ds =

∫ ∞
−∞

ρε(t− s)dW (s) a.s.,

where the first equality follows from differentiating under the integral and the second from stochas-
tic integration by parts. Then properties (i) and (ii) follow from standart properties of the stochas-
tic integral. To see (iii) write

|ξε(t)| =
∣∣∣∫ t+εγ

t−εγ
ε−2γρ′

(
t− s
εγ

)
W (s)ds

∣∣∣
≤
∣∣∣ε−2γ

∫ t+εγ

t−εγ
ρ′
(
t− s
εγ

)
W (t)ds

∣∣∣+
∣∣∣ε−2γ

∫ t+εγ

t−εγ
ρ′
(
t− s
εγ

)
(W (t)−W (s))ds

∣∣∣.
The first term vanishes due to

∫ t+εγ
t−εγ ρ

′ ( t−s
εγ

)
ds = 0. One obtains

|ξε(t)| ≤
∣∣∣ε−2γ

∫ t+εγ

t−εγ
ρ′
(
t− s
εγ

)
(W (t)−W (s))ds

∣∣∣
≤
∣∣∣ε−2γ2εγ‖ρ′‖∞oscs∈[t−εγ ,t+εγ ]W (s)

∣∣∣.
The oscillation is defined as oscs∈[t−εγ ,t+εγ ]W (s) := sups∈[t−εγ ,t+εγ ]W (s)− infs∈[t−εγ ,t+εγ ]W (s).

Now one can apply Lévy’s well known result on the modulus of continuity of Brownian paths
(See e.g. [10] Theorem 9.25 on page 114):

P
[
lim sup
δ→0

1
g(δ)

max
0≤s<t≤T
t−s≤δ

|W (t)−W (s)| = 1
]

= 1,

where the modulus of continuity is given by g(δ) =
√

2δ log( 1
δ ). In particular there exists almost

surely a (random!) ε0 such that for ε ≤ ε0 we have supt∈[0,T ] oscs∈[t−εγ ,t+εγ ]W (s) ≤ (2εγ)
1
2−

γ̃−γ
2γ .

This gives the desired estimate

|ξε(t)| ≤ ε−γ2‖ρ′‖∞(2εγ)
1
2−

γ̃−γ
2γ ≤ Cε−γ̃/2.

We will need a similar bound on the derivatives of ξε

Proposition 1.3. Consider the process ξ̇ε(t). Then if γ < γ̃ for every positive time T there exists
a constant C such that

P
[
∃ε0 ∀ε ≤ ε0 sup

0≤t≤T
|ξ̇ε(t)| ≤ Cε−

3γ̃
2

]
= 1.

In particular for γ < 2
3 and ε small enough

|ξ̇ε(t)| ≤ Cε−1. (1.4)
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Proof. The proof is similar to the one above:

|ξ̇ε(t)| ≤
∣∣∣∫ t+εγ

t−εγ
ε−3γρ′′

(
t− s
εγ

)
W (s)ds

∣∣∣
≤
∣∣∣∫ t+εγ

t−εγ
ε−3γρ′′

(
t− s
εγ

)
(W (t)−W (s))ds

∣∣∣
≤ 2ε−2γ‖ρ′′‖∞oscs∈[t−εγ ,t+εγ ]W (s) :

Then one applies Lévy’s modulus of continuity again to see that almost surely for ε ≤ ε0(ω) one
has oscs∈[a,b]W (s) ≤ (2εγ)

1
2−

3γ̃−3γ
2γ and obtains the desired result:

|ξ̇ε(t)| ≤ 2ε−2γ‖ρ′′‖∞(2εγ)
1
2−

3̃γ−3γ
2γ = Cε

3γ̃
2 .

3. Motivation and related works: Solutions of the Allen-Cahn equation

∂u

∂t
= ∆u+

1
ε2
f(u)

evolve according to the L2 gradient flow of the real Ginzburg-Landau energy functional:

Hε(u) =
∫
|∇u|2 +

1
ε2
F (u).

There are two different effects. The reaction term ε−2f(u) pushes solutions to the two minima
±1 and the diffusion term ∆u tends to smoothen the solution. For small ε there will be two
phases, corresponding to regions where the solution is close to ±1. The width of the transition
layer between those two phases is of the order O(ε). Then the evolution gradually shrinks the
transition layer.

This behavior is the motivation to consider the Allen-Cahn equation as a simple model of a
two phase system which is driven by the surface energy without conservation of mass. Allen and
Cahn [1] introduced it to model the interface motion between different cristaline structures in
alloys. In the deterministic setting there were major advances in connection with the improved
understanding of the theory of geometric flows of surfaces as initiated for example by [6, 2] in
the early nineties. In particular in [5] it was shown that in the limit ε ↓ 0 solutions only attain
the values ±1 and the phase boundary evolves according to motion by mean curvature. The key
difficulty here is to find a description of the geometric evolution which is global in time. A similar
result for short times was established in [14].

Stochastic perturbations of this effect have also been considered. From a modelling point of
view an additional noise term can account for inaccuracies of the simplified model or as effects of
thermal perturbations. From a mathematical point of view it is a very interesting and challenging
question to study stochastically perturbed evolutions of surfaces and the Allen-Cahn setup is one
possible point of view. In [8] Funaki considered the case of the Allen-Cahn equation in one space
dimension with a space-time white noise. He showed that in the limit ε ↓ 0 on the right time-scale
solutions only attain values ±1 and the boundary point essentially performs a Brownian motion.
In [9] he studies the two dimensional case with a smoothened noise and shows that for short
times solutions evolve according to a stochastically perturbed motion by mean curvature. His
analysis relies on a comparison theorem which requires the noise to be smooth and a very subtle
analysis of a quasi-linear stochastic PDE which describes the boundary evolution. On the level
of stochastic surface evolution there were advances by Yip [15] and Dirr, Luckhaus and Novaga
[4] but a fully satisfactory description is not yet available. Some results based on a stochastic
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version of the concept of viscosity solutions were announced in [12]. Recently the model has
enjoyed an increasing interest in the numerical analysis community. For example in [11] numerical
approximations of the one-dimensional equation are studied. Numerical analysis of this equation
is challenging because all the interesting dynamics happen on a very thin layer which requires to
develop adaptive methods which work in the stochastic setting.

Our result is a generalization of Funaki’s result to arbitrary dimension. We use the same
comparison technique to study the equation. Therefore we also need to assume a smoothened
noise with correlation length going to zero as ε goes to zero. The description of the surface and
the convergence result is based on [4] and fully avoids Funaki’s result of weak convergence. In fact
this is also a strictly pathwise result so that all results hold almost surely.

4. Structure of the paper: In Section 2 the technique of [4] to describe motion by mean cur-
vature is briefly reviewed and the main results are stated. In Section 3 the results about the
geometric flow are used to proof the behavior of the Allen-Cahn equation.

Acknowledgement: The author expresses his sincere gratitude to Tadahisa Funaki for the
great hospitality he received at the University of Tokyo. He also thanks the referee for careful
reading and various suggestions.

2 Stochastic motion by mean curvature
This section reviews the description of a stochastically perturbed motion by mean curvature given
in [4]. A short time existence result for surfaces moving with normal velocity dV = (n− 1)κdt +
cdW (t), where κ denotes the mean curvature, and a pathwise stability result under approximations
of the integrated noise are given.

Motivated by [7] consider the following system

dd(x, t) = g(D2d(x, t), d(x, t))dt + dW (t) (x, t) ∈ O × (0, T )

|∇d|2 = 1 (x, t) ∈ ∂O × (0, T ) (2.1)
d(x, 0) = d0(x) x ∈ O,

on some open bounded domainO. HereD2d denotes the Hessian of d and g(A, q) = tr(A(I−qA)−1)
for a symmetric matrix A and q ∈ R. The initial condition d0 is supposed to be of class C2,α and
to verify |∇d| = 1 in O. Furthermore it is assumed that ∇d is nowhere tangent to the boundary.

In order to solve the above system consider q(x, t) = d(x, t)−W (t). Then q solves the system

dq(x, t) = g(D2q(x, t), q(x, t) +W (t))dt (x, t) ∈ O × (0, T )

|∇q|2 = 1 (x, t) ∈ ∂O × (0, T ) (2.2)
q(x, 0) = d0(x) x ∈ O.

Due to maximal regularity of the linearized system ([13]) and a fix point argument the following
results are obtained:

Theorem 2.1. ([4] Section 4) Let t 7→ W (t) be α-Hölder continuous for some α ∈ (0, 1). Then
there exists a time T depending only on the Cα/2-norm of W and the C2,α-norm of d0 such that
on O × [0, T ] system (2.2) and therefore also (2.1) admit a unique solution of class C1+α/2,2+α.
Moreover if t 7→ W̃ (t) is another function of class Cα and q̃ is the solution (2.2) with W replaced
by W̃with interval of existence [0, T̃ ] on has

sup
t∈[0,min{T̃ ,T}]

‖q(t, ·)− q̃(t, ·)‖C2,α ≤ C‖W − W̃‖Cα/2([0,min{T̃ ,T}]). (2.3)
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Now let Σ0 = ∂U0 be as above. In particular Σ0 is assumed to be of class C2,α. Define the
signed distance function d0 and the indicator χΣ0 as

d0(x) =

{
−dist(x,Σ0) for x ∈ U0

dist(x,Σ0) for x ∈ D \ U0

and

χΣ0(x) =

{
−1 for x ∈ U0

1 for x ∈ D \ U0.

There exists an open environment O of Σ0 such that on O the function d0(x) is of class C2,α

and ∇d is nowhere tangent to ∂O. Furthermore on O it holds |∇d0| = 1. Then for a given
stochastic noise W (t) consider the pathwise solution d(x, t) of (2.1) with initial condition d0 on
[0, T (ω)]. Define the evolving surfaces (Σ(t), 0 ≤ t ≤ T (ω)) as the zero level sets of d(x, t). Then
the following holds:

Theorem 2.2. ( [4] Section 4)

(i) For every t the function x 7→ d(x, t) is the signed distance function of Σ(t) on O.

(ii) If X(0) in Σ(0). Then up to a stopping time there exists a solution X(t) to the stochastic
differential equation

dX(t) = (n− 1)ν(X(t), t)κ(X(t), t)dt+ ν(X(t), t)dW (t),

with X(t) ∈ Σ(t) almost surely.

Here ν(x, t) denotes the exterior normal vector to Σ(t) for x ∈ Σ(t). The last observation
justifies to say that the surfaces Σ(t) evolve according to stochastic motion by mean curvature.
Note that we use the convention that κ = 1

n−1

∑n−1
i=1 κi with the principal curvatures κi such that

the factor (n− 1) appears which is not present in [4].

3 Construction of sub- and supersolutions
In this section the link between the boundary dynamic and the Allen-Cahn equation is established.
For a related calculation see [9, 3].

In order to construct sub- and supersolutions to (1.1) consider the following modification of
the reaction term: f(u, δ) = f(u) + δ. The implicit function theorem implies that there exists
an interval [−δ̃0, δ̃0] such that for δ ∈ [−δ̃0, δ̃0] there exist two solutions m±(δ) of the equation
f(u, δ) = 0 which are close to ±1 and that the mappings δ 7→ m±(δ) are smooth. Consider the
following auxiliary one dimensional problem

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t) + f(u(x, t)) + δ (3.1)

u(±∞) = m±(δ).

A travelling wave solution to (3.1) is a solution u(x, t) = m(x − ct) with a fixed wavespeed c.
Finding such a solution is equivalent to finding an appropriate waveshape m(x, δ) and wavespeed
c(δ) such that

m′′(x) + c(δ)m′(x) + {f(m(x)) + δ} = 0 (3.2)
m(±∞) = m±(δ).

The following properties hold:
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Lemma 3.1. ([3] Lemma 3.3) There exists a constant δ0 such that for δ ∈ [−δ0, δ0] problem
(3.2) admits a solution (m(x, δ), c(δ)) where m is increasing in x and this solution is unique up to
translation. Furthermore m can be chosen smooth in δ. There exist constants A and β such that
the following properties hold:

(i) 0 < ∂xm(x, δ) ≤ A for all (x, δ) ∈ R× [−δ0, δ0].

(ii) |∂xm(±x, δ)|+ |(∂x)2m(±x, δ)|+ |m(±x, δ)−m±(δ)| ≤ Ae−βx for all (x, δ) ∈ R+× [−δ0, δ0].

(iii) The traveling wave velocity c(δ) is smooth in [−δ0, δ0] and c(0) = 0.

Actually as pointed out in [9] ∂δc(0) = −c0 = −
√

2R 1
−1

√
F (u)du

.

The idea of the construction is the following: We expect the surface to evolve according to two
influences - the surface tension and the stochastic perturbation of the potential making one of the
stable states more attractive. Close to the surface the solution should look like a travelling wave
interface which is moving with velocity c(εξ). This means that solution should behave like

u(x, t) ≈ m
(
d(x, t)
ε

, εξε(t)
)
,

where d is the signed distance function of a surface moving with normal velocity V = (n− 1)κ+
ε−1c(εξε). The standard way of making this idea rigorous is to modify it in such a way that such
an approximate solution is a true sub/supersolution and show that the difference between the two
cases evolves on a slower time scale than the original dynamic.

Fix some initial surface Σ0 as in Theorem 1.1. As Σ0 is compactly embedded one can fix an
N such that all the principle curvatures of Σ0 are bounded by N . As in Section 2 one can define
a random evolution (Σ±,ε(t), 0 ≤ t ≤ T±ε,N ) evolving with normal velocity

V = (n− 1)κ+ ε−1c(εξε(t)± εβ).

Here the stopping time T±ε,N is defined as the largest time such that the evolution is well defined
and such that on [0, T±ε,N ] the principle curvatures remain bounded by N . The constant β can be
chosen such that 1 < β < 2. The condition β > 1 ensures that in the original time scale the extra
term does not have an effect and the condition β < 2 ensures that the effect is strong enough for
the solution to remain a sub/supersolution. Furthermore assume (by shortening the time interval
if necessary) that there exists an open set O such that for all t ∈ [0, T±ε,N ] the η-neighborhood
of Σ±(t) is contained in O for some small η. Then one can extend the signed distance functions
d±(x, t) to a smooth function d̃± on all of [0, T (ω)]×D such that on U(t) \ O the function d̃± is
smaller than −η and on D \ (U(t)∪O) it is larger than η, such that |∇d̃±| ≤ 1 and such that d̃ is
constant close to ∂D.

Define

u±(x, t) = m

(
d̃±(x, t)± εaec1t

ε
, εξε(t)± εβ

)
,

where a and c1 are constants that will be chosen below. One gets the following conclusion:

Lemma 3.2. If one chooses a and c1 properly, there exists a (random) ε0 > 0 such that for all
ε ≤ ε0 and for 0 ≤ t ≤ T±,εN

uε,−(x, t) ≤ uε(x, t) ≤ uε,+(x, t),

for every solution uε(x, t) of (1.1) with initial data verifying uε,−(x, 0) ≤ uε(x, 0) ≤ uε,+(x, 0).
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Proof. The conclusion will follow by a PDE-comparison principle. We only show the inequality
involving u+ the other one being similar. Let us calculate

∂tu
ε,+(x, t) =

mx

ε

(
∂td̃(x, t) + εac1e

c1t
)

+ εmδ ξ̇(t)

∆uε(x, t) =
mx

ε
∆d̃(x, t) +

mxx

ε2
|∇d̃(x, t)|2.

Here mx denotes the partial derivative of m(x, t) with respect to x. Then rewrite the reaction
term using (3.2):

ε−2(f(m) + εξε) = ε−2
(
−m′′ −m′c(εξε + εβ)− εβ

)
.

By properly arranging the terms one gets

L(u+) := ∂tu
ε,+(x, t)−∆uε(x, t)− ε−2(f(m(x, t)) + εξε(t)) = I1 + I2 + I3 + εβ−2,

where

I1 =
mx

ε

(
∂td̃(x, t) + εac1e

c1t −∆d̃(x, t) + ε−1c(εξε(t) + εβ)
)

I2 = εmδ ξ̇(t)

I3 =
mxx

ε2

(
1− |∇d̃(x, t)|2

)
.

Here the first term accounts for the boundary motion. The statement that this term is small
essentially means that the surface evolves with normal velocity V = (n − 1)κ + ε−1c(εξε + εβ).
The second term corresponds to the change of wave profile due to the change of noise. It is here
that we need the pathwise bound (1.4) on the derivative of ξε to control this term. The third term
essentially vanishes because close to Σ(t) the function d̃ coincides with d and therefore |∇d|2 = 1.
Off the boundary the derivative mxx becomes exponentially small such that we also control this
term. In the end this means that the correction term εβ−2 dominates the dynamic. Let us make
these considerations rigorous:

By (1.4) I2 ≤ C for every ε smaller than ε0(ω). For d(x, t) ≤ η ∇d(x, t) = 1 and therefore I3
vanishes for such x. For d(x, t) ≥ η Lemma 3.1 (ii) implies:

mxx

ε2

(
1− |∇d̃|2

)
≤ 2A

ε2
e−C/ε → 0.

To bound I1 consider points x close to Σ(t). For all other x the reasoning is as for I3. For x with
dist(x,Σ±,ε(t)) ≤ 1

2N the functions d(x, t) and d̃(x, t) coincide and one obtains

∂td(x, t) = ∆d(y, t) + ε−1c(εξε(t) + εβ),

where as before y is the unique point in Σ(t) such that d(x, t) = dist(x, y). Plugging this into I1
gives

I1 =
mx

ε

{
∆dε(y, t)−∆dε(x, t) + εac1e

c1t
}
.

Here one uses the fact that all the principle curvatures κi(t, y) of the Σ±,ε(t) are bounded by N
to obtain

|∆dε(y, t)−∆dε(x, t)| =

∣∣∣∣∣
n−1∑
i=1

κi(y, t)−
n−1∑
i=1

κi(y, t)
1− d(x, t)κi(y, t)

∣∣∣∣∣
=
n−1∑
i=1

|κi(y, t)|
d(x, t)|κi(y, t)|

1− d(x, t)|κi(y, t)|

≤ 4N2d(x, t),
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because supx∈[0, 12 ] ∂x
x

1−x = 4. Plugging this in yields

|I1| ≤ mx

(
d̃±(x, t)± εaec1t

ε
, εξε ± εβ

)
4N2d(x, t) + εac1e

c1t

ε
.

Choosing c1 larger than N2 and using supx xmx < ∞ one obtains |I1| ≤ C. Thus altogether if ε
is small enough the term εβ−2 will dominate everything else and one obtains

L(u+) ≥ 0.

On the boundary ∂u+
∂ν = 0 due to the definition of d̃. So a standart comparison principle gives the

desired result. The inequality for u− is shown in a similar manner.

To finish the proof of the main theorem one needs the following Lemma:

Lemma 3.3. Fix any time interval [0, T ]. Denote by W±,ε the random functions [0, T ] 3 t 7→
1
c0

∫ t
0
ε−1c(εξε(s)± εβ)ds. Then c0W±,ε converges almost surely to t 7→ c0W (t) in C0,α([0, T ]) for

every α < 1
2 .

Proof. Consider onlyW+,ε(t) the calculation forW−,ε(t) being the same. Fix α < 1
2 and a ϑ with

α < ϑ < 1
2 . Then for P-almost every ω there exists a random constant C such that

sup
−1≤s<t≤T

|W (s)−W (t)|
|s− t|ϑ

≤ C.

Assume that ε is small enough to ensure εξε(t) + εβ ∈ [−δ0, δ0]. (Recall that c is only defined on
[−δ0, δ0].) Using Taylor-formula and c(0) = 0 one can write for every t:

ε−1c(εξε(t) + εβ) = c′(0)(ξε(t) + εβ−1) +
1
2
c′′(a(t))ε−1

(
εξε(t) + εβ

)2
,

for some a(t) verifying |a(t)| ≤ |εξε(t) + εβ |. Therefore one can write

‖c0W − c0W+,ε‖∞ ≤ sup
s∈[0,T ]

|c0W (s)− c0
∫ s

0

ξε(t)dt|+ c0Tε
β−1

+ T sup
δ∈[−δ0,δ0]

|c′′(δ)|
(

sup
s∈[0,T ]

ε(ξε(s))2 + ε2β−1
)
.

Due to (1.3) the last terms converge to zero almost surely. Therefore it remains to consider the
first term. Due to Ẇ ε(s) = ξε(s) one obtains:

sup
s∈[0,T ]

|c0W (s)− c0
∫ s

0

ξε(t)dt| ≤ c0 sup
s∈[0,T ]

|W (s)−W (s)ε|+ c0|W (0)ε|

= c0 sup
s∈[0,T ]

∣∣∣∣∣
∫ εγ

−εγ

(
W (s)−W (s− t)

)
ρε(t)dt

∣∣∣∣∣+ c0

∣∣∣∣∣
∫ εγ

−εγ

(
W (0)−W (t)

)
ρε(t)dt

∣∣∣∣∣
≤ 2c0C

(
εγ
)ϑ
→ 0.

Consider now the Hölder-seminorm

sup
0≤s<t≤T

1
(t− s)α

∣∣∣c0W (t)− c0W+,ε(t)− c0W (s) + c0W
+,ε(s)

∣∣∣
= sup

0≤s<t≤T

1
(t− s)α

∣∣∣c0W (t)− c0W (s)−
∫ t

s

ε−1c(εξε(s) + εβ)ds
∣∣∣

≤ sup
0≤s<t≤T

1
(t− s)α

|c0W (t)− c0W (s)− c0W ε(t) + c0W
ε(s)|

+ sup
0≤s<t≤T

1
(t− s)α

∣∣∣∣∣
∫ t

s

c0ε
β−1 + sup

δ∈[−δ0,δ0]

|c′′(δ)|
(
ε(ξε(u))2 + ε2β−1

)
du

∣∣∣∣∣ .
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Again the second term converges to zero. For the first term one gets:

sup
0≤s<t≤T

1
(t− s)α

|c0W (t)− c0W (s)− c0W ε(t) + c0W
ε(s)|

≤ c0 sup
0≤s<t≤T

1
(t− s)α

∫ εγ

−εγ

(
W (t)−W (t− u)−W (s) +W (s− u)

)
ρε(u)du

≤ c0 sup
0≤s<t≤T

(2(W (t)−W (s)))
α
ϑ

(t− s)α

∫ εγ

−εγ

(
W (t)−W (t− u)−W (s) +W (s− u)

)1−αϑ ρε(u)du

≤ c0 (2C)
α
γ
(
2C(2εγ)ϑ

)1−αϑ .
This shows the desired convergence.

Proof. (of Theorem (1.1)) Chose the initial configurations uε0 such that uε(x, 0) ≤ uε0(x) ≤
uε,+(x, 0). Define the stopping time τ(ω) := infε T±ε,N . Remark that τ is almost surely posi-
tive due to the boundedness of the ‖W±,ε‖Cα/2 and the C2,α convergence of dε,± to d.

Then by Lemma 3.2 one has for all times 0 ≤ t ≤ T (ω) that uε(x, t) ≤ uε(x, t) ≤ uε,+(x, t).
So one gets:

‖uε(·, t)− χΣ(t)(·, t)‖L2 ≤ ‖uε(·, t)− uε,+(·, t)‖L2(D) + ‖uε,+(·, t)− χΣε,+(t)(·, t)‖L2(D)

+ ‖χΣε,+(t)(·, t)− χΣ(t)(·, t)‖L2(D)

≤ ‖uε,−(·, t)− uε,+(·, t)‖L2(D) + ‖uε,+(·, t)− χΣε,+(t)(·, t)‖L2(D)+
‖χΣε,+(t)(·, t)− χΣ(t)(·, t)‖L2(D)

≤ ‖uε,−(·, t)− χΣε,−(t)(·, t)‖L2(D) + 2‖uε,+(·, t)− χΣε,+(t)(·, t)‖L2(D)+

2‖χΣε,+(t)(·, t)− χΣ(t)(·, t)‖L2(D) + ‖χΣε,−(t)(·, t)− χΣ(t)(·, t)‖L2(D).

The supremum in time of the first two terms converges to zero due to the definition of uε,±.
Consider ‖χΣε,−(t)(·) − χΣ(t(·)‖L2(D) =

∫
O

(
χΣε,−(t)(x) − χΣ(t)(x)

)
dx. By Lemma 3.3 and by

Theorem 2.1 the signed distance functions converge in C2,α(O) uniformly in time and therefore
this term converges to zero. The convergence of the term involving χΣε,−(t) can be seen in the
same way.
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