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Abstract. The invariant measure of a one-dimensional Allen-Cahn equation

with an additive space-time white noise is studied. This measure is absolutely
continuous with respect to a Brownian bridge with a density which can be

interpreted as a potential energy term. We consider the sharp interface limit

in this setup. In the right scaling this corresponds to a Gibbs type measure
on a growing interval with decreasing temperature. Our main result is that in

the limit we still see exponential convergence towards a curve of minimizers of

the energy if the interval does not grow too fast. In the original scaling the
measures is concentrate on configurations with precisely one jump.

1. Introduction

Reaction-diffusion equations can be used to model phase separation and bound-
ary evolutions in various physical contexts. Typically behavior of boundaries or
geometric evolution laws are studied with the help of such equations. Often in such
models one includes an extra noise term. This may happen for various reasons –
the noise may be a simplified model for the effect of additional degrees of freedom
that are not reflected in the reaction-diffusion equation. From a numerical point of
view noise may improve stability in the simulations. In some systems there is even
a justification for an extra noise term from a scaling limit of microscopic particle
systems.

1.1. Setup and first main result. The system considered here is the case of a
symmetric bistable potential with two wells of equal depth. To be more precise, for
a small parameter ε > 0 we are interested in the equation

∂tu(x, t) = ∆u(x, t)− ε−2γF ′(u(x, t)) + ε(1−γ)/2
√

2 ∂x∂tW (x, t)

u(−1, t) = −1 u(1, t) = 1,
(1.1)

for (x, t) ∈ (−1, 1)×R+. Here F is supposed to be a smooth (at least C3) symmetric
double-well potential i.e. we assume that F satisfies the following properties:
(1.2)

(a) F (u) ≥ 0 and F (u) = 0 iff u = ±1,
(b) F ′ admits exactly three zeros {±1, 0} and F ′′(0) < 0, F ′′(±1) > 0,
(c) F is symmetric, ∀u ≥ 0 F (u) = F (−u).

A typical example is F (u) = 1
2 (u2 − 1)2. The expression ∂x∂tW (x, t) is a formal

expression denoting space-time white noise. Such equation can be given rigorous
sense in various ways, for example in the sense of mild solutions ([Iwa87, DPZ92])
or using Dirichlet forms [AR91]. We are interested in the behavior of the system in
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the sharp interface limit ε ↓ 0. The parameter γ > 0 is a scaling factor. Our result
will be valid for γ < 2

3 .
We study the behavior of the invariant measure of (1.1). This measure can be

described quite explicitly as follows ([DPZ96, RVE05]): Let ν̃ε be the law of a
rescaled Brownian bridge on [−1, 1] with boundary points ±1. More precisely ν̃ε

is the law of a Gaussian process (ũ(s), s ∈ [−1, 1]) with expectations E [ũ(s)] =
s ∀s ∈ [−1, 1] and covariance Cov(ũ(s), ũ(s′)) = ε1−γ(s ∧ s′ + 1 − (s+1)(s′+1)

2

)
.

Another equivalent way to characterize ν̃ε is to say that it is a Gaussian measure
on L2[−1, 1] with expectation function s 7→ s and covariance operator ε1−γ(−∆)−1

where ∆ denotes the one-dimensional Dirichlet Laplacian. Even another equivalent
way is to say that ũ(s) is the solution to the stochastic differential equation (SDE)

dũ(s) = ε
1−γ

2 dB(s) ũ(−1) = −1

with some Brownian motion B(s) conditionned on ũ(1) = 1. Then the invariant
measure µ̃ε of (1.1) is absolutely continuous with respect to ν̃ε and is given as

(1.3) µ̃ε(dũ) =
1
Zε

exp
(
− 1
ε1+γ

∫ 1

−1

F (ũ(s)) ds
)
ν̃ε(dũ).

Here Zε =
∫

exp
(
− 1
ε1+γ

∫ 1

−1
F (ũ(s)) ds

)
ν̃ε(dũ) is the appropriate normalization

constant.
Often important intuition on a measure on path space can be gained from con-

sidering Feynman’s heuristic interpretation. In our context this heuristic interpre-
tation states that ν̃ε(dũ) is proportional to a measure

exp
(
− 1
ε1−γ

∫ 1

−1

|ũ′(s)|2
2

ds
)

dũ

where dũ is a flat reference measure on path space. Of course this picture is non-
rigorous: Such a measure dũ does not exist and the quantity

∫ 1

−1
ũ′(s)2

2 ds is almost
surely not finite under ν̃ε(dũ). Nonetheless, it is rigorous on the level of finite-
dimensional distributions and various classical statements about Brownian motion
such as Schilder’s theorem or Girsanov’s theorem have an interpretation in terms of
this heuristic picture. The measure µ̃ε(dũ) can then be interpreted as proportional
to

exp
(
− 1
ε1+γ

∫ 1

−1

F (ũ(s)) ds− 1
ε1−γ

∫ 1

−1

|ũ′(s)|2
2

ds
)

dũ.

As one wants to observe an effect which results from the interaction of the potential
term 1

ε1+γ

∫
F
(
ũ(s)

)
ds and the kinetic energy term 1

ε1−γ

∫ ũ′(s)2

2 ds it seems rea-
sonable to transform the system in a way that guarantees that these terms scale
with the same power of ε. This transformation is given by stretching the random
functions onto a growing interval [−ε−γ , ε−γ ]. More precisely consider the operators

T ε : L2[−1, 1]→ L2[−ε−γ , ε−γ ] T εũ(s) = ũ(εγs).

Then consider the pushforward measures µε = T ε#µ̃
ε. These measures are again

absolutely continuous with respect to Gaussian measures: νε is the Gaussian mea-
sure on L2[−ε−γ , ε−γ ] with expectation function s 7→ εγs and covariance operator
ε(−∆)−1. The other equivalent characterizations for ν̃ε can be adapted with the
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Figure 1. The instanton shape mξ and the function −1[−1,ξ[ + 1[ξ,1].

right powers of ε. The measure µε is then given as

µε(du) =
1
Zε

exp
(
−ε−1

∫ ε−γ

−ε−γ
F (u(s)) ds

)
νε(du).

Note that the normalization constant Zε is the same as above. In the Feynman
picture this suggests that µε(du) is proportional to

exp
(
−1
ε

∫ ε−γ

−ε−γ

[ |u′(s)|2
2

+ F
(
u(s)

)]
ds
)

du.

This motivates to study the energy functional appearing in the exponent: For
functions u : R→ R defined on the whole line with boundary conditions u(±∞) =
±1 consider the energy functional

E(u) =
∫ ∞
−∞

[ |u′(s)|2
2

+ F (u(s))
]

ds− C∗.

Here C∗ is a constant chosen in a way to guarantee that the minimizers of E with
the right boundary conditions verify E(u) = 0. This is the one-dimensional version
of the well known real Ginzburg-Landau energy functional. There is a unique
minimizer m of E subject to the condition m(0) = 0 and all the other minimizers
are obtained via translation of m. More details on the energy functional and the
minimizers can be found in Section 2. Denote by M the set of all these minimizers
and by m + L2(R) := {u : R → R, u −m ∈ L2(R)} and m + H1(R) := {u : R →
R, u −m ∈ H1(R)} the spaces of functions with the right boundary values. Note
that every random function distributed according to µε(du) can be considered as
function in m+ L2(R) by trivial extension with ±1 outside of [−ε−γ , ε−γ ]. In this
way µε(du) can be interpreted as measure on m + L2(R). We can now state the
main result of this work:

Theorem 1.1. Assume 0 < γ < 2
3 . Assume p = 2 or p = ∞. Then there exist

positive constants c0 and δ0 such that for every 0 < δ ≤ δ0 one has

(1.4) lim sup
ε↓0

ε logµε
{

distLp(u,M) ≥ δ
}
≤ −c0δ2.

In particular the measures µε concentrate around the set of minimizers exponentially
fast.

The crucial step in the proof is to find a bound on the exponential decay of
the normalization constant Zε. This lower bound can be found in Section 4. The
asymptotic behavior of Zε is given in Corollary 4.15.
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On the fixed interval [−1, 1] this bound implies the following:

Corollary 1.2. Assume 0 < γ < 2
3 . Then the measures µ̃ε(du) are tight for ε ↓ 0

as measures on L2[−1, 1]. Every limitting measure µ̃ is concentrated on random
functions of the type

ũ(s) = −1[−1,ξ[ + 1[ξ,1],

where ξ ∈ [−1, 1].

Remark 1.3. It is expected that the measures µ̃ε(du) converge toward a measure
µ̃. Comparison with the dynamical results (e.g. [Fun95]) suggests that the phase
separation point ξ should be distributed uniformly on [−1, 1] in the limit.

Remark 1.4. Note that by Schilder’s theorem together with an exponential tilting
argument (such as [dH00] Theorem III.17 on page 34), in the case where γ = 0 the
measures µ̃ε concentrate exponentially fast around the unique minimizer of

u 7→
∫ 1

−1

[ |u′(s)|2
2

+ F
(
u(s)

)]
ds,

under the appropriate boundary conditions. In particular the weak limit is a Dirac
measure on this minimizer, which is not a step function.

Remark 1.5. One can remark that by an application of Girsanov’s theorem the
measure µ̃ε can be considered as the distribution of the solution of an SDE which
is conditioned on the right boundary values (see [RY99] Chapter VIII §3 and also
[HSV07, RVE05]). It could be possible to obtain concentration results such as
Theorem 1.2 by studying this SDE with the help of large deviation theory (see for
example [Sug95]). We do not follow such an approach but conclude from Theorem
1.1 which is obtained by a discretization argument.

Remark 1.6. The reader might consider it unusual to work with µ̃ε as measure on
L2[−1, 1] instead of C[−1, 1] or the space of càdlàg functions D[−1, 1]. The class
of continuous processes is closed under weak convergence of measures on D[−1, 1]
such that tightness on this space cannot hold. But in fact the tightness holds in
every topology τ in which the rescaled profiles mξ(εγx) converge to step functions
and in which convergence in L∞[−1, 1] implies convergence in τ .

1.2. Motivation and related works. The Allen-Cahn equation without noise
was introduced in [AC79] to model the dynamics of interfaces between different do-
mains of different lattice structure in crystals and has been studied since in various
contexts. In the one-dimensional case the dynamics of the deterministic equation
are well understood [Che04, CP89, OR07] and can be described as follows: If one
starts with arbitrary initial data, solutions will quickly tend to configurations which
are locally constant close to ±1 possibly with many transition layers that roughly
look like the instanton shapes m introduced above. Then these interfaces move
extremely slowly until eventually some two transition layers meet and annihilate.
After that the dynamics continue very slowly with less interfaces.

In the two or more dimensions no such metastable behavior occurs. Solutions
tend very quickly towards configurations which are locally constant with interfaces
of width ε. Then on a slower scale these interfaces evolve according to motion by
mean curvature (see [Ilm93] and the references therein).

Stochastic systems which are very similar to (1.1) have been studied in the
classic paper by Farris and Jona-Lasinio [FJL82]. In the ninetees Funaki [Fun95]
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and Brasecco, de Masi, Presutti [BDMP95] studied the one-dimensional equation
in the case where the initial data is close to the instanton shape and showed that
in an appropriate scaling the solution will stay close to such a shape. Then due to
the random perturbation a dynamic along the one-parameter family of such shapes
can be observed on a much faster time scale than in the deterministic case. Our
result Theorem 1.2 corresponds to this on the level of invariant measures.

If the process does not start in a configuration with a single interface, it is
believed that these different interfaces also follow a random induced dynamic which
is much quicker than in the deterministic case. Different interfaces should annihilate
when they meet [FVE02]. More recently there were also investigations of the same
system on a much bigger space interval where due to entropic effects noise induced
nucleation should occur. This phenomenon has been studied on the level of invariant
measures [RVE05]. The limiting process should be related to the Brownian web
which has recently been investigated e.g. in [FINR06].

From the point of view of statistical physics Theorem 1.1 can be interpreted as
quite natural. In fact the Feynman picture suggests to view µε as a Gibbs measure
with energy E and decreasing temperature ε. On a fixed interval the result of
Theorem 1.1 would therefore simply state that with decreasing temperature the
Gibbs measure concentrates around the energy minimizers exponentially fast. On
a rigorous level such results follow from standard large deviation theory (see e.g.
[dH00, DS89]). Our result states that the entropic effects which originate from
considering growing intervals do not change this picture. In fact also this is not
very suprising - analysis of similar spin systems suggests that even on intervals that
grow exponentially in ε−1 one should not observe more than one jump. But it is
not clear if one can say anything about the shape of the interface in this settings.

1.3. Structure of the paper. In Section 2 results about the energy landscape of
the Ginzburg-Landau energy functional are summarized. In particular we discuss
in some detail the minimizers of E and introduce tubular coordinates close to the
curve of minimizers. The energy landscape is studied in terms of these tubular
coordinates. In Section 3 some Gaussian concentration inequalities are discussed.
In particular the discretization of the measure νε is given and some error bounds are
proven. The proof of Theorem 1.1 can then be found in Section 4. We will follow
the convention that C denotes a generic constant which may change from line to
line. Constants that appear several times will be numbered c1, c2, . . .. Auxiliary
scaling factors γ1 to γ3 that are supposed to satisfy a number of conditions will be
introduced. These conditions are satisfied if γ1 and γ3 are very small and γ2 < 1 is
very close to 1.

2. The Energy Functional

In this section we discuss properties of the Ginzburg-Landau energy functional.
We introduce the one parameter family of minimizers which we think of as a one-
dimensional submanifold of the infinite-dimensional space of possible configurations.
Then we discuss tubular coordinates of a neighborhood of this curve as well as
a Taylor expansion of the energy landscape in these tubular coordinates. These
ideas are mostly classical and go back to [CP89, Fun95, OR07]. Finally we give a
discretized version of the minimizers and prove some error bounds.
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For a function u defined on the whole real line consider the following energy
functional:

E(u) =
∫
R

[
1
2
|u′(s)|2 + F

(
u(s)

)]
ds− C∗,

where the constant C∗ is chosen in a way to guarantee that the minimum of E on
the set of functions with the right boundary conditions is 0. In fact let m be the
standing wave solution of the Allen-Cahn equation:

(2.1) m′′(s)− F ′(m(s)) = 0 ∀s ∈ R, m(±s)→ ±1 for s→∞.
As (2.1) is invariant under translations one can assume m(0) = 0. Then the solution
can be found by solving the system

(2.2) m′(s)−
√

2F (m(s)) = 0 ∀s ∈ R, m(0) = 0 m(±∞) = ±1.

Note that the assumptions (1.2) on F imply that
√
F is C1 such that the solution

to (2.2) is unique. The translations of m will be denoted by mξ(s) = m(s − ξ).
Note that the mξ are not the only solutions to (2.1) but that all the other solutions
are either periodic or diverge such that the mξ are the only nonconstant critical
points of E with finite energy. In fact the mξ are global minimizers of E subject to
its boundary conditions. Completing the squares yields:∫

R

[
1
2
|u′(s)|2 + F

(
u(s)

)]
ds

=
∫ ∞
−∞

1
2

(
u′(s)−

√
2F (u(s))

)2

+
√

2F
(
u(s)

)
u′(s) ds

≥
∫ u(∞)

u(−∞)

√
2F (u) du.

(2.3)

The term in the bracket is nonnegative and it vanishes if and only if u solves (2.2).
In the sequel we will write

M = {mξ, ξ ∈ R} and C∗ =
∫
R

1
2
[
|m′(s)|2 + F

(
m(s)

)]
ds.

For notational convenience we introduce the function G(u) =
∫ u

0

√
2F (ũ)dũ. Then

equation (2.3) states that
∫
R

1
2 |u′(s)|2 +F (u(s)) ds ≥ G

(
u(∞)

)
−G

(
u(−∞)

)
. Note

that the assumptions (1.2) on F imply that G is a strictly increasing C4 function
with G(0) = 0. In the case of the standard double-well potential F (u) = 1

2 (u2−1)2

a calculation yields

m(s) = tanh(s) and C∗ =
4
3
.

Equation (2.2) shows that in general m can be given implicitly as

(2.4) s =
∫ m

0

1√
2F
(
m̃
) dm̃.

By expanding F around 1 one obtains exponential convergence to ±1 for s→ ±∞.
To be more precise there exist positive constants c1 and c2 such that

(2.5)


|1∓m(±s)| ≤ c1 exp(−c2s) s ≥ 0
|m′(±s)| ≤ c1c2 exp(−c2s) s ≥ 0
|m′′(±s)| ≤ c1c22 exp(−c2s) s ≥ 0.
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Recall that m + L2(R) = {u : u − m ∈ L2(R)}. Due to (2.5) for all ξ one has
m−mξ ∈ L2(R) such that the definition of the space m+L2 is independent of the
choice of minimizer.

We now introduce the concept of Fermi coordinates which was first used in this
context in [CP89, Fun95]: Recall that for a function u ∈ m + L2(R) we write
distL2(u,M) := infξ∈R ‖u−mξ‖L2(R). If distL2(u,M) is small enough there exists
a unique ξ ∈ R such that dist(u,M) = ‖u−mξ‖L2(R) and one has

(2.6) 〈u−mξ,m
′
ξ〉L2(R) = 0.

In fact the last equality (2.6) can easily be seen by differentiating ξ 7→ ‖u−mξ‖2L2(R).
This has a simple geometric interpretation. The function m′ξ can be seen as tangent
vector to the curve M in mξ and the relation (2.6) can be interpreted as v := u−mξ

being normal to the tangent space in mξ. We will denote the space

Nξ := {v ∈ L2(R) : 〈v,m′ξ〉L2(R) = 0}
and interpret it as the normal space to M in mξ. For u = mξ + v with v ∈ Nξ we
will call the pair (ξ, v) Fermi or tubular coordinates of u.

One obtains information about the behavior of the energy functional close to M
by considering the linearized Schrödinger type operators

Aξ = −∆ + F ′′(mξ)

with domain of definition H2(R) ⊂ L2(R). The operator Aξ is selfadjoint and
nonnegative (see e.g. [Fun95]) and the eigenspace corresponding to the eigenvalue
0 is spanned by the function m′ξ. This can be understood quite easily: The fact that
the operator is nonnegative corresponds to the functional E attaining its minimum
at mξ and the fact that m′ξ is an eigenfunction to the eigenvalue 0 corresponds to
the translational invariance of E . The following more detailed description of the
spectral behavior of Aξ is taken from [OR07] Proposition 3.2 on page 391:

Lemma 2.1. There exists a constant c3 > 0 such that if u ∈ H1(R) satisfies

(i) u(ξ) = 0 or (ii)
∫
R

u(s)m′ξ(s) ds = 0,

then

(2.7) c3‖u‖2L2(R) ≤
∫
R

[
u′(s)2 + F ′′

(
mξ(s)

)
u(s)2

]
ds.

This can be used to obtain the following description of the energy landscape.
Similar results were already obtained in [Fun95] and [OR07]:

Proposition 2.2. (i) There exist positive constants c0, c4, δ1 such that for u
with Fermi coordinates u = mξ + v and ‖v‖H1(R) ≤ δ1 one has:

(2.8) c0‖v‖2H1(R) ≤ E(u) ≤ c4‖v‖2H1(R).

(ii) There exists a δ0 > 0 such that for δ ≤ δ0 the relation distH1(u,M) ≥ δ
implies

(2.9) E(u) ≥ c0δ2.

Here distH1(u,M) = infξ∈R ‖u−mξ‖H1(R). Statement (i) will be used as a local
description of the energy landscape close to the curve of minimizers whereas the
statement (ii) will be useful as a rough lower bound for the energy away from the
curve. For the proof of Proposition 2.2 one needs the following lemma:
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Lemma 2.3. For every ε > 0 there exists δ > 0 such that if u ∈ m + L2 with
E(u) ≤ δ then there exists ξ ∈ R such that

‖u−mξ‖L∞(R) ≤ ε.
Furthermore, ξ can be chosen in a such a way that u(ξ) = 0.

Proof. For a small δ > 0 assume E(u) ≤ δ. We want to find a ξ ∈ R such that
by choosing δ sufficiently small we can deduce that ‖u − mξ‖L∞(R) becomes ar-
bitrarily small. As E(u) < ∞ we have u ∈ m + H1 and in particular u ∈
C0(R) ∩ L∞(R). Note that a similar calculation as (2.3) implies that E(u) ≥(
G
(

sups∈R u(s)
)
−G

(
infs∈R u(s)

))
− (G(1)−G(−1)). Therefore by the proper-

ties of G by choosing δ sufficiently small, one can assume that ‖u‖L∞(R) ≤ 2. By
the assumptions (1.2) on F there exists a C such that for u ∈ [−2, 2] one has

F (u) ≥ C min (|u− 1|, |u+ 1|)2
,

and in particular we know that for every interval I theH1-norm of min (|u− 1|, |u+ 1|)
can be controlled by the energy. As u is continuous and converges to ±1 as s goes
to ±∞, there exists a ξ with u(ξ) = 0. Without loss of generality one can assume
that ξ = 0. We will show that in this case ‖u −m‖L∞(R) can be made arbitrarily
small.

According to (2.5) for every ε > 0 there exists T such that for s ≥ T one has
|m(s) − 1| ≤ ε and for s ≤ −T it holds that |m(s) + 1| ≤ ε. We will first give a
bound on u −m in [−T, T ]. We consider only the case s ≥ 0 the other one being
similar. Note that as according to (2.3)

E(u) =
∫
R

1
2

(
u′(s)−

√
2F (u)

)2

ds,

one can write

u′(s) =
√
F
(
u(s)

)
+ r(s)

u(0) = 0
(2.10)

where
∫ T

0
r(s)2ds ≤ 2δ and using Cauchy-Schwarz inequality∫ T

0

|r(s)|ds ≤
√

2Tδ.

Thus using (2.2) one obtains for v = |u−m|

v(t) ≤
∫ t

0

∣∣∣∣√F (u(s)
)
−
√
F
(
m(s)

)∣∣∣∣+ |r(s)|ds ≤ C

∫ t

0

v(s) ds +
∫ t

0

|r(s)|ds,

(2.11)

where the constant C is given by C = supu∈[−2,2]
d
du

(√
F (u)

)
. Thus Gronwall’s

Lemma implies

|v(s)| ≤
∫ s

0

|r(t)| eC(s−t) dt,

and so sups∈[0,T ] |v(s)| ≤
√

2TδeCT . Thus by choosing δ small enough one can
assure that sups∈[0,T ] |v(s)| ≤ ε

2 .



SHARP INTERFACE LIMIT FOR INVARIANT MEASURES OF A STOCHASTIC ALLEN-CAHN EQUATION9

Now let us focus on the case s ∈ [−T, T ]c. We will again only focus on s ≥ T .
Note that by the above calculations and the choice of T one has u(−T ) ≤ −(1− ε)
and u(T ) ≥ 1− ε. Therefore, using∫ −T

−∞

u′(s)2

2
+ F (u(s))ds +

∫ T

−T

u′(s)2

2
+ F (u(s))ds +

∫ ∞
T

u′(s)2

2
+ F (u(s))ds

≤ G(1)−G(−1) + δ,

as well as ∫ T

−T

u′(s)2

2
+ F (u(s))ds ≥ G(u(T ))−G(u(−T )),

we get∫ ∞
T

u′(s)2

2
+ F (u(s))ds ≤ (G(1)−G(u(T )))− (G(−1)−G(u(−T ))) + δ ≤ Cε+ δ,

where C = 2 supu∈[−2,2] F (u). Therefore, by using the fact that
∫∞
T

u′(s)2

2 +F (u(s))
controls the H1-norm and thus also the L∞ -norm of min (|u− 1|, |u+ 1|) on [T,∞),
one can conclude that possibly by choosing a smaller δ one obtains sups∈[T,∞) v(s) ≤
Cε. Thus by redefining ε one obtains the desired result. �

Proof. (Of Proposition 2.2): (i) First of all remark that for v ∈ Nξ one has

(2.12) c̃0‖v‖2H1(R) ≤ 〈v,Aξv〉L2(R) ≤ c̃4‖v‖2H1(R).

In fact Lemma 2.1 (ii) implies that

(2.13) c3‖v‖2L2(R) ≤ 〈v,Aξv〉L2(R).

To get the lower bound in (2.12) write

〈Av, v〉L2(R) = ‖∇v‖2L2(R) +
∫
R

F ′′(m(s))v2(s) ds

≥ ‖v‖2H1(R) − (c5 + 1)‖v‖2L2(R),

(2.14)

where c5 = max|v|≤1 F
′′(v). Then (2.12) follows with c̃0 = c3

c3+c5+1 . In fact if
‖v‖L2 ≤ 1

c3+c̃0+1‖v‖H1 one can use (2.14) and one can use (2.13) else. The upper
bound in (2.12) is immediate noting that supu∈[−1,+1] |F ′′(u)| <∞.

In order to obtain (2.8) one writes:

(2.15) E(u) =
1
2
〈Aξv, v〉+

∫
R

U(s, ξ, v)ds,

where

U(s, ξ, v) = F (mξ(s) + v(s))− F (mξ(s))− F ′(mξ(s))v(s)− 1
2
F ′′(mξ(s))v(s)2.

Here equation (2.1) is used. Using the Sobolev embedding ‖v‖L∞(R) ≤ C‖v‖H1(R)

one obtains by Taylor formula

(2.16)
∣∣∣∫
R

U
∣∣∣ ≤ 1

6
sup

|v|≤Cδ1+1

|F ′′′(v)|‖v‖3L3(R) ≤ C‖v‖L∞(R)‖v‖2L2(R) ≤ C‖v‖3H1(R).

This implies the inequality (2.8).
(ii) To show the second statement, first note that there exists a δ̃0 > 0 such that

if E(u) ≤ δ̃0 there exists a ξ such that

(2.17) c0‖u−mξ‖2H1(R) ≤ E(u).
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ξ−ǫ−γ
ǫ−γ

ξ − ǫ−γ1 ξ + ǫ−γ1

ξ

−ǫ−γ
ǫ−γ

Figure 2. The approximated waveshapes mε
ξ and mN,ε

ξ .

In fact choosing ξ as in Lemma 2.3 and noting that if one uses the case (i) of
Lemma 2.1 instead (ii) one sees that inequalities (2.12) and (2.16) remain valid
for v = u − mξ. Then by using the L∞ bound on v from Lemma 2.3 instead of
Sobolev embedding in the last step of (2.16) one obtains the above statement. In

order to obtain (2.9) choose δ0 =
√

δ̃0
c0

and assume distH1(u,M) ≥ δ for a δ ≤ δ0.

If E(u) ≥ δ̃0 the bound (2.9) holds automatically. Otherwise (2.17) holds and gives
the desired estimate. �

We now pass to some bounds on approximated wave shapes. To this end fix
γ1 < γ. This parameter will be fixed throughout the paper. Denote by mε the
profilem cut off outside of [−ε−γ1 , ε−γ1 ]. More precisely assume thatmε is a smooth
monotone function that coincides with m on [−ε−γ1 , ε−γ1 ] and that verifies mε(s) =
±1 for ±s ≥ ε−γ1 + 1. Furthermore, assume that on the intervals [ε−γ1 , ε−γ1 + 1]
(respectively [−ε−γ1−1,−ε−γ1 ]) one has m(s) ≤ mε(s) ≤ 1 (resp. m(s) ≥ mε(s) ≥
−1). Due to (2.5) one can also assume that |(mε)′(s)| ≤ 2c1c2e−c2ε

−γ1 on both of
these intermediate intervals. Then define mε

ξ(s) = mε(s− ξ).
Furthermore, for N ∈ N and k ∈ {−N,−(N−1), . . . , (N−1), N} set sN,εk = kε−γ

N
and define

(2.18) mN,ε
ξ (s) =

{
mε
ξ(s) if s = sN,εk for k = −(N − 1), . . . , (N − 1)

the linear interpolation between these points.

One then gets the following bound:

Lemma 2.4. For ε small enough and ξ ∈ [−ε−γ + ε−γ1 + 1, ε−γ − ε−γ1 − 1] one
has

(i) ‖mξ −mε
ξ‖L2(R) ≤ C exp(−c2ε−γ1)

‖(mξ)′ − (mε
ξ)
′‖L2(R) ≤ C exp(−c2ε−γ1).

(ii) ‖mξ −mN,ε
ξ ‖L2(R) ≤ Cε−γ1/2 ε

−2γ

N2

‖(mξ)′ − (mN,ε
ξ )′‖L2(R) ≤ Cε−γ1/2 ε

−γ

N .

Proof. To see (i) write

‖mξ −mε
ξ‖2L2(R) ≤

∫ ∞
ε−γ1

(
m(s)−mε(s)

)2

ds +
∫ −ε−γ1

−∞

(
m(s)−mε(s)

)2

ds

≤ 2
∫ ∞
ε−γ1

c21 exp(−2c2s)ds ≤ C exp(−2c2ε−γ1)
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and

‖m′ξ − (mε
ξ)
′‖2L2(R) ≤

∫ ∞
ε−γ1

(
m′(s)− (mε)′(s)

)2

ds +
∫ ε−γ1

−∞

(
m′(s)− (mε)′(s)

)2

ds

≤ C exp(−2c2ε−γ1).

Here one uses the inequalities (2.5) as well as the properties of mε.
To see (ii) write

‖m′ξ − (mN,ε
ξ )′‖L2(R) ≤ ‖m′ξ − (mε

ξ)
′‖L2(R) + ‖(mε

ξ)
′ − (mN,ε

ξ )′‖L2(R).(2.19)

To bound the second term assume without loss of generality that ξ = 0 and write

‖(mε)′ − (mN,ε)′‖2L2(R) =
N−1∑
k=−N

∫ sN,εk+1

sN,εk

(
(mε)′(s)− (mN,ε)′(s)

)2

ds

=
Nε−1∑
k=−Nε

∫ sN,εk+1

sN,εk

(
(mε)′(s)− (mN,ε)′(s)

)2

ds.(2.20)

In the second equality Nε = dε−γ1 N
ε−γ e. Here we use the fact that uε is constant

outside of [−ε−γ1 , ε−γ1 ] and therefore coincides with its piecewise linearization. The
integrals can be bounded using the Poincaré inequality:

∫ sN,εk+1

sN,εk

(
(mε)′(s)− (mN,ε

ξ )′(s)
)2

ds ≤ ε−2γ

N2π2

∫ sN,εk+1

sN,εk

(mε)′′(s)ds ≤ ε−3γ

N3π2
sup
s∈R
|(mε)′′(s)|2.

(2.21)

Plugging this into (2.19) one gets:

‖(mε)′ − (mN,ε)′‖2L2 ≤ ε−γ1
ε−2γ

N2π2
sup
s∈R
|(mε)′′(s)|2.

Due to (i) the term involving |m′ξ−(mε
ξ)
′| can be absorbed in the constant for ε small

enough. This yields the second estimate in (ii). For the bound on ‖m′ξ−(mε
ξ)
′‖L2(R)

one proceeds in the same manner with another use of Poincaré inequality. The
details are left to the reader. �

3. Gaussian estimates

In this section concentration properties of some discretized Gaussian measures
are discussed and the bounds which are needed in Section 4 are provided. To this
end we recall a classical Gaussian concentration inequality. Then we introduce the
discretized version of the Gaussian reference measure νε and give an error bound.
We also study another discretized measure which can be viewed as a discretized
massive Gaussian free field.

Let E be a separable Banach space equipped with its Borel-σ-field F and norm
‖ · ‖. Recall that a probability measure µ on (E,F) is called Gaussian if for every η
in the dual space X∗ the pushforward measure η#µ is Gaussian. For the moment
all Gaussian measures are assumed to be centered i.e. for all η ∈ X∗ it holds∫
η(x)µ(dx) = 0. Denote by

σ = sup
η∈X∗,‖η‖X∗≤1

(∫
η(x)2µ(dx)

)1/2

.
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Note that σ is finite [Led96]. Then one has the following classical concentration
inequality (see [Led96] page 203):

µ
(
y; ‖y‖ ≥

∫
‖x‖µ(dx) + r

)
≤ e−r

2/2σ2
.

There are several ways to prove this inequality. It can, for example, be derived as
a consequence of the Gaussian isoperimetric inequality.

The difficulty in applying this inequality to specific examples is to evaluate the
quantities σ and

∫
‖x‖µ(dx). This is easier in the case where E is a Hilbert space.

Then a centered Gaussian measure µ is uniquely characterized by the covariance
operator Σ which satisfies∫

〈η1, x〉〈η2, x〉µ(dx) = 〈η1,Ση2〉 ∀η1, η2 ∈ E.

It is known [DPZ92] that Σ must be a nonnegative symmetric trace class operator.
Then σ2 is the spectral radius of Σ and using Jensen’s inequality one obtains∫

‖x‖µ(dx) ≤
(∫
‖x‖2 µ(dx)

)1/2 =
(
Tr Σ

)1/2
.

Therefore, one can write

Lemma 3.1. Let µ be a centered Gaussian measure on a Hilbert space E with
covariance operator Σ. Then one has

(3.1) µ
(
x; ‖x‖ ≥

(
Tr Σ

)1/2 + r
)
≤ e−r2/2σ2

.

We now want to use this inequality to study the behavior of the measure νε

under discretization. To this end fix an integer N and consider piecewise affine
functions u ∈ L2[−ε−γ ,−ε−γ ] of the following type

(3.2) u(x) =


±1 for x = ±ε−γ
arbitrary for x = sN,εk k = −(N − 1), . . . , (N − 1)

the linear interpolation between those points,

and denote by HN,ε the affine space of all such functions. Recall that sN,εk =
kε−γ

N . The space HN,ε can canonically be identified with R2N−1. In particular
typical finite-dimensional objects such as Lebesgue- and codimension one Hausdorff
measures make sense on HN,ε. Denote these measures by LN,ε and HN,ε. There
are several bilinear forms on (the tangential space of) HN,ε which will be important
in the sequel: The H1− and L2−scalar product correspond to the fact that HN,ε

is a subset of m + H1. But there is also the Euclidean scalar product 〈u, v〉 =∑(N−1)
k=−(N−1) u(sN,εk )v(sN,εk ) which determines the behavior of the measures LN,ε

and HN,ε.
Recall that νε is the distribution of a Gaussian process (u(s), s ∈ [−ε−γ , ε−γ ])

with E[u(s)] = εγs and Cov(u(s), u(s′)) = ε
(
s∧s′+ε−γ− (s+ε−γ)(s′+ε−γ)

2ε−γ

)
. Accord-

ing to the Kolmogorov-Chentsov Theorem we can assume that u has continuous
paths. Consider now the piecewise linearization of uN of u:

uN (s) =


±1 for s = ±ε−γ
u(s) for x = sN,εk k = −(N − 1), . . . , (N − 1)

the linear interpolation between those points.
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Lemma 3.2. (i) The distribution of uN is absolutely continuous with respect
to the Lebesgue measure LN,ε on HN,ε. The density is given by

(3.3)
1√

(ε2π)2N−1

( N

ε−γ

)N (
2ε−γ

)1/2 exp
(
−εγ−1) exp

(
− 1

2ε

∫ ε−γ

−ε−γ
|u′(s)|2ds

)
.

(ii) The random function u−uN consists of 2N independent rescaled Brownian
bridges. To be more precise for each k ∈ {−N, . . . (N − 1)} the process
(u(s)− uN (s) : s ∈ [sN,εk , sN,εk+1]) is a centered Gaussian process with covari-
ance

(3.4) Cov(u(s)−uN (s), u(s′)−uN (s′)) = ε
(
s∧s′−sN,εk − N

ε−γ
(s−sN,εk )(s′−sN,εk )

)
.

These processes are mutually independent and independent of uN .

Proof. (i) The measure νε can be considered as the distribution of a rescaled
Brownian motion u on [−ε−γ , ε−γ ] starting at u(−ε−γ) = −1 and conditioned
on u(ε−γ) = 1. Therefore, the finite-dimensional distributions can be obtained by
finite-dimensional conditioning:

νε
(
u(sN,ε−(N−1)) ∈ dx−(N−1), . . . , u(sN,εN−1) ∈ dx(N−1)

)
=

(N−1)∏
i=−N

1√
(ε2π)δ

exp
(
− (xi+1 − xi)2

2εδ

)( 1√
(ε2π)2ε−γ

exp
(
− (1− (−1))2

4ε−γε

))−1

=
1√

(ε2π)2N−1
δ−N
√

2ε−γ exp(εγ−1) exp
(
− 1

2ε

N−1∑
i=−N

δ
(xi+1 − xi)2

δ2

)
Here δ = ε−γ

N and x±N = ±1. By noting that the Riemann sum appearing in
the last line is equal to the integral of the squared derivative of the piecewise
linearization one obtains the result.

(ii) Denote for k = −N, . . . , (N − 1) and s ∈ [0, δ] by ũk(s) = u(sN,εk + s) −
uN (sN,εk + s) = u(sN,εk + s) −

(
1 − s

δ

)
u(sN,εk ) − s

δu(sN,εk+1). We want to show that
the processes (ũk(s), s ∈ [0, δ]) posses the right covariances and are mutually in-
dependent and independent of uN . To this end calculate for s, s′ ∈ [0, δ] and
i = −N, . . . , (N − 1):

Cov(ũk(s), ũk(s′)) = Cov
[
u(sN,εk + s)−

(
1− s

δ

)
u(sN,εk )− s

δ
u(sN,εk+1),

u(sN,εk + s′)−
(

1− s′

δ

)
u(sN,εk )− s′

δ
u(sN,εk+1)

]
.

By plugging in the explicit expression for the covariances of the u(s) and some
tedious but elementary calculations one obtains the desired expression. In a similar
way one can see that for i 6= j one has

Cov(ũj(s), ũi(s′)) = 0 and Cov(ũj(s), uN (t)) = 0

for all s, s′ ∈ [0, δ] and t ∈ [−ε−γ , ε−γ ]. �

Denote the Gaussian normalization constant by

ZN,ε1 : =

(
1√

(2πε)2N−1

( N

ε−γ

)N√
2ε−γ exp

(
−εγ−1)

)−1

.
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We define the discrete Dirichlet-Laplace operator ∆N,ε as

(3.5) ∆k,j
N,ε =

N

ε−γ


−2 for k = j

1 for |k − j| = 1
0 else.

Then a direct computation shows

(3.6) ZN,ε1 =
√

(2πε)2N−1 exp
(
εγ−1)

(
det(−∆N,ε)

)−1/2
.

We now want to apply the Gaussian concentration inequality to obtain a bound
on the probability of large u− uN :

Lemma 3.3. The following bounds hold:
(1) L2-bound on the whole line:

(3.7) νε
(
u : ‖u− uN‖L2[−ε−γ ,ε−γ ] ≥

√
ε
ε−2γ

3N
+ r
)
≤ exp

(
−r

2π2N2

ε1−2γ

)
(2) L2-bound on the short intervals:

(3.8) νε

(
‖u− uN‖L2[sN,εk ,sN,εk+1] ≥

√
ε
ε−2γ

6N2
+ r

)
≤ exp

(
−r

2π2N2

ε1−2γ

)
.

(3) L∞-bound on the whole line:

(3.9) νε
(
‖u− uN‖L∞[−ε−γ ,ε−γ ] ≥ r

)
≤ 4N exp

(
− r2N

8ε1−γ

)
.

Proof. Let us consider (3.7) first. Note that u− uN is a centered Gaussian process
such that Lemma 3.1 can be applied. The expected L2-norm can be calculated as
follows:

νε
[
‖u− uN‖2L2[−ε−γ ,ε−γ ]

]
=

N−1∑
k=−N

νε‖ũk‖2L2 =
N−1∑
k=−N

∫ sN,εk+1

sN,εk

νε
(
ũ(s)2

)
ds

=
N−1∑
k=−N

∫ sN,εk+1

sN,εk

ε

s− sN,εk −

(
s− sN,εk

)2

ε−γ

N

 ds = 2Nε
1
6

(
ε−γ

N

)2

.

Here for the third equality equation (3.4) is used.
To get information about the spectral radius of the covariance operator Σ cal-

culate for f, g ∈ L2[−ε−γ , ε−γ ]:

〈 f,Σg 〉 = νε
[
〈 f, u− uN 〉〈 g, u− uN 〉

]
=

N−1∑
k=−N

∫ sN,εk+1

sN,εk

ε

(
s ∧ s′ − (s− sN,εk )(s′ − sN,εk )

ε−γ

N

)
f(s)g(s′) ds.

Here in the last step the independence of the different bridges is used as well as
formula (3.3). Note that the integral kernel in the last line is the Green function of
the negative Dirichlet-Laplace operator on the interval [sN,εk , sN,εk+1]. Denoting this
operator by ε(−∆Tk)−1 one can write

〈f,Σg〉 =
N−1∑
k=−N

〈f, ε(−∆Tk)−1g〉L2(Tk).
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The spectral decomposition of the inverse Dirichlet-Laplace operator on intervals
of length T is well known. In fact on L2[0, T ] the smallest eigenvalue λ0 and the
corresponding eigenfunction e0(x) are given as:

e0(s) = sin
(πs
T

)
and λ0 =

εT 2

π2
.

The spectral radius of ε
(
−∆Tk

)−1 is thus given as

σ2
k = ε

ε−2γ

(Nπ)2
.

Therefore, one can write

σ2 = sup
f,‖f‖=1

〈f,Σf〉 = sup
f,‖f‖=1

N−1∑
k=−N

〈f, ε(∆Tk)−1g〉L2(Tk)

≤ sup
f,‖f‖=1

N−1∑
k=−N

σ2
k〈f, f〉L2(Tk) = ε

(
ε−γ

πN

)2

sup
f,‖f‖=1

〈f, f〉.

On the other hand by taking f as a linear combination of the eigenfunctions on the
shorter intervals one obtains

σ2 = ε

(
ε−γ

πN

)2

.

Thus equation (3.1) gives the desired result. The proof of (3.8) proceeds in the
same manner.

To prove the third statement (3.9) note that by Lemma 3.2, the deviations of a
the random function u from the piecewise linearizations uN between the points sN,εk

are independent Brownian bridges. Therefore, such a process
(
u(sN,εk + s)− uN (sN,εk + s), 0 ≤ s ≤ ε−γ

N

)
has the same distribution as ε

1
2

(
Bs − sN

ε−γB ε−γ
N

)
for a Brownian motion B defined

on a probability space (Ω,F ,P). So one can write

νε
(
‖u(s)− uN (s)‖L∞[−ε−γ ,ε−γ ] ≥ r

)
≤

N−1∑
k=−N

νε

(
max

sN,εk ≤s≤sN,εk+1

|u(s)− uN (s)| ≥ r
)

≤ 2N P

(
max

0≤s≤ ε−γN

∣∣∣∣ε1/2

(
Bs −

sN

ε−γ
B ε−γ

N

)∣∣∣∣ ≥ r
)

≤ 2N P

(
max

0≤s≤ ε−γN
|Bs| ≥

r

2ε1/2

)
.

Using the exponential version of the maximal inequality for martingales (see Propo-
sition 1.8 in Chapter II in [RY99]) one can see that

νε
(
‖u(s)− uN (s)‖L∞[−ε−γ ,ε−γ ] ≥ r

)
≤ 4N exp

(
− r2N

8ε1−γ

)
.

�
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We now want to study the properties of another discrete Gaussian measure. In
fact denote by HN,ε

0 the space of affine functions defined as in 3.2 with the only
change that they are assumed to possess zero boundary conditions. The Lebesgue
measure on this space is defined in the same manner. For a fixed constant κ
consider the centered probability measure % whose density with respect to LN,ε is
proportional to

exp

−κ∫ ε−γ−ε−γ |u(s)|2 + |∇u(s)|2 ds
2ε

 .

In fact this measure is a version of what is known in the literature as discrete
massive free field, discrete Ornstein-Uhlenbeck bridge or pinned ∇φ surface model
[She07, HSVW05]. The H1-norm in the exponent can be rewritten in terms of
the finite-dimensional coordinates. In fact for u ∈ HN,ε

0 with u(sN,εk ) = uk for
k = −N, . . . , N one has

‖u‖2H1(R) = ‖u‖2L2(R) + ‖u′‖2L2(R)

=
1
3
ε−γ

N

N∑
k=−N

u2
k + u2

k+1 + ukuk+1 +
N

ε−γ

N∑
k=−N

u2
k + u2

k+1 − 2ukuk+1(3.10)

=
N−1∑

k,j=−(N−1)

uk

(
Ik,jN,ε −∆k,j

N,ε

)
uj ,

where the (2N − 1)× (2N − 1) matrix (Ik,jN,ε) is given as

(3.11) Ik,jN,ε =
1
3
ε−γ

N


2 for k = j
1
2 for |k − j| = 1
0 else,

and the discrete Laplace operator ∆N,ε is defined as in (3.5). Denote the normal-
ization constant

ZN,ε2 =
∫

exp

−κ∫ ε−γ−ε−γ |u(s)|2 + |∇u(s)|2 ds
2ε

LN,ε(du).

Lemma 3.4. (i) ZN,ε2 is given as

(3.12)

√(
2επ
κ

)2N−1

det(−∆N,ε + IN,ε)−
1
2 .

(ii) In the sense of symmetric matrices we have the following Poincaré inequal-
ity

(3.13) IN,ε ≤ Cε−γ(−∆N,ε).

(iii) We have the following bound: For r ≥ 0

(3.14) %N,ε

{
u : ‖u‖H1 ≥

√
(2N − 1)ε

κ
+ r

}
≤ exp

(
−κr2/2ε

)
.
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Proof. (i) To see this one only has to note that κε−1 (−∆N,ε + IN,ε) is the inverse
covariance matrix of this finite-dimensional Gaussian measure.

(ii) Using the usual Poincaré inequality one can write for u ∈ HN,ε
0

−
N−1∑

k,j=−(N−1)

u
(
sN,εk

)
∆k,j
N,εu

(
sN,εj

)
= ‖u′‖2L2[−ε−γ ,ε−γ ]

≥ Cεγ‖u‖2L2[−ε−γ ,ε−γ ] = Cεγ
N−1∑

k,j=−(N−1)

u
(
sN,εk

)
Ik,jN,εu

(
sN,εj

)
.

(iii) To see (3.14) write with a finite-dimensional change of variables:

%N,ε {u : ‖u‖H1 ≥ r} =
1

ZN,ε2

∫
{u : ‖u‖H1≥r}

exp
(
−κ‖u‖

2
H1

2ε

)
LN,ε(du)

=

√( κ

2επ

)2N−1
∫
{PN−1

k=−(N−1) x
2
k≥r}

exp

(
−κ
∑N−1
k=−(N−1) x

2
k

2ε

)
dx−(N−1) . . . dxN−1.

In fact here one uses the linear transformation that transforms a Gaussian ran-
dom variable on a finite-dimensional space to a Gaussian random variable with
Id covariance matrix. Therefore, the problem reduces to considering a vector of
2N − 1 independent centered Gaussian random variables Xk with variance ε

κ . The
expectation

E

 N−1∑
k=−(N−1)

X2
i

 =
(2N − 1)ε

κ

and the spectral radius

σ2 =
ε

κ

are calculated easily such that (3.1) gives the desired result. �

4. Concentration around a curve in infinite-dimensional space

In this section we give the proof of Theorem 1.1. To this end we consider the
finite-dimensional measure

µN,ε(du) =
1

ZN,ε
exp

(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νN,ε(du),

with the normalization constant ZN,ε =
∫

exp
(
− 1
ε

∫
F (u(s))ds

)
νN,ε(du). Note

that although νN,ε is given by the finite-dimensional marginals of νε, the measure
µN,ε does not coincide with the finite-dimensional distribution of µε. The strategy
is now as follows: In Proposition 4.4 a lower bound on the discrete normalization
constant ZN,ε is given. This is achieved by calculating the integral in a tubular
neighborhood of the set of minimizers M . Then in Proposition 4.8 the rough energy
bound given in Proposition 2.2 is used to conclude concentration of the discretized
measure µN,ε around the curve of minimizers. Finally Lemma 4.13 gives a bound
on the discretization error which allows to finish the proof of concentration around
the curve of minimizers in the continuous case.

Recall the following version of the coarea formula:
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Lemma 4.1. Let f be a Lipschitz function f : A ⊆ E → I ⊆ R, where E is a n-
dimensional Euclidean space and A is an open subset and I some interval. Denote
by Ln,L1 and Hn−1 the Lebesgue measure on E, on R and the (n−1)-dimensional
Hausdorff measure on E respectively. Suppose that the gradient (which exists Ln-
a.e.) Df does not vanish Ln a.e. in A. Then for every nonnegative measurable
test function ϕ : A→ R one has the following formula:

(4.1)
∫
A

ϕ(x)Ln(dx) =
∫
I

L1(dξ)
∫
f−1(ξ)

Hn−1(dx)
1

|Df(x)|E
ϕ(x).

In order to apply formula (4.1) to µN,ε one needs the following:

Lemma 4.2. Consider the function f : A→ R, where A := {x ∈ m+L2 : distL2(x,M) <
β} is the open set in which the Fermi coordinates are defined, given by

f(x) = f(mξ + s) = ξ,

where x = mξ + s are the Fermi coordinates of x. Then f is Fréchet differentiable
and one has

(4.2) Df(x)[h] = Df(mξ + s)[h] =
〈m′ξ, h〉

|m′ξ|2 − 〈s,m′′ξ 〉
.

Proof. The differentiability follows from the implicit function theorem. To calculate
the derivative at x = mξ + s in direction h consider the function

Φ(v, w) = 〈mξ −mw + s+ vh,m′w〉,

defined in an environment of (0, ξ) ∈ R2. Noting that one has Φ(v, f(mξ+s+vh)) =
0 one can write

0 = ∂vΦ(v, f(mξ + s+ vh))|v=0 + ∂wΦ(v, f(mξ + s+ vh))|v=0Df(mξ + s)[h].

Observing that
∂vΦ(v, f(mξ + s+ vh))|v=0 = 〈h,m′ξ〉

and
∂wΦ(v, f(mξ + s+ vh))|v=0 = −〈m′ξ,m′ξ〉+ 〈s,m′′ξ 〉

concludes the proof. �

We want to apply the coarea formula to the function f just defined, restricted to
HN,ε. There is a slight inconvenience which originates from the fact that the norm
of the gradient which appears in 4.1 is the norm in the finite-dimensional space E
whereas the gradient of the function f is a function in L2(R). To resolve this is the
content of the next lemma:

Lemma 4.3. Let g : m + L2(R) → R be a Fréchet differentiable function and
denote by ∇g(x) its L2-gradient at point x. Consider then the function g̃ defined
on R2N−1 obtained by composition of the embedding R2N−1 → HN,ε and g. Denote
by ∇̃g̃ its gradient. Then one has the following inequality:

‖∇̃g̃‖R2N−1 ≤ 2

√
ε−γ

N
‖∇g‖L2 .
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Proof. We calculate the derivative of g̃ in direction ẽk = (0, . . . , 0, 1, 0, . . . 0) with
the 1 on k-th position. Embedding ẽk into HN,ε gives the hat function

(4.3) ek(s) =


0 for s /∈ [sN,εk−1, s

N,ε
k+1]

N
ε−γ

(
s− sN,εk−1

)
for s ∈]sN,εk−1, s

N,ε
k ]

N
ε−γ

(
sN,εk+1 − s

)
for s ∈]sN,εk , sN,εk+1].

Therefore, one obtains

(∇̃g̃)k =
∫
R

ek(s)∇g(s)ds =
∫ sN,εk+1

sN,εk−1

ek(s)∇g(s)ds.

Applying Cauchy-Schwarz inequality and using ‖ek‖∞ ≤ 1 one gets:

‖∇̃g̃‖2R2N−1 =
N−1∑

k=−(N−1)

(∫ sN,εk+1

sN,εk−1

ek(s)∇g(s)ds

)2

≤ 2
ε−γ

N

N−1∑
k=−(N−1)

∫ sN,εk+1

sN,εk−1

(∇g(s))2 ds

≤ 2
ε−γ

N
2‖∇g‖2L2(R).

(4.4)

�

Now we are ready to derive a lower bound on the normalization constant ZN,ε of
the finite-dimensional approximation of µε. Recall that µN,ε(du) = 1

ZN,ε
exp

(
− 1
ε

∫ ε−γ
−ε−γ F (u(s))ds

)
νN,ε(du)

where νN,ε is a discretized Brownian bridge. One gets the following bound:

Proposition 4.4. Assume N = N(ε) grows like ε−γ2 for ε decreasing to 0. Assume
that

(4.5) 0 < γ1 < γ < γ2 < 1.

Then the following bound holds for ε small enough:

ZN,ε ≥ exp
(
−C∗
ε

)
exp

(
−2C

(
ε−2γ−γ1

εN2

))√
N

ε−γ
(
ε−γ − ε−γ1 − 1

)
√
ε

√
ε−1−γ

N
exp

(
−C ε

−4γ−1−γ1

N4

)
exp

(
− εγ−1

)
c
− 2N−1

2
4

(
1 + Cε−γ

)− 2N−1
2 .

(4.6)

In particular, if one assumes that

−2γ − γ1 + 2γ2 > 0(4.7)

one obtains

(4.8) lim inf
ε↓0

ε logZN,ε ≥ −C∗.
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Proof. Using the definition of νN,ε one can write

ZN,ε =
∫
HN,ε

exp
(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νN,ε(du)

=
1

ZN,ε1

exp
(
−C∗
ε

)∫
HN,ε

exp
(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

− 1
ε

∫ ε−γ

−ε−γ

1
2
|u′(s)|2ds +

C∗
ε

)
LN,ε(du)

=
1

ZN,ε1

exp
(
−C∗
ε

)∫
HN,ε

exp
(
−1
ε
E(u)

)
LN,ε(du).

(4.9)

Recall that ZN,ε1 =
∫

exp
(
− 1
ε

∫ ε−γ
−ε−γ

1
2 |u′(s)|2ds

)
LN,ε(du) is the normalization con-

stant of the discretized Brownian bridge and LN,ε is the Lebesgue measure on
the finite-dimensional space HN,ε. In order to find a lower bound on ZN,ε we
can restrict the integration to a tubular neighborhood of M . More precisely set
Iε := [−ε−γ + ε−γ1 , ε−γ − ε−γ1 ] and

A :=
{
u ∈ HN,ε : u = mξ + v : 〈v,m′ξ〉L2(R) = 0 for some ξ ∈ Iε and ‖v‖H1(R) ≤ δ

}
,

for some δ to be determined later. For the moment we will only assume δ to be
small enough to be able to apply Funaki’s estimate (2.8) on the energy landscape.
Furthermore, denote by

Aξ :=
{
u ∈ HN,ε : u = mξ + v : 〈v,m′ξ〉 = 0 and ‖v‖H1(R) ≤ δ

}
.

Using Funaki’s estimate (2.8) for u = mξ + v ∈ A one can write

exp
(
−1
ε
E(u)

)
≥ exp

(
−c4
ε
‖v‖2H1(R)

)
.

Note the v is not an element of the discretized space HN,ε but a general function in
L2(R) that needs not vanish outside of [−ε−γ , ε−γ ]. But v can be well approximated
by a function vN,ε = u−mN,ε

ξ ∈ HN,ε
0 . In fact using Lemma 2.4 one gets

‖vN,ε − v‖H1(R) = ‖mN,ε
ξ −mξ‖H1(R) ≤ C

ε−γ

N
ε
−γ1

2 .

Putting this together one gets:

ZN,εZN,ε1 exp
(C∗
ε

)
≥
∫
A

exp
(
−c4
ε
‖v‖2H1(R)

)
LN,ε(du)

≥ exp
(
−2C

(
ε−2γ−γ1

εN2

))∫
A

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
LN,ε(du).

(4.10)

Let us concentrate on the integral term in equation (4.10). Using the coarea formula
(4.1) one gets:
(4.11)∫
A

exp
(
−2c4

ε
‖vN,ε‖2H1

)
LN,ε(du) =

∫
Iε

dξ
∫
Aξ

1
|∇̃f̃ |

exp
(
−2c4

ε
‖vN,ε‖2H1

)
HN,ε(du).
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where HN,ε is the codimension one Hausdorff measure on HN,ε. Using Lemma 4.2
and the observation from Lemma 4.3 one knows:

1
|∇̃f̃ |

≥ 1
2

√
N

ε−γ
‖m′ξ‖2L2(R) − 〈v,m′′ξ 〉L2(R)

‖m′ξ‖L2(R)
.

By choosing a smaller δ if necessary this can be bounded uniformly from below on

A by C
√

N
ε−γ such that one gets:

∫
A

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
LN,ε(du)

≥ C
√

N

ε−γ

∫
Iε

dξ
∫
Aξ

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
HN,ε(du).

(4.12)

Let us focus on the last integral. By a linear change of coordinates one can write
(4.13)∫

Aξ

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
HN,ε(du) =

∫
Bξ

exp
(
−2c4

ε
‖v‖2H1(R)

)
HN,ε(dv),

where Bξ =
{
v ∈ HN,ε

0 : 〈v,m′ξ〉L2(R) = 〈mξ −mN,ε
ξ ,m′ξ〉L2(R) and ‖v‖H1(R) ≤ δ

}
.

In order to conclude, we need the following lemma:

Lemma 4.5. Let E be a finite-dimensional Euclidean space with Lebesgue measure
L and codimension 1 Hausdorff measure H. Let a∗ = 〈a, ·〉 ∈ E∗ be a linear form
and x 7→ 〈x,Σx〉 be a symmetric, positive bilinear form. Furthermore, write for
b ∈ R and δ > 0

B̃b,δ
2

=
{
x ∈ E : a∗x = b and 〈x,Σx〉 ≤ δ2

}
.

Furthermore, set d2 = infx∈B̃b,∞〈x,Σx〉 and let n be a Σ-unit normal vector on
B̃0,∞, i.e. 〈n,Σx〉 = 0 for all x ∈ B̃0,∞ and 〈n,Σn〉 = 1. Then one has for every b
(4.14)∫
〈x,Σx〉≤δ2−d2

exp (−〈x,Σx〉)L(dx) ≤ 2δ

√
1

〈Σn,Σn〉 exp
(
d2
) ∫

B̃b,δ2
exp (−〈x,Σx〉)H(dx).

Furthermore, one has the following expressions for d2:

(4.15) d2 =
b2

〈a,Σ−1a〉 , and 〈a,Σ−1a〉 =
(

sup
η : 〈η,Ση〉=1

a∗(η)
)2

.

The vector n satisfies n = ± Σ−1a√
〈a,Σ−1a〉

such that

(4.16) 〈Σn,Σn〉 =
1

〈a,Σ−1a〉

(
sup

η : 〈η,η〉=1

a∗(η)

)2

.
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Proof. (Of Lemma 4.5): Using the coarea formula one can write:

∫
〈x,Σx〉≤δ2−d2

exp (−〈x,Σx〉)L(dx)

≤
∫ δ

−δ

∫
B̃0,δ2−d2

exp (−〈(y + λn),Σ(y + λn)〉)
√

1
〈Σn,Σn〉H(dy)dλ

≤
√

1
〈Σn,Σn〉

∫ δ

−δ

∫
B̃0,δ2−d2

exp (−〈y,Σy〉)H(dy)dλ

= 2δ

√
1

〈Σn,Σn〉

∫
B̃0,δ2−d2

exp (−〈y,Σy〉)H(dy)

= 2δ

√
1

〈Σn,Σn〉 exp
(
d2
) ∫

B̃0,δ2−d2
exp (−〈(y + dn),Σ(y + dn)〉)H(dy)

= 2δ

√
1

〈Σn,Σn〉 exp
(
d2
) ∫

B̃b,δ2
exp (−〈y,Σy〉)H(dy).

(4.17)

The other assertions are elementary. �

In order to apply this lemma to the case E = HN,ε
0 , a∗(v) = 〈v,m′ξ〉L2(R) b =

〈mξ−mN,ε
ξ ,m′ξ〉L2(R) and 〈v,Σv〉 = 2c4

ε ‖v‖2H1(R) one needs to evaluate the constants
d and 〈Σn,Σn〉 in this context. This is the subject of the next lemma. Note that the
scalar product 〈·, ·〉 from Lemma 4.5 corresponds to the Euclidean scalar product
on HN,ε

0 .

Lemma 4.6. One has for ε small enough:

(i) 〈mξ −mN,ε
ξ ,m′ξ〉L2(R) ≤ Cε−γ1/2 ε

−2γ

N2 ,

(ii) d2 ≤ C ε−4γ−1−γ1

N4 ,
(iii) 〈Σn,Σn〉 ≥ C ε−1−γ

N .

Proof. (Of Lemma 4.6) (i) Applying Cauchy-Schwarz inequality one gets

(4.18) 〈mξ −mN,ε
ξ ,m′ξ〉L2(R) ≤ ‖mξ −mN,ε

ξ ‖L2(R)‖m′ξ‖L2(R) ≤ Cε−γ1/2
ε−2γ

N2
.

Here Lemma 2.4 was used.
(ii) In order to get a lower bound on 〈a,Σ−1a〉 we use the variational principle

given in (4.15). Without loss of generality we may assume that ξ = 0. In the
present context (4.15) reads:

(4.19) d2 =
b2

〈a,Σ−1a〉 , and 〈a,Σ−1a〉 =
(

sup
η∈HN,ε0 :

2c4
ε ‖η‖H1=1

〈m′, η〉L2(R)

)2

.

Thus in order to find a lower bound on 〈a,Σ−1a〉 one needs to choose an appropriate
test function η ∈ HN,ε

0 . To this end set k̄ = inf
{
k : sN,εk > 1

}
. Recall that the

sN,εk = kε−γ

N define the discretization of functions in HN,ε
0 . For ε small enough one
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has 1 ≤ sN,ε
k̄
≤ 2. Set

(4.20) η̄(s) =



0 for s ≤ −sN,ε
k̄

s+sN,ε
k̄

sN,ε
k̄

for − sN,ε
k̄

< s ≤ 0
sN,ε
k̄
−s

sN,ε
k̄

for 0 < s ≤ sN,ε
k̄

0 for sN,ε
k̄

< s.

Then η̄ ∈ HN,ε
0 and

(4.21)
2c4
ε
‖η̄‖2H1 =

2c4
ε

(
2

sN,ε
k̄

+
2
3
sN,ε
k̄

)
≤ 20 c4

3ε
.

On the other hand m′ is strictly positive and we can write

(4.22) 〈η̄,m′〉L2(R) =
∫ 2

−2

η̄(s)m′(s)ds ≥ inf
s∈[−2,2]

m′(s)
∫ 2

−2

η̄(s)ds ≥ inf
s∈[−2,2]

m′(s).

Thus we get 〈a,Σ−1a〉 ≥ Cε. Using (4.18) one obtains:

d2 ≤ C ε
−4γ−1−γ1

N4

(iii) To derive a lower bound on 〈Σn,Σn〉 first note that

〈a,Σ−1a〉 =

(
sup

〈η,Ση〉=1

〈a, η〉
)2

=

 sup
η∈HN,ε0 :

2c4
ε ‖η‖2H1=1

〈η,m′〉L2(R)

2

(4.23)

≤ ‖m′‖2L2(R)

ε

2c4
.

To bound the second factor choose the test function η̄ as above in (4.20). Then one
gets noting ‖η̄‖∞ ≤ 1

〈η̄, η̄〉 =
k̄∑

k=−k̄

(
η̄(sN,εk )

)2

≤ C N

ε−γ
.

We obtain the desired estimate from (4.16) together with (4.23) and (4.22). �

End of proof of Proposition 4.4: Applying Lemma 4.5 and 4.6 to equation (4.13)
one gets:

∫
Bξ

exp
(
−2c4

ε
‖v‖2H1(R)

)
HN,ε(dv)

≥ C
√
ε

δ

√
ε−1−γ

N
exp

(
−C ε

−4γ−1−γ1

N4

)∫
B

exp
(
−2c4

ε
‖v‖2H1(R)

)
LN,ε(dv),

(4.24)

where B =
{
v ∈ HN,ε

0 : 2c4
ε ‖v‖2H1 ≤ 2c4

ε δ
2 − d2

}
. Due to Lemma 4.6 (ii) and (4.5)

εd2

2c4
↓ 0 as ε ↓ 0 such that the last integral in (4.24) can be bounded from below by

(4.25)
∫
‖v‖2

H1≤δ2
exp

(
−2c4

ε
‖v‖2H1(R)

)
LN,ε(dv) = ZN,ε2 %N,ε

(
‖v‖2H1 ≤ δ2

2

)
.
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Here % is the massive Gaussian free field discussed in Lemma 3.4 for κ = 2c4.
Lemma 3.4 together with (4.5) yields that %N,ε

(
‖v‖2H1 ≤ δ2

2

}
→ 1 for ε ↓ 0. This

probability can thus be bounded from below by 1
2 for ε small enough. Thus the

following lemma finishes the proof. �

Lemma 4.7. The Gaussian normalization constants ZN,ε1 and ZN,ε2 satisfy the
following:

(4.26) exp
(
− εγ−1

)
c
− 2N−1

2
4

(
1 + Cε−γ

)− 2N−1
2 ≤ ZN,ε2

ZN,ε1

≤ exp
(
− εγ−1

)
c
− 2N−1

2
4 .

Proof. By Lemma 3.4 and equation (3.6)

ZN,ε2

ZN,ε1

= (2c4)−
2N−1

2 exp
(
−εγ−1

)( det (−∆N,ε)
det (IN,ε −∆N,ε)

) 1
2

.

By the Poincaré inequality (3.13) one has

−∆N,ε ≤ (IN,ε −∆N,ε) ≤
(
1 + Cε−γ

)
(−∆N,ε)

in the sense of symmetric matrices. This implies

det(−∆N,ε) ≤ det(IN,ε −∆N,ε) ≤
(
1 + Cε−γ

)2N−1 det(−∆N,ε).

This finishes the proof. �

As a next step an upper bound on µN,ε(Ac) is derived:

Proposition 4.8. Choosing γ1 and γ2 according to (4.5) one has for δ ≤ δ0:

(4.27) lim sup
ε↓0

ε log
(
ZN,εµN,ε (distH1(u,M) ≥ δ)

)
≤ −(C∗ + c0δ

2).

In particular, setting δ = 0 one obtains

(4.28) lim sup
ε↓0

ε log ZN,ε ≤ −C∗.

Proof. Denote by Aδ := {u : distH1(u,M) ≥ δ}. Then one has

ZN,εµN,ε(Aδ) = exp
(
−C∗
ε

) 1

ZN,ε1

∫
Aδ

exp
(
−1
ε
E(u)

)
LN,ε(du)

≤ exp
(
−C∗ + c0δ

2

ε

) 1

ZN,ε1

∫
Aδ

exp
(
−1
ε

(
E(u)− c0δ2

))
LN,ε(du).

(4.29)

Note that by (2.9) E(u)− c0δ2 ≥ 0 on Aδ. So on this set one gets

exp
(
−1
ε

(
E(u)− c0δ2

))
≤ exp

(
−
(
E(u)− c0δ2

))
.

Therefore, one gets

∫
Aδ

exp
(
−1
ε

(
E(u)− c0δ2

))
LN,ε(du) ≤

∫
Aδ

exp
(
−
(
E(u)− c0δ2

))
LN,ε(du)

≤
∫
Aδ
ZN,ε3 exp

(∫ ε−γ

−ε−γ
−F
(
u(s)

)
ds + c0δ

2

)
ν1,N (du),

(4.30)
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where ν1,N is the discretized Brownian bridge without rescaling and

ZN,ε3 =
∫

exp
(
−
∫ ε−γ

−ε−γ

1
2
|u′(s)|2 ds

)
LN,ε(du)

is the appropriate normalization constant. Using the positivity of F the last term
in (4.30) can thus be bounded by

ZN,ε3 exp
(
c0δ

2
)
.

Plugging this into (4.29) yields

ZN,εµN,ε(Aδ) ≤ exp
(
−C∗ + c0δ

2

ε

) 1

ZN,ε1

ZN,ε3 exp
(
c0δ

2
)
.

This finishes the proof together with the following bound on the normalization
constants ZN,ε1 and ZN,ε3 . �

Lemma 4.9. One has
ZN,ε3

ZN,ε1

= ε−
2N−1

2 .

Proof. This is a direct consequence of the fact that for matrices A ∈ Rn×n and
ξ ∈ R

det(ξA) = ξn det(A),

as well as the explicit formula for the Gaussian normalization constants. �

One can now summarize the finite-dimensional calculation in the following:

Corollary 4.10. Choosing the constants γ1 and γ2 as in (4.5),(4.7) one obtains
for δ ≤ δ0:

lim sup
ε↓0

ε log
(
µN,ε(distH1(u,M) ≥ δ)

)
≤ −c0δ2.

Note that such a choice is possible for all γ < 1.

Proof. Dividing and using the estimates from above yields the result. �

Using the continuous embedding of H1 into L∞ one gets:

Corollary 4.11. Choosing the constants γ1 and γ2 as in (4.5), (4.7) one obtains
for δ ≤ δ0:

lim sup
ε↓0

ε log
(
µN,ε(distL∞(u,M) ≥ δ)

)
≤ −c̃0δ2.

Such a choice is possible for all γ < 1.

As a last step in this section we need to control the deviations from the discretized
measure with the help of the Gaussian estimates derived in Section 3. To this end
one has to estimate the deviations of the normalization constant Zε from ZN,ε. In
order to proof the following lemma we will need an additional assumption on the
double well potential F .

Assumption 4.12.

(4.31) |F ′(u)| is bounded for u ∈ R .
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In fact one can simply modify the potential F by cutting it off outside of some
compact set, such that it satisfies (4.31). We will proceed now by proving Theorem
1.1 under the additional assumption (4.31). The general case will then follow as a
corollary.

Proposition 4.13. Assume that F satisfies (4.31). Then the following holds:

(i) For every γ3 > 0 we have for ε small enough:∫
Hε

exp
(
− 1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du)(4.32)

≥
(

1
2

)2N

exp

(
−
√

6‖F ′‖∞
3

ε−
1
2− 3

2γ−γ3

N
1
2

)
(ii) For ε small enough we have:

∫
Hε

exp
(1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du)

(4.33)

≤
(

4‖F ′‖2∞ε1−3γ

πN3

)N
exp

(√
6‖F ′‖∞

3
ε−

1
2− 3

2γ−γ3

N
1
2

+
1

2π2
‖F ′‖2∞

ε−1−3γ

N2

)
.

(iii) For γ < 2
3 the the normalization constant satisfies:

(4.34) lim inf
ε↓0

ε logZε = −C∗.

Recall that uN denotes the discretization of the Brownian bridge as introduced in
Section 3.

Proof. Applying Cauchy-Schwarz inequality and the independence of the Brownian
bridges on the short intervals derived in Lemma 3.2 one gets:∫

Hε
exp

(
− 1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du)

≥
∫
Hε

exp
(
− 1
ε

(
ε−γ

N

) 1
2

‖F ′‖∞
N−1∑
k=−N

‖u− uN‖L2[sN,εk ,sN,εk+1]

)
νε(du)(4.35)

=
N−1∏
k=−N

∫
Hε

exp
(
− 1
ε

(
ε−γ

N

) 1
2

‖F ′‖∞‖u− uN‖L2[sN,εk ,sN,εk+1]

)
νε(du).

In the same way one can see that∫
Hε

exp
(1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du)

≤
N−1∏
k=−N

∫
Hε

exp
(1
ε

(
ε−γ

N

) 1
2

‖F ′‖∞‖u− uN‖L2[sN,εk ,sN,εk+1]

)
νε(du).(4.36)

Thus in order to prove (4.32) and (4.33) we have to bound the integrals over the
Brownian bridges on the short intervals. To simplify the equations we introduce
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the following notation:

αε =

√
ε
ε−2γ

6N2

βε =
1
ε

(
ε−γ

N

) 1
2

‖F ′‖∞

δε =
π2N2

ε1−2γ
.

In this notation the concentration inequality (3.8) reads

νε
(
‖u− uN‖L2[sN,εk ,sN,εk+1] ≥ αε + r

)
≤ exp

(
−r2δε

)
.(4.37)

Now let us proceed to prove (4.32): Using the formula

(4.38) E[eβX ] = 1 + β

∫ ∞
0

eβxP [X ≥ x] dx,

which holds for every non-negative random variable X and every β ∈ R one obtains:∫
Hε

exp
(
− βε‖u− uN‖L2[sN,εk ,sN,εk+1]

)
νε(du)

= 1− βε
∫ ∞

0

e−βεxP
[
‖u− uN‖L2[sN,εk ,sN,εk+1] ≥ x

]
dx

(4.39)

≥ 1− βε
∫ ε−γ3αε

0

e−βεx dx− βε
∫ ∞
ε−γ3αε

e−βεx exp
(
− (x− αε)2δε

)
dx

= e−βεε
−γ3 αε − e−βεε−γ3 αεβε

∫ ∞
0

e−βεx exp
(
−
(
x+ αε(ε−γ3 − 1)

)2
δε

)
dx.

Using the elementary inequality∫ ∞
0

exp(−βx− δx2)dx ≤
∫ ∞

0

exp(−βx)dx ≤ 1
β
,

which holds for β, δ > 0 the last integral in (4.39) can be bounded by∫ ∞
0

e−βεx exp
(
−
(
x+ αε(ε−γ3 − 1)

)2
δε

)
dx

≤ exp
(
− δεα2

ε(ε
−γ3 − 1)2

) 1
βε + 2δεαε(ε−γ3 − 1)

Noting that δεα2
ε is a quantity of order O(1) one sees that this term decays to zero

exponentially in ε. In particular for ε small enough

βε

∫ ∞
0

e−βεx exp
(
−
(
x+ αε(ε−γ3 − 1)

)2
δε

)
dx ≤ 1

2
.

Plugging this into (4.39) and using (4.35) finishes the proof of (4.32).
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To derive the lower bound in (4.34) using (4.38) one gets∫
Hε

exp
(
βε‖u− uN‖L2[sN,εk ,sN,εk+1]

)
≤ 1 + βε

∫ αε

0

eβεx dx + βε

∫ ∞
αε

eβεx exp
(
− δε

(
x− αε

)2)dx(4.40)

= eβεαε + eβεαεβε

∫ ∞
0

exp
(
βεx− δεx2

)
dx.

Completing the squares the last integral can be bounded by∫ ∞
0

exp
(
βεx− δεx2

)
dx = exp

( β2
ε

4δε

) ∫ ∞
0

exp
(
−δε

(
x− βε

2δε

)2
)

(4.41)

≤ exp
( β2

ε

4δε

)√ π

δε
.

Plugging this into (4.40) and using (4.36) yields the desired result.
To see (4.33) write:

Zε =
∫
Hε

exp

(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du)

=
∫
Hε

exp

(
−1
ε

∫ ε−γ

−ε−γ
F (uN (s))ds

)
exp

(
−1
ε

∫ ε−γ

−ε−γ

(
F (u(s))− F (uN (s))

)
ds

)
νε(du)

≥
∫
Hε

exp

(
−1
ε

∫ ε−γ

−ε−γ
F (uN (s))ds

)
exp

(
− 1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du).

(4.42)

Using the independence of the discretized Brownian bridge and the bridges on the
small intervals derived in Lemma 3.2 the last term can be rewritten as

(4.43) ZN,ε
∫
Hε

exp
(
− 1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du).

If one chooses N = N(ε) growing like ε−γ2 according to (4.32) the exponent in the
error terms scales like

ε−
1
2− 3

2γ−γ3+
γ2
2 ,

so that if one chooses the γi such that (4.5),(4.7) hold and in addition

−1
2
− 3γ

2
− γ3 +

γ2

2
> −1(4.44)

γ3 > 0(4.45)

the result follows from the bound (4.8) on the discretized normalization constant.
Note that such a choice is possible for γ < 2

3 .
For the upper bound in (4.34) similar to (4.42) and (4.43) one can write

(4.46) Zε ≤ ZN,ε
∫
Hε

exp
(1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du).

For γ < 2
3 one can chose the parameters γi such that (4.7)-(4.5) and (4.44)-(4.45)

hold and in addition

(4.47) −3γ + 2γ2 > −1.
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Then the bound (4.33) implies

lim sup
ε↓0

ε log
∫
Hε

exp
(1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ
|u(s)− uN (s)|ds

)
νε(du) = 0.(4.48)

Thus (4.28) implies the upper bound in (4.34). �

In the sequel we will always assume that the γi satisfy (4.7)-(4.5), (4.44)-(4.45)
and (4.47). Now one can conclude:

Proposition 4.14. The statement of Theorem 1.1 holds under the additional as-
sumption (4.31).

Proof. One can estimate

µε
(

distL2(u,M) ≥ δ
)

=
1
Zε

∫
{distL2 (u,M)≥δ}

exp
(
− 1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du)

≤ 1
Zε

∫
A1

exp
(
− 1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du)

+
1
Zε

∫
A2

exp
(
− 1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du),

(4.49)

where

A1 =
{
‖u− uN‖L2[−ε−γ ,ε−γ ] ≥

δ

2

}
A2 =

{
distL2(uN ,M) ≥ δ

2

}
.

The concentration inequality (3.7) implies together with the lower bound on the
normalization constant (4.34) that the first integral decays to zero on a quicker
exponential scale than ε−1. For the integral over A2 we can write using the inde-
pendence of the discretized Brownian bridges and the bridges on the intermediate
intervals again:

1
Zε

∫
A2

exp
(
− 1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du)

≤ ZN,ε

Zε
1

ZN,ε

∫
A2

exp
(
− 1
ε

∫ ε−γ

−ε−γ
F (v(s))ds

)
νε(du)×∫

Hε
exp

(1
ε
‖F ′‖∞

∫ ε−γ

−ε−γ

∣∣u(s)− uN (s)
∣∣ds
)
νε(du).(4.50)

The fraction ZN,ε

Zε can be bounded using (4.32), the integral in the last line is
bounded due to (4.48). Thus the statement follows from the result on the dis-
cretized measures in Corollary 4.10. This finishes the proof for the L2-norm. To
the see analogue result for the L∞-norm repeat the same reasoning with Lemma
4.10 replaced by Lemma 4.11 and the L2 bound (3.7) replaced by the L∞-bound
(3.9). �
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Proof. (Of Theorem 1.1 in the general case): Denote by dist either distL2 or distL∞ .
Assume that F only satisfies assumptions (1.2). By cutting F off outside of [−2, 2]
one can choose a function F̄ that coincides with F on [−2, 2] that satisfies (1.2)
and (4.31) as well as

F̄ (u) ≤ F (u) for u ∈ R.
Then one can write

µε (dist(u,M) ≥ δ) =

∫
{dist(u,M)≥δ} exp

(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)∫

exp
(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)

≤
∫
{dist(u,M)≥δ} exp

(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)∫

{‖u‖L∞≤2} exp
(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)

(4.51)

The denominator of this fraction coincides with∫
{‖u‖L∞(R)≤2}

exp
(
−ε−1

∫ ε−γ

−ε−γ
F̄ (u(s))ds

)
νε(du)

and the numerator is bounded from above by∫
{dist(u,M)≥δ}

exp
(
−ε−1

∫ ε−γ

−ε−γ
F̄ (u(s))ds

)
νε(du),

such that one can write

µε (dist(u,M) ≥ δ) ≤
∫
{dist(u,M)≥δ}} exp

(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)∫

exp
(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)

×

×
∫

exp
(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)∫

{‖u‖L∞≤2} exp
(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)

.

(4.52)

Now applying Proposion 4.14 shows that the second factor can be bounded by 2
for ε small enough and thus applying Proposion 4.14 to the first factor yields the
desired result. �

With a similar argument one can see that the bounds on the normalization
constant in Proposition 4.13 also holds without assumption (4.31):

Corollary 4.15. Suppose γ < 2
3 . Then one has the following bound:

(4.53) lim inf
ε↓0

ε logZε = −C∗.

It remains to prove Corollary 1.2:

Proposition 4.16. The family of measures µ̃ε is tight. All points of accumulation
are concentrated on functions of the type

(4.54) m̃ξ(s) = −1[−1,ξ](s) + 1[ξ,1](s).
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Proof. Denote by M̃ = {m̃ξ : ξ ∈ [−1, 1]} and dist(ũ, M̃) = infξ∈[−1,1] ‖ũ−m̃ξ‖L2[−1,1].

Furthermore, denote by m̃ε
ξ(s) = m

(
s−ξ
ε

)
. Note that for all ξ ∈ [−1, 1] m̃ε

ξ con-

verges to m̃ξ in L2. Now choose δ > 0 and ε0 such that ‖m̃ε
ξ − m̃ξ‖L2 ≤ δ

2 for all
ε ≤ ε0. Then Theorem 1.1 implies that

µ̃ε
(

distL2(ũ, M̃) ≥ δ
)
≤ µ̃ε

(
inf
ξ
‖ũ− m̃ε

ξ‖L2[−1,1] ≥
δ

2

)
≤ µε

(
distL2(T ε(ũ),M) ≥ δ

2
√
ε−γ

)
↓ 0.

(4.55)

This is sufficient to show the tightness of the measures {µ̃ε}. In fact fix a small
constant κ > 0. Let us construct a precompact set K such that µ̃ε(KC) ≤ κ. For
a fixed N ∈ N due to (4.55) there exists εN such that for all ε ≤ εN

µ̃

(
dist(ũ, M̃) ≥ 1

2N

)
≤ κ

2N
.

In particular, there exist finitely many ξNi ∈ [−1, 1] i = 1, . . . , iN such that for all
ε ≤ εN

µ̃ε
(
∪iB

(
m̃ξNi

,
1
N

))
≥ 1− κ

2N
.

Furthermore, due to tightness of the measures (µ̃ε, ε ∈ [εN , 1]) there exist finitely
many balls B̃Ni of radius 1

N such that for all ε ∈ [εN , 1] one has

µ̃ε (∪iBi) ≥ 1− κ

2N
.

Set KN =
(⋃

iBi

)
∪
(⋃

iB
(
m̃ξNi

, 1
N

))
and K = ∩NKN . Then K is precompact

and for all ε has measure ≥ 1−κ. This shows tightness. The concentration follows
from (4.55). �

Acknowledgements. The author wishes to express his gratitude to Tadahisa Funaki for

originally suggesting a related problem and for encouraging discussions. He furthermore

thanks Felix Otto for helpful discussions and in particular his suggestion for the proof of

Proposition 2.2

References

[AC79] S. Allen and J. Cahn. A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening. Acta Metallurgica, 27(6):1085 – 1095,
1979.
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