APPROXIMATING ROUGH STOCHASTIC PDES

MARTIN HAIRER, JAN MAAS, AND HENDRIK WEBER

ABSTRACT. We study approximations to a class of vector-valued equations of
Burgers type driven by a multiplicative space-time white noise. A solution theory
for this class of equations has been developed recently in [Hairer, Weber, Probab.
Theory Related Fields, 2013]. The key idea was to use the theory of controlled
rough paths to give definitions of weak / mild solutions and to set up a Picard
iteration argument.

In this article the limiting behaviour of a rather large class of (spatial) approx-
imations to these equations is studied. These approximations are shown to con-
verge and convergence rates are given, but the limit may depend on the particular
choice of approximation. This effect is a spatial analogue to the It6-Stratonovich
correction in the theory of stochastic ordinary differential equations, where it
is well known that different approximation schemes may converge to different
solutions.

1. INTRODUCTION

The aim of the present paper is to study approximations to vector-valued sto-
chastic Burgers-like equations with multiplicative noise. These equations are of
the form

O = v 0%u + F(u) + G(u)dpu + 0(u) €, (1.1)
where the function v = u(f,z;w) € R™ is vector-valued. We assume that the
functions F': R” — R™ and G,0: R® — R™ "™ are smooth and the products
in the terms G(u)0,u as well as in 6(u)¢ are to be interpreted as matrix vector
multiplication. The noise term ¢ denotes an R™-valued space-time white noise and
the multiplication should be interpreted in the sense of Itd integration against an
L?-cylindrical Wiener process.

In the case G = 0, approximations to (I.T) have been very well studied: we re-
fer to [Gyo98bl, (Gy699, IDGO1]] for some of the earlier results in this direction. For
non-zero G, there is a clear distinction between the gradient case, where G = VG
for some sufficiently regular function G: R" — R™ (so that dyu = G(u)0du
would describe a system of conservation laws), and the general case. In the gra-
dient case, existence and uniqueness for (I.I) has been known at least since the
nineties [DPDT94, |Gy698al] and convergence results for numerical schemes have,
for example, been obtained in [AG06, JBOO].

The emphasis of the present article is on the general, non-gradient, case. A
satisfactory solution theory for the general case is much more involved than the
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gradient case and has been given only very recently [Hail2, [ HW10]. The difficulty
in treating (I.I) lies in the lack of spatial regularity of its solutions. In fact, it
follows from the results in [HW10] that solutions to @) take values in C¢ for any
o< % but not for o = % Unfortunately, it turns out that the pairing

C* x C% 3 (u,v) = udyv (1.2)

is well-defined if and only if o > % Even worse: there exists no “reasonable” Ba-
nach space B containing the solutions to the linearised version of and such that
extends to a continuous bilinear map from B x B into the space of Schwartz
distributions, see for example [Lyo91| and [LCLO7]. As a consequence, it is not
clear at all a priori how to interpret the term G(u)0yu in and the classical
approach to the construction of mild solutions fails.

In all of the above mentioned references on the gradient case, this issue is re-
solved by exploiting the conservation law structure of the nonlinearity. This means
that the chain rule is postulated and the nonlinearity is rewritten as

G(u(t,z)) Opu(t,z) = 9.G(u(t,z)) , (1.3)

which makes sense as a distribution as soon as v is continuous. The approximation
schemes studied e.g. in [AGO6L JBO9] respect this conservation law structure by
considering natural approximations of 0, G. For example, it is not difficult to show
that if u. solves

Opue = v O2u. + Flu.) + é(g(us(t,a} + 5)) — g(ug(t,x))) +0(u) €, (1.4)

then u. converges to u for € | 0. Similarly, full finite difference / element approxi-
mations also converge.

In the non-gradient case, i.e. when such a function G does not exist, this ap-
proach does not work. The key idea developed in [Hail2,[HW10] to overcome this
difficulty is the following: in order to define the product G (u(t,z)) dyu(t, =) as a
distribution, it has to be tested against a smooth test function (. This expression

takes the form
vy

/7r o(z) G(u(t, x)) Opult, z) do = / o(z) G(u(t, x)) dyu(t,z). (1.5)

—T —T

The fact that we expect u to behave like a Brownian motion as a function of the
space variable x suggests that one should interpret this expression as a kind of
stochastic integral. In particular, a stochastic integration theory is needed to cap-
ture stochastic cancellations. It turns out that the theory of controlled rough paths
[Lyo98, LQO02, ILCLO7, |Gub04, [EV10,|GT10] provides a suitable way to deal with
spatial stochastic integrals like (I.5). Using this idea, a concept of solutions is
given in [Hail2| [HW10]. These solutions exist and are unique up to a choice of
iterated integral which corresponds to the choice of the integral of u against itself.
This is a situation analogous to the choice between It6 and Stratonovich integral
that is familiar from the classical theory of SDEs.

Even in the gradient case, effects of this non-uniqueness can be observed. A
posteriori, this is not surprising: after some reflection, it clearly appears that pos-
tulating the chain rule (I.3) is a rather bold step to take! Indeed, we have just seen
that the expression (I.3)) is akin to a stochastic integral, and we know very well that
the usual chain rule only holds if such an integral is interpreted in the Stratonovich
sense, while it fails if it is interpreted in the Itd sense. In [HM12] approximations
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to (I.1)) are studied in the special case G = VG when the noise is additive, i.e. if
O(u) = 1. For a whole class of different natural approximation schemes, conver-
gence to a stochastic process @ is shown. The main difference with previous works
is that in [HM12]], natural discretisations of G(u) 0, u instead of natural discretisa-
tions of 0, (u) are considered. A typical example of the type of discretisation for
the nonlinearity considered there is

G(u(t,x)) %(u(t,:v—{—s) —u(t, z)). (1.6)

In general, the limiting process & = lim._;0 u. turns out not to be a solution of
(T.1) in the classical sense. Instead, it solves a similar equation with an additional
reaction term. This extra term depends on the specific choice of approximation and
it can be calculated explicitly. As noted in [HM12]], this additional term is exactly
the correction that appears when changing to a different stochastic integral.

In the present work, these approximation results are extended to the non-gradient
case with multiplicative noise. We study a wide class of approximations (essen-
tially the same as in [HM12]] but with slightly different technical assumptions) and
extend the convergence result to the general case. Unsurprisingly, the techniques
we use are quite different from [HM12], since the notion of solution for the limit-
ing object is completely different. We make full use of the machinery developed
in [Hail2l HW10|] and we develop a method to include approximations to rough
integrals. In particular, we do obtain an explicit rate of convergence of the order
£57" for K arbitrarily small.

There are several motivations for this work: Equation (I.1]) appears, for example,
in the path sampling algorithm introduced in [HSVO7]] (see also [Hail2l]). So far,
the fact that the limit depends on the specific choice of approximation scheme had
been shown only in the gradient case with additive noise. In this work we complete
the picture by showing that the same effect can be observed in the general case and
we obtain an expression for the correction term that arises.

Another main motivation is to illustrate how the rough path machinery can be
used to obtain concrete approximation results, including convergence rates. This
is particularly interesting, as similar techniques were recently used in [Haillb] to
give a solution theory for the KPZ equation [KPZ86]

Oth = 02h + MN0:h)* —oco + €,

where £ denotes space-time white noise and “co” denotes an “infinite constant” that
needs to be subtracted in order to make sense of the diverging term (9,h)2. This
equation is a popular model for surface growth (see e.g. [Corl1]] and the references
therein). It is conjectured that a large class of microscopic surface growth models
(e.g. the lattice KPZ equation [SS09] and variations on the weakly asymmetric
simple exclusion process [[GJ10, [Ass11]]), converge to h in suitable scaling limits,
but so far this has only been shown for the weakly asymmetric simple exclusion
process [BG97].

The present article provides a case study illustrating how one can obtain approx-
imation results for a class of equations exhibiting similar features to those of the
KPZ equation (see [Haillb, Section 4]). In this sense, the present work is really
a “proof of concept” that lays the foundations for further analytical investigations
into the universality of the KPZ equation. Notice that although the KPZ equation
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has additive noise, the construction in [Hail 1b] yields an equation that is very close
to the case of multiplicative noise treated here.

1.1. Framework and main result. For ¢ > 0 we consider a class of approximat-
ing stochastic PDEs given by

du, = (VA&UE 4 F(u) + G(ua)DguE>dt + 0(uz) HodW

u:(0) = ug :

Here, as usual, we have replaced the formal £ with the stochastic differential of a
cylindrical Brownian motion W on L?. The integral against dWW should further-
more be interpreted in the 1t6 sense. For simplicity, we assume that x takes values
in [—m, 7] and we endow with periodic boundary conditions. We do not ex-
pect our results to significantly depend on this choice. Throughout the paper we
will assume that ' € C', G € C3, and § € C2.

The operators A., D., and H. appearing in are Fourier multipliers provid-
ing approximations to 82, 9, and the identity respectively. In terms of their action
in Fourier space, they are given by

@(k)z—kﬁ f(ek)a(k) (T:3p)
/D@(k) kg(ek)a(k) , (T3b)
H.W (k) = h(ek)W (k) . T3k

Throughout the paper we will make some standing assumptions on the cut-off func-
tions f, g and h.

1.7)

Assumption 1.1. The function f : R — (0, +00] is even, satisfies f(0) = 1, and
is continuously differentiable on an interval [—0, §] around 0. Furthermore, there
exists ¢y € (0,1) such that f(k) > cy forall k > 0.

Besides this weak regularity assumption of f near the origin, we also need a
global bound on its oscillations. In order to state this bound, we introduce the
family of functions

be(k) =exp (— k*f(k)t) .
With this notation at hand, we assume that

Assumption 1.2. The functions by are uniformly bounded in the bounded variation
norm:

sup‘bt < 00.

SUp [y

We make the following assumption on the approximation of the spatial deriva-
tive.

Assumption 1.3. There exists a signed Borel measure i such that
[ € utde) = g,
and such that -
p(R) =0, |ul(R) < oo, / et =1 [ Jaff ul(dn) < oo (19)

In particular, we have (D.u) = 1 : Jgulx + ey) u(dy), where we identify
w: [—m,m] — R with its perzodlc extension on all of R.
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Note that the case Deu(z) = L(u(z+¢) — u(z)) mentioned in (1.4) and (1.6) is
included as special case i = d; — &g. Finally, we make the following assumption
on the approximation of the noise.

Assumption 1.4. The function h is even, bounded and so that h*/ f is of bounded
variation. Furthermore, h is twice differentiable at the origin with h(0) = 1 and

1(0) = 0.

Note that the assumptions on g and h are identical to those imposed in [HM12].
Regarding the function f, Assumption|l.1|is actually weaker than the correspond-
ing assumption in [HM12]. However, we require the additional Assumption [T.2]
This assumption is not too restrictive and in particular all the examples discussed
in [HM12] satisfy it. See Remark @] below for the main reason why this addi-
tional assumption is required. Note that the assumptions on f do not imply that the
approximated heat semigroup S, (t) := e*®< is continuous at 0 in the space of con-
tinuous functions. This is natural in the context of numerical approximations, since
these would always involve the projection onto a finite-dimensional subspace. See
Subsections[2.2] and [2.3| below for a more detailed discussion of this point.

Let @ be the solution of the equation

dis = (uaga + F(a) + G(a)ds u) dt + 0(a) dW
u(0) = u® .

In this equation, the vector valued function F' is given by

(1.10)

F = (F'— A60,Gi6L) (1.11)
where we follow the convention to sum over repeated indices. The correction con-
stant A can be calculated explicitly as

(1 — cos(yt))h?(t)
2771// / 0 p(dy)dt . (1.12)

Note that a straightforward calculation shows that A is indeed well-defined, as
a consequence of the fact that h> < f by assumption and that |u| has a finite
second moments. The constant A is identical to the constant appearing in [HM12].
There, it has been calculated for several natural approximation schemes including
the case where only the nonlinearity is discretised, as well as a finite difference and
a Galerkin discretisation.

Note that in the non-gradient case G # VG, has to be interpreted as
in [HW10]]. Actually, there a slightly different equation is considered — the equa-
tion studied in [HW10] does not include the reaction term F and more importantly,
global boundedness of (G, 6 as well as its derivatives up to order three is assumed to
guarantee global existence. Treating the additional reaction term F is a straightfor-
ward modification that does not pose any problem for this approach. In the present
paper, we also drop the assumption on the boundedness of F', G and 6, so we allow
for explosion in finite time. We will deal with this by working up to a suitable
stopping time. More precisely, for any K > 0 we define the stopping times

T = inf {¢: |a(t)]co > K},

where | - |co denotes the supremum norm. The explosion time of @ is then defined
tobe 7% = limg o0 Tx-
The main result of this article is the following theorem.
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Theorem 1.5. Let oy = % — Kk for some k > 0. Then, for every k small enough,
there exists a vy > 0 with lim,_,0 y(k) = % such that the following is true.
Let |u®|cex < 00 and sup,, |ul|ces < oo and denote by u. and i the solutions

to and . If the initial data u® and u° satisfy additionally
ud = ulerys S €7,

then there exists a sequence of stopping times T. satisfying lim._,o7. = 7" in
probability, and such that for any v < y

lim ]P’( sup  [uz(t) — a(t)|eo > aﬁ> ~0.
e—0 0<t<Te

Remark 1.6. As pointed out below in Section[2]and in Appendix [A]the construction
of the integral [¢ G(u) du involves in principle the choice of iterated integrals of
a certain Gaussian process, but there turns out to exist a canonical choice X. The
solution theory developed in [HW10] still works if we replace X by

X(S; x,y) = X(S;.’E, y) - A(y - [E) Id ,
but it yields a different solution. In [HW10] it was shown that this solution then
coincides with . One can then also interpret this as stating that the approxima-
tions u. converge to solutions of the correct equation (I.1I)), but where a different
stochastic integral is used to interpret the nonlinearity involving G.

Remark 1.7. In the additive noise case our rate of convergence is not optimal.
Actually, at least in the case where the noise is additive and one only discretises
the derivative, our argument in Sections [ and [5] would give a better rate. We
believe that in that case a slight improvement of our calculations would yield a rate
of almost £1/2. We suspect this to be the true rate of convergence in that case.

In the multiplicative case we do not expect the convergence to be very quick and
our rate could be close to optimal. Actually, in [HV1I] approximations to (I.1)
were studied numerically. In the case of additive noise the convergence which is
the content of Theorem [I.5]could be observed, but not in the case of multiplicative
noise. It might however be possible to improve the rate of convergence by con-
sidering weak (in the probabilistic sense) convergence, as was observed in [[I'T90]
and recently exploited in the approximation to when G = 0 [Debl1].

Note also that the rate % obtained here seems unrelated to the “order barrier”
mentioned in [DGO1]].

Remark 1.8. The conditilon that the initial conditions are bounded in C** and con-
verge in a larger space C3 may seem slightly bulky. We choose to state the result in
this way to obtain the optimal rate of convergence. Note that if u? has the regular-
ity of Brownian motion and ! is a piecewise linearisation, then these conditions
are satisfied. We also refer to Remark 2.1l for a more detailed discussion about the
initial condition.

Remark 1.9. A crucial technical difference between the present article and [HM12]]
comes from the fact that for most of the argument we work in Holder spaces in-
stead of Sobolev spaces. This is necessary to apply the theory of controlled rough
paths. Some arguments become easier in Holder spaces because Gaussian random
fields tend to have the same degree of Holder regularity as Sobolev regularity. The
sample paths of Brownian motion, for example, take values in every Sobolev space
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H? for s < % but in no H* for s > % It also takes values in C® for the same val-
ues of o which is a much stronger statement. (Sobolev embedding would not even
yield continuous sample paths!) Using this additional information, we can skip the
messy high frequency cut-off needed in the proof in [HM12]. The price to pay
is that it is more difficult to get bounds on the approximated heat semigroup. As
the approximations are given in Fourier coordinates, bounds in L?-based Sobolev
spaces are trivial to obtain, but the derivation in Holder spaces requires some work.
For example, we need the additional Assumption [I.2] to ensure that the approxi-
mations of the heat semigroup are well-behaved not only in Sobolev but also in
Holder spaces.

Remark 1.10. It is always possible to reduce ourselves to the case v = 1 by per-
forming a simple time change. For the sake of conciseness, we therefore make this
choice throughout the remainder of this article.

1.2. Structure of the paper. We start Section [2| with a short reminder of the so-
lution theory from [HW10]. Then we introduce the main quantities needed for the
proof of Theorem and state the bounds on these. Finally, at the end of this
section we give the proof of our main result. In the remaining sections we give the
proofs for the bounds stated in Section [2| In Section [3| we provide a priori bounds
on the main quantities involved. In Section 4| the convergence of the extra term
is proved. In Section [5] the convergence of the term involving the spatial rough
integrals is shown. The Sections [3]—[5| form the core of our argument. In Section 6]
we prove some auxiliary regularity results. Finally, in Appendix [A]we recall some
basic notions of rough path theory used in this work and in Appendix [B|we give a
higher-dimensional extension of the classical Garsia-Rodemich-Rumsey Lemma.

1.3. Norms and notation. Throughout the paper we will use a whole zoo of dif-
ferent Holder type norms and for later reference we provide a list here. For a
normed vector space V' we denote by C°(V) the space of continuous functions
from [—, 7] to V and by B%(V) the space of continuous functions from [—7, 7]
to V vanishing on the diagonal (i.e. for R € B°(V') we have R(x,z) = 0 for all
x € [—m, m]). We will often omit the reference to the space V' when it is clear from
the context and simply write C° and B° instead.
For a given parameter o € (0, 1) we define Holder-type semi-norms:

X(z)—X
|X|a — Sup ‘ (‘/I:) (y)| and |R‘a — Sup |R(‘/I’.7y)|

, (1.13)
TH#Y |:C - y|a TH#Y |ZE - y|a

and denote by C* resp. B the set of functions for which these semi-norms are
finite. The space C* endowed with | - |ca = | |2 + | - |4 is @ Banach space. Here
| - |co denotes the supremum norm. The space 5“(V') is a Banach space endowed
with | - |, alone. As usual, for o > 1, we will denote by C“ the space of |« times
continuously differentiable functions whose |« |th derivative is o — |« | Holder
continuous.

For a function w : [0,7] x [—m, 7] — R"orw : [0,T] x [-m, 7] — R™™ and
for any a1, 0 € (0,1) and ¢1 < to < T we denote by

[u(s1, ) — u(s2, y)|

|lul| par02 := sup sup |u(s,x)| (1.14)
Cltn.ta] $1,52€[t1,t2] |s1 — s2|* + |z — y[*2 s€[t1,t2)
z,yE€[—m,m] z€[—7,7]
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the inhomogeneous a1, as-Holder norm of w. In most cases we will have t; = 0
and then we simply write

[ullgar-ez := IIUIIC;;]% (1.15)

If we are only interested in the spatial regularity, we write for v € (0, 1)

|u(3a I’) — u(sv y)’

lullecx == sup + sup |u(s,z)l, (1.16)
[t1:¢2] s€[t1,ta) lz —y|7 s€[t1,ta)
xy€[—m,m) z€[—m,7]
and if ¢, = 0 we use [Jul|¢y = Hu||c[w0 " We simply write
l|lul[co = sup  sup |u(s,x) (1.17)
[t1-t2) s€E[t1,t2] z€[—m,m]
and CY := Cﬁ) 1] for the supremum norm. We will also need a similar norm, for

functions that depend on two space variables and that vanish on the diagonal. For
R:[0,T] x [-7,7]? > R"or R:[0,T] x [~,7]? — R™" we write

| R 5> ;= sup sup 7\R(s;$,y)|

- (1.18)
(RN R P

Finally, we will sometimes have to allow for blowup of a function near time ¢; > 0.
This can be captured by

R .
| R 5 = sup (s—t1)? sup M, (1.19)
[t1:t2].5 s€(t1,t2] z,y€[—n,m] |.T - yh
for some 3 € [0,1]. As above, if t; = 0 we write
1Ry, = IBlgy , - (1.20)
. . ) O
We will write Cﬁ;;ﬁ , C[Vthtﬂ ' Clt ] B[ZLQ] and Bgl’t2]7ﬁ for the spaces of func-

tions for which these norms are finite.

We will avoid the use of indices as much as possible and only use them if expres-
sions would get ambiguous otherwise. When we do use indices, we always use the
convention of summation over repeated indices. We will write AT = %(A + A*)
and A~ = %(A — A*) for the symmetric and anti-symmetric part of a matrix A.
The Hilbert-Schmidt norm of a matrix A will simply be denoted by | A|.

Finally, we will use the notation = < y to indicate that there exists a constant C'
that does not depend on the relevant quantities so that x < C'y. Similarly, z =~ y
means that C 1z <y < Cuz.

2. OUTLINE AND PROOF OF THE MAIN RESULT

We start this section by presenting an outline of the construction of solutions
to (L.I) in Subsection 2.1l In Subsection [2.2] we discuss how the quantities in-
volved behave under approximations. The proofs of the bounds announced in this
subsection form the core of this article and will be presented in the subsequent sec-
tions. Finally, in Subsection [2.3] these bounds will be summarised to give a proof
of Theorem [T.3]



2.1. Construction of solutions to rough Burgers-like equations. In this section
we give an outline of the construction of local solutions to (I.I). The construction
given here differs slightly from the construction presented in [HW10], as this will
hopefully make the proof of the main result in Subsection [2.3] more transparent.
We comment on the differences below in Remark 2.2] and Remark We refer
the reader to Appendix [A] for the necessary notions of rough path theory. For the
moment, we assume that « is an arbitrary exponent in (%, %), it will be fixed later
in Subsection
Let us start by fixing some notation. Throughout the paper we will write

S(t) = et?

for the semigroup generated by A. Recall that the operator S(¢) acts on functions
as convolution (on the torus) with the heat kernel

p(z) = \/ﬁz etk ¢l 2.1)

keZ

For adapted L?[—, 7] valued processes 6 and F' we will frequently write

/St—s s)dW(s) and ®(t) /St—s (s)ds

Then with this notation the mild formulation of (I.1)) reads
u(t) = S(t)u® + W (1) + o'W ][ S(t—s)G(u(s)) Opu(s)ds, (2.2)

where the symbol f denotes a rough integral which we will define below.

The terms S()u® and the reaction term &% (%) do not cause any major difficulty,
so we will concentrate for the moment on the two terms

w0 (1) / S(t—s)6(u(s)) dW(s) and ][ S(t—s)G(u(s)) Oyu(s)ds

As pointed out in the introduction, we will use the theory of controlled rough paths
to interpret the term involving GG. We introduce the auxiliary function

Z(t, ) = ][ " Gt ) dyult.y), 23)

—T

and write

=Ut) = /0 S(t—s)0:Z(s)ds = /0 0x(S(t —5)Z(s)) ds.

We argue below that for every ¢ the rough integral in equation (2.3) defines = —
Z(t,x) as an a-Holder function. Hence the spatial derivative is well defined in
the sense of distributions. The last equality follows because 0, commutes with
S(t — s). Equivalently, assuming that we know how to define the rough integral in
(2.3), the last identity can be taken as the definition of =".

In order to define the spatial integral on the right-hand side of (2.3) as a rough in-
tegral, for every s € (0, ¢) we must specify a reference path X (). These reference
paths must meet the following requirements:
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e For every s it must be possible to construct the iterated integrals
y
X(s;z,y) =: ][ (X(s,2) — X(s,2)) ® d;X(s,2). (2.4)
x

Note here that the right hand side is defined by the values of X. Regard-
ing X itself, we require it to satisfy a number of algebraic and analytic
properties that are natural in view of its interpretation as an “integral”.

e For every s the random function = +— u(s, z) must be controlled by X (s),
in the sense that we need to be able find a derivative process u/(s, x) such
that

U(Sa y) - U(S’ ‘T) = ul(sv I’) (X(S’ y) - X(Sa I)) + Ru(sa Z, y)a (25)
where the remainder R, vanishes sufficiently fast as |y — x| — 0.

Such reference paths are provided by the stationary, zero mean solution to the linear
stochastic heat equation

XX = 02X +1IE.

Here II denotes the orthogonal projection in L? onto the space of functions with
zero mean. Actually, the construction of X is rather straightforward. The point
is that X is a Gaussian process with explicitly known covariance structure so that
known existence results (see [FV10]]) apply. The process X is constructed by eval-
uating (2.4) for a sequence of approximations to X and checking that the sequence
of approximate iterated integrals converges in the right sense. The crucial ingredi-
ent for this calculation is provided by Nelson’s estimate (Lemma that yields
the equivalence of all moments in a given Wiener chaos.

When checking it is sufficient to look at the term W?(*), Actually, the terms
S(t) u and ®F () will be C' in space, so they can be included in the remainder R*
and we need not worry about them. The same turns out to be true for the term =

discussed in (2.3)).

For () we can write
WO (t,y) — OO0 (¢, ) = 0(t, 2) (X (t,y) — X (£, 2)) + RO (t; 2, ).

It is shown in [HW 10, Proposition 4.8] that the term RY®) does indeed have the
necessary 2a-regularity near the diagonal as soon as

p
"U,(S, .’B) — U(t, y)‘
E sup + sup Ju(t,x)] (2.6)
( 5,t€[0,7] ’3 - t‘a/2 + ’.1‘ - y|a te(0,7]
z,yE€[—m,7) T€[—m,m]

is finite for a suitable stopping time 7 and large enough p. This is precisely the
regularity we expect for u. With these observations at hand we are ready to set up
a fixed point argument to solve (2.2).

Then for some p > 2 we denote by A, the space of triples

(u Ru) € L (C3*7) x LP(CF) x LV (B7, )

that satisfy the following conditions:

e The processes t — u(t), t — u/(t), t — R, (t) are adapted.

e Almost surely, for every ¢ € [0,7] the triple u(t,-), v (t,-), Ru(t,-) is
controlled by X (¢,-). To be more precise, we assume that holds
almost surely for all s, z, y.
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Here the LP refers to p-th stochastic moments.

It is easy to check that A, is a closed linear subspace of L? (C;/ 2’“) x LP(CZ) x
Lp (B%"‘ /2) Then for such a triple (u,u’, R,,) and for any stopping time 7 < 7' it
makes sense to define

M (u, v/, Ry) = (6,7, Ra),

where
a(t) :(Su + ph <I>F<“)+E“)(MT),
@'(t) :==0(u(t AT)), 2.7)
Ra(t) =06 (Su + P W) (tAT)+ (5qﬂ<u> - 0(u)5X) (t A7)

Here the difference operator ¢ is defined as
du(s;z,y) == u(s,y) — u(s,x). (2.8)

Using the bounds mentioned above, we can show that, for u? € C“ and under
suitable assumptions on 7, x and p, the operator M is a contraction from a ball in
A, into itself.

As usual one can obtain solutions on a longer time interval by iterating this
procedure. For fixed choice of the iterated integral process X, these solutions are
unique.

Remark 2.1. The reason for allowing the remainder R to blow up like t~*/2 near
zero lies in the initial condition u" € C®. Actually, the regularising property of the
heat semigroup implies that we have

sup /2|5 (t)u°| o < [u0lco

<1
We need this bound to control the contribution of the initial condition to the re-
mainder term.

This issue would be avoided completely if we could assume that u® € C>. The
problem is that even under this stronger assumption on the initial condition, after
positive time the solutions u(¢) would only attain values in C* for any av < % This
would make it impossible to iterate this construction to get solutions on a longer
time interval.

Remark 2.2. The construction in [HW10] is slightly different as it is split up into
an inner fixed point argument to deal with the term involving GG and an outer fixed
point argument to conclude. This corresponds to a semi-implicit Picard iteration

Uni1(t) = S(t)u® + /0 S(t—s)0(un(s))dW(s)

+ /0 S(t — s) F(un(s)) ds + /0 S(t = 8) G(tns1(8)) Opting1(s) ds.

The advantage of this approach is that it separates more clearly the deterministic
part from the probabilistic part of the construction. The price to pay is that some
stopping arguments get more involved. In terms of the bounds needed, both con-
structions are essentially equivalent.
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Remark 2.3. Another difference between the construction presented here and the
one in [HW10|] concerns the treatment of the term =Z%. In [HW10] the term Z
defined above in (2.3) is not defined, but =" is defined directly as

-/ f il =) Glus, ) dyats. ).

Then the C!-regularity is shown using the scaling behaviour of the heat kernel p; .
In the current context we prefer the new approach (suggested to us by the referee)
because it allows to separate the rough path bounds from the bounds involving the
heat semigroup, which makes the argument more transparent.

2.2. Outline: Behaviour of the main quantities under approximation. In order
to prove Theorem [I.5] we will go through the construction we just described and
see how the terms behave under approximation.

For ¢ > 0 we denote by S, () = e®< the semigroup generated by the approxi-
mate Laplacian defined in . Similarly to S(¢), it is given by convolution (on
the torus) with a heat kernel

1 k2 f(ck) ik
pi(z) = D etk (k) ik 2.9)
V2

As above, for any adapted L2[—, 7] valued processes 6 and F' we will write
t
:/ S.(t—5)0(s) H.dW(s) and &L (t) / Se(t —s) F(s)ds.

Using this notation the mild version of the approximation (I.7) takes the form
ue(t) = Se(t) ud + W) (t) + eL ) (2)

n /O S(t — ) G (ue(s)) Deue(s) ds.

Note that for fixed ¢ > 0, we do not need rough path theory to solve this fixed
point problem. The existence of local solutions can for example be shown through
a fixed point argument in C%. For positive ¢ the approximate derivative operator D,
is actually continuous on the space of continuous functions, but the operator norm
blows up as € goes to zero. Therefore, it will be useful to introduce approximate
reference rough paths (X, X.) and interpret the term involving G on the right-
hand side of (2.10) as an approximation to a rough integral. This allows us to
obtain uniform control as € — 0.

Similarly to before, we choose as X, the stationary, zero mean solution of the
approximated stochastic heat equation

dX: = Ac X dt +TIH. dW(t) .
This will be used as a reference rough path for the approximate solution. Here,

as above, II denotes the orthogonal projection on L? onto the functions with zero
mean. If we extend the cylindrical Brownian motion W to negative times we get

(2.10)

X.(1) = /_ " St ) TIHL VW (s).

Our first task then consists of checking that for every s the process X:(s) can in-
deed be lifted to a rough path (X (s), X.(s)), and that for a given adapted process
6 the approximate stochastic convolutions W are indeed controlled by X_. This is
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established in Section [3'} To be more precise, we will give bounds on the Holder
regularity of ¥ in Lemma The behaviour of (X.,X.) as a rough path is
discussed in Lemma 3.3] Finally, in Lemma [3.6]the regularity of the remainder

Ri(tix,y) = (Vi(t,y) — U(t,2)) — O(t, ) (Xc(t,y) — Xc(t,2))  (2.11)

is treated. For all of these quantities we can show convergence as € goes to zero
towards the corresponding terms for the limiting equation.

Let us point out that, while the derivations of the a priori bounds on ¥¢ and on
(X, X.) are rather straightforward, the result for the remainder R? requires more
thought. The necessary spatial 2c-regularity is shown with a bootstrap argument.

Once we have established that W¥ is well behaved, it remains to check the be-
haviour of the term

/ G (ue(s,9)) Deue(s,y) dy (2.12)

when € | 0. One might hope that for small € the integral behaves like an approxi-
mation to the rough integral
x
][ G (uc(s,y))dyus(s, y). (2.13)
—T
Unfortunately, this is not always true. As pointed out in Appendix [A] rough inte-
grals are limits of second order Riemann sums like (A.5). Since the contribution of
the second order term may not be negligible in the limit, one cannot hope to prove
that the first order expression in the second line of (2.12)) approximates the rough
integral (2.13) in general. In order to enforce this convergence, we simply add the
“missing” second order term to the right-hand side of (2.12).
Therefore, we set

Ze(s,x) = /ff G (ue(s,y)) Deuc(s, y) dy
e (2.14)
s [ DG(e(s.0)) 519) DXl ) 5.

where
1
D.X.(s;y) = 6/ Xe(s;y,y +e2) p(dz) ,
R

and u.. is a rough path derivative of u. with respect to X.. We then define

/ Se(t — )05 Z¢( ds—/ 025:(t — 5) Z(s) ds. (2.15)

We will denote the extra term appearing on the right-hand side of (2.15) by

U= (t, - //_ﬂpt s(-—y) DG (us(s,y)) (2.16)
X uL(s,y) D-Xc(s;9) ul(s,y) dy ds.

Actually, here we have hidden a bit of non-trivial linear algebra in the notation.
The expression defining Y¥< is trilinear and it is not obvious which term is paired
with which. At this level, this does not matter and we will give a precise definition

in (5.5)) below.
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In Section[5|we establish that, under suitable assumptions, Z¢ approximates ="
provided that the quantity
Do =X = Xelleg + X = Xellgge + flu = welleg + v = wellee,

+ ||Ru - Rua ||B[2;§’TLO

is small.

Throughout the calculations we will need uniform in € smoothing properties of
the approximate heat semigroup S.. These are established in Section [6] A key
ingredient is Lemma[6.3] a version of the Marcinkiewicz multiplier theorem.

By adding a rough path derivative and a remainder we can then interpret . as
solution to the fixed point problem for the operator

(UE7UI57R’U,5) '_> Ma(uEyulgaRus) - (/ELE)a/gaR’as)

where
Ge(t) = (55 ul 4 o) o pFlue) _ yue | :U) (tAT)  (2.17)
aL(t) :==0(us(t A T)),
Ra(t) =6 (Sa ud 4 @Eue) _ypue 4 Eg) (tAT)

+ (wgwe) - e(us)axe) (t A7),

for a suitable stopping time 7 (which also depends on ¢). Here the difference
operator 0 is defined as in (2.8).

As expected, the term Y2 will be responsible for the emergence of an extra
term in the limit. This term will be treated in Section f] where the convergence of
the term D, X, will be discussed.

It turns out that for £ small enough this term behaves like AId, where A is
the constant introduced above in (I.12)). Note that the a priori knowledge of the
regularity of X, would not even imply that the quantity Y% remains bounded, so
that the proof of its convergence requires to exploit stochastic cancellations. The
relevant bound is given in Proposition 4.1 There, convergence in any stochastic
LP space with respect to the Sobolev norm H ", for n > 0 is proved. In the next
subsection we will be able to establish convergence of the triple (ue, u., Ry, ).

2.3. Proof of the main result. Now we are ready to finish the proof of our main
result, Theorem [I.5] assuming the results from Sections [3]—[6]
Similar to (2.16)) we define

TU(t) := A/o S(t—s)(DG(u(s))d'(s) ' (s)) ds (2.18)

where the indices are to be interpreted as in (I.11)). Then the mild form of (I.10)
can be written as

a(t) := S(t) u® + W@ (1) + dF@ (1) — TU(t) + E2(2),
a(t) = 0(a(t)), (2.19)
Ralt) := 5(5 W0 4 pF@ _yu zg) (t) + (5@9@ - e(a)ax) (1.

Furthermore, for ¢ < 77 the process u. solves the fixed point problem for the
operator M, defined in (2.17). Recall that 7* denotes the explosion time of .
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Similarly, here 7} denotes the explosion time for u.. Note that the extra term
T corresponds to a reaction term and poses no additional problems for the well-
posedness of the equation.

In order to optimize the convergence rate we have to work with three different
Holder exponents

oy >a> Q.

More precisely fora 0 < k < 1—12 we set oy = % — K. We then fix @ = a, — Kk to
be a bit smaller and & € (%, ] arbitrary. Note that the regularising property of the
heat semigroup implies that

ﬁ}S(t)uO|2a < \u0|a and tf‘SE(t)ug‘Qa < |u2|a*.

In the case of the heat semigroup S, this is a standard regularity result. For the
approximated semigroup S; the regularisation is shown in Corollary [6.6]

We will measure the regularity of @, u., Ry, and R,,_ with norms indexed by «
and &. For most terms, the rate of convergence becomes better when measured in
a norm of lower regularity, see for example Lemma [3.1] or Lemma [3.3] below. In
those situations, we use the norms indexed by &. But in some estimates it is useful
to use a priori knowledge on the regularity of w that is close to optimal — this is
when we use oe. We will use a, to measure the regularity of the initial condition
and the regularity of X and X.. It is useful to have a little bit more regularity
available for these quantities.

First we introduce the following stopping times. Recall the definitions of the
norms || - Hcf‘/?*‘*’ | - [l from 1i and 1b Then for any K > 0 we define:

ok = inf{t >0 [ Xl rae = K or [ X520 > K} @20h)
t

U%::ﬁnf{tZ(k‘ﬁﬂkam@;ZIY}, @20b)
t

o = inf{t >0: [Ra(t)loa > Kt5 or |[Ra(t)as > Kt*%}. @200)

Here we follow the convention to set the stopping times to be 7' if the sets are
empty. It follows from the bounds in Sections [3]—[5] that for suitable initial condi-
tions u these stopping times are almost surely positive. Remark that for ¢ < oK
we have

[@lleg = 16(@)lleg < sup  [0(u)[+  sup  [DOW)IK. (55
K<<k K<l <K

Then we set
ox =on Ao Aok

In order to have a priori bounds on the corresponding e-quantities, we fix yet an-
other parameter = o — k, and introduce the stopping times

o = inf{t > 00 [|X — Xel| oz > 1, 00 X = Xe| gz > 1,
t
or [ X = Xellep > e, or | Xe[pare > K,
or ‘DEXE(t) —AId’H > 1}, @2%h)
-n

og = inf{t > 0: Ha — Uelleo > 1} /\inf{t > e?: Ha = Uel| poy2.0 > 1},)
[e2.4]
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of i=inf {t > e%: [Ra(t) = Ru, (Dloa = (t — 273

o [Ra(t) = R (Dlaa > (£ =) 7% }, 22

where again, we set the stopping times equal to 7" if the sets are empty. Here the
norm D+ is defined in (3.51) below. In (2.22) the quantity R, is defined as in
(2.17). Again the bounds proved below in Sections [3|—[5] show that these stopping
times are almost surely positive. Note in particular that Lemma|[3.3|implies that for
any ¢ > 0 the probability of {||X — Xc[|co = e} goes to zero.
Finally, define
0K = ox N oY Not Aol

It is clear from the definition that if o > 0 and for 0 < ¢t < pg . we have
deterministic bounds on

HXEHC;N*/?!Q*? HX8HBt2°‘7 ’DEXE(t”H—n? HUaHCtO‘, HUEHCE"é2T“
L et

lucllee = N0ue)llegs  [Ruclpzg  [Ruclseg

[£2,t],a [€2,t],6

From now on, to reduce the number of indices, we will write

e ;= TN 0K e

Most of the rest of this subsection will be devoted to the proof of the following
theorem which will then be shown to imply our main result, Theorem [I.5]

Theorem 2.4. Let the exponents oy, a, & and r be as stated at the beginning of
this subsection. Suppose that the initial conditions satisfy

‘uo‘ca* <K and ‘ug‘ca* <K
for some large constant K. Then there exists a constant
v =7(&~r) >0,
such that for any terminal time T' > 0 and for any p > 1, we have

Bl g —uelly + 11— uellepa +IRa— Rucllppy |
Te C B

[£2,T:] [€2,Tc],&/2

S s+,

(2.23)

Furthermore, for every fixed @, the constant (&, k) can be chosen arbitrarily close
to % — & by taking k > 0 sufficiently small.

Proof of Theorem[2.4] We start by introducing some K > K to be fixed later. We
will also only use the fact that the initial conditions satisfy the bound
’“0|Ca* <K and }ug‘ca* <K.

This will be useful later on.
The functions F, G, 6 will only be evaluated for u with |u| < K + 1. All the

quantities of interest will remain unchanged if we change F', G and 6 outside a ball.
Therefore, from now on we can and will make the additional assumption that

}F‘cl < o0, |G|C3 < o0, ‘H‘CQ < 0.
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For any & € (%, o] we will derive a bound on the quantity

1

1

«a = p » = p »
EXt) == Ellu — u|| @ + EHU—%\|C@/Q,@
€ [£2,te]

1

»
+ (EHRu - Rueﬂgza ) :
[£2,tc],G/2

Using the equations (2.19) and (2.17) that @ and w. satisfy, we get the bound
5
) < Z I(t) (2.24)

where

I (e) = [[S00 - 5<->u2ucw+Hs<~>u0—sg<->usucg
+ sup s%}S( Ju’ = Se(s)ud] poa s (225p)
0<s<t
1
gi/z,@)p

B2a ) ’ @)

[e2,te],a/2

I3(t) = (B[ 0@ - wi)

3=

+ (BJ|R® — R,

1

)’
+ (E((Ksugt 53 |<I>F(a)<3> _ q)f(%)(s)‘cm)p) o
L
f
+ (E(O jggtf%m@ — T (8)] s ) ) @)

18(t) == (EHEﬁ g

15(t) = (B[ @@ — o)

Sl

15(t) = (B[ 7" - 12

1 _
Iég)p + <EHE" — 2,

+ (B( s 520 -2 (5| ) ) ez

Actually, in I — T 55‘ we give slightly more information than needed. Note in par-
ticular, that in I g‘, I{, and I, g‘ we only allow for blowup at 0, not at £2. This bound
is stronger.
We start by giving a bound on I{. For every ¢t > €2 we get for any \; < o — &
that
)00 = 520l gy

<SG’ —u )Hca/m + |I(S(: —Sg(.))ugucféz,]a (2.26)
g2t
S ‘uo —ug‘ca + |ug}ca*5 !

Here we have used the fact that the heat semigroup is a contraction from C® to C*
as well as the time continuity of the heat semigroup in the first term. In the second
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term we have used Corollary [6.6] which provides uniform bounds on the spatial
regularisation due to the approximated heat semigroup. We use Lemma to get
the temporal regularity.

The remaining terms in (2.23h),

15()u® - Se(-)u and sup 5% |S(s)u’ — So(s)ul| s, (227)
0<s<t
can be bounded by the same quantity. Here we use that both Lemmas [6.5] and [6.6]
regarding the spatial regularity hold for arbitrary times. Hence, using the bounded-
ness of |ug|cox We can conclude that

I5() S [ —u

ez

Qs +M (2.28)

This is the only part in the argument, where we will use the boundedness of u?
or u” in the C%-norm. Note that the implicit constants are uniform for all u°, u?
satisfying [u®|cer < K and [u0|¢ar < K .

The bounds on I¢ are derived in Section 3, More specifically, for

6
— and M=1-2a——
1—-2a p

we get using Corollary

P>

1
p P
C;i/2,d
€

1
Zf‘/Q’&)p + (EH\I’G(UE \Ila(us)

(EH\IIG(TI) _ \pg(us)

1
P
cx/2 a)

IN

(IEH\II‘%&) _ pf(ue)

(2.29)

Nkg
hSA

A

£ (s]o(n) — ey ) + <o B (o, )

N 1 1
S (Blla—wly )"+ (B(+ uelzy )’
te te
M oog Ao
St EX(t) + MUK +1).

In passing from the second to the third line, we have used (3.14) and (3.15) as well
as the linearity of the map # — ¥?. When passing from the third to the fourth line,
we have used the fact that the C!-norm of 6 is bounded by a deterministic constant
depending on K.

In particular, by choosing p large enough and x small enough, the rate A\;« can
be increased arbitrarily close to % — Q.

In order to get a bound on the second quantity in I we write
1

5 g 2.30
B[Qh ]a/2) ( )

(EHRG( RG(ua)

< (BIR — RO )7 (B - R

1
HBQ"‘ B2a )p7
(€2 te [€2,te],a/2

where we use the notations RY and Rg from Section

The first term on the right hand side of (2.30) can be bounded directly using
Corollary Actually, using the time regularity of 6(u) for all times in [0, ok (]
we even get a bound without blowup. Then for any
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and for p large enough we obtain

1 1

(Bl - RO, ) s ([Elp@]Ee. ]+ [Elo@Iz,]7)

[e2,te],a/2 (€2 te]

< e,

Here we have used the fact that the stopping time ok, > is almost surely smaller
than the stopping time QE i defined in and than o2 defined in (3.76). Note
that as above by choosmg % small enoug (and p large enough, which is already
ilmplicit in the expression for Ay), the rate A2 can be increased arbitrarily close to
5 — Q.

For the remaining term in , using (3.78) we get for any A3 < %(a* — Q)
and for p large enough that

1
i >p
B3 6

<5 ((E1060) ~ 0. ) + (B0 — 00uc) 2

[2,7]

(EH RO® _ Rotue)||P

D=

)
SMEN(L).

The bounds on I g“ and I§ are provided in Sectionlé—_tl Using Propositiontwice
we get

1

P
a/2 a>

+ (B sup 3870 () — 2FC)(s)] cm)’?) 2.31)

0<s<te

15(t) = (B @7 — of )|

3=

a

1
1-4 5 1-&
< 13 (IEHu—uaH ) el=s
Here we have used that, as a consequence of our definitions, the norms ||@||co and

||ue||ce are bounded by K before the stopping time g ..
Then using Proposition @.6]and Proposition 4.1 we get

1 . N
a/M)p + (E( sup sz |1 — T CQ&) )p
0<s<te

I8(t) = (EHT“ YU

1
Sel™s 4 (]E sup ‘DEXE(t, ) —Ald ‘p )p
te0,T] H=n

3=

+t1’%([EHﬂ _UEHPt&J; + [EHH( — 0(u. Hp }

Se™ + tl_*é’“( t).

)

We use Proposition [5.1] and Proposition [5.2} the main results of Section [5} to
bound /5. We get

Za/z&); + (EHEﬁ - Egs

[£2,te]

[

e B
5 +E3oz 1.

(2.32)

1
(B|=" - = b))’ (ED2)»
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Using Proposition [5.1]again for v = 2&, we get a similar bound for the remain-
ing term:
1l 125k

1
_a U = Py 2
[E<osu£ s 2‘:“(3)—:?5(8)}62&> }p S (EDE)rt (2.33)
<s<te '
+ 5?;cyfl 4 517207714‘

Note that we have used again that, thanks to the stopping time ¢k ¢, all the relevant
norms are bounded almost surely. In particular, the constants that are suppressed
in the < notation do depend on K. As above, in (2.32)) and (2.33) we have used
the notation

De =X = Xelleg + 11X — Xellgze + |17 — uelleg. +110(z) — O(ue)llea

€2 te)
Ra—R a .
+ ” U UE”B[QSQ,tg],&/Z
1
The quantity E[DZ]» can be bounded by
1 1 1
P P

1
(ED2)7 S (EIX = Xcli% )" + (BIX = X0 ) + (Bl — el )

1

+ (EIIRa — Ru. 524 )5 (2.34)
[€2,te],a/2
1 1

S (BIX = Xellfe )" + (BIX = Xel[Bs )+ £5(0).
t t
Here, we have used the fact that @ = 6(u) and u. = 6(u.) as well as the bound
16(@) = O(ue)llee, , | < [0]ell@ = uelleg + 6] call@leg 1@ — uellep -
For the second-order information X, and X of our rough paths, Corollary
implies that for \y < 1 — 2 we get

1
(BlXe = X[[faae)” € ¥ and (B[R = X|ffe) 7 S 7. 239)

So finally, combining the estimates (2.24), (2.23), 2.28), (2.29), (2.30), (2.32),
(2.33) and (2.35]), we obtain

EXt) SOEX) + &7 + [u’ — | s (2.36)

3 =

Here the exponents 7, v > 0 are the minima of the corresponding exponents in the
above calculations. Note that v depends on  and p. and we have v = v(p, &, K)
increases to % —aasplTooandk | 0.

By choosing ¢ = ¢, small enough we can absorb the first term on the right-hand
side of into the left-hand side. Then we get for some constant Cl,

sup £%(s) < Che? + Cufu’ — Ug‘ca- (2.37)
0<s5<t«

Note that the specific values of ¢, and C, only depend on K and K.

We now iterate this argument taking @(¢,) and uc(t.) as new initial data. The
definition of the stopping times ¢}. and o in (2.20p) and (2.22p) ensure that for
t < ok, we have the bounds |u(t)|ce < K and |uc(t)|ce < K, but in order to be
able to iterate the argument we need a bound in the slightly stronger C**-norm. For
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this, we make use of the following trick: we know already that @(¢) is a controlled
rough path and that, for any pair x, y, we have the identity

du(t;x,y) = H(E(t,x)) X (t;z,y) + Ra(t; x, y).
Using this decomposition, we can conclude that in order to prove boundedness
of 4(t) in C*, it is sufficient to have bounds on 6(i(t)) in C°, on X in C®* as
well as on R,,_(t) in B**. These norms are all bounded by deterministic constants
due to the definition of the stopping time. Hence we can conclude that for ¢ <
0=,k we have |uc(t.)|ces < supp, <pqq [0(u)| K + K. Now if we choose K =
Sup, <11 |0(u)| K + K we can restart the process at ¢, and obtain the estimate

(EHE_USHZéa/zd )l/p_|_ (EHa_usHZa )l/p

[t*+52,2t*/\QKYE] [t*,Qt*/\gK’s]

p 1/p
8264
[t*+52,2t*/\gK7g],d/2

+ (EHRE R

_ 1
< Cie" + O, (E’u(t* A QK,&) - ua(t* A QK,&) Zc)a ) /p
< (Cu+ CR)T + 2 - e,

which can then be iterated recursively. Note that the values of C, and t, remain
constant throughout the recursion (because they only depend on K and K ) so that
the final time 7' is reached within a finite number of steps.

The bound one obtains in this way not yet the desired result because of the
weight (s — kt,)® for k = 1,2,.... Note that in the definition of £% the 32%-
norm of Ry may only blow up at £2 but not at every multiple time kt, + ¢2. For
€ small enough this issue can be avoided if we additionally restart the process at
times 2’“2—“15*, and then for every s take the better of the two bounds obtained in
this way. (]

Proof of Theorem[1.5] In order to conclude Theorem it is sufficient to show
that we have

lim ImP| sup @ - wl| > 7] =0, (2.38)

K7Too /0 0<s<7
Indeed, then the sequence 7. can be chosen as a suitable diagonal sequence.
Recall the definitions of the stopping times gy - and o in (2.20) and (2.22).
In order to see we write for any K > K

Pl sup [la—uclleo 2T <P[ sup fa-uloze] 239)

0<s<7} OSSSQK,E
+]P)[Qf(76 < 0'[(} —i—P[UI‘( < T[*(}

Theorem above and Chebyshev’s inequality directly imply that the first term
goes to zero. In order to obtain the optimal rate, we choose & to be as small as
possible, i.e. just a bit larger than % In particular, by choosing « small enough we
can increase y up to arbitrarily close to %.

According to the definition of the stopping times we have

P[QF{,E < Uf(}
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= P[IIX — Xellgou oo 21, 08 |X = Xeflgze =1, (240)
K. CK e

or sup ‘X(t)—XE(t)
0<t<og .

> or sup ‘Xs(t)h)a*,s > K,

co 0<t<og .

or sup ‘DEXE(t) — AId} > 1, or||u— Ue||parpa =1,
0<t<og . H= (2.0 ]

or [|# — uclleg =1, or S (- )2 [Ra(t) = Ru, (t)]2a > 1,
’ € SO0K e

or sup (t— 52)%]7%@(15) — Ru. (t)|2a > 1}-

0<t<og .

We have already provided all the bounds that imply that for any K this probability
goes to zero. In fact, the bounds for X — X, | X—X,[z2a and ‘DEX6 (t)—AId ‘H*"
are independent of K and given in Corollary Lemma 3.5and Proposition

The bounds for the remaining terms in follow from applying Theorem[2.4]
again, once with & = « and once for arbitrary &. Note that it is crucial for this
argument, that we allow for the choice & = a. In this case the convergence is very
slow, but this does not matter.

Finally, we write for the last term on the right-hand side of that

}P’[ok < T;(} = ]P’[HXHcg}*(/z,a* > K, or HX||33?( > K, or Ha”cﬁ‘/ﬁ*" > K,

or sup t§|Ra(t)|2a > K, or sup t3|Ra(t)]sa > f(}

0<t<tg 0<t<tg
It follows from the bounds in Corollary [3.4]that the probability of || Xl .o, /2.a. >
K

K and the probability of || X]|| pze = K g0 to zero as K goes to co. The same
statement about the probabilities involving @ and R follows from the global well-
posedness of the equation with bounded g and 6. The details of this calculation can
be found in the proof of Theorem 3.5 in [HW10] and will be omitted here.

This finishes the proof of our main result, Theorem[I.5] (]

3. THE STOCHASTIC CONVOLUTION

In this section we provide the necessary bounds on the stochastic convolutions

W) and \Ilg(ﬂ). We will adopt a slightly more general framework than the one
adopted in Section 2} Actually, we will fix an adapted L?[—n,7]-valued proces
(0(t))¢>0 and consider the stochastic convolutions with the heat semigroup, i.e.

t t
vo(t) = / S.(t—s)0(s) H.dW (s) and WO(t) = / S(t—s)0(s) dW (s).
0 0
As in Section 2] the Gaussian case 6 = 1 will play a special role. We write
t t
X (t) = / Se(t—s)IIH. dW(s) and X(t) = / S(t — s) HdW (s).

Here we have extended the cylindrical Brownian motion W to negative times in
order to ensure that X and X, are stationary.
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It will be useful to consider the Fourier expansion of X, given by

1 o
X.(t,z) = 7= > / e ¢RI (ER(E=5) (k) duwg(s)
kezx Y

=) gt

keZ*

3.1

Here the wy, are C"-valued two-sided Brownian motions (i.e. real and imaginary
part of every component are independent real-valued Brownian motions so that
E|wi (t)|> = [|t|), which are independent up to the constraint wy, = w_j, that en-
sures that X, is real-valued. Furthermore, we use the notation

¢ = h(ek)
© o [k[VATf(eR)

and the 5? are centred stationary C"-valued Gaussian processes, independent up to
¢k = 2%, so that for any t > 0,

E(¢£(0) @ ¢7%(1)) = K. 1d, (3.3)

3.2)

where
K = e~ ERR, (3.4)
The series decomposition (3.1]) can be used to define the iterated integral

X (t;z,y) = /y (Xe(t,2) — Xo(t, @) @ d-Xc(t, 2). (3.5)

In fact, for fixed ¢, x, y this integral can simply be defined as the limit in L?(Q2) as
N — o0 of the double series

vy . )
Xy = Y g0endd [ ) acta:

0<|k],)l[<N v (3.6)
= Y gmedt) Mg g Iy - ),
0<|kl,JI|<N
where
1 (Li(k+)y _ 1) — ily _ 1 for k -1
Ialy) = { 7€ “1) = (@ =1) ork# -l 5
’ ily — (ezy—l) for k = —1.

The regularity properties of X are discussed in Lemma([3.3] Note however, that the
regularity of X, is not sufficient to give a pathwise argument for the existence of
. Also the series does not converge absolutely in L2(2) so that the symmetric
choice of approximation matters. We will make use of some cancellation in Lemma
3.3l Let us point out that the iterated integrals X, satisfy the consistency relation
, and that for the symmetric part X := 3 (X, + X?) we have

XF(tz,y) = %(Xg(t, y) — Xe(t,z)) © (Xe(t,y) — Xc(t,2)).  (3.8)

These relations can easily be checked for any /N and then follow by passing to the
limit. The regularity results given in Lemma [3.3] will then imply that for every ¢
the pair (X.(¢,-), X:(t;+,)) is indeed a geometric rough path in x in the sense of
definition[A.1l
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A crucial tool to derive the moment estimates for X. will be the equivalence
of moments for random variables in a given Wiener chaos, see Lemma The
decomposition (3.6) shows that X, is in the second Wiener chaos. Therefore,
Nelson’s estimate implies that we can estimate all moments of X in terms of the
second moments.

Note that our definition of X, coincides with the canonical rough path lift of a
Gaussian process discussed in [FV10, Ch. 15] and also used in [Hailla, [HW10].
We prefer to work with the Fourier decomposition as it gives a direct way to prove
moment bounds and avoids the notion of 2-dimensional variation of the covariance,
which seems a bit cumbersome in the present context. (See however [FGGR12] for
related calculations involving the two dimensional variation.)

A key step in the construction of solutions to in [HW10|] was to show that
the process W9 (¢, -) is controlled by X (¢, -) as soon as 6 has a certain regularity. Its
derivative process is then given by 6(¢, -).

We will prove a similar statement for ¥¢ and derive bounds that are uniform in
e. For a given 6 denote by Rg the remainder in the rough path decomposition of
WY with respect to X, i.e.

Rl(t;z,y) = (Vt,y) — Wit @) — 0(t,2) (Xe(t,y) — Xe(t,2))  (3.9)
and
Rl(t;z,y) = (¥0(t,y) — 0 (t,x)) — O(t,2)(X(t,y) — X(t,z)).  (3.10)

The bounds on the spatial regularity of R’ are provided in Lemma A key
tool to derive these a priori bounds is provided by a higher-dimensional version of
the Garsia-Rodemich-Rumsey Lemma that can be found in Lemma[B.2]

For the bound on ¥¢ we will impose a regularity assumption on #. For any
stopping time 7 recall the definition of the parabolic a-Holder norm in (I.15).

Lemma 3.1. Let o € (%, %) Let a1, 9 > 0 and p > 2 satisfy
A 1 A 1
< o2 < 22 (3.11)
4 p 2 p
for some A1, Aa > 0 with \y + Ao < 1. Then for any stopping time 7 < T
a||p
EH\IIEHCgl(Cag) SJ EHGHgT . (312)
and
B2 - W oy S ENOTEO, . G

In our application of this lemma we shall need a small power of 1" appearing in
the right-hand side. This additional factor can be easily obtained by observing that
as ¥9(0) = 0 we have forany 0 < k < ay

H\I/chflfﬁ(caa < Tﬁqugl‘cfl(caz)'

Furthermore, we prefer to work with the space-time Holder norms introduced in
(1.13), instead of working in spaces of functions that are Holder in time taking
values in a Holder space. To this end we observe that

1920 garza < ¥l gerz ey + (%2l cogcay:

In view of these remarks, the following result is an easy consequence of Lemmal[3.1]
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Corollary 3.2. Let o, € (%, %) Suppose that p satisfies

> .
p 1-9%a

Then for A\ =1 —2a — andfor any stopping time 7 < T' we have

EIIWE\I’;&/Q,& < TWHE|6lIg (3.14)
and
E[W — ¥ upna S 7 E[6IIG - (3.15)

Proof of Lemma([3.1] 'We start by reducing the derivation of (3.12) and (3.13) to the
case where 7 = T'. In fact, for general 7 we can define

O(t):=0(tAT) and WY .= /St—s s) H. dW,.

Observing that \119 \I/" for t < 7 we almost surely have the estimates
0 0 g9 0_ 50
192l cor cany < NE]ler gory  amd - [|WE- w2 —w
On the other hand we also have the almost sure identities
10llco. = [1llco and [|0]|co = [|O|ce-

Hence the estimates (3.12) and (3.13) for general 7 follow as soon as we have
established them for 7 = 7. We will make this assumption for the rest of the
proof.

Lemma applied to F' = \Ifg will imply the desired bound (3.12) as soon as
we have established the following inequalities

Hc?l(ow) = Hc;l (Co2)"

E[9(t1,2) - W(t2,2)[" SE6]%g (11 — t2)F, o)
E[WY(t, 1) — To(t, 22) \pSEH0||6% |71 — 222, (-16b)
E[W(t,)[" S Ell0llco - (.16

Then Lemma|[B.2} applied for F' = ¥ — ¥ implies (3:13) as soon as we establish
in addition that /
E| W21, 2) — 07(t,2)]" S B o]l =7 ET6

for any o/ < .. We state (3.16g)) and (3.16p) only for U noting that ¥? is included
as the special case € = 0.
To see (3.16R) we can write for t1 > to,

\Ile(tb t2) )

/tz/_ﬂ ptl s(@ =) = phys(z =) 0(s, -)) AW (s)

" /tt /ﬂ He ( pf—s(x =) 0(s, -)) dW (s).

Here we recall the definitions of the heat kernel pf in (2.9) and the smoothing
operator H, in Assumption[T.4]
Using the Burkholder-Davis-Gundy inequality [[KS91, Theorem 3.28] we get

E[VY(t1,2) — B(ts, 2)|" (3.17)
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([ [0t =) b= )0060) )] ds )
+E /t;/ Pt1 _s( _‘)9(3,))(y)Falsdy)g

Observing that due to the boundedness of h (see Assumption the convolu-
tion with H. is uniformly bounded as an operator on L? we can bound the first
expectation on the right-hand side of (3.17) by a constant times

to pm g
e A A R ) R ) R )

Using Parseval’s identity the double integral in (3.18)) can be bounded by
k2 f(ek) (t1—t 2 [ 2k2 f(ek) (¢
Z(‘f f<a><1—2>_1> / o221 (o) (t2=5) g
0

keZ
< 3 (k) (0 tQ)m)QkQ;(EM

keZ*

[S4S)

1 (3.19)
S (=) Ay
iz k?f(ek)
1
S0 -+ Y s (hi-n)r
|| < (t1—t2)~1/2 |k[>(t1—t2)~1/2

Here in the second inequality we have used that |a|? < |a| whenever |a| < 1, and
in the third inequality we used the assumption that f is bounded from below (see
Assumption|[1.1)).

The second integral on the right-hand side of can be bounded in a similar

way by
/;1/_7r e (P, —s(z =) 9(3,-))(3/))2dsdy>

t1 g
SE|0]2 /t/ Py sz — y)Pdsdz)”.
2 J—7

To bound the integral we calculate

t1 o
/ / p;—s( dS dy = Z/ _2k2f(6k3 (t1—s) ds
to -7

2
2

keZ
k2 f(EkZ) (tl — tg) A1l
ST e e

St —to)?.
This finishes the proof of (3.16f).
Using the Burkholder-Davis-Gundy inequality and the uniform L?-boundedness

of the convolution with H, in the same way as before, the derivation of (3.16b) can
be reduced to showing that

t T
/ / (Di_s(1 — y) — Df_y (22 — ) °dyds < |o1 — o). (3.20)
0 —T
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To prove the latter bound, we estimate

/Ot /_7; (pi_s(x1 — 2) — Pf_ (22 — Z))2dy ds

_ Z |€lk.’172 z1) 1‘ / —k2f(ek)(t— s)ds

keZx
1

< Z (k:]a;l — CCQ‘ A 1)27
~ 2

7

1

< Z |21 — 22> + Z ES\M—%Q-

k<|zqi—z2|~ 1t k>|x1—z2| 1

This shows (3.16p).

The bound (3.16[) follows immediataly, by using the Burkholder-Davis-Gundy
inequality in the same way as above.

In order to obtain we write
WO(t,2)—00(t, z) (3.21)

/ /_7r Pt s(@—-) — ptfs(JU—'»g(s,-))(y) dW (s, )
+/0 /_W(Id—He) (e—s(@, ) 0(s,)) (y) AW (s, ).

The first term on the right-hand side of (3:21) can be treated as before. Up to a
constant its p-th moment is bounded by

EHGH Z/ —(t—s)k2 f(ek) _ e (tfs)k2>2d8> ) (3.22)

kEZ
To get a bound on (3.22) we write

Z/ —(t—s)k2 f(ck) _e—(t—s)kZ‘)QdS

keZ
-y / _zk%fs o~k (f(ek)—cp)s —k2<1—0f>8)2ds (3.23)
keZ*

Z/ ~2Kers (1 sk2|f (k) — 1])%ds

keZ*

Recall that the constant c; is defined in Assumption[T.1] Using Assumption [T.1]
on f once more, one can see that for |ek| < 0 we have

1A sk?| f(ek) — 1) S 1A |skck|.
Hence, up to a constant the sum in (3.23) can then be bounded by

/ —2k? cys 2k_4( 2k2 ds + Z / —2k2 s ds <€

0<|k|<se—1 70 Se=1<|k|

[S15S]

Finally, to treat the second term in (3.21)) we need to impose a stronger regularity
assumption on #. We have the estimate

10(s, ) pr—s(z = )| o S1005,°) | [Pe—s(x = )| ja (3.24)
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which holds for every o’ < a. In fact, to see (3.24)) write

/ /7r ‘Hpt o) O S(xQ)F dry dzo

’3;1 _ $2‘20‘,+1

2a 2
< sup |6 2 4162 21 = 22| pios(w2)” )
op 00) sy + 00 [ [ R oy

< sup |6(x) ’ ’Pt—s’z o WCQ |Dt—s|L2-
X

Then the Burkholder-Davis-Gundy inequality yields

| [ [ (11 st 065) ) W s

p
(3.25)

p
2

P t 2
S E(SESE(I)PT}}H(S"HW) </0 |ptfs|%{0¢}1d—H |Ha’aL2 ds)

Now for any o € (0, 1)

—2tk2 _1_
pe(x = )i = Y (L+ kP e e
kEZ

On the other hand
o LD 1)

| fror o2 ™ SUP

‘Id_HE 7 =~ 7 N 9
kez, 1+ |k[® reR €% + [r|®

due to Assumption on h. By assumption @ < % Hence the right-hand side of
(3:23) is integrable and we arrive at (3.16(). This finishes the proof. O

As a next step we give bounds on the approximation of the Gaussian rough path
(X, X).

Lemma 3.3. Forany o € (3, 2] any € > 0 and any t, the pair (Xs(t, ), Xe(t; ))
is a geometric a-rough path in the sense of Definition
Furthermore, let p € [1,00) and let a1, g > 0 satisfy

A A

a < Zl’ ay < 52 (3.26)

for some A1, Ao > 0 with A1 + Aoy < 1. Then we have for any € > 0
[ X.] s oy S 1 3.2
E[|Xe = X|[far oy S e307H, (3.28)

and

E[|X<|[or 200y S 1, (3.29)
El|Xe = X g oy S 20707 (330

We will need uniform in time estimates on X, and we will not make use of the
Hélder in time regularity provided by Lemma [3.3] Therefore, we will actually use
the following version of Lemma 3.3
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Corollary 3.4. Let o € (%, %) Suppose that X\ < 1 — 2a. Then for any p > 1 and
T > 0 we have

Ap

ENXe)Pujen ST, 3.31)

Cp'™
EXe = X|, 00 SEF (3.32)

T
Similarly, we get

E|[Xc|fe < TF, (3.33)

T
E[X. = X[ S ¥ (3.34)

Proof of Lemma[3.3] By the monotonicity of LP-norms, we may assume without
loss of generality that @ is replaced by (3.11). The bounds (3.27) and (3.28)
on X, can be proved as in Lemma [3.1] for the special case of 0 = 1 The only
difference is that some integrals over [0, ¢] have to be replaced by integrals over
(—o0, t] and the zero Fourier mode has to be removed, but this does not change the
bounds. The consistency relation (A.3) and the symmetry condition were already
observed above (see (3.8) and above). Thus it only remains to show (3.29) and
(3.30).

To apply Lemma to the X we need to prove the following bounds: For
every v < 1 we have

E|X.(t;2,y) — Xe(s;2,9)|P S [t — s 7, (3.35)
E|X.(t;z,y)|" < |z =y, (3.36)

E[6X: (1)}, < |z — oI, (3.37)

E[X(t2,y) - X(t2,y)|" $e?. (3.38)

The bound (3.37) follows directly from the consistency relation (A.3) as for all
z<y

E[0X (¢t ‘[x | = ]E( sup |0Xc(t; 21, 22) ®5X€(t,zQ,23)‘>p
Y <21 <22<23<y (3.39)

Sle -y E[X(0)]

Lemma implies that the expectation on the right-hand side of is finite,
which shows (3.37).

Due to the equivalence of all moments in the second Wiener chaos (see Lemma|B.4))
it is sufficient to prove the bounds in the special case p = 2. To derive (3.36) we
write

(timy)= Y &t T b gl I a(y — ) -
k,lezZ*

Recall the definitions for the g, ( . for the {5 )s and . for the Iy ;.
This sum is actually a shght abuse of notation because the sum may not converge
absolutely in L?(Q2). Hence as above in (3.6) it should be interpreted as the limit
as N — oo of the symmetric approximations where the sum goes over all k, [ with
absolute value bounded by N.
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Then we can write

EX.(boy) = Y E[uE®)edm)e’t) o )] dddd

k,lklez*
X Iii(y — o) g iy —z) .
For the first term in the sum we get
E[tr(€5(t) @ &) (&' (1) @ &M(1)] = n® 6,1 0y + 10y 1615 + 11057

and hence we can conclude that

Bt <o 3 (@) ()7 s~y
k,leZ*
+n Y (48 (6) Inaly — ) g iy — ) (3.40)
kleZx
2
(3 (qf)sz,fk@—x)) -
kez*

We treat the off-diagonal terms first. If £ # —[ the expression (3.7) shows that
we have the bound

|I’“’l(y)|S"‘;l”ym(‘mz‘*) (‘k+l)+> "kl

for every 4 € [0, 1]. We plug that into the right hand side of (3.40) and we get for
the terms involving only k # —I

nQ‘ Z (@) (a))* Tna(y — &) g i(y — ) )

P
+ n’ > (@)% (1) Tea(y — 2) Ly iy — @) ‘
A
i KU (k=1 \2-%
Sl Y ‘7 +1) .
W 12k2 ( k+1 )

The sums appearing in the last line are finite if ¥ < % In order to treat the diagonal
terms for which k = —[ we recall that in this case

I —i(y) = iky — (e —1). (3.41)

Then the diagonal terms in the first two lines of (3.40) can be treated directly with
the brutal bound |Ij, _x(y)| < |ky| which yields

”2‘ ST (6 Ieily — o) iy — ﬂf)‘
kezZx
1
| 3 (@) Tewly— 22| S Y ly— P S ly— ol
]CEZ* kEZ*

In order to treat the last sum we need to make use of a cancellation. In fact, we can
write for any N

S (@) Iewly— ) (3.42)

0<|k|<N
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= Z (qf)sz(y —x)+ Z (q§)2 [éik(fy*z) _ 1]'

0<|k|<N 0<|k|<N

Now the summands in the first sum are antisymmetric with respect to changing the
sign of k. Hence this sum vanishes identically for any N and also in the limit. For
the second term we use the easy bound ‘e”“ y=2) —1| S |k(y— =) forany 5 < 1

to obtain
(X @ @0 =1) sly=af (3 W)

keZ* keZ*

The sum converges for any 4 < 1. This establishes (3.36).
To derive the bound (3.35) on the time regularity of X. we write for t > 0

Xt y) — Xe (052, ) (3.43)
= 3 [t o) - &0 o )] d d TGy - )
k,lezZ*

We rewrite the term involving the Gaussian random variables as

)@ EL(t) — €8 (0) ® €4(0) = €E(t) @ S0,48L + G0.48F @ €L(0),  (3.44)

where 0o ;&L := £L(¢) — €L(0). Then using (3.3) we get for the first term on the
right hand side

Etr (£5(t) ® G0.48L) (006" ® E2(1))
= n25k,l_c6l,l_ (2 -2K}) + n5k,T51,E(1 - K1) (1-K))

+ nd 10 (1 —Kp) (1—-K}). (3.45)
Then we observe that for any k we have
|1 — K| STA f(ek)k>(t). (3.46)
Plugging this into (3.43) yields
[Bur(€8(t) © do.et) (do.62" 0 £7(1)] (3.47)

S (5017 + 0p 10 1) (LA f(eD)Pt) + 0k 101 (1 — Kf) (1—KF).

Performing the same calculation for the second term on the right hand side of
(3.44) we obtain.

| Etr (60,465 @ €1(0)) (£71(0) @ o467 (1)) (3.48)
S (8700 + 00005) (LA F(eR)R(t = 8)) + 8k, 107, 7 (1 = Kf) (1= K).
We treat the off-diagonal terms for which k& # —[ first. In this case, as above,

we use the simple bound | I;| < |(k—1)(k+1)"!|+ 1. Summing over those terms
we obtain

S Eu (gt @) - €5(0) @ £4(0)) (1) @ &7 (1) — 71(0) @ £77(0))
k#<—lez*
k#A—-lcZ*

x gt qlgf ¢l WDz DT (g — ) Iy — )

< 3 mrlar) (il s e

k,leZ*



32 MARTIN HAIRER, JAN MAAS, AND HENDRIK WEBER

For the diagonal terms k& = —[ we make use of the same cancellation as in (3.42).
More precisely, using (3.41)) we write

ST Etr (€ (t) @ 77(1) — €8(0) @ €77(0)) (€ () @ &7 (2) — €5(0) @ £75(0))

k kEZ*
% (¢5)* () T iy — 2) I _i(y — @)
1 2
S D a(LAR ) lkyl + (> (- Kh) gt s) - (3.49)

k,eZ* kezZ*

Here the first term on the right hand side corresponds to the first terms on the right
hand side of and of (3.48). Here we have again made use of the estimate
I —1 < |ky|. To treat the remaining two terms on the right hand side of we
observe in the same way as above in (3.42)) that the terms corresponding to iky in
(3.47)) cancel. Then bounding the other term by 1 it is easy to see that the whole

expression on the right hand side of (3.49) is bounded by |t|% up to a constant. This

establishes (3.33).
In order to derive the bound on the e-differences we write for any ¢, x, y
= > [abeE () ® (dhel(t) — anén(t)
kleZ*

+ (qFeb () — ab&s (1) @ ab& ()] €D Iy — ).
Here we have put the subscript 0 to emphasise the limit case € = 0. We set for any
€,e>0

R = B (€006 M(0) = J’Z((,’j;’ff’?k)) ,

where we have made use of the definitions of ¢¥ and ¢*. In particular, using
the assumptions|I.1|and[I.4]on f and h we get for any k and any ¢, > 0 that
| ELE| v |k|
|RE = RE| S IKI72 (e — ellk| A1),
[RE.+RE:—2REL| S k|7 (Je — £llkl A 1).

Then a calculations which is very similar to the proof for the time regularity shows
that one gets

E‘X (t;x y) — X(t;ac,y)|2

P (ke ([3] +1) + X Zaelhivgl
kezZ*
+ ( > (Re-~ RQO)I’“"“Y T ( > (REg - Rg,())Ik,—k)Q Se.

keZx keZx
This finishes the proof for (3.38). O

In the proof of Corollary we will need another bound on X.. For the usual
heat semigroup S(¢), a bound on the Holder norm | X'|¢« is enough to conclude that
the map ¢ — S(t)X is -Holder continuous taking values in C°. Unfortunately,
as discussed for example in Lemma the same statement is not true for the
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approximate heat semigroup S.. We thus define a norm that ensures this property.
For X € C° we set

| X|pee :=  sup  |ro — r1|_%|55(r2)X — Se(r1)X|co € [0,4+00]. (3.51)
0<ri<rs<1

Note that ;1 = 0 is allowed inside the supremum. For any k € Z. = {k € Z* :
f(ek) < oo}, we then have

€% pac = (K[ f(ck)?

We also denote by D¢ the closure of the vector space generated by {e?*® } ez, un-
der this norm. Note that this space is finite dimensional (with dimension depending
on ¢) if f is equal to co outside a compact domain.

We now establish bounds for X, measured with respect to | - |pa.c.

Lemma 3.5. For any ¢ > 0 and for any o < % the process (X.(t))o<i<r is
continuous with values in D¢, and for any p < co we have that

B sup [Xe(t)lpec) 1.

0<t<
uniformly over e € (0, 1].

Proof. We fix(0 < s1 < sp <Tandan0 < r; < r9 < 1. Then, using Holder’s
inequality we get for any 0 < A < 1 and any p > 0 that

E‘ (S=(r1) = S=(r2)) (Xe(s2) — Xc(s1)) ’

co

< E S2(r2) Xe(t) ]
L, Bl =5 O

The second factor can be bounded easily using the regularity of X, (see (3.27))
and the fact that |S.(r)|cx_co < 1 for any k > 0 by Lemmal6.4] In this way we
obtain for any x > 0 that

(1) (Xe(s2) = X)) [ S Js2 = s

r'e{ri,ra}

To treat the first term, for any = € [—, 7| a straightforward calculation yields
2

E|(Sc(r1) — Se(r2)) Xe(t)(2)]
Z / —sz(ak Yt+ri—s) e—k2f(ak)(t+r2—s))2ds
kEZ,
1
S Y (A SRR = nal) g Sl =l
k€EZe €

uniformly over ¢ € (0, 1]. Then an easy argument yields
1
E[6((S:(r1) — Se(r2)) Xe (1)) (1, 22)|* S |r1 — 72|2 A1 — 2],

where 0X (x1,22) = X(x2) — X(x1). Hence, Kolmogorov’s criterion (see e.g.
Lemma|B.3]applied to the Banach space R) together with the equivalence of Gauss-
ian moments (Lemma B.4)) yields that for any ~ > 0 we have

B[ (Se(r1) = S<(r2)) X=(t)[go < r1 — ol T,
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Hence, by choosing an appropriate A (close to 1) and small values of x we obtain
forany o < o/ <  and for a small " > 0 that

E|(S-(r1) = Ser2)) (Xels2) = Xe(s0) || S I = 7l [y — s,

so that applying Kolmogorov’s Criterion once more (in r) yields that
E| Xe(s2) = Xe(51)[pac < [s2 = 51/

Then using the fact that X.(0) = 0 and applying Kolmogorov’s criterion once
more we obtain the desired bound. (]

Finally, we give the necessary bounds on the remainder term RY. The derivation
of the uniform bounds requires more work than in the cases of ¥¢ or (X., X.).
As in [HWI0] the regularity of W? follows from the space-time regularity of 6.
Actually, formally one obtains

Rg(t; x1,x2) :/Ot/_:rr (pf_s(xg —2z) —pi_g(x1 — z)) (9(8, z) — G(t,:):l)) dW (s, z)
+ 5901@255(15))(5(0) (3.52)

and a formal application of the Burkholder-Davis-Gundy inequality suggests that
the space-time regularity of 6 can be used to deduce higher spatial regularity for Rg.
Unfortunately, this reasoning is not correct because the process (0(s, z) —0(t, x1))
is not adapted to the filtration generated by W since 6(t, x1) lies “in the future”. In
particular, the Burkholder-Davis-Gundy inequality cannot be applied directly. This
problem is overcome in Lemma [3.6) with a bootstrap argument.

The lack of time regularity of the process u near zero also causes a slight in-
convenience. Recall that in the application we have in mind we have 0 = 0(u.).
We have seen in Subsections [2.2]and [2.3|that in general the process u. need not be
time continuous near 0. We only have the necessary “almost %” Holder regularity
for times ¢ > 2. Hence we will only obtain the 5-regularity for times ¢t > & with
a blowup for ¢ | £2.

Recall the definition of the parabolic Holder norms || - || ge/ze and || - || oo/ in

1| and li Then for any K > 0 and fora 0 < a, < % we introduce the
stopping time

o5 = inf {t > 0 | X o jnon = K ot |Xe = X por sz 21} (3.53)
’ t t

Observe (recalling the definitions (2.20) and (2.22p)) that o) }2* > o A oX
almost surely.
We start by showing that Rg has the required spatial regularity, uniformly in €.

Lemma 3.6. Suppose that «, . € (0, %) Let T be a stopping time that almost

surely satisfies

0<7<o AT (3.54)
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For every 0 <t < T we set
O(t) == 0(t A7),

tAT
\i/g(t) = Se(t—r) é(r) H.dW (r),
0 i~ (3.55)

Xs (t) == 1{7—>0} Se(t —r) [MHdW (r),

RO(t;z,y) := 000 (t; 2, y) — O(t, ) 6 X, (t; , ).
Then for any p large enough, and for any

1 1
7<a*+a——\/(1+oz—oz*), (3.56)
p 2p
the following bound holds true:
sup (t — ) PPE|RUO)|g S EN0]0)20 +E16]Z- (3.57)
E2<t§T 6[52’7.] T

Proof. If T = 0 the processes W/ (t), X_(t), and RY(t; z,y) are zero for all t > 0.
Else, for times 0 < t < 7 the processes 9~, \Tlg, Xg, and RS coincide with 6, \Ilf, X,
and RY. Fort > 7 the processes W? and X_ satisfy the identities W¥(t) = S.(t —
7)WY(7) and X.(t) = S.(t — 7)X.(7). Recalling the regularity properties of the
approximated heat semigroup in Corollary [6.6] we obtain for any x > 0,

-0 0 -
sup [V(s)|cas—r S [|Welleas and  sup [Xe(s)|car—r S [|Xeflcar -
T 0<s<T

0<s<
(3.58)
We will fix such a small x for the rest of the proof.
In particular, recalling the condition on the stopping time 7 we have the
almost sure estimate
sup | Xo(8)]gorn S(K4+1)< 1. (3.59)
0<s<T
After these preliminary considerations we are now ready to start the derivation
of the estimate (3.57). We first observe that the definition of R? as well as the
regularity results for \Ilg (Lemma together with (3.38) immediately imply that
for any p satisfying

6
P> 00,
we have
. p P
B sop | RO - ) S + 216l 1)
0<s<T
S E[0lg, - (3.60)

where in the second line we have made use of the deterministic a priori bound
(3.59).

The idea is to use this (very weak) a priori information on the regularity of ]:Zg
as the starting point for a bootstrap argument. For any €2 < s < ¢ < T and for
x1, T2 € [—m, ] we define the following three quantities

Ri(s,t;x1,me) = (é(t,a:l) — é(s,xl))é)zg(t; x1,T2),
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tAT

Ro(s,t;xy, me) 1= 5[ Se(t—r) é(r) H, dW(r)} (r1,x2)

SAT
tAT

—é(s,ml)é[ Ss(t—r>HadW<r>]<fwz>»

SAT

Ra(s, t:21,2) = 5{/0 " St — 1)) A dW(r)] (21, 7)

SAT
s, xl)é[/ S.(t—r) H. dW(r)] (21, 7).
— 0o
Note that for all s, ¢, 21, x2 we have the identity

RY(t;21,39) = —Ri(s, t;x1,2) + Ra(s, t; 21, 2) + Ra(s, t; 21, 22).

We will now bound the R; individually.
A bound on R; can be established easily. We get almost surely

|Ri(s,t;21,22)| S |19||C[a/2],a |21 — @o| |t — 5|2, (3.61)

where we have again made use of the deterministic bound (3.59) on Hf( [
T
To bound R», we rewrite it as

Ra(s,t;x1,x2) / T/j (pf_r(l"Q —y) = Pi_p (21 — y))
(5(7’, y) — é(s, a:l)) H.dW (r,y).

This time the integrand is adapted, so we can apply the Burkholder-Davis-Gundy
inequality. Combining this with the fact that H. is a contraction on LZimplies for
p>1

E’RQ S, t; x1,x2

<e([ / (ol =) - Pi_r(@—y))Q(é(hy)—9(8»$1))2dyd7">
B ([ [ 5= ) = lea ) 56

X (\s —r|*+ |y — xl\z"‘) dydr)

p
2

VS|

SE[0]?

p ap
Ca/2,a ‘:L‘l - fL'2|2 |t - S’ 2

[s,7]
Here we used the trivial bound |s — r| < |t — s| for r € [s, ¢] and the bound (3.20)
for the term involving |s — r|. The calculations for the term involving |y — 1| can
be found in Lemma[6.1] below.

For the third term we write

™

Rs(s,t;x1,x2) :/ (pi_s(:cg —2) —pj_ (x1 — z))\ilg(s, z)dz (3.63)

—T

—d(s, 1) / " (@2 — 2) — Dy (a1 — 2)) e, 2)

—T
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We rewrite the first integral as

|0 a2 =) =07 (o1 = 2)#s) s

: g
:/ﬂ (/:Q(pt D= ) ax) B (3.64)

_ /_7; /:@(pi_s)'(A—z) (@g(s,z) _ @g(ml)) s

Here in the last line we have made use of the identity

/Tr (05 ) (A —2) W0 (s,21) dz =0,

—T
which holds for every A due to the periodicity of p.

We can rewrite the second integral in (3.63)) in the same way. Hence, inserting
this back into (3.:63) we obtain

Rs(s,t;x1,x0) = / / (05_)' (A= 2) RO(s; 21, 2) dAdz .
- Jx

In particular, we can conclude that as soon as !Rf(s)
1, we have

’Bv is finite for some 0 < v <

_ s )
|Rs(s,t; x1, 1) | < !RS(s)!BW/ / |(95_) (A\—2)| |1 —2["d\ d= . (3.65)
—7m J X1

For the integral in the last line of (3.63) we get

s o
/ / |(p7_s) (A = 2)] &1 — 2["dA dz
—mJx

S [ [ I05 02 (01 = A7+ 3= =) ands (.66

< a1 — 2o / 5o ()] dz+ 21— o] [ |50)(2) | 1ol e

-7
Plugging the bounds obtained in Lemmal6.1]into the right-hand side of (3.66), we
obtain

|R3 (s, t; 21, m2)| < ‘Rg(s)‘m <\x1 — xo|"(t — ) }log t—s)|

—1+
+ |1’1 —:L'2|(7f—5) 2 7).

Now for fixed x1, x5 and ¢ and s > 0 we can summarise the above calculations as
follows. We have

==
LA

(E‘Rg(t;xl,xg)‘p) < (E’Rl(s,t;xl,xg)‘p>; + (E}Rg(s,t;xl,xg)‘p>
+ <E‘R3(s t; xl,xg)}p>’1’
(3.67)

LA

S (B0 ) b =l e o + (BRI, )

(o1 = 22l (e = o) loglt - )] + o — - 5) 5.
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Recall that the bound implies that all moments of the norm |R?(s)|s- are
finite if we choose v = a, — k. Now we shall use this weak a priori knowledge
on the regularity of Rﬁ as a starting point for a bootstrap argument based on the
estimate (3.67). Let us briefly outline the argument before going into details.

We fix a time ¢ and x1, 2 and choose the time difference |t — s| = A as |z —
xa|”, where v = v(7, a, o) is chosen such that the first and the last term on the
right hand side of scale in the same way. Plugging this into yields an
improved bound for R?, which can in turn be used as the right hand side of (3.67),
etc.

There are two obstacles that have to be overcome. On the one hand,
is only a good estimate if we have control over the space-time regularity of 6 on
[s,t]. As this is only the case for s > £2 we treat the case where A is too large in
a brutal way causing a blowup like (¢t — 52)_0‘/ 2. On the other hand, yields
an estimate on expectations of Rg(t, x1,x2) for fixed values of ¢, 21 and x5. But in
order to plug that back into the right hand side of we need to turn this into an
estimate on the expectation of a spatial supremum. We move the supremum under
the expectation by an application of Gubinelli’s version of the Garsia-Rodemich-
Rumsey lemma, Lemma B.1]

We begin the iteration by setting o := o, — & as in (3.60). Then, for fixed ¢, x;
and x5 we set

1=

V=2 ———
0 1—v+a

and AQ = ]xl — (EQ‘VO .

If t — e > 2A,, we are ‘far enough’ from time 2 and we apply for s =
t — Ag. This yields

D=

1 1 - ~
(E|Rf(t;m1,$2)\p> °s <EH9HZ?§2,T)”\QJ’1 — oM + (E\Rg@) fgwo)

—1+79

_1
X (’$1—$2|1+’YOA02‘IOgA0‘—|—|CC1—J,‘2|(AO) 2 )

, - 1 ] (3.68)
[(EHHH%QZ,OP + (E| R ,;)] —

N

1 ~
< (BJ6]2e o) "1 = 2ol
[e2,7]

where

o (1 =) +
. l—y+a
In the second inequality we have used the identity 1 — %2 (1 — ~9) = 71, as well as

the inequality 1 — % + o > 71, which holds since vy < 2. The latter inequality
implies that

1470 —% < e (1}
|ZE1—ZL‘2| AO ‘long‘ = |{L‘1—ZL‘2|(A0) 2 .

In the last line of (3.68) we have used the a priori information (3.60) on the regu-
larity of RY.
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Otherwise, if t — 2 < 2A¢ = 2|21 — 22|*° we use the a priori knowledge (3.60)
to obtain

1 1
(BIRZ (G w1, 22)|") " S (BIONG ) o1 — ol
1

< (B0, ) for — a1 — e2) 2

As mentioned above, in order to plug the estimate back into we
still have to replace the bound on the supremum over expectations by a bound on
the expectation of the supremum. Therefore, in order to apply Lemma [B.1| we
still need extra information on the behaviour of the spatial § operator (defined in
Appendix [B) applied to Rﬁ Note that

(Lfig(t; 21,22, 2:3) = Rg(t; 21, 23) — Rg(t; 2’1,2’2) — Rg(t; Z9, 2’3)
:55(25; 21, 22) 5X5(t;22,23) .

(3.69)

Recalling the deterministic a priori bound (3.59) on the regularity of X (and the
definition of | - |[, 4,) in Appendix , this identity implies that

o P\ = 1
<IE sup m >p < (EH@HIc)a/g,a)p . (3.70)
1,22 o

|1;1 — ;p2’a+"/0
Recall that, as mentioned above, 1 < « + 9. Hence, combining (3.68) with

(3.69) and (3.70), we finally obtain from Lemma [B.|that

1
sup (¢ —=2)/2 (B[ R2(1) [21)7 S (E[0] %o +E0]2)" . BTV
e2<t<T " [£2.7] ’

where v1 (= ¥ — % — k. Note that this definition of +; guarantees the finiteness

of the integral in Lemma

Let us observe that our calculations have led to improved regularity bounds.
Indeed, we will apply in the cases where « is very small, «, very close to
%, p very large, and « either close to % or close to % In both cases the a priori
information (3.60) yields a regularity exponent yy = «, — , which is very close to
%. On the other hand, the regularity exponent +; in the new bound is close

%, and close to i ifa~1

to 110 if o = 3
Now we iterate this argument. For n > 1 we define v, A,, and ~y,, recursively

as
1=

=2 — JAVREES — 10|"?, h
Uy, T—— n = |r1 — xa| where
- 1
Tn41 = ’Yn+1—§—/£, and
Sy = Yo —n) + o
n+1 - 1_’)/”_’_06 :

It is readily checked that for all n,

1 5 v,
Yo + 5041/71 = Tn+l1 = 1-— ?n(l _’Yn) s
(3.72)

Un ~
1_?+’Yn>'7n+l’
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the latter being equivalent to the inequality 7, < « + 79, which can be checked by
induction.

We now claim that, for every n > 0, one has the bound

1 1
sup (¢ — =) (B[R 50 ) S (B[ + EllO]E,)" - 373)
e2<t<T T [2,7] i

The case n = 0 has just been proved above, so it remains to obtain the remaining
bounds by induction. We now assume that holds and we aim to show that
this implies the same bound with n replaced by n + 1.

As above, we fix ¢, 21, x2 in each step. Taking and into account
and applying ift —e? > 2A,,, we obtain

(E‘Rg(t’ xlva)}p)
1 B 1 N
[ w1 Al ) i o

]
1 e
< (1 +(t— A, — 52)—a/2) (EHQHZQ/Q,Q + E||9}|§0) Play — wof T
[e2,7] T

B =

S

74)

1 ~
N (EH@HZa/z,Q - EHQHZ()) oy — x|t .
e2,7] "

On the other hand we get in the same way as in (3.69) that if t — 2 < 2A,, we
have

~ 1 ~
(E\Rg(t; 1, 2)[") 7 SE|0|Golar — w1 (= %)L (3.75)

The bound on the spatial § operator is strong enough to be applicable in every
step. Applying Lemma [B.1] we obtain indeed that holds with n replaced by
n + 1, as required, so that it holds for every n.

Now on the one hand, we have that v, 41 > 7, as long as v, # [y—, 74| where

1

Y+ 5

1
(14—0&-}-70—*—,%)
b

:I:;\/(l—fyo—a)2_|_ (11)4-/@)2—}—2(;—1—%)(14—04—70).

On the other hand, the mapping
l—7v)+a 1
— —’m( ) —K—

-7+« P
is monotonically increasing (as can be checked easily by calculating its derivative).
As ~y_ is a fixed point of this map and for x small enough and p large enough we
have vy < v_, this implies that y,, < v_ for all n. Hence we can conclude that -,
converges to y_ as n goes to infinity.

Now we use the elementary estimate v a? + b? + ¢? < |a|+|b|+|c| for a, b, ¢ #
0 to get

v

1 1/1
Y->at+w— - — kK- *<*+H)(1+04—’Yo)-
D 2\p

Therefore, for a given ~ satisfying (3.56), the desired bound (3.57) follows from
(3.73) if we choose x small enough and p large enough. U
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With Lemma [3.6]in hand, we will now derive bounds on the space-time regular-
ity as well as the dependence on €. To this end we introduce yet another stopping
time. We write (recalling the definition of the norm | X |pe.c in (3.51)).

oX = inf{t > 0: [ X — Xgo > e® o |Xe(t)lpere > K} (3.76)
Then we get the following statement.

Corollary 3.7. Suppose that% <a< o < % and let & < % Let T be a
stopping time that almost surely satisfies
T< i NS AT, (3.77)
where Qf}?* is defined as above in (3.53). Then for any \ < % and for p large
enough we get
0 P A
E(|R s ) S T¥(BION. 0 +ENOI).  (378)
[62,7'],&/2 [5277.] T
Furthermore, for any
o+ 0y — 2¢v
o+ oy

A <a
and for p large enough, we have
B(IR - By ) S (N6 +EN6IE).  3.79)
[£2,7).6/2 2,7]
Proof of Corollary[3.7] We define the processes 0, \ffg,f(s and Rﬁ, as above in

(B-33). Furthermore, we denote by R’ and ¥ the analogous quantities for & = 0.
We will actually establish the slightly stronger statements

~ P ~ -
E(|Rlps ) S TP (EIOI, 20 +EN0IL )-
I EHB?E%],&/Q S I HCEZQ?’T? 191lco (3.80)
and
~ ~ p T ~ -
E(|R — By ) S (BIOIP2 +E N8I, )-

| Re Hg[zﬂﬂ,&/z < [ Hcgé?;}‘ 16117, 3.81)
To this end, we will apply the key bound (3.57) from Lemma [3.6]to this situation.
More precisely, we will use that

sup (s — )2 B||RY(s) |, < ENIG7

~ ay /2,ag,
e2<s<T [€2,7]

+E |yé||§,% (3.82)

for different values of p, 71, and a;;, which will be specified below.
In order to improve the estimate (3.82)) to the desired estimate (3.80) we have to
move the temporal supremum under the expectation. We get for any €2 < s < ¢

that
~ ~ <o = P
E(|(t = )2 Rl — (s — )| RE(S) e | )
< (t = )PP E|RL(1) | (3.83)
+ (5 = ) E(|| RO g2 — | RE(S) e | )-

To bound the first term on the right hand side of (3.83), we fix 0 < \; <
write

and

(t — )PP E|RI(t)| s S (¢ — )P (t — e2)EPE|R(1)[Ds
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Then we apply (3.82) with
YL ‘= 2&,

~ 1 1
ar, ::2a—a*++\/(1+a—a*)+m,
p 2p

for some small value of k. We make the assumption that p is large enough and
small enough to ensure that a;, < a and ap < & — 2A;. The condition o, < «
can always be realised due to the assumption o, + « > 2&. In order to also ensure
the second condition a;, < & — 21 one has to choose A1 sufficiently small. In this
way we obtain

(t = )PP E|RL(1) s S (¢ = )P (¢ — )00 00 (3.84)
< (EI01.0 +EIAIG) . (389
[e=,T]

For the second term on the right hand side of (3.83) we fix A2 > 0. Then we get
using Holder’s inequality once

(s = )PP E(|| R | oo — [RE(3)] e |" )

< (= ) 5 B (1RO s, + IR )|
A2
< [E(I RO - 1R [")] (3:86)
Now we apply (3.82) with
vL = 2(& + A2),

~ 1 1
ar, ::2(04—1—)\2)—04*—1——1—\/(1—1—04—04*)—}—/1,
p 2p

for some small value of £ > 0. In order to ensure that o, < o we choose p very
large and x very small. Then due to the assumption that o + o, > 2 it is possible
to choose A2 small enough to ensure that a;, < a. The condition on the blowup in
this situation is \ := 5‘70‘#”)‘2 > ( which is satisfied as soon as

1 1
0<a*—o~4—)\2——\/(1+a—04*)—/£.
D 2p

This can be achieved by choosing p even larger and  even smaller.
In this way, we can estimate the first factor on the right-hand side of (3.86) by

(&@+X2)p =0 =0
(s — 52) 2 E(‘Ra (t) 22&+2,\2 + ’Ra(s)‘%za-s-zxz)

S (5= P (B2, . +E N2 )-
[2,7]
In order to get a bound on the last factor on the right-hand side of (3.86) we write
using the definition (3.9) of 1Y

sup |[RY(t: 2, y) — Rl(s32,y))|
m’y

(3.87)

S sup (12t 2) = (s, )| + [6(2,2) — s, 2)| | Xt )
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+ |00, 2)[| Kot ) = Xels.m)])-

We take the p-th moments of this inequality. Then we use the bound (3.12) on the
regularity of \ifg (note here that \ilg satisfies the assumption of Lemma ith 0(t)
replaced by the adapted process G(t)l{KT}). For p large enough we can choose
the temporal regularity o1 in this bound to be . For the process X. we make use
of the condition on the stopping time 7 to get a deterministic bound:

| X(t,y) — Xe(s,9)]

[t =817 [ Xell gar/20 ift <7
<K — s|%*\|5(6|ycg*/2,a* + )t — 77| Xo(7) | pase ifs<T<t<T+]1
|t — 5| Z || Xo(7)|| pee.c ifr<s<t<t+1
<Klt—s|7.

In the two remaining cases s < 7 < 74+ 1 < tand 7 + 1 < s we get the same
bound easily. Note that this is the only point in the whole article where we actually
make use of the norm D¢,

We obtain for p large enough

E([IRE0)]s0 — 1RE(3)]m0

)

ax ~ ap o~ (3.88)
St = s E||6]|2 + |t — s| TE(16]%, .0
. [2,7]
Then summarising (3.86) — (3.88) we obtain
(s = )P E(|| R |os — |RE(S)|oa ")
Agap 9 & - - (389)
< It — s[5 (s — )7 (B 0] +EIP,. )
! [=2,7]
A&

Taking A2 and « sufficiently small and p sufficiently large, the exponent z7° ®

can be arbitrarily close to 2%, Combining and and applying again
Lemma [B.1]yields the desired bound (3.78).

To get the bound we use an interpolation argument. In fact, in the same
way as above we can write

Suglf%f(t; ,y) — R (t; 2, y)|
x?y7
g Su? “ilg(tvx) - \ila(tvx)‘ + SUIZ; ‘é(ta x)HXE(t?y) - X(ta y)}
x7 x7y7

Hence the regularity results from Lemma on WY as well as the condition (3.77)
on 7 imply that for any small x > 0 and for any p large enough we have

E[|RZ - B|[jg S & E[|8]c,.

On the other hand we can apply (3.78)) for close to maximal spatial regularity to
obtain

~ p ~ n
B(1 R lsrgerr ) S B IO + BNy,

/ [2,7)
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Then finally, we can conclude by using the deterministic bound
\\Rﬁ R a (HR(’H o+ | R ) RS = R g

for A =

. We obtain the desired bound (3.79] - by choosing x small enough.
U

a+a —K’

4. THE REACTION TERM

In this section we derive bounds for the convergence of the reaction term.

4.1. The Gaussian process and stochastic fluctuations. As before, we consider
the solution to the approximate stochastic heat equation

=S e, @
keZx*

together with its area process X (t; x, y), where we use the notation from Section
We recall in particular that

E[5(s) @ €4(t)] = oK) "1d
where

Kt — e—f(sk)k2t

for k € Z*. Recall also that

/R / (1= C:;th D) p(dz)dt.

The goal of this section is to prove the following result, which yields a sharp bound,
uniform in time, on the difference

D.X.(t,") — Ald

measured in the spatial negative Sobolev norm |u|g—» for n < %

Proposition 4.1. Let1 < p <ocoand 0 < n < % Then for all T > 0 and for all
Kk > 0 sufficiently small, we have

1

P

E[ sup ‘DX AId‘ ]p < ek 4.2)
te[0,T] H=n

Proof. For fixed z € R and for € > 0 we introduce the quantity

2 1 — cos(z¢k)
- Z ¢")? (1 — cos(z¢k)) =i Z f k]2 SN CX)

kGZ* keZ*

We also set

1 (1 — cos(zt))h?(t)
Az,O - % /]R+ t2f(t) dt,

and for € > 0 we define the integrated version

A= / Ao p(dz) .
R
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It follows from Lemma[4.2] and Lemma [4.3] below that
1
p P
E[ sup ‘D X.(t,-) — Agld‘ ]
te[0,7) H=n

S =

1
5/15:[ sup fXE(t;.’._y_ez)—AZ’EId‘p ] |pe|(dz)
R Letefo,1]'€ H=n

Serr [ i) S 2
R
Furthermore, we claim that for any ¢ € [0, 7] and k > 0,
Az — Aspl Selz?. 4.4)

Integrating this inequality with respect to z and using the fact that the second mo-
ment of || is finite, the result follows.

It thus remains to prove the claim @.4). As in [HM12| Proposition 4.6] we use
the fact that for any function g : R — R of bounded variation,

|3 coteh) — [ aft)it| < ellglon +15(0)])

keZ*

Using this fact together with the assumptions on h and f, we obtain

h2(s) 1 — cos(sz
1 — cos(sz) cos(sz
Sefl7 o \ e Rt
flLee fiBv s oo
Selzl . (4.5)
which proves the claim. (]

For a matrix A, it will be convenient to work with the decomposition A =
AT + A, where

1
[A%],; = 5(Aij + Aﬂ) .
The following two lemmas are the main ingredients in the proof of ({#.2)).
Lemmad4.2. Letl < p<ooand0 < n < % Then for all T > 0, forall kK > 0
small enough and z € R we have
1
[ p P —K| | 14+n—kK
E| sup |-X7(¢-,-+ az)‘ S el e 0, (4.6)
tefo,T] '€ H=n

Proof. We will show that for any 0 < n < % and for 0 < Kk < % we have for all
0<s<t<T,

1 2
z < 2(=R) |1 2(14n=R) |4 _ g|F
E|= (X2 (e +e2) = Xo (s, +22)) | S 2z I $|(4,7)

EE(X;(t; S 52)) EH < 2R 204n=R) - (48)
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The result then follows from Lemma[B.3] As above in Lemma[3.3] we use the fact
that X7 (¢,-) belongs to the H ~"-valued second order Wiener chaos to see that

(B.16) is satisfied (see Lemma B.4).

Recall that
X (t;z,x +¢e2) Z a¥q Iy (ez) (& (t) ® §l(t))ei(k+l)m ,
k,leZ*
where for k # —[ we have
ez , l . .
I — ikw _ q i ilw dw = i(k+lez 1) — (eftez 7).
kl(e2) /0 (e ) ile”™ dw T (e ) — (e )

As above this sum has to be interpreted as the limit as N — oo of the sums over
0 < |kl[,]l]] < N.
As a consequence, we have the identity

X (hmatez)= Y ¢fd Ty(e2) (G @ &(1)) BT
k,leZ*

where for

B e
k+1 -k

3 1 1 ei(k+l)sz -1 ellez _ pickz
JTale) = 3{lu(ed) - Tnle) = 50— )
For | k| = |{| this exp'ression must be read as the appropriate limit. Writing C,Z]l (s,t) ==
& ()& (t) — &;.(s)€ (s) for brevity, we obtain

1 2
Bl (% X2 )
s (t;,- +e2) — X2 (83, +€2) o
1 1
= Z (1+ (k+1)%) "gkqlabq “Irale2) T (e)

k.l klez*
k+l=k+1

<E| Y ailec], )]
i#j
Note that the diagonal entries of C;’g(s, t) vanish so that in the last line we only
have to sum over indices 7 # j. For such indices ¢ # j, we use the fact that

E[(s) € ()€ ()€ 1(0)] =B[6i ()" 10| B[ (967 ,0)]
= 5 0TI KT
to obtain, for any x € [0, 1] and for all indices satisfying k + 1 = k + [,
B[, 1) ¢ (5] = 26, (1 - KioK)
<o g(1— e*(f(ek)k%rf(&l)l?)ltfﬂ)
S O (FER) IR 4+ FE I )t — s . @49)
Furthermore, a simple calculation yields that
‘ 1

J- 2
2 (o)

= (k=122 [S((k + Dez) — S((k = De2)]”
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where S(z) = sin(z/2)/x. Using the Assumption|1.4]that & is bounded, we obtain
for k, 1 # 0 that,

k| < 1 < 1 .
e~ TR ER PR ~ TR FED| (h+ 1) — (k — )]

Moreover, since by Assumption f = ¢y, it follows that forall 0 < x < %,

EE(X;(& otez) — X2 (s5e, 0 F 52)) E{fn
<Y (4 +z>2)‘"(q§q5)2EJ,;(gz) ’

k,lez*
< (Fek) Ik + F D U )t = 5|

S((k+1)ez) — S((k —)ez)
(k+1)2%—(k—1)?

2

SlE=sl®2? Y. (L4 (k+0?) k-1
k,leZ*

% <|k,|2m+ |l|2"‘)

< |t — 87|22 Z (1+ &%) "2
k||l €Z

S(kez) — S(lez)
L2 _ 2

2(“{:2;{_’_ m%) ’

where in the last line we used the change of variables (k + I,k — 1) ~ (k,1). We
infer that

E)%(X;(t;-,-jtez) —X;(s;-,~+z—:z))‘i]_n (4.10)
<w S(@) - S(y)

< B 22n—2K| |24+2n—2kK
St = sprer e [ (£SE 8

RQ
It is an elementary exercise to show that

S@-Swl ., 1
gl g

2
) (2% +y*)"drdy .

Hence, taking into account that n < % it follows that the integral on the right hand
side of (4.10) converges. This establishes the desired estimate (4.8]).
Furthermore, to prove (4.8]) we observe that for i # 7,

E[6(0) (0 € 40 (0] = E[eh0) 0] B[ (0 1(8)] = 658
Using this identity we obtain

1

El—(X ’
‘g( € (t7'7'+62)‘

H—-n
_ o N
= Y (4 Ek+D*) "¢ dtd —Tea(e2) ZJ T (e2)

k.l k,lez*
k+i=k+1

<E[S 6000 0]
i#]

_ 1
S Y A+ G+ D) S Te)
klezx

2
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The desired estimate (#.8)) follows from this expression, by repeating the argument
for @.7) with x = 0. U

The following result gives the corresponding estimate for the symmetric part
X7T. Recall that A, . has been defined in (3).

Lemmad43. Letl < p <ooand) < n < % Forany T > 0, for k > 0 small
enough, and for any z € R we have

1
P
IE[ sup X+( Fez)— A Id ‘ ] ’ < e F|z|H=r (4.11)
te[o, 7] '€ H=n
Proof. In view of Lemma [B.3] it suffices to show that
1 1 2
E‘fXj(t; T, +ez) — X (s;z,m + EZ))H S|t — 5|2 |y 222
5 IS -n
(4.12)

1 2
E‘fX;r(t; r,x+ez)— A, Id ’ < 62"\z|2+277 ) (4.13)
€

H—n

As in the proof of Lemma[4.2] we write

X+(t x, $+€Z Z q5q€ Jkl 52 ék( )®§l( )) e ’
k,leZ*

where
1 1 : .
Jh(ez) = E(Ikl(sz) + Iik(e2)) = 5(1 — emgz) (1- e’l‘”) ,
and Ij; (ez) is as in the proof of Lemmaf4.2] As above we write

Ca(s,t) =E(t) ® &(t) — &(s) @ &(s)

for brevity. Then we obtain

1 1 2
E’fX;r(t; x,x+ez) — fX:f(s; z, T+ 52)‘
€

H-n
1
= 3 (1 k02 gk - J;Z(Ez)gjf;;,_i(fz)
k’,l,k‘lEZ*
k-+i=k+1

x Etr (gk,l(sv t) E—lj—l;:(& t)) .

A case by case argument yields

Etr (Cra(s,t)C_j_i(s,1)) = 2(”251@,1’51}71 + ”5k,1%5l,l’> (1 - ’CZ_S’Czt_S) ;
and using the definition of XC we infer as above in (4.9) that

L= KK S (FERIE + D) - sl
for k € [0,1]. Using the estimate |qx| < m|k| for k # 0, together with the
identity
|1 (ze)]? = 2(1 — cos(2ek)) (1 — cos(zel)) ,
we obtain

1 1 2
E|SX (52,24 £2) — X (s bea)|,



< (U (4 0%) k) Sl (1 - KK
—nl—cos(kez) 1 — cos(lez)
S Z (1+ (ko Z)Q) ! f(ek)ek? f(el)el?
x (f(ffk)”!k\”‘ + S |t~ s

1 —cos(kez) 1 —cos(lez) /,, 9 2
KI5+ |17 ) |t — s|™
h k%* !klnllln k2e 1% O sl )| ’

S |t _ 8|m€2n—2n’z|2+2n—25

which proves (@.12).

In order to prove (4.13), we note that for all z € [—7, 7] and ¢ > 0

s

1
fIEXJr(t T, +€ez) Z | f\zJ,j plez)Id =A; 1d.
© kez

Moreover, we write

Cra(t) = (x(t) @ &(1)) — 1 1d

for brevity. Then we obtain
| 2
E’ng (tix,x+ez)— A, 1d ‘ B

1

= 3 (1 k+0?) "dbddbd - J;;?(EZ)ng;;,J(Ez)
K,k IcZ*
k+i=k+1

x Etr (Gea(t) (5 (1) -

A case by case argument yields

Etr (Cru(t)C 7 5(t) = "25k,z’5k,l +ndy ;0,7 -
Arguing as above we obtain
2

1
E‘fX;r(t;x,x +ez)— AzaId’
H—n

1
S D U+ kE+D?) ") 5
k,lezZ*

AN

—n1l—cos(kez) 1 — cos(lez)

S Z (L+ (k+ 1)) f(ek)ek?  f(el)el?

kleZ*
Z 1 —cos(kez) 1 — cos(lez)
s ]kml\” k2e 2e
kleZ*

5 827]‘Z|2+2n ,

which proves @.13).
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4.2. Bounds for the reaction term. We will now derive the estimates for the re-
action terms ®F(@_ F(“) YU and T defined in Section

To this end let & € (0,1). We fix Holder exponents 0 < o < 5 and let 0 <
1

n < 5. Furthermore, we fix R"*"-valued functions ¢ € C$ and p. = ¢ + D.

with D, € C°([0,T]; H™"). (See (I.16) and (I.19) above for the definition of

the Holder norms with blowup). We shall use the notation ||u|| ,— to denote the
t

temporal supremum of the negative spatial Sobolev norm, i.e.,

fulln = sup fu(s)lsr-o
s€[0,t]

In our application we will have
o(t)=Ald , D.(t)=DX.(t,)—AId .

Of course, ¢ is constant in space and not merely C¢, but we will not make use of
this.

Furthermore, we fix R"-valued functions u, u. and R"*" -valued functions v, v
in L>°([0,T];C%). In our application, u and u. will be as in the previous sections,
and v = v/, v. = ul.

Then we set

:/ S(t—s) F(u(s))ds, T(t):/ S(t—s)F(u(s),v(s))ds,
0 0
where

Fiu,v) = akGZ( yorhm il

Similarly, for € > 0 we define

t t
= / Se(t — s)F(us(s))ds, Yc(t) = / Se(t — 8)Fe(ue(s),ve(s))ds,
0 0
where
Fi(u,v) = 0pG5(u) of g™}
Throughout the remainder of this section we assume that the norms

elleg s llulleg > Nolleg > Mluelleg s llvelleg »

are bounded by a constant K > 0, which does not depend on . This constant will
often be suppressed below.
We shall first prove a bound on the difference between ® and P..

Proposition 4.4. Let 0 < o <y < 1. Then, for anyt € [0,T] we have
|®(t) —
1@ — |

_ Ll
=(t) ’cw <zt a)”U_UEHC? +e,

1-2 1-2
C?(Otco)gt 2llu = telleg +e772

with implied constant depending on K and T.

Remark 4.5. In the statements of Proposition and Proposition .6] we do not
include the positive powers of ¢ after the terms involving powers of . We simply
bound these by powers of 7', which will be absorbed into the implied constants,
because we do not need them.
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Proof. Using Corollary [6.6] we obtain for any > 0 small enough,
@ (1) — @.(1)],,
[ st =910~ Flu)ds iy (S~ St — 5)P(ue)(s) ds
1

SO0 F(u) = F(ue)|lep + et 72079 P () ep

SH7E07 u — g gp + e 17T

<

c

il

which proves the first bound.
To prove the second inequality, we write

(®— ) (t) — (2 — @:)(s)
_ /0 (8= S0t =) = (S = S2)(s = ) ) Flu(r)) dr

+ / (S —So)(t —r)F(ue(r))dr
+ /OS (S(t —r)—S(s— 7")) (F(u(r)) — F(ug(r))) dr

+ / S(t— r)(F(u(r)) — F(ug(r)) ) dr
=Lh+L+13+ 1.

We shall estimate the first term in two ways. First, using (6.35)) and the fact that
[(S — S2)(t — 8)|casco S 1, we obtain £ > 0 small enough,

ler 5 | (1580 = 1) = (5= 8065 = 1) Fluctr) ar

CO
S [ 168 = 800 = nleeseol Fluc(r))ew dr @14)
0
< 8/ (s — r)_%(l_“”“‘)ﬂuchta dr <e.
0

On the other hand, using Lemma [6.4] and Lemma [6.7] for every and any x > 0
sufficiently small we have the bound

s—e2V0
] / (Se(t =7) = Se(s = 1) F(uc(m) dr| 4.15)
0
s—e2V0 ) )
< — _
N/o Selt = st e) = Sl ) R0
x |S.(s —r —€?) Cognin ‘F(ug(r))}ca ds
s—e2V0 2t
,S(t—s)/ (s—r—e))~" 2 dr<(t—s).
0
The analogous bound
| / (St—1)=S(s =) Flus(r)dr| S (E=s).  (“16)
0
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follows in the same way. Using Lemma [6.7] once more we also obtain for any
0< A< QfT" and for x > 0 small enough,

y 4.17)

Se(t-s+ 7 5) -5 (55)
s:(5)
< (t—s) /HQVO 2\ (s — 1) (s — )"

Combining the estimates (@.14), (#.13), #.16) and #.17) we infer that for v €
[0, 1],

| /;zvo(w = 1) = Se(s = 1)) Fue(r)) dr

S
< /
~Y
5—£2V0

X

C2>\+I€4)CO

ca_meF(“f ™) e

22— a+2n

dr < (t — s)*e?.

Ii]eo S 3(t—s)2. (4.18)
Using (6.33) once more, the term I5 is bounded by

t—s
Do < / (S = 52) () coso | F (ue) s dr

t—s (4.19)
< 5/0 r*%(l—aw)”uEHCta dr <e(t— 8)%(1+afn) .
To bound I3 we proceed as in @) to infer that
faleo < | [ (8t = 1) = (s = ) (Flulr) ~ Flucr)) ],
< [(e- 93000 Rw - Pl dr 420

Note that here we have used the fact that the true heat semigroup S(¢) satisfies the
regularisation properties without introducing a small constant «. The last term can
be bounded brutally by

[Laleo < |t = s[l[F'(u) — F(ue)lleg S 1t — slllu — uelleg
S (= 5)F73 lu— uelcp
Combining all of these estimates, we obtain the desired bound. (]
The following result gives a bound on the difference between Y and Y.

Proposition 4.6. Ler 0 < a < % and suppose that « <y < land ) <n < % Let
k > 0. Then, for any t € [0,T] we have

IT(t) — Ye(t)|er Se+ H,D€||H—77
+ 1730707 (Jlu— wlep + o = velley )

IT = ell, 3 7% A [|De o + 7 (lu — wellep + [l = velle) -

<
C3 ([0,t],C0) ~

with implied constants depending on K and T'.
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Proof. We rewrite the difference T — Y. as
t
Y(t) — Ye(t) = / Se(t —s) (Jr(uav Ve) — fs(uaave))(s) ds

0

t

+ / S:(t — s)(]:(u,v) — F(us,ve))(s) ds
0
t

+/ (S —S:)(t— 8)F(u,v)(s)ds .
0
=L+L+1I;.

Using Lemma[4.7]in the second term we obtain

|| < ‘ /Ot Se(t—s) (DG(uE)v5D€v6> (s)ds

CY

t a+ 1
< |]D6\|th/0 (t — s)’TW*Z‘(ngG(us)ve)(sﬂca ds
aty

3 _aty
<Dy

Here we have made use of the conditions n < a < %, ~v < 1 to ensure that the
exponent is positive. Furthermore,

| Baler S 72070 Fu, v) — F(ue,ve) es
SHO 7 (Ju — g + v —veller )
and Corollary 6.6 yields for any x > 0 small enough,
|sler S et 20— OVO | F(y 0)|gp
S gtlfm(gfw)w

Combining these bounds, we obtain the first estimate.
In order to prove the second estimate, we fix 0 < s < t < T and write

2 3

(T =)0 = (0= 1)) = 3Dy

where

and

Jo1 = / Se(t —r) (F(u,v) — F(ue,ve)) (r) dr,

Jog = / Se(t — T)(]: — fa)(ua,va)(r) dr,
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Tog = / (S — S)(t — ) F(u, v)(r) dr .

In order to bound J;1 we will use Lemma@]below. In this way we obtain for
x > 0 small enough,

S
|J11]co 5/
0

su—@{[@—m”?ﬁmmen

(Se(t —7) — Se(s — 1)) (v DG (ue)v-D;) (r) y dr

(veDG(ug)ve)(r) ‘ca dr

The argument for .J12 is the same as the argument for the bound on /; in the Propo-

sition (#.4). Arguing as in (4.14)-(&.18) we obtain
[izleo S €172 (8 = 8)2 || Flue, ve)llep S '3 (t—9)7 .

The term .J13 can be treated in the same way as the term I3 in the proof of Propo-
sition (#.4). Using the argument from (4.20) we obtain

[J1zleo S 1t = s[ | F(u, v) = F(ue, ve)lleg
S| = 503 (lu — welleg + 1o = vellep) -
For the first term involving an integral over [s, t| we get the same bound
[Jatleo S 1t = s[llF (u, v) = Flue, ve) g
SR = 502 (lu — velleg + v = velep) -

To bound the term J22 we invoke Lemma 4.7]one more time. We obtain

t
| J22|co 5/
S

<

~

dr

CO

Se(t—r) (UEDG(ua)vaDg) (r)

(t = )" 33| (DG ()2 (1) | | D) - I

T~

NS

S (= 93| De |

Finally, by the argument in @#.19),

1+ e

[Jasleo St — )72 7" F(u,0)lep Se(t—s)> 7"
Putting everything together, we obtain the desired bound. U
The following lemma has been used in the proof above.

Lemma4.7. Let0 <n < a < %andO <~ < 1. Thenfory € C*and p € H™"
we have for anyt > 0 and ¢ € [0, 1],

|S-()(% @) 0y S 75 50l rnllco. 4.21)

Furthermore, for s < t and for any 0 < X\ < 1 we have

Yta

(=) = 5:(5)) (¥ @) 0y S (t = 8)s™ 5 A5 gl gron ] (4.22)
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Proof. By the assumption 7 < « we have [ ¢|g-a < |Y|ce |@|g—n. (This
elementary multiplicative inequality follows by duality from the estimate (3.24))
proved above). Therefore the bounds @.21) and (4.22) follow immediately from
the bounds

_yta_ 1
S (O], ey S EZh)
_ofa_ 5 1
’SE(t) - S€(S)|H_a_)H'y+% 5 (t - 3))\3 z A 4, @)
and from Sobolev embedding.
Actually, the identity @.23p) follows immediately from the lower bound on f.
To prove (#:23p), we write § = v + o + 1 and estimate

sup ‘k‘G (e—k2f(ak)s - e—ka(ak)t)

keZ

< sup ‘k|9 ekaf(sk)s(l o eszf(ek)(tfs))
™ kez

< (t— ) sup |k|? e FTER g2 pek) < (¢ — 5)* 58
keZ

The estimate (@.23p) follows from this bound. O

Remark 4.8. Note that these L? based regularity properties for the heat semigroup
are significantly easier to derive than the estimates in Holder spaces in Section [6]
Also note that we do not encounter any problems in the time regularity for s < 2.

5. ROUGH PATH ESTIMATES

In this section we treat the stability of approximations of the term involving
G (u) Oyu. We will make heavy use of the rough path bounds provided in Appendix
[Al We will fix deterministic data (u, u., X, etc.) and derive bounds based on the
regularity of this data. There will be no randomness involved.

We fix Holder exponents % <a<a< % We also fix rough path valued map-
pings (X (¢),X(t)) and (Xc(t), X:(¢)). To be more precise, we will assume that
the mappings [0, 7] > t — X (t) € C%and [0,7T] > t — X(t) € B2 are continu-
ous and that for every ¢ the functions = — X (¢,z) and (z,y) — X(t; z,y) satisfy
the consistency relation (A.3). The functions (X.(t),X(t)) will be assumed to
satisfy the same conditions.

We will also fix functions u,u. € CF. We assume that for every ¢ the func-
tion w is controlled by X. More precisely, we will assume that there are bounded
functions

[0, 7] 3t u(t),d/(t) €C,  [0,T] >t Ry(t) € B>
such that for every ¢ € (0,7’ the maps
r—u(t,z), X(t,x) and (z,y) — Ru(t;z,y) (5.1)

satisfy the relation (A.4)). In the same way we will assume that the w, are controlled
by X_, but only for ¢ > 2. More precisely, we will assume that there are bounded
functions

0,T] 3t uc(t),ul(t) €C™, (e}, T] >t Ry (t) € B>,
such that for every t € (&2, T] the maps
x> us(t,z), Xe(t,z) and (x,y) — Ry (t;z,y) (5.2)
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satisfy the relation . Let us emphasise that although we use the notation . (¢)
for all ¢ € [0,T], we only assume that u’(¢) is the rough path derivative of . (t)
fort € (¢2,T).

Throughout this section we will make the standing assumption that the norms

1 Xlleg, 1 Xelleg, IXlszes 1 Xellg2a, llulleg, lluelleg, u'lleg, lutlleg
are bounded by a large constant K. We will also assume that for ¢ > 0
Ru(t)|2a < K5, [Ru(t)a < Kt~ 2, (5.3)

and for t > 2

[N}

Rue@ha < K(t =73, [Ru(la < K(t—)75 (54

Most of the constants that appear in this section (or that are suppressed when we
write <) depend on the choice of this constant K.
The main objects under consideration in this section are the quantities

Z(tr)= 4 Glult.y)) dyut.y).

E(t,x):/o S(t—s)&rZ(s)ds:/O 0.5t — )Z(s) ds

along with their approximations

4mm=/$k%wwwwmm

—Tr

+ 046G (ue(t,9)) ul (t y)f DX (t9) "l (b y) | dy

=t 7) = /0 S.(t — 8)0u Ze(s) ds = /O 0,5-(t — 5)Z.(s) ds.

Here we have made use of the fact that the heat semigroup S as well as the approx-
imated heat semigroup S- commute with the spatial derivative. As above, we have
used the notation

1
DXc(tiy) = © [ Xeltsyoy+22) uld2).
R

Note that we have included indices to capture the trilinear structure in the second
term on the right-hand side. The linear algebra does not play a crucial role for our
argument, and as above we will omit the indices for most of the argument.
Throughout this section we will make the additional assumption that the func-
tion G is bounded with bounded derivatives up to order three. This assumption is
removed in Section [2 using an appropriate stopping time.
As explained in Section 2] the term

kG (ue(t, ) ul () DX (t9) ™Ml (t y) (5.5)

which appears on the right-hand side in the definition of Z, is included to ensure
that — at least formally — Z. approximates Z, and therefore =. approximates =. As
discussed in Sections [2]and 4] this term gives rise to the extra term in the limit.
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The main objective of this section is to show that = indeed approximates =. A
precise error bound is given by the following result. In this section we shall use D,
as abbreviation for

D, = [HX — Xellea + 1X = Xcllgea + [[u — uellea + |u" — u;||c[c;2 .

+ HRu - Rus H82d

[£2,T),6

We let ;. := 0V r denote the positive part of a real number 7.

Proposition 5.1. Let 0 < v < 1 and k > 0. Then, for all t € [0,T] we have

— _ Lq_~— _ 1~ a—
[2(t) — Ze(lor S De (b= )37 petart (gt
+elm17r

The constant which is suppressed in the notation depends on 7" and K. We shall
also prove the following result concerning the time regularity of the difference

—_
—

—
— —i.

Proposition 5.2. Ler 0 < v < %.Then we have for any k > 0 small enough and
fort > ¢2

< t%(1—2y—n)DE 4 ga—1,

—_
—
—

Zelled .00
First we obtain bounds on the difference between Z and Z.. The bounds (5.6) —

(5.7) will be proved using rough path techniques. For 0 < t < €2 we shall give a
crude elementary bound in (5.9).

Lemma 5.3. Fort > 0 we have

|Z(t)]ea St (5.6)
Moreover, for t > £2 we can write
Z(t) — Z(t) =T (t) + Ta(t) , 6.7
where
IT1(t)|ea < (¢ —€*)~*/?Ds,
I To(t)|eo S (¢ —*)7/2e% T (5.8)
Finally, forall 0 <t < 2 we have
|Ze(®)ler S e (5.9)

The estimate (5.9) holds for all ¢ > 0, but we shall only use it for 0 < ¢ < £2.

Proof of Lemmal[5.3] The estimate (5.9) follows directly from the definition and
the assumptions involving K.
Before estimating the other quantities, we observe that Y- (¢, -) := G (uz(t,)) is
a rough path controlled by (X., X.) with rough path derivative
Y (t,y) = DG(ue(t,y))ul(t,y) . (5.10)
and remainder

Ry.(t;2,y) = DG (uc(t, ) Ru. (t; 3,7) (5.11)

1
+/ [DG()\ug(t, y) + (1 = Nue(t,z)) — DG(ua(t,x))}
0
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X (ug(t,y) — us(t,x)) di .

Recalling the boundedness assumptions from the beginning of this section and in
particular (5.4), we obtain for t > £,

Ye)lee ST, [YdDlea S1, [Ry(Dha S (E-€)7% . (5.12)
The analogous statements
Y(#®)|ea <1, |Y'@)|ea <1, |[Ry()|oa St72 (5.13)

for 0 < ¢t < T hold as well. Moreover, we infer form [HW 10, Lemma 5.5] that
Y (t) = Ye(®)leo < |ult) — ue(t)lce
Y'(t) = Yo' (B)leo S fu(t) = ue(t)lew + [/ (t) — ue' (t) e (5.14)
Ry (t) = Ry (B)l2a < [u(t) — ue()leo + [Ru(t) — Ru. (t)]2a -

Let us now turn to the proofs of the estimates (5.6) and (5.7). The estimate (5.6)
is a direct consequence of Lemma[A.4] combined with the assumptions involving

K and the bounds (5.12).
In order to prove (5.7) we set

Quti.y) = f Glue(t,2) duc(t.2) - Gluc(t.2) (uelt.y) — uo(t. )
— DGt Nl (1) Xt ) (1,3
Applying and using and the assumption that
max{[| Xc[lcg, [IXcllgzas luelleg, llutllee,  } < K,

2,717 T

we infer that
Q:(t)]30 S (t —?)7/2. (5.15)

For fixed t € (2, T, we may now write

xT

2(t.0) - 2200 = ( Gttt dyuttn) - § Glutt) dyucten)

F(F T G dunte)

Ry -
+ ][ in(Ug(t, y)) duc(t, y)) p(dz)

€
+/ Q:(t;y,y +€2)
R 3

—T

dy p(dz)

= (T1 + 51 + Sg)(t,:L‘) .

Here we used a Fubini-type Theorem for rough integrals ([HW 10, Lemma 2.10])
to arrive at the expression for Ss.

In order to bound 77 we shall apply [Gub04, p. 102], which provides a bound
for the difference between two rough integrals. A slightly weaker result is provided
in [HW10, Lemma 2.9], but we cannot apply this result directly here, as we need
to be careful not to obtain products of terms which scale like (¢ — 2)~%/2, Taking
(5.12) and (5.14)) into account, we infer that

ITa(#)les S (¢ = &%) ~%/?D. .

~
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Moreover, it follows from (5.13) that
[S2(t) ] §/ |21 u(dz) 2 Qe(t)les S (8- %) /2T
R

In order to bound S, we note that the second term Sis of S can be written as

T+ez
Sia(t, x) :/R [][ Ve oo (ty) duc(t, y) | u(dz) (5.16)

where
Y—€z—2x

G(ue(ty)) -

In view of the a priori bounds on u. and ., it follows from [Hailla, Lemma 2.2]
that Y- . (¢, -) is controlled by X (¢, -) with rough path derivative

Y. o(t,y) = 5

Y (ty) =2

£,2,T

—— DG(us(t,y)uc(t,y) -

Moreover, since y € [z, z + €z], the same result implies that
Yerow(t:)leo + Y2, 2t )leo S 2l
Ve oalt lea Szl +670, (5.17)
Ry, (i, Moo S 2| +e7H (=) 772
Lemma[A.4]allows us to write the rough integral in as

][ b ) e ) = Yoo (1) (e (s + 2) — u(t, 2))
’ + Y., ()Xo (b, + e2)us(t, o) + Qe(t; o, 0 +2) ,
where
Qe(t; -, )sa S (2] +e7h)(t— ) ™/2.

Taking the a priori bounds on |ug|ce, |ul|co and |Xc(¢; -, -)|2q into account, it thus

follows that

+ez
]][ Yo o(ty) dua(t, )
. C

S Yeralt, leolez|® + Y7, (2, eolez* +1Qe(t; -, ) 3ale2]*
S lzl(lezl® + [e2*) + (J=] + €71 (E = %)™ lez* .

0

Taking into account that the (1 + 3c)-moment of |y is finite (this is the only place
where we use all moments up to order %) and using that ¢ < £3°~1 we infer that

[S12(t, Yo S ¥t — %) 72

Since an analogous argument yields the same estimate for the first term Sy; :=
S1 — S19, we infer that

[S1(t, o S €7t — )72

Hence, setting T5 := S7 + So we arrive at the desired conclusion. O
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Proof of Proposition[5.1] We start by splitting the integral from 0 to ¢ into three
parts

e2Nt
2(t) — Ze(t) g/o 0u(S(t — 8)Z(s) — Se(t — 5)Z<(s)) ds

+ : 0x(S(t — 5) = Se(t — 5))Z(s) ds
t
+ 2Nt aISE(t - 5)(Z(‘9) - ZE(S)) ds
=: Il + 12 + 13 :

For the first term we use the estimates (5.6) and (5.9) to obtain for any x > 0 small
enough

2Nt
mwzé St — 8)leamscren| Z(s)]eo ds
2

<Nt
+/'r&wﬂmuw@&@ww
0

~

e2AL L
< / (2 Nt — )2 g=a/2 g
0
2

e“Nt -
+/ (2Nt —s) 2 "2 L ds
0
5 61—7 _|_€1+Oz—"f—2fi

< el

~

The terms I» and I3 are equal to 0 if ¢ < £2. So from now on we assume ¢ > £2.
To bound the second part we use Corollary [6.6] and Lemma [5.3] to obtain for any
0 <A <1—~and for k > 0 small enough

t
[Laler S /2 [S(t = 5) = Se(t = s)lcascrer|Z(s)|ce ds
&
t
< / (t _ S)f%(l+’yfa+)\+n)5)\sf% ds < t%(lf’yf)\fn)e)\ )
52
The third part can be estimated using Lemma[6.4] and Lemma [5.3| by
t t
Bler S [ 184t = 8)leacron Tiles ds + [ 15ult = 9levscroslTaleo s
15 &
! —14~-a 2\—a&/2
S [ (=973t (s - 2=/,
82

+(t— )72V (g gz)fa/zggaq) ds
S DE (t _ 62)%(1—7—@ + 63oc—1 (t _ 52)%(1_,\/_()_,{) .

Note that within the range of parameters that we consider the integral in the second
line always converges (for k > 0 small enough), but it may happen that the last
exponent of (¢ — £2) in the last line is negative. O
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Proof of Proposition Lete2 < s < t. We need to bound the expression .J(t) —
J(s) where

J(t) = /D 0 (5.(S(t — 1)2(r))) dr.

Here and below we will use the notation (SZ) =85.Z.— 87,65 :=5.—8
and so forth. We write J(t) — J(s) = I1(s,t) + I2(s,t) + I3(s, t), where

2

I(s,1) = /0 ) 0,0.(S(t — ) — S(s — ) 2(r)] dr.
I(s, 1) :/ 0,0.(S(t —7) — S(s 1) 2(r)] dr.

Ly(s,1) = / 00 [S(t— 1) Z(r)] dr.

In order to bound I; we use the bounds (5.6) and and brutally bound the
e-difference by the sum. Then using Lemma[6.7] we get

52
[11(5,t)|co < / |S(t —s5) —Id |c1+v01|S(5 = 7)|cascre+]| Z(r)|co dr

0
82

+/ IS(t — 7 — 557) = Se(s — 1 — 357 |oririn e

0
X |8 (555 ) er et | Ze(7)|cr dr
< (t—s)2e' ™.

Actually, it is obvious that the first integral is bounded by the right hand side. For
the second integral one even gets a better scaling ¢'+*~7=* for x > 0 arbitrarily
small.

For the term [ it is useful to split it up once more. We write

Ir(s,t) = /: Oy [55(S(t —r)—S(s— r))]Z(r) dr

2
+ /: Op(Se(t —7) = Se(s —1))0 Z(r) dr =: Iz 1 (s,t) + I22(s, ).
To bound 15 1 we(E use the factorisation
6(St—r)—S(s—7)) = (S=(t — s+ 555) — S-(555)) 6.5(55%)
+0:(S(t— s+ 555) = S(557)) S(437)-
Then Lemmal6.7)as well as Corollary [6.6] yield for any x > 0 small enough
T (s,t)leo S (t = 5)7e! 777"

For I3 2 we use the decomposition Z — Z. = T} + T5. For the term involving
Ty we get using Lemma[6.7]for any x > 0 small enough

S
/ 18t — 5+ 257) = o558 lereren st 8o (55 ennr e T (1) o dr
1>

5(t—s)¥/ (s — )" 2127040 (. _ 2)=5D_gr
3

2

< (t— s)3ta(Im2=20)p_

~
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Note that we have used the brutal bound (1 + 7 (s — 7)~7/2) < (s — r)~7/2. For
the term involving 75 we cannot be quite so brutal and we write

‘/ (t—7) 5’5(3—7“)) To(r) d’r‘co

‘/8 2ve? Se(t—71) = Se(s —r)) To(r) dr co

—1—‘/ 82\/52 Se(t—1) = Se(s —r)) To(r) dr

The first integral is bounded by

s—e“Ve
/ S0t = 5+ €3) — 8e(?)| s snon
€

2
X |SE(5 —e2—7)

co’

}T2 ‘CO

(s—e2)ve 1442k o
(t—s) sa= 1/ (3—52—7")_%(7“—52)_5&
&

[

2
< (t—s)zede

For the second integral we get in the same way

s
/552\/52 |S6(t — S+ SEJ) - Se(%) ‘Cl+7+ﬂ_>cl

X

Se(*F5) |eoyerenn [T2(r)] codr

S
(t—s) da— 1/ el(s—r)"
s—e2ve2

(t—8)283a 1 1 y—o— 2/€

(s — r)_1+72+2ﬁ (r—e?)"2dr

W2

Summarising these calculations and redefining «, we obtain the bound
Ipo(s,t) < (t—s)2 <t2(1 D=RID, 4 g3 1)
For I3 we use the same splitting
Ly(s,t) = / 0, [6-5(t — )] Z(r) dr + /taz(sa(t —1)8.2(r)) dr
=:I31(s,t) + I32(s,t).
The term I3 1 (s,t) can be estimated easily using Corollary
[£3.1(s,1)|co < /t [S(t = 1) = Se(t = 1)leasscr|Z(r)|ce dr
< (ts— §)zel IR

Finally, for I3 » we get using once more that

IyalosOleo S [ (¢ = n-H0-s0 - )t

s
bt — ) 2R 2)= 5 Baml g

< (t—s)3 (120 RD, + 530“—1) :
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Here as above we have absorbed the positive power of ¢ in front of £3*~! into the

implicit constant (that may depend on T') because we do not need it later on. This
finishes the argument. U

6. BOUNDS ON THE APPROXIMATED SEMIGROUP

Throughout the paper, we frequently need bounds on the approximated heat
semigroup S.. These calculations are collected in this section. We first give some
auxiliary calculations involving the approximated heat kernels that are needed in
the proof of Lemma [3.6]

Lemma 6.1. The following bounds hold:
(i) Forany 0 <~y < 1 and for anyt € [0,T] we have the bound

/ |(07) (2) ] |2 : (6.1)

—T

If v = 0 we have
s
/ () (2) | d= S 72| logt]. (6.2)
—T

(i) Forany (0 < a < 1 we have for any 0 < t < T and any x € [—m, 7|

/ / pi(2) — pi(z — x) 2}2’%[ dzds < |x|t*. (6.3)

Remark 6.2. All of these bounds scale in the optimal way, except for (6.2)) where
an additional |log t| appears. When applying this bound in the proof of Lemma
this small correction does not matter . For (6.3]) our proof also shows the bound

t T
/ / (15(2) — 5z — )2 | dy ds < |12, (64)
0 —T

with a uniform constant for ¢ € [0,7]. We state in this way because it is
convenient in the proof of Lemma [3.6]

Proof. (i) We start the calculation by deriving pointwise bounds on

2
ike k* f(ek)t zkz

!/
(p7) (2 N Z
kGZ
For |z|? < t we will simply use the brutal bound

/ k2 1
D Iklem RS 2 6.5)
keZ
which holds uniformly for ¢ < T
Else, for |z|? > t we perform a summation by part and obtain

Z Zl{ieikQ f(ek)t zkz
V2m keZ (6.6)
= N (ke R IR _ () 1)67(k71)2f(6(k71))t) (%)
V2T Z ( ’
kEZ
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where

<= 6.7)

’ 1 — etilk+1)z
- AJ|ZV

k
}gk(z)‘ = ‘;)ewz _ —

the last two expressions being valid for z # 0. In order to bound the sum over the
—k2 f(ek)t

increments of ke we write
| D7 (keI ER — (g — 1) b1l
- 2 2 9 (6.8)
< Z ‘efk f(sk)t‘ I Z Ik ‘efk Pkt _ = (k=1)2f(e(k—1)t|
kEZ keZ

The first summand can be bounded easily
Z ‘6—k2f(sk)t‘ < 3,
keZ

where again the implicit constant is uniform for ¢ < 7T". For the second summand
we use the brutal bound

t5K| < (e%ﬂsk)t/z n ef(kfl)Qf(s(kfl))tﬂ)_l_ (6.9)
Actually, is obvious for k = 0 and for k = 1 it states that

13 < (e*f(s)t/2 n 1)‘1,

~

which is true for ¢ < T'. For k # 0, 1, we note that
1 k?
- < —0<H4
4~ (k—1)2 7
to bound the right hand side of by

<€—k2f(gk)g n e—(k—l)Qf(a(k—l))é>_1 > <e—k2cf% + e—%k%f%>_1
1

1
2 engCft‘

(Recall the definition of ¢y in Assumption|I.T). This establishes (6.9).
Plugging into the second term on the right hand side of we get
ZW ‘eflﬁf(ek)t _ ef(kfl)Qf(e(kfl))t‘
kEZ
<ty
keZ

where we have made use of the BV boundedness from Assumption[I.2]
Hence, summarising (6.6)—(6.10) we obtain

T
() ()] Stz =7
Finally, we can conclude the desired bounds fory >0

/_7r |(5) ()] 12 d= gtz/lmé }(pf)’(z)\dz+/ @) (2)||2] d=

|z|>t2

(6.10)

e~k f(ek)t/2 _ ef(kfl)zf(s(kq))t/g’ < %

1
2

-1 T -1 a1
§t2+2/ t72)z|7" dz St (6.11)
t
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and similarly for v = 0 we obtain (6.2)):

[luirels [ el [ jwre)s

—T
1,1 T o1 1
<t Mz+2 [ 72|z de St |logt].  (6.12)
t2

(ii) In order to prove (6.3) we again have to get pointwise bounds bounds on the
1
integrand. We distinguish between two different cases: the case where |z| > s2

and the case where |z| < s3.

. 1
Let us start by the first case, i.e. let us assume that || > s2. In that case
pS(z — ) is not a good approximation of p$(z) and we bound the difference by the
sum. We write

/ (5(2) — Pz — )2 | d=
- W (6.13)
< / PE(2)2 ][ de + o / pi(2)? de.

—T —T
The derivation of bounds for these two integrals is similar to the calculation for
. 1
(6.1) and (6.2)). In the same way as in (6.5) we get for |z| < s2 that

2
pi(z)Q < <Z€—k2f(ak)s> S 8_1. (614)

kEZ

. . . 1
Then performing the same summation by part as in (6.6) we get for |z| > s2

2
pi(z)2 5 (Z <e—k2f(sk)s _ e—(k—l)Qf(E(k—l))S> ’Z|_1) S |Z|_2. (6.15)

keZ
Hence we get as in (6.11)) and (6.12)) that
™ m
[ e s s hy [t sseh 6a6)
-7 52
and

o [ @GP az e (h [ as) Sl 6

1
—m s2
Now let us treat the second case, where |z| < s2. In that case we write
1 2 . .
€(2) — pS(z — 1) = efk f(z-:k)sezkz 1_ezk:p )
M) -pie-n == 3 (1)
keZ*
As before we use a brutal bound for |z| < 53
2 o 2 -
() pite =) 5 (3 eIl ) S Lol
keZ*
and a summation by part if |z| > s2. As above in (6.6) and we get
‘ Z e—k2f(ak)sez‘kz(l _ em)

keZ*
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< |z|_1’ Z ok f(ek)s (1 _ eikx) _ (=12 f(e(k=1))s (1 _ ei(k_l)”")

keZ*
2 2 ;
< |2 Z ’e—k Flek)s _ o—(k=1)2f(c(k=1))s| |1 _ ke
keZ*
+ ’2’71 Z esz fle(k-1))s eik:r o ei(kfl)z )
keZ*

The first sum can be bounded as above in (6.10)
Z ‘e—k2f(ak:)s _ o= (k=1)2f(e(k=1))s

keZ*

< Z ‘e—k2f(sk)s _ (k=12 f(e(k=1))s

kezx
For the second sum we write

3 e F kD)8

kez* kez*
Hence integrating over z yields

s
21 12
/ (p5(2) = pi(z — )" |2 d»
—T
< sa/ ) ]m|2s_2dz+/ ) |z\_2+2a|xl23_1dz < |$\2sa_%
|2|<s2 |z|>s2

Finally, integrating over s we get, splitting the integral over [0, ¢| into an integral
over [0, |z|? A t] and an integral over [|z|? A t, 1]

/ / ps —pi( z—a:))Q‘zFadyds

|z|2 At L ) L t ) 5
< / sY72 4 |z[*¥sT 2 ds +/ |x|“s* "2 ds < |zt
0 |

z|2At

1— eika:

—k2 f(e(k— 1)S<|JI’8 3

thus concluding the proof. U

We will now proceed to prove bounds on the regularisation property of the ap-
proximate heat semigroup S, on Holder spaces. These bounds are similar to the
well-known optimal regularity results for the heat semigroup S. Unfortunately,
we cannot apply standard multiplier results in Holder spaces such as the one in
[ABBO04], since in our application the conditions in these spaces are typically not
satisfied uniformly in €. We circumvent this problem by proving optimal regularity
in LP-based Sobolev spaces and then use Sobolev embeddings. In this way, we do
not obtain the optimal regularity though, but we always loose an arbitrarily small
exponent .

We first state a simple corollary of the classical Marcinkiewicz multiplier theo-
rem [Mar39]. In order to state the result we introduce the following notation. For
any sequence {m(k)}rcz we define

2+l

lmlapm = Zug im(k)| + sup Z Z —m(o(k+1))]. (6.18)

€

k=2l oe{-1 1}
The result can now be formulated as follows.
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Lemma 6.3. Let {m(k)}rez be a real sequence and let T,, be the associated
Fourier multiplication operator given by

Trnet = m(k)et* .
For any v € R we define the sequence {m?}ycz by

m7 (k) = |k|”"m(k) (6.19)
for k # 0 and m7(0) = m(0). Then, forany ¥ > (0 AN —vy) and any 0 < k < ¥
we have

HTchwchﬁ—n S lm? ||
Proof. For any 1 < p < oo the Marcinkiewicz multiplier theorem [Mar39]] asserts
that
|’Tm’YHLp~>LP S m7 | ag
where T},~ is the Fourier multiplier associated to m”. Hence, it follows immedi-
ately from the definition of the Bessel potential spaces H 7P that
1Tonll w2 sz S 7 laa

(See, e.g. [GraQ9, Section 6.1.2] or [Mey92] for proofs in the whole space; the
extension to the torus is immediate.) Then the desired statement follows from the
embedding

CYHY s gYHIR/2p
and the Sobolev embedding
HVRI2P <y CT=5,
which holds as soon as p is sufficiently large. U

With this result in hand we are now ready to derive the bounds on S.. Through-
out the following lemmas we will use the notation

me (k) = e FIERL (6.20)
In this notation Assumption|1.2|implies that

sup ||me|gy < 0o (6.21)
£,t>0

This is because me ¢(k) = b;/-2(¢k), and the BV-norm is invariant under repara-
metrisations.

Lemma 6.4. For any v,7 > 0 and for any t > 0 we have

sup [|S=()[ler—sciivn ST (6.22)
€€(0,1)

Proof. We have for any k € Z* that

k[ Yme (k) = k|7 e FTERE < 43 qup || <73,
x€ER

To bound the BV norm of |k|"m. ; we write

So | e+ 1) — [k me (k)
keZ\{0,1}
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< > R = [k mea (k) + D k[ me(k 1) = meg(R)].
kez\{0,1} kezZ\{0,1}
To bound the first term we use the fact that | |k + 1|7 — [k[7| < |k[7~! to obtain
Do EHI =k mep(k) S D0 R Tre e SR,
k€Z\{0,1} keZ\{0,1}

To bound the second term we use the same argument as above in (6.9) to show that
38" < (eszf(sk)t/2 n ef(kfl)zf(s(kfl))tﬂ) - (6.23)
This bound then implies that

D k[ Imes(k+ 1) — me(k)]
keZ\{0,1}
2

S t% Z ’mayt/g(k‘ + 1) - ma,t/?(k)‘ S t2,

kEZ\{0,1}
where in the last inequality we have made use of (6.21). Then Lemma [6.3]implies
the desired bound (6.22) O
Lemma 6.5. For any ~ € [0, 1], for ¥ > 0, and for k > 0 we have
sup |[S(t) — Se(t)|lei+y -« S (6.24)
te[0,7

Proof. As a shorthand, we use the notations
¥ ¥

Oemy i=mey —my,  Oem) :=ml, —mj,
where m. ; is defined in (6.20) and m/ (k) := [k|"Vm.; and m; := |k[~Ym; as
in (6.19). The bound follows from[6.3]as soon as we have established the estimate
[0=m ||\, S €7 (6.25)

Observe that 6.m; (0) = 0, so that from now on we will only deal with k& # 0.
By symmetry it suffices to consider the positive Fourier modes, hence, to simplify
notation, we will neglect the terms with o = —1 in the definition of || - || o1

In order to establish (6.25) we start by showing that
sup |6.my (k)| S €. (6.26)
kEZ

Recall that according to Assumption f is differentiable on (—6,6) with
bounded derivatives. Therefore, if 0 < |¢k| < J we can write

1 _ _
|6.m] (k)| = W[e HEF(ER) — otk (6.27)
< L(3_0-"“‘215/@2‘f(zflf) -1| < L|<€k| <ev.
™ kP TR

Here we have made use of the fact that the function x — x exp ( —c fx) is bounded
on [0, c0) as well as of the boundedness of f” on (=, ).
If |ek| > ¢ the bound (6.26)) can be established simply by writing

|6-mf (k)| S k|77 S €. (6.28)
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The bounds on the BV-norms of the Paley-Littlewood blocks
2+l
> [6em] (k) — 6em] (k + 1)
k=2
require more thought. Actually, we can always write using the inequality | fg|py <
| fleolglBy + lgleol flBv

ol+1_1 1 2l 1
D [0emi (k) = Gemi(k + D) < o > [Germa(k) — Gema(k + 1)
k=2 k=2
1
+ 5 s-my (k)| - 6.29
L

The second summand can be bounded as in and (6.28)). We get
su oemy (k)| S €.
o kemgﬂl |6-mi (k)| < (6.30)

For the first term on the right-hand side of (6.29) we distinguish between different
cases.

We first consider the case where £2/*1 > 4. In this case the me (k) for
k € [2',2!*1] are not good approximations to the m;(k). Hence we bound the
difference by the sum

|6-mi (k) —6emy(k41)| < [mes(k)—me i (k+1) |+ |me(k) —me(k+1)| . (6.31)
Then we get using Assumption on the boundedness of the BV norm of m, ;

2l
1 1
o D melk) = mey(k+1)] S o e (6.32)
k=2!

The second term on the right-hand side of (6.31)) can be bounded in the same way.
Secondly, we consider the case £2it1 < §. In order to treat this case, we claim
that for any non-negative numbers g;; with ¢, j € {0, 1}, we have

|e900 — =901 _ p=910 | p=I11| L g7 UQOD — go1 — g10 + 911\ (6.33)

+ <|900 — go1| + |g10 — 911|> (!900 — g10] + |go1 — 911\)} ,
where m = min g;;. To see this, set

g p) = (1= A1 = p)goo + (1 = Apgor + A1 — p)gio + Augn
and note that the left-hand side of (6.33) can be written as

’/()1/018/\8“exp(_9<)\,ﬂ))d>\du

1,1
<| [ [50s00001 + 0000 ml13,00 1] expl=g(0 ) Al
The estimate (6.33)) follows using the inequalities

O\0ug(A, 1) = goo — go1r — 10 + 911 »
Org(A, 1) < |goo — g1o| + 1901 — g11]
Oug( A, 1) < lgoo — go1| + |g10 — 911]
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g\, ) =m.

Applying this estimate to go; = (k +1)%t and g1; = (k + )%t f(e(k +1)), we infer
that
2+t 2l

2% D [6emuk) = Sema(k +1)] < o ST e (Bay(k) + Ce(R))

= = (6.34)
where

Bey(k) = [th? (£(ek) = 1) = 0 + 12 (f(e(k + 1) = 1)| S tek,
and, taking into account that ek < 1,

Cen(k) = [|th? = tl0s+ 1| + [t £ (k) — t(k + D2 £ (e(k + 1))

x Htk2 (ck) —1)( + 1+ 1% f(e(b+ 1)) — 1]
< (tk) - (tek®) = t2%ek* .

Using these bounds, together with the fact that M = sup,~{re™%, 22 %} < oo,
we infer that
ol+1_1 2lel 1

1
o > Jema(k) — dema(k +1)| < 2l Y eg20 Mg,
k=2 k=2l
This finishes the proof of (6.25)) and hence of (6.24). O

The following result is now an immediate consequence.
Corollary 6.6. Let A € [0,1] and o < v + A\. For & > 0 sufficiently small,
[S(t) = Se(t)|casen St 30TORARIA (6.35)
Proof. This follows from the decomposition

S(t) = Se(t) = (S(t/2) — Se(t/2)) (S(t/2) + S(t/2))
and Lemma 6.4l and Lemma[6.3] O

The next result concerns the time regularity of solutions to the approximated
heat equation. Recall that the approximated heat semigroup S; is not strongly
continuous at 0 and we cannot expect convergence to zero of ‘Se(t) —1d ‘ cv_sc0 A8
t — 0. However, the following result states that the approximating semigroup has
nice time continuity properties for times ¢ > s with a blowup if s < £2.

Lemma 6.7. Let 7 > 0 and vy € [0, 2]. Then, for allt > s > 0 we have
|Sc(8) = Se(®)|ertrinnes S (L+7s72) [t —s]2 .
Proof. As above we write
m), (k) = k™ Vexp(—tk*f(ek)) . meu(k) = exp(—tk” f(ck)) .
Lemma [6.3]implies the desired result as soon as we have established that

[y =ml |y < (L+e7s72) (- 9)2,
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where the norm | - |5 has been defined in (6.18). By symmetry it suffices to
consider the Fourier coefficients with & > 0, i.e. the terms with ¢ = 1. Throughout
the calculations we will write

0sm (k) :=m] (k) —m] (k) .

e,t
and similarly for 0, ;m..
In order to bound the supremum of the § sytmg we write for any k € Z*

(G (k)| = ke~ R IER) (1 _ - (-2 F(eR)
S (t _ S)%e—ska(ek)f(Ek,)%

If |ek| < ¢ Assumptionimplies that f is bounded and hence the whole expres-
sion is bounded by |t — s|2 up to a constant. If |ck| > 0 we can write

(t —8)2e IR fch)3 < (t—s5)3e 20 TR p(ep)3 (6.36)
S (- 8)%6787% sup e*‘szm\x]% S (- s)%.
rz€R

It remains to bound the Paley-Littlewood blocks. We start with the case 0 <
g2!*1 < 6. On [6, 6] the function f is C' by assumption. In this case we will

show that
2+l

> [8seml(k) = beaml(k+ 1)| St — s (637)
k=2
We start by writing

2+t ol+1
Z |0s54m2 (k) — 0s0m? (k+1)| < / |0465,4m2 ()| do
k=21 2!

2l+1

< / ‘ [e(t — 8)2* 7 f/(ex) + 2217 (t — ) f(ex)] GOl
Pl

I+1
. 2 esxd f'(ex) + 2522 f(ex) + —sa2f(ea) _ ~ta2f(ex)) g
Ty e e x
9l T
2l+1
2
St— s\/ at et e gy (6.38)
2l
2+ 2
sr” 41 —s22 f(ex) —tz? f(ex)
+/2[ pvu (e —e )d:r.

For the first term, we use the boundedness of f on [—d, d] as well as the lower
bound f > cy, so that

21+1

It_S|1/22l+1

g2

|t—5| ‘ml Te tx? f(ex)
2l

2
dr < |t — 5]3/ 2TV emF dz
[t

_S|1/22l

Slt—sl?,

as required, where we used the fact that |t — s| < t. We break the second term in
two components. For the first one, we have
2l+1

2
/ % (e—stf(ez) o e—ta:Qf(aa:)) dr
2l
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2l+1

< / spl™7 efstCf‘l _ ef(tfs)fo(sx)‘ dr
2l+1

< / syl emsTey (t—s) :sz(sx)|% dx
2

For the remaining term, we obtain

2[+1

/ 11+ (e—sr2f(€x) - e—t:t2f(a:r:)) dr
2l xt Ty
2l+1 2l+1 2
< / 11+ }1 — e (t=9) z2f(€:c)’ dr < / LA |t1_ s|z da
9l Tty 9l xl+y
v 1A 22 o4
g(t—s)2/0 e dz < (t—s)2.
Let us now treat the case § < £2/1. In this case we will establish
2+l
D7 |dsgm2 (k) — Goum(k +1)| S Vs 2|t —s|V/2 (6.39)
k=21
Since d5yml (x) = 7765 4ym.(z), we obtain
2+l 1 2+l
> |0sum (k) — 65am(k+1)| < o > |0seme(k) = 8o pme(k +1)]
k=21 k=2!
1
+ o Sup ‘(5sytm€(k)‘ . (6.40)
ke[2!,20+1]

The second term in this expression can be bounded by

1 1
= sup [6ume(k)| S o sup  exp(—sk®f(ck))|t — s|2k7 f(ek)
27 pepat 2t 27 epat 2t+1)

X
2

S I (COE
ke[2t,21+1]
As above in (6-36) using the fact that k > 34 this expression can be bounded by
€75~ 2|t — 5|2 up to a constant.
It remains to bound the terms

| 1

D [same(k) = dopme(k + 1)] < o |9s.me By - (6.41)

k=21

2

For this, it turns out to be sufficient to show that for any A\; < Ao we have the
bound
Ao — Ay

[Crialmy S =5 (6.42)

where
G () :=exp (- )\1:(}2f($>) —exp (— /\szf(m)) )
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Assuming that we have established (6.42), we can rewrite d5 ;m, as
dspme(x) = G% (ex) .

t
787

Then (6.42) implies the bound

usme(@)lay 5 =21
On the other hand, Assumption [1.2|immediately implies that |d5m.(z)|gv S 1,
so that |05 ym(x) |y S |t — s|2 s~ 2. Plugging this back into and using the
fact that €2! > §/2, we immediately obtain the required bound.

It remains to show .For any Z,¢ > 0 we set A, (Z) = e % — e~ (I+e)7,
then for T < 7 we observe the bound

y v o,
|4.(Z) — Ac(B)| = / e — (14 c)e”He)z gy < c/ e 3 dz
Tz T
= 0‘67% — 67%‘
Applying the observation for Z := \j2%f(x) and for ¢ := )‘2/\;1/\1 we see that the

BV-norm of G, , is bounded by )‘2/\;1)‘1 times the BV-norm of exp(— - 22 f(x)).
This on the other hand is bounded uniformly in A\; by Assumption so that we
have established (6.42)). O

APPENDIX A. ROUGH INTEGRALS

In this appendix we briefly summarise the definition and the properties of rough
integrals we use. We refer the reader to [LQO02, (Gub04, [LCLO7, HW10, FV10] for
a more complete account of rough path theory.

As above for X € C° we will always use the notation 6 X (z,y) = X(y) —
X (). For R € B° we will write §R(z,y, 2) := R(z, z) — R(z,y) — R(y, 2). See
[Gub04, |GT10] for a discussion of the algebraic properties of these operators.

We want to define integrals of the type

/Z/ Y(2) ® dZ(z) (A1)

for functions Y, Z € C* for some a € (0,1). If o > % such integrals can be

defined as limits of Riemann-sums of type

> V(@) © 6Z (i, wit1). (A2)

)

This yields the Young integral.

Ifa< % Riemann sums of type li will in general fail to converge. The idea
is then to define a better approximation with the help of additional data. To this
end we introduce the following definitions.

Definition A.1. An a-rough path consists of two functions X € C*(R") and X €
B2 (]R” ® R”) satisfying the relation

X(z,z) — X(z,y) — X(y,2) = 6X(x,y) @ §X(y, 2) (A.3)
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forall z,y, z. An a-rough path (X, X) is called geometric if in addition for every
.,y the symmetric part X (z,y) = 3(X(z,y) + X(z,y)T of X(z, ) satisfies

X (z,y) = %5)((:8, y) ®6X (z,y).
Following [[Gub04]] we also define:
Definition A.2. Let X be in C* A pair (Y,Y')withY € C* and Y’ € C*(L(R™))
is said to be controlled by X if for all x,y
8Y (x,y) = Y'(2) 6 X (z,y) + Ry (z,y), (A.4)
with a remainder Ry € B2.

Note that (A.4) is a linear condition. So for a given X the space of paths that are
controlled by X is a vector space.

Remark A.3. In general the decomposition (A.4) need not be unique, but in all of
the situations we will encounter there is a natural choice of Y’, which will be called
the rough path derivative of Y.

If Y, Z are controlled by X and there is a choice of X turning (X, X) into a
rough path, we construct the rough integral integral §YdZ as the limit of the
second order approximations

Z V(i) ® (Z(wi41) — Z(23)) + V() X (24, 2i31) Z'(23)7. (A.5)

Ifa> %, it turns out that these approximations converge:

Lemma A.4 ([Gub04, Thm 1 and Cor. 2]). Let o« > % Suppose (X,X) is an «

rough path and'Y, Z are controlled by X . Then the Riemann-sums defined in (A.5))
converge as the mesh of the partition goes to zero. We call the limit rough integral
and denote it by Y (x) ® dZ(z).

The mapping (Y, Z) — Y ®@dZ is bilinear and we have the following bound:

][y Y(2)®dZ(z) = Y(z) @ 6Z(z,y) + Y (2)X(z,9) 2" ()T + Q(z,y),
: (A.6)
where the remainder satisfies
|Qlsy, SIRyl2alZla + Y |co| XaR 2|20
o Xlaa (1Y lal Z/leo + 1V'|eol 2/l ) + XY |eol Zla - (AD)
The rough integral also possesses continuity properties with respect to different
rough paths. We refer the reader to [Gub04] for more details. The reason for using

the notation { instead of [ is to keep a reminder of the fact that this is really an
abuse of notation since f Y dZ also depends on the choices of Y, Z’, and X.

APPENDIX B. REGULARITY RESULTS

We first quote a variation on a classical regularity statement due to Garsia, Ro-
demich and Rumsey [GRR71]]. For R € B° we will use the notation

|6R’[x,y] = sup |(5R(Z1722723)

r<21<22<23<y

>
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where dR(z1, 22, 23) := R(21,23) — R(21, 22) — R(22, z3). The following result
is a special case of [Gub04, Lemma 4] applied to the functions ¢ (u) = u? and
p(x) =z 2/P,

Lemma B.1. Let o > 0 and p > 1. For R € B° we have

P 1/p oR
IR|a < (/[ |R(.y)PP dacdy) +sup| )

—m,m]? ‘IL‘ - y‘ap—l—Q <y ‘$ - y’oz

In the special case where R(z,y) = f(y)— f(x) for some function f, the second
term vanishes and one recovers a version of the Sobolev embedding theorem.

We will now proceed to extend this statement to derive bounds on functions that
depend on several variables. We will use the abbreviated notation

[Fllcor egy = I1E leer (po,r1,c02 [~ 1)

and similarly for || R|ce1 50)-
Lemma B.2. Let ay, a0 > 0, let 1,72 € [0,1] and let p > 1 be such that
1 1
ap < AL — =, az < Ay — — (B.1)
b p

for some A\, Ao >0, A3 > 0with A\y + o+ A3 = 1.
(1) Let F be a random function in C([0,T], C[—m, ) satisfying

sup E|F(t,z) — F(s,2)|” <U|t — s|"P, (B2h)
z€[—m,m]
sup E‘F(t,x) — F(t’y)’P < UB|z —y2P, (B2b)
t€[0,7]
sup E|F(t,z)|" <UL . B2k
re|—m,m
te[[O,T}]

Then we have

E|lF|[f oy S (01 + 0@ +008) . ®3)
(2) Similarly, let R be a random function in C ([0, T, B°[—r, 71]) satisfying
Sl[lp }E‘R(t,a?,y) — R(s;a;,y)}p < U7t —s|MP, (B.4p)
z,yE[—m,m

sup E}R(t;x, y)}p < UP|lz —y[P, (B.4b)

t€[0,T]
sup ESRO, < USle—u™, )

te[0,T]
sup  E|R(t;2,y)|" < U . (B.44d)

g

Then we have
B[ R[es ey S (O + U032 +U32)03°). (B.5)

Proof. Let us start by proving (B.3). To this end for fixed 0 < s < ¢ < T we
introduce the notation

Fs¢(x) = F(t,z) — F(s,x).
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We have to bound the quantity

Fayl P
p < ‘ Svt Cx2
BN oy SE( s ) PO, @0
To this end for fixed s,t we can write
Fs:(y) — Fsi(2)]\?
E\Fst\CQQNE( sup LRE) ij( M) +E|F4(0)]". (B.7)
rAYE[—m,m] ’x - y‘

For the first term we get using the Garsia-Rodemich-Rumsey Lemma [B.1]

E( sup ‘Fs,t(y)—F&t(x”)p

z,y€E[—m,m] |$ - y|a2

5 E |:/ |Fs,t(x) - Fs7t(y)|p dr dy:| (BS)
[—m,]2

|z — y|oert?

1 p
- /[ 2 W E(Fsi(x) - Fs,t(?J)) dx dy.

Using Holder inequality the expectation in the last integral can be bounded by

E|Fy(2) — Foy(y)]” < sup }(E!F(t, 2) — F(s,2)[")™
ZET,Y

X sup (IE ‘F(r,w) — F(r, y)‘p))\2
rE{S,t}
X sup (]E’F(Tv Z)}p))\g

ze{zy}
re{s,t}

< (U7 1= s (UF la - o)™ (UD)™
Here in the last step we have made use of the bounds (B.2h), (B.2b), and (B.2K).

Similarly, according to the assumption (B.2) and (B.2k) we get for the second
term on the right-hand side of (B.7)

E|F, (0)]7 S (UP |t — sP) N (UF) 2T, (B.10)

(B.9)

Therefore, we get

E|F, UM U3Jt — s[7)P

pogops [ iy B
X (U3 + U, /[_mr]2 o =y dx dy ).

vt‘gaz S (

The integral appearing in (B.TI) is finite if and only if a satisfies the condition
given in (B.I)). So in that case we get

E|F, UM U3 |t — s| )P (U2 + U32)P. (B.12)

Then, to get uniform bounds in s, t we apply the Garsia-Rodemich-Rumsey Lemma
to the first term on the right-hand side of (B.6)

Fst] o, \P E|Fst|pa
E< sup }“’C2> < / L}ng dt (B.13)
0<s,e<T |t — 8|* o2 [t — sjart

it ‘272 ~ (

mA
< (UM UDY (U2 +U§2)”/ 0= s g at.

0,2 |t — s]e1Pt2
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The integral appearing on the right-hand side of (B.I3) is finite if and only if oy
satisfies the condition (BT)). Then we get

F @ q
B swp :t_t‘ja)p < (UM UMY 4 U

Finally, to conclude it only remains to bound the term E}F (0,-) ZQQ on the right-
hand side of (B.6). This can be done by observing that

E|F (0, S E[F(0,0)]

1 p

ews

SUp+ U P U S U (U2 4 Uy,

This finishes the proof of (B.3).
The proof of is very similar and we only sketch it. As above we will use
the notation

Rsu(z,y) = R(tz,y) — R(s;z,y).
Similarly to (B-6) we need to derive a bound on
EHRHPQI(B% < E( sup

0<s<t<T |t - S|a1

Rol,,) + B[RO P, . B.14)

For fixed s,? we get using Gubinelli’s version of the Garsia-Rodemich-Rumsey
inequality [B.1]

E[|Rs(2,y)lP + [0 Rsulf, ]
P [z,y]
E\R&Aw 5/[”]2 = g2 dx dy . (B.15)

The difference with respect to the case of F' is the appearance of the extra term
|0 R|[3.- On the other side there is no lower order term in the 542 norm. Then

using Holder inequality and the bounds (B-4h), (B-4p), (B-4K) and (B.4f), and then
the integrability condition (B.I)) in the same way as in (B-8)) and (B.9), the expec-

tation in the right-hand side of (B.I3)) can be bounded by
A A A
(U7 [t =)™ (U 2 — 7)™ (UF)
Plugging this back in we get as in (B.13),

R+ P
E( sup 7‘ - |a2>
o<s<t<T |t — 5|*

<oy oy
(0,7]?

|t — 8|71A1p

7“ ST dsdt
S (U Ug)" - (U5 + Ug7)"

Then applying Lemma [B.I]once more we can bound the second term appearing on

the right-hand side of by

X2 AL
E[R(0;-, )]}, < (Uy? U3 ™))"
This finishes the proof of (B.3). O

In a similar spirit is the following Banach space-valued version of Kolmogorov’s
continuity criterion, which is slightly more convenient in some cases.
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Lemma B.3. Let (¢(t)).e(o,r) be a Banach space-valued random field having the
property that for any q € (2, 00) there exists a constant K, > 0 such that

(Ellp®)]9)7 < Ky(Ele®)]?)7 |

1 1
(Ellp(s) = o077 < Kq(Ellp(s) — 0 (®)]?)2
forall s,t € [0, T]. Furthermore, suppose that the estimate
Ellp(s) — (t)]|* < Kols —t|°

holds for some Ky,0 > 0 and all s,t € [0,T]. Then, for every p > 0 there exists
C > 0 such that

(B.16)

P
E sup [lp(t)]]” < C(Ko +Elp(0)]?)* .
te€[0,T]

The conditions are satisfied for random fields taking values in a fixed
Gaussian chaos, as follows from the following well-known result, which is a con-
sequence of the hypercontractivity of the Ornstein-Uhlenbeck semigroup due to
Nelson [Nel73]. In order to formulate the result, we introduce some notation.

Let (€2, F,P) be a probability space, let H be a separable Hilbert space, and let
v H — L?(Q) be an isometry with the property that +(h) is centered Gaussian for
all h € H. For a separable Banach space F, the E-valued Gaussian chaos of order
m > 0 is defined as

Hon(B) == in{Hn(u(h) @z : W] =1, z € B},

where H,, is the Hermite polynomial of degree m and the closure is taken in
L2(Q,P; E). We set Hep(E) = UjLy Hi(E). More information on Banach
space-valued Gaussian chaos can be found in [FV10, KW92| Maal0].

Lemma B4. Let 1 <p <ooandm > 0. Forall F € H<,,(E) we have

[ FlzepE) = 1 FllL2p;E) -
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