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Abstract. This paper concerns the approximation of probability measures
on Rd with respect to the Kullback-Leibler divergence. Given an admissible

target measure, we show the existence of the best approximation, with respect

to this divergence, from certain sets of Gaussian measures and Gaussian mix-
tures. The asymptotic behavior of such best approximations is then studied

in the frequently occuring small parameter limit where the measure concen-

trates; this asympotic behaviour is characterized using Γ-convergence. The
theory developed is then applied to understanding the frequentist consistency

of Bayesian inverse problems. For a fixed realization of noise, we show the

asymptotic normality of the posterior measure in the small noise limit. Taking
into account the randomness of the noise, we prove a Bernstein-Von Mises type

result for the posterior measure.
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1. Introduction

In this paper, we study the “best” approximation of a general finite dimensional
probability measure, which could be non-Gaussian, from a set of simple probability
measures, such as a single Gaussian measure or a Gaussian mixture family. We
define “best” to mean the measure within the simple class which minimizes the
Kullback-Leibler divergence between itself and the target measure. This type of
approximation is central to many ideas currently used in machine learning [3], yet
has not been the subject of any substantial systematic underpinning theory. The
goal of this paper is to contribute to the development of such a theory in the con-
crete finite dimensional setting in two ways: (i) by establishing the existence of best
approximations; (ii) by studying their asymptotic properties in a measure concen-
tration limit of interest. The abstract theory is then applied to study frequentist
consistency [8] of Bayesian inverse problems.

The idea of approximation for probability measures with respect to Kullback-
Leibler divergence has been applied in a number of areas; see for example [17,
13, 16, 21]. Despite the wide usage of Kullback-Leibler approximation, systematic
theoretical study has only been initiated recently. In [20], the measure approxima-
tion problem is studied from the calculus of variations point of view, and existence
of minimizers established therein; the companion paper [19] proposed numerical
algorithms for implementing Kullback-Leibler minimization in practice. In [16],
Gaussian approximation is used as a new approach for identifying the most likely
path between equilibrium states in molecular dynamics; furthermore, the asymp-
totic behavior of the Gaussian approximation in the small temperature limit is
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analyzed via Γ-convergence. Here our interest is to develop the ideas in [16] in the
context of a general class of measure approximation problems in finite dimensions.

To be concrete we consider approximation of a family of probability measures
{µε}ε>0 on Rd with (Lebesgue) density of the form

eq:mu_epseq:mu_eps (1.1) µε(dx) =
1

Zµ,ε
exp

(
−1

ε
V ε1 (x)− V2(x)

)
dx;

here Zµ,ε is the normalization constant. A typical example of a measure µε with
this form arises in the study of Bayesian inference. The measure µε is the posterior,
the function ε−1V ε1 is the negative log-likelihood, up to an additive constant, and
V2 is, up to an additive constant, the negative logarithm of the prior density. In
addition, the parameter ε is associated with the number of observations or the noise
level of the statistical experiment.

Given a measure µε defined by (1.1), we find a measure ν from a set of simple
measures which minimizes the Kullback-Leibler divergence DKL(ν||µε). In addi-
tion, we characterize the limiting behavior of the best approximation from the
set of simple measures, as well as the limiting behaviour of the Kullback-Leibler
divergence as ε ↓ 0.

The rest of the paper is organized as follows. In Section 2 we set up various un-
derpinning concepts which are used throughout the paper: in Subsections 2.1 and
2.2, we recall some basic facts on Kullback-Leibler divergence and Γ-convergence
and in Subsections 2.3 and 2.4 we spell out the assumptions made and the nota-
tion used. Sections 3 and Section 4 concern the problem of approximation of the
measure µε by, respectively, a single Gaussian measure and a Gaussian mixture.
In particular, the small ε asymptotics of the Gaussians (or Gaussian mixtures)
are captured by using the framework of Γ-convergence. Finally, in Section 5, the
theory which we have developed is applied to understand posterior consistency for
Bayesian inverse problems.

2. Set-Up
sec:SUsubsec:dkl

2.1. Kullback-Leibler Divergence. Let ν and µ be two probability measures on
Rd and assume that ν is absolutely continuous with resepct to µ. The Kullback-
Leibler divergence, or relative entropy, of ν with respect to µ is

DKL(ν||µ) = Eν log

(
dν

dµ

)
.

If ν is not absolutely continuous with respect to µ, then the Kullback-Leibler di-
vergence is defined as +∞. By definition, the Kullback-Leibler divergence is non-
negative but it is not a metric since it does not obey the triangle inequality and it
is not symmetric in its two arguments. In this paper, we will consider minimizing
DKL(ν||µε) with respect to ν, over a suitably chosen set of measures, and with µε
being the target measure defined in (1.1). Swapping the order of these two measures
within the divergence is undesirable for our purposes. This is because minimizing
DKL(µε||·) within the set of all Gaussian measures will lead to matching of moments
[3]; this is inappropriate for multimodal measures where a more desirable outcome
would be the existence of multiple local minimizers at each mode [20, 19].

Although the Kullback-Leibler divergence is not a metric, its information the-
oretic interpretation make it natural for approximate inference. Furthermore it is
a convenient quantity to work with for at least two reasons. First the divergence
provides useful upper bound for many metrics; in particular, one has the Pinsker
inequality

ieq:pinskerieq:pinsker (2.1) dTV(ν, µ) ≤
√

1

2
DKL(ν||µ)
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where dTV denotes the total variation distance. Second the logarithmic structure
of DKL(·||·) allows us to carry out explicit calculations, and numerical computa-
tions, which are considerably more difficult when using the total variation distance
directly.

subsec:gamma
2.2. Γ-convergence. We recall the definition and a basic result concerning Γ-
convergence. This is a useful tool for studying families of minimization problems.
In this paper we will use it to study the parametric limit ε→ 0 in our approximation
problem.

d:gcc Definition 2.1. Let X be a metric space and Eε : X → R a family of functionals
indexed by ε > 0. Then Eε Γ-converges to E : X → R as ε → 0 if the following
conditions hold:

(i) (liminf inequality) for every u ∈ X , and for every sequence uε ∈ X such that
uε → u, it holds that E(u) ≤ lim infε↓0Eε(uε);

(ii) (limsup inequality) for every u ∈ X there exists a recovery sequence {uε}
such that uε → u and E(u) ≥ lim supε↓0Eε(uε).

We say a sequence of functionals {Eε} is compact if lim supε↓0Eε(uε) < ∞
implies that there exists a subsequence {uεj} such that uεj → u ∈ X .

The notion of Γ-convergence is useful because of the following fundamental the-
orem, which can be proved by similar methods as the proof of [4, Theorem 1.21].

thm:fgamma Theorem 2.2. Let uε be a minimizer of Eε with lim supε↓0Eε(uε) < ∞. If Eε
is compact and Γ-converges to E, then there exists a subsequence uεj such that
uεj → u where u is a minimizer of E.

Thus, when this theorem applies, it tells us that minimizers of E characterize the
limits of convergent subsequences of minimizers of Eε. In other words the Γ−limit
captures the behavior of the minimization problem in the small ε limit.

ssec:A
2.3. Assumptions. Throughout the paper, we make the following assumptions on
the potential functions V ε1 and V2 which define the target measure of interest.

assump Assumptions 2.3.
(A-1) For any ε > 0, V ε1 and V2 are non-negative functions in the space C4(Rd).
Moreover, there exists constants ε0 > 0 and MV > 0 such that when ε < ε0,

|∂αxV ε1 (x)| ∨ |∂αxV2(x)| ≤MV e
|x|2

for all |α| ≤ 4 and all x ∈ Rd.
(A-2) There exists n > 0 such that when ε � 1, the set of minimizers of V ε1 is
E ε = {x1ε, x2ε, · · · , xnε } and V ε1 (xiε) = 0, i = 1, · · · , n.

(A-3) There exists V1 such that V ε1 → V1 pointwise. The limit V1 has n distinct
global minimisers which are given by E = {x1, x2, · · · , xn}. For each i = 1, . . . , n
the Hessian D2V1(xi) is positive definite.

(A-4) The convergence xiε → xi holds.
(A-5) There exist constants c0, c1 > 0 and ε0 > 0 such that when ε < ε0,

V ε1 (x) ≥ −c0 + c1|x|2, x ∈ Rd.

Remark 2.4. Conditions (A-2)-(A-4) mean that for sufficiently small ε > 0, the
function V ε1 behaves like a quadratic function in the neighborhood of the minimizers
xiε and of xi. In particular, in conjunction with Condition (A-5) this implies that
there exists δ > 0 and Cδ > 0 such that ∀ 0 ≤ η < δ,

eq:distVeq:distV (2.2) dist(x,E ) ≥ η =⇒ lim inf
ε↓0

V ε1 (x) ≥ Cδ|η|2.
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Remark 2.5. The local boundedness in C4 (Assumption (A-1)) together with the
pointwise convergence of V ε1 to V1 (Assumption (A-3)) imply the much stronger
locally uniform convergence of derivatives up to order 3. Furthermore, (A-4) then
implies that V ε1 (xiε)→ V1(xi) and D2V ε1 (xiε)→ D2V1(xi).

ssec:N
2.4. Notation. Throughout the paper, C and C̃ will be generic constants which
are independent of the quantities of interest, and may change from line to line. Let
S≥(R, d) and S>(R, d) be the set of all d×d real matrices which are positive semi-
definite or positive definite, respectively. Denote by N(m,Σ) a Gaussian measure
with mean m and covariance matrix Σ. We use |A| to denote the Frobenius norm of

the d×d matrix A, namely |A| =
√

Tr(ATA). We denote by λmin(A) the smallest
eigenvalue of A. We let B(x, r) denote a ball in Rd with center x and radius r.
Given a random variable η, we use Eη and Pη when computing the expectation and
the probability under the law of η respectively.

3. Approximation by Single Gaussian measures
sec:SGaussian

Let A be the set of Gaussian measures on Rd, given by

A = {N(m,Σ) : m ∈ Rd,Σ ∈ S≥(R, d)}.

The set A is closed with respect to weak convergence of probability measures.
Consider the variational problem

prob:varprob:var (3.1) inf
ν∈A

DKL(ν||µε).

Given ν = N(m,Σ) ∈ A, the Kullback-Leibler divergence DKL(ν||µε) can be cal-
culated explicitly as

eq:dkleq:dkl (3.2)
DKL(ν||µε) = Eν log

(
dν

dµε

)
=

1

ε
EνV ε1 (x) + EνV2(x)− log

√
(2π)d det Σ− d

2
+ logZµ,ε.

If Σ is non-invertible then DKL(ν||µε) = +∞. The term −d2 comes from the expec-

tation Eν 1
2 (x−m)TΣ(x−m) and is independent of Σ. The term − log

√
(2π)d det Σ

prevents the measure ν from being too close to a Dirac measure. The following the-
orem shows that the problem (3.1) has a solution.

thm:exists1 Theorem 3.1. Consider the measure µε given by (1.1). For any ε > 0, there exists
at least one probability measure νε ∈ A solving the problem (3.1).

Proof. We first show that the infimum of (3.1) is finite. In fact, consider ν∗ =
N(0, 14Id). Under the Assumption 2.3 (A-1) we have that

Eν
∗
V ε1 (x) ∨ Eν

∗
V2(x) ≤ MV√

(2π × 1
4 )d

∫
Rd

e−
4
2 |x|

2+|x|2dx <∞.

Note that the integral in the last expression is finite due to − 4
2 + 1 < 0. Hence we

know from (3.2) that infν∈ADKL(ν||µε) < ∞. Then the existence of minimizers
follows from the fact that the Kullback-Leibler divergence has compact sub-level sets
and the closedness of A with respect to weak convergence of probability measures;
see e.g. [20, Corollary 2.2]. �

We aim to understand the asymptotic behavior of the minimizers νε of the
problem (3.1) as ε ↓ 0. Due to the factor 1

ε in front of V ε1 in the definition of
µε, (1.1), we expect the typical size of fluctuations around the minimizers to be of
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order
√
ε and we reflect that in our choice of scaling. More precisely, for m ∈ Rd,

Σ ∈ S≥(R, d) we define νε = N(m, εΣ) and set

Fε(m,Σ) := DKL(νε||µε).

Understanding the asymptotic behavior of minimizers νε in the small ε limit may
be achieved by understanding Γ-convergence of the functional Fε.

To that end, we define weights

βi =
(
detD2V1(xi)

)− 1
2 · e−V2(x

i), i = 1, · · · , n,

and the counting probability measure on {1, . . . , n} given by

β :=
1∑n

j=1 β
j
(β1, · · · , βn).

Intuitively, as ε ↓ 0, we expect the measure µε to concentrate on the set {xi} with
weights on each xi given by β; this intuition is reflected in the asymptotic behavior
of the normalization constant Zµ,ε, as we now show. By definition,

Zε =

∫
Rd

exp

(
−1

ε
V ε1 (x)− V2(x)

)
dx.

The following lemma follows from the Laplace approximation for integrals (see e.g.
[12]) and Assumption 2.3 (A-4).

lem:normconst Lemma 3.2. Let V ε1 and V2 satisfy the Assumptions 2.3. Then as ε ↓ 0,

(3.3) Zµ,ε =
√

(2πε)d ·

(
n∑
i=1

βi

)
· (1 + o(1)) .

In view of the original expression (3.2) for DKL(ν, µε) as well as the specific
scaling of νε = N(m, εΣ), Lemma 3.2 yields that

eq:dkl_asym1eq:dkl_asym1 (3.4)

Fε(mε,Σε) =
1

ε
EνεV ε1 (x) + EνεV2(x)− d

2
− 1

2
log (det Σε) + log

(
n∑
i=1

βi

)
+ o(1).

Armed with this analysis of the normalization constant we may now prove the
following theorem which identifies the Γ-limit of Fε. To this end we define

F0(m,Σ) := V2(m) +
1

2
Tr
(
D2V1(m) ·Σ

)
− d

2
− 1

2
log det Σ + log

(
n∑
i=1

βi

)
.

thm:gamma Theorem 3.3. The Γ-limit of Fε is

eq:Feq:F (3.5) F (m,Σ) :=

{
F0(m,Σ) if m ∈ E and Σ ∈ S>(R, d),

∞ otherwise.

The following corollary follows directly from the Γ-convergence of Fε.

cor:covmin Corollary 3.4. Let {(mε,Σε)} be a family of minimizers of {Fε}. Then there
exists a subsequence {εk} such that (mεk ,Σεk) → (m,Σ) and Fεk(mεk ,Σεk) →
F (m,Σ). Moreover, (m,Σ) is a minimizer of F .

Before we give the proof of Theorem 3.3, let us first discuss the limit functional
F as well as its minimization. We assume that m = xi0 for some i0 ∈ {1, . . . , n}
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and rewrite the definition of F0(xi0 ,Σ), by adding and subtracting log(βi0) =
−V2(xi0)− 1

2 log
((

detD2V1(xi0)
))

and cancelling the terms involving V2(xi0) as

eq:F0-1eq:F0-1 (3.6)

F0(xi0 ,Σ) =
1

2
Tr
(
D2V1(xi0) ·Σ

)
− d

2
− 1

2
log det(D2V1(xi0) ·Σ)

+ log

(
n∑
i=1

βi

)
− log

(
βi0
)
.

Now it is interesting to see that the first line of (3.6) gives the Kullback-Leibler
divergence DKL

(
N(xi0 ,Σ) || N(xi0 , (D2V1(xi0))−1)

)
. The second line of (3.6) is

equal to the Kullback-Leibler divergence DKL(ei || β), for ei := (0, · · · ,1, · · · ,0).
In conclusion,

eq:F0-2eq:F0-2 (3.7) F0(xi,Σ) = DKL

(
N(xi,Σ) || N(xi, (D2V1(xi))−1)

)
+DKL(ei || β),

in other words, in the limit ε ↓ 0, the Kullback-Leibler divergence between the best
Gaussian measure νε and the measure µε consists of two parts: the first part is the
relative entropy between the Gaussian measure with rescaled covariance Σ and the
Gaussian measure with covariance determined by (D2V1(xi))−1; the second part is
the relative entropy between the Dirac mass supported at xi and a weighted sum of
Dirac masses, with weights β, at the {xj}nj=1. Clearly, to minimize F0(m,Σ), on the

one hand, we need to choose m = xi and Σ = D2V1(xi))−1 for some i ∈ 1, · · · , n;
for this choice the first term on the right side of (3.6) vanishes. In order to minimize
the second term we need to choose the minimum xi with maximal weight βi. In
particular, the following corollary holds.

cor:sgaussian Corollary 3.5. The minimum of F0 is zero when n = 1, but it is strictly positive
when n > 1.

Corollary 3.5 reflects the fact that, in the limit ε ↓ 0, a single Gaussian measure
is not the best choice for approximating a non-Gaussian measure with multiple
modes; this motivates our study of Gaussian mixtures in Section 4.

The proofs of Theorem 3.3 and Corollary 3.4 are provided after establishing a
sequence of lemmas. The following lemma shows that the functional Fε is compact
(recall Definition 2.1). It is well known, that the Kullback-Leibler divergence (with
respect to a fixed reference µ) has compact sub-level sets with respect to weak
convergence of probability measures. Here we prove a stronger statement, which
is specific to the family of reference measures µε, namely a uniform bound from
above and below for the rescaled covariances, i.e. we prove a bound from above
and below for Σε if we control Fε(mε,Σε).

lem:compactness Lemma 3.6. Assume that lim supε↓0 Fε(mε,Σε) <∞. Then

eq:compactnesseq:compactness (3.8) 0 < lim inf
ε↓0

λmin(Σε) < lim sup
ε↓0

Tr(Σε) <∞

and dist(mε,E ) ↓ 0 as ε ↓ 0. In particular, there exist common subsequences
{mk}k∈N of {mε}, {Σk}k∈N of {Σε} such that mk → xi0 with 1 ≤ i0 ≤ n and
Σk → Σ ∈ S>(R, d).

Proof. Let M := lim supε↓0 Fε(mε,Σε) < ∞. Since mε and Σε are defined in
finite dimensional spaces, we only need to show that both sequences are uniformly
bounded. The proof consists of the following steps.

Step 1. We first prove the following rough bounds for Tr(Σε): there exists
positive constants C1, C2 such that when ε� 1,

eq:bdsigma0eq:bdsigma0 (3.9) C1 ≤ Tr(Σε) ≤
C2

ε
.
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In fact, from the formula (3.4) and the assumption that V ε1 and V2 are non-negative,
we can get that when ε� 1

eq:logdetsigeq:logdetsig (3.10) log(det Σε) ≥ 2(CV −M − 1)

where the constant

CV := −d
2

+ log

(
n∑
i=1

βi

)
.

Then the lower bound of (3.9) follows from (3.10) and the arithmetic-geometric
mean inequality

eq:trace-deteq:trace-det (3.11) det A ≤
(

1

d
Tr(A)

)d
which holds for any positive definite A. In addition, using the condition (A-5) for
the potential V ε1 , we obtain from (3.4) that when ε� 1,

eq:bdsigma1eq:bdsigma1 (3.12)

M ≥ Fε(mε,Aε)

≥ EνεV2(x) +
c1
ε
Eνε |x|2 − c0

ε
− 1

2
log (det Σε) + CV − 1

= EνεV2(x) + c1Tr(Σε) +
c1|mε|2

ε
− c0

ε
− 1

2
log (det Σε) + CV − 1

≥ c1Tr(Σε)−
c0
ε
− 1

2
log

((
1

d
Tr(Σε)

)d)
+ CV − 1

= c1Tr(Σε)−
c0
ε
− d

2
log(Tr(Σε)) +

d log d

2
+ CV − 1,

where we have used the inequality (3.11) and the assumption that V2 is non-
negative. Dropping the non-negative terms on the right hand side we rewrite this
expression as an estimate on Tr(Σε),

c1Tr(Σε)−
d

2
log(Tr(Σε)) ≤M +

c0
ε

+ 1,

and conclude that there exists C2 > 0 such that Tr(Σε) ≤ C2/ε by observing that
for x� 1 we have c1x− d

2 log x ≥ c1
2 x.

Step 2. In this step we show that for ε � 1 the mass of νε concentrates near
the minimizers. More precisely, we claim that there exist constants R1, R2 > 0,
such that for every ε� 1 there exists an index i0 ∈ {1, 2, · · · , n} such that

eq:bsigma2eq:bsigma2 (3.13) νε

(
B
(
xi0 ,

√
ε(R1 +R2 log (det Σε))

))
≥ 1

2n
.

On the one hand, from the expression (3.4) and the assumption that for all r � 1
lim supε↓0 Fε(mε,Σε) ≤ M we know that there exist C3, C4 > 0 such that when
ε� 1

eq:bsigma3eq:bsigma3 (3.14) EνεV ε1 (x) ≤ ε (C3 + C4 log (det Σε)) .

On the other hand, it follows from (2.2) that for η � 1

(3.15)
EνεV ε1 (x) ≥ Eνε

[
V ε1 (x)I(∪ni=1B(xi,η))c(x)

]
≥ Cδη2νε(∪ni=1B(xi, η))c,

which combines with (3.14) to

jjijji (3.16) νε(∪ni=1B(xi, η))c) ≤ ε (C3 + C4 log (det Σε))

Cδη2
.
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Now we choose η = ηε :=
√

2ε(C3 + C4 log(det Σε))/Cδ (by the rough bound (3.9)
this ηε tends to zero as ε → 0, which permits to apply (2.2)). This implies (3.13)
with R1 = 2C3

Cδ
and R2 = 2C4

Cδ
, by passing to the complement and observing that

sup
i∈{1,...,n}

νε(B(xi, ηε)) ≥
1

n
νε
(
∪i∈{1,...,n}B(xi, ηε)

)
.

Step 3. We prove the bounds (3.8). As in the previous step we set ηε =√
ε(R1 +R2 log(det Σε)). It follows from (3.13) that

eq:bsigma4eq:bsigma4 (3.17)

1

2n
≤ νε(B(xi0 , ηε))

=
1√

(2πε)d det Σε

∫
B(xi0 ,ηε)

exp

(
− 1

2ε
〈x−mε,Σ

−1
ε (x−mε)〉

)
dx

≤ 1√
(2πε)d det Σε

|B(xi0 , ηε)|

≤ C 1√
εd det Σε

ηdε ≤ C

√
R1 +R2 log(det Σε)

det Σε
.

This implies that lim supε↓0 det Σε < C for some C > 0. In order to get a lower

bound on individual eigenvalues Λ(i)
ε of Σε, we rewrite the same integral in a

slightly different way. We use the change of coordinates y =
PTε (x−m)√

ε
, where

Pε is orthogonal and diagonalises Σ and observe that under this transformation

B(xi, ηε) is mapped into B(x
i−m√
ε
, ηεε ) ⊆ {y : |yj − (xi−m)√

ε
| ≤ ηε√

ε
for j = 1, . . . , n}.

This yields

eq:logdeteq:logdet (3.18)

1

2n
≤ 1√

(2π)d det Σε

∫
{|yj− (xi−m)√

ε
|≤ ηε√

ε
}

exp

(
−1

2
〈yi, (Λ(i)

ε )−1yi〉
)
dy

≤ 1√
(2π)d det Σε

(
2ηε√
ε

)d−1 ∫
R

exp

(
− |yi|

2

2Λ(i)
ε

)
dyi

=

√
Λ(i)
ε

(2π)d det Σε
(R1 +R2 log(det Σε))

d−1
2 ,

for any i ∈ {1, 2, · · · , d}. Together with uniform boundedness of det Σε this implies

that Λ(i)
ε > C ′ for some C ′ > 0. Finally,

eq:upptracedeteq:upptracedet (3.19) Tr(Σε) =

d∑
i=1

Λ(i)
ε =

d∑
i=1

det(Σε)∏d
j=1,j 6=i Λ

(j)
ε

≤ dC

(C ′)d−1
<∞.

This proves (3.8).
Step 4. We show that dist(mε,E ) ↓ 0 as ε ↓ 0. On the one hand, by the upper

bound on the variance in (3.8) and standard Gaussian concentration, we see that
there exists a constant c > 0, such that for ε� 1 we have νε(B(mε,

√
εc)) ≥ 3

4 . On
the other hand, we had already seen in (3.16) that for η = ηε we have

νε(∪ni=1B(xi, ηε))
c) ≤ 1

2
,

and hence B(mε,
√
εc) must intersect at least one of the B(xi, ηε). This yields for

this particular index i

|xi −mε| ≤ ηε +
√
εc,

and establishes the claim.
�



GAUSSIAN APPROXIMATIONS FOR PROBABILITY MEASURES ON Rd 9

lem:dkl-asym2 Lemma 3.7. Let {(mε,Σε)} be a sequence such that lim supε↓0 |mε| =: C1 < ∞
and

0 < c2 := lim inf
ε↓0

λmin(Σε) < lim sup
ε↓0

Tr(Σε) =: C2 <∞.

Then as ε ↓ 0,
eq:dkl-asym2eq:dkl-asym2 (3.20)

Fε(mε,Σε) =
V ε1 (mε)

ε
+ V2(mε) +

1

2
Tr(D2V ε1 (mε) ·Σε)−

1

2
log
(
(2πε)d det Σε

)
− d

2
+ logZµ,ε + rε

where |rε| ≤ Cε with C = C(C1, c2, C2,MV ) (Recall that MV is the constant defined
in Assumptions 2.3 (A-1)).

Proof. The lemma follows directly from the expression (3.2) and Taylor expansion.
Indeed, we first expand V2 near mε up to the first order and then take expectation
to get

EνεV2(x) = V2(mε) + EνεRε(x)

with residual

Rε(x) =
∑
|α|=2

(x−mε)
α

α!

∫ 1

0

∂αV2 (ξx+ (1− ξ)mε) (1− ξ)2dξ.

Thanks to the condition (A-1), one can obtain the bound

eq:res0eq:res0 (3.21)

EνεRε(x) ≤
∑
|α|=2

1

α!
max
ξ∈[0,1]

{
Eνε

[
|x−mε|2∂αV2 (ξx+ (1− ξ)mε)

]}
≤ MV√

(2πε)d det Σε

max
ξ∈[0,1]

{∫
Rd

|x|2e(|x|+|mε|)
2

· e− 1
2εx

TΣ−1
ε xdx

}
≤ MV√

(2πε)d det Σε

e2|mε|
2

∫
Rd

|x|2e− 1
2εx

T (Σ−1
ε −4ε·Id)xdx

=
MV ε√
det Σε

e2|mε|
2 ˙det(Σ−1ε − 4ε · Id)−1

≤ Cε,
when ε� 1. Note that in the last inequality we have used the assumption that all
eigenvalues of Σε are bounded from above which ensures that for ε� 1 the matrix
Σ−1ε − 4ε · Id is positive definite. Hence

EνεV2(x) = V2(mε) + r1,ε

with r1,ε ≤ Cε as ε ↓ 0. Similarly, one can take the fourth order Taylor expansion
for V ε1 near mε and then take expectation to obtain that

EνεV ε1 (x) =
V ε1 (mε)

ε
+

1

2
Tr
(
D2V ε1 (mε) ·Σε

)
+ r2,ε

with r2,ε ≤ Cε. Then (3.20) follows directly by inserting the above equations into
the expression (3.2). �

The following corollary is a direct consequence of Lemma 3.2, Lemma 3.6 and
Lemma 3.7, providing an asymptotic formula for Fε(mε,Σε) as ε ↓ 0.

Corollary 3.8. Assume that lim supε↓0 Fε(mε,Σε) <∞. Then for ε� 1

eq:dkl-asym22eq:dkl-asym22 (3.22)

Fε(mε,Σε) =
V ε1 (mε)

ε
+ V2(mε) +

1

2
Tr(D2V (mε) ·Σε)−

1

2
log (det Σε)

− d

2
+

n∑
i=1

βi + o(1).
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rem:3-9 Remark 3.9. We do not have a bound on the convergence rate for the residual
expression (3.22), because Lemma 3.2 does not provide a convergence rate on the
Zµ,ε. This is because we do not impose any rate of convergence for the convergence
of the xiε to xi. The bound |rε| ≤ Cε in Lemma 3.7 will be used to prove the rate of
convergence for the posterior measures that arise from Bayesian inverse problems;
see Theorem 5.4 in Section 5, and its proof.

Proof of Theorem 3.3. We first prove the liminf inequality. Let (mε,Σε) be such
thatmε → m and Σε → Σ. We want to show that F (m,Σ) ≤ lim infε↓0 Fε(mε,Σε).
We may assume that lim infε↓0 Fε(mε,Σε) < ∞ since otherwise there is nothing
to prove. By Lemma 3.6 this implies that m ∈ E and that Σ is positive definite.
Then the liminf inequality follows from (3.22) and the fact that V ε1 ≥ 0.

Next we show the limsup inequality is true. Given m ∈ E ,Σ ∈ S>(R, d),
we want to find recovery sequences (mk,Σk) such that (mk,Σk) → (m,Σ) and
lim supk Fεk(mk,Σk) ≤ F (m,Σ). In fact, we set Σk = Σ. Moreover, by As-
sumptions 2.3 (A-4), we can choose {mk} to be one of the zeros of V εk1 so that
V εk1 (mk) = 0 and mk → m ∈ E . This implies that V2(mk) → V2(m). Then the
limsup inequality follows from (3.22). �

Proof of Corollary 3.4. First we show that lim supε↓0 Fε(mε,Σε) <∞. In fact, let

m̃ε = x1ε and Σ̃ε = D2V ε1 (x1ε). It follows from (3.22) that lim supε↓0 Fε(m̃ε, Σ̃ε) <
∞. According to Theorem 2.2, the convergence of minima and minimizers is a
direct consequence of Lemma 3.6 and Theorem 3.3. �

4. Approximation by Gaussian mixtures
sec:gaussianmix

In the previous section we demonstrated the approximation of the target measure
(1.1) by a Gaussian. Corollary 3.5 shows that, when the measure has only one mode,
this approximation is perfect in the limit ε→ 0: the limit KL-divergence tends to
zero since both entropies in (3.7) tend to zero. However when multiple modes
exist, and persist in the small ε limit, the single Gaussian is inadequate because the
relative entropy term DKL(ei||β) can not be small even though the relative entropy
between Gaussians tends to zero. In this section we consider the approximation of
the target measure µε by Gaussian mixtures in order to overcome this issue. We
show that in the case of n minimizers of V1, the approximation with a mixture
of n Gaussians is again perfect as ε → 0. The Gaussian mixture model is widely
used in the pattern recognition and machine learning community; see the relevant
discussion in [3, Chapter 9].

Let 4n be the standard n-simplex, i.e.,

4n =

{
α = (α1, α2, · · · , αn) ∈ Rn : αi ≥ 0 and

n∑
i=1

αi = 1

}
.

For ξ ∈ (0, 1), we define 4nξ = {α = (α1, α2, · · · , αn) ∈ Rn : αi ≥ ξ}.
Recall that A is the set of Gaussian measures and define the set of Gaussian

mixtures

eq:Gaussmixeq:Gaussmix (4.1) Mn =

{
ν =

n∑
i=1

αiνi : νi ∈ A,α = (α1, α2, · · · , αn) ∈ 4n
}
.

Also, for a fixed ξ = (ξ1, ξ2) ∈ (0, 1)× (0,∞) we define the set

eq:Gaussmix-deltaeq:Gaussmix-delta (4.2)
Mξ

n =
{
ν =

n∑
i=1

αiνi : νi = N(mi,Σi) ∈ A with min
i 6=j
|mi −mj | ≥ ξ2,

α = (α1, α2, · · · , αn) ∈ 4nξ1
}
.
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While Mn is the set of all convex combinations of n Gaussians taken from A;
the set Mξ

n can be seen as an “effective” version of Mn, in which each Gaussian
component plays an active role, and no two Gaussians share a common center.

Consider the problem of minimizing DKL(ν||µε) within Mn or Mξ
n. Since the

sets Mn and Mξ
n are both closed with respect to weak convergence, we have the

following existence result whose proof is similar to Theorem 3.1 and is omitted.

thm:exists2 Theorem 4.1. Consider the measure µε given by (1.1) with fixed ε > 0, and the
problems of minimizing the functional

eq:minfunceq:minfunc (4.3) ν 7→ DKL(ν||µε)

from the set Mn, or from the set Mξ
n with some fixed ξ = (ξ1, ξ2) ∈ (0, 1)× (0,∞).

In both cases, there exists at least one minimizer to the functional (4.3).

Now we continue to investigate the asymptotic behavior of the Kullback-Leibler
approximations based on Gaussian mixtures. To that end, we again parametrize a
measure ν in the setMn orMξ

n by the weights α = (α1, α2, · · · , αn) as well as the
n means as well as the n covariances matrices. Similar to the previous section we
need to chose the right scaling in our Gaussian mixtures to reflect the typical size
of fluctuations of µε. Thus for m = (m1,m2, · · · ,mn) and Σ = (Σ1,Σ2, · · · ,Σn).
we set

eq:nu-formeq:nu-form (4.4) νε =

n∑
i=1

αiN(mi, εΣi).

We can view DKL(νε||µε) as a functional of (α,m,Σ) and study the Γ-convergence
of the resulting functional. For that purpose, we need to restrict our attention to
finding the best Gaussian mixtures within Mξ

n for some ξ ∈ (0, 1) × (0,∞). The
reasons are the following. First, we require individual Gaussian measures νi to
be active (i.e. αi > ξ1 > 0) because DKL(νε, µε), as a family of functionals of
(α,m,Σ) indexed by ε, is not compact if we allow some of the αi to vanish. In
fact, if αiε = 0 for some i ∈ 1, 2, · · · , n, then DKL(νε||µε) is independent of mi

ε and

Σi
ε. In particular, if |mi

ε|∧ |Σ
i
ε| → ∞ while |mj

ε|∨ |Σ
j
ε| <∞ for all the j’s such that

j 6= i, then it still holds that lim supε↓0DKL(νε||µε) < ∞. Second, it makes more
sense to assume that the individual Gaussian means stay apart from each other
(i.e. mini 6=j |mi −mj | ≥ ξ2 > 0) since we primarily want to locate different modes
of the target measure. Moreover, it seems impossible to identify a sensible Γ-limit
without such an assumption; see Remark 4.7.

Recall that the measure ν has the form (4.4). Let ξ = (ξ1, ξ2) ∈ (0, 1) × (0,∞)
be fixed. In view of these considerations it is useful to define

Sξ = {(α,m) ∈ 4nξ1 ×Rnd : min
i 6=j
|mi −mj | ≥ ξ2.}

We define the functional

eq:dkl-2eq:dkl-2 (4.5) Gε(α,m,Σ) :=

{
DKL(ν||µε) if (α,m) ∈ Sξ,

+∞ otherwise.

By the definition of the Kullback-Leibler divergence, if (α,m) ∈ Sξ, then

eq:dkl-3eq:dkl-3 (4.6) Gε(α,m,Σ) =

∫
ρ(x) log ρ(x)dx+

1

ε
EνV ε1 (x) + EνV2(x) + logZµ,ε

where ρ is the probability density function (p.d.f) of ν.
Recall the Γ-limit F defined in (3.5). Then we have the following Γ-convergence

result.
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thm:gamma-2 Theorem 4.2. The Γ-limit of Gε is

eq:limit-Geq:limit-G (4.7)
G(α,m,Σ) :=

n∑
i=1

αiDKL

(
N(mi,Σi) || N(mi, (D2V1(mi))−1)

)
+DKL(α || β)

if (α,m) ∈ Sξ and mi ∈ E , and ∞ otherwise.

Remark 4.3. The right hand side of G consists of two parts: the first part is a
weighted relative entropy which measures the discrepancy between two Gaussians,
and the second part is the relative entropy between sums of Dirac masses at {xj}nj=1

with weights α and β respectively. This has the same spirit as the entropy splitting
used in [18, Lemma 2.4].

Before we prove Theorem 4.2, we consider the minimization of the limit func-
tional G. First let ξ2 be such that 0 < ξ2 ≤ mini 6=j |xi − xj | where {xi}ni=1 are
the minimizers of V1. To minimize G, without loss of generality, we may choose
mi = mi := xi. Then the weighted relative entropy in the first term in the defini-

tion (4.7) of G vanishes if we set Σi = Σ
i

:= D2V1(xi)−1. The relative entropy of
the weights also vanishes if we choose the weight α = α := β. To summarize, the
minimizer (α,m,Σ) of G is given by

eq:minimizermixeq:minimizermix (4.8) mi = xi, Σ
i

= D2V1(xi)−1, αi = βi,

and G(α,m,Σ) = 0. The following corollary is a direct consequence of the Γ-
convergence of Gε.

cor:convmin Corollary 4.4. Let {(αε,mε,Σε)} be a family of minimizers of {Gε}. Then
there exists a subsequence {εk} such that (αεk ,mεk ,Σεk) → (α,m,Σ) and that
Gεk(αεk ,mεk ,Σεk) → G(α,m,Σ). Moreover, (α,m,Σ) is a minimizer of G and
G(α,m,Σ) = 0.

For a non-Gaussian measure µε with multiple modes, i.e., n > 1 in the Assump-
tion 2.3, we have seen in Remark 3.5 that the Kullback-Leibler divergence between
µε and the best Gaussian measure selected from A remains positive as ε ↓ 0. How-
ever, this gap is filled by using Gaussian mixtures, namely, with νε being chosen
as the best Gaussian mixture, the Kullback-Leibler divergence DKL(νε||µε) ↓ 0 as
ε ↓ 0.

Similarly to the proof of Theorem 3.3, Theorem 4.2 follows directly from Corol-
lary 4.8 below, the proof of which requires several lemmas. We first show the
compactness of {Gε}.

lem:compactness2 Lemma 4.5. Let Gε be defined by (4.5). Let {(αε,mε,Σε)} be a sequence such
that lim supε↓0Gε(αε,mε,Σε) <∞. Then

eq:compactness2eq:compactness2 (4.9) lim inf
ε↓0

min
i
λmin(Σi

ε) > 0, lim sup
ε↓0

max
i

Tr(Σi
ε) <∞

and dist(mi
ε,E ) ↓ 0 as ε ↓ 0. In particular, for any i, there exists j = j(i) ∈

{1, 2, · · · , n} and a subsequence {mi
k}k∈N of {mi

ε} such that mk → xj as k →∞.

Proof. We write M = lim supε↓0Gε(αε,mε,Σε) and

νε =

n∑
i=1

αiεν
i
ε
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where νiε = N(mi
ε, εΣ

i
ε). Then we get

DKL(νε||µε) =

n∑
j=1

αjε Eν
j
ε log

(∑
i

αiε
dνiε
dµε

)

≥
n∑
j=1

αjε Eν
j
ε log

(
αjε

dνjε
dµε

)

=

n∑
j=1

αjε log(αjε) +

n∑
j=1

αjε Eν
j
ε log

(
dνjε
dµε

)

=

n∑
j=1

αjε log(αjε) +

n∑
j=1

αjεDKL(νjε ||µε)

where the inequality follows simply from the monotonicity of the logarithm. As
each of term DKL(νjε ||µε) is non-negative, this implies the bound

DKL(νjε ||µε) ≤
1

αjε

(
M − n min

α∈[0,1]
α logα

)
.

Using the lower bound αjε > ξ1 which holds by assumption we get a uniform upper
bound on DKL(νjε ||µε) which in turn permits to invoke Lemma 3.6.

�

lem:dkl-asym3 Lemma 4.6. Let {(αε,mε,Σε)} be such that αε ∈ 4nξ1 ,mini 6=j |mi
ε−mj

ε| ≥ ξ2 > 0

and that c1 ≤ lim infε↓0 mini λmin(Σi
ε) < lim supε↓0 maxi |mi

ε| ∨ Tr(Σi
ε) ≤ C1 <∞.

Then

eq:dkl-asym3eq:dkl-asym3 (4.10)

Gε(αε,mε,Σε)

=

n∑
i=1

αiε

(
V ε1 (mi

ε)

ε
+ V2(mi

ε) +
1

2
Tr(D2V ε1 (mi

ε) ·Σ
i
ε)−

1

2
log
(
det Σi

ε

))

+

n∑
i=1

αiε logαiε −
d

2
+ logZµ,ε + rε.

where rε ≤ Cε with C = C(c1, C1,MV , ξ2).

Proof. By assumption, we we know from (4.6) that

Gε(αε,mε,Σε) =

∫
ρε(x) log ρε(x)dx+

1

ε
EνεV ε1 (x) + EνεV2(x) + logZµ,ε

where ρε =
∑n
i=1 α

i
ερ
i
ε is the probability density of the measure νε. First of all, ap-

plying the same Taylor expansion arguments used to obtain (3.20), one can deduce
that

eq:expVeq:expV (4.11)

1

ε
EνεV ε1 (x) + EνεV2(x)

=

n∑
i=1

αiε

(
V ε1 (mi

ε)

ε
+

1

2
Tr
(
∇2V ε1 (mi

ε) ·Σ
i
ε

)
+ V2(mi

ε)

)
+ r1,ε

with r1,ε ≤ Cε and C = C(C1, c1,MV ). Next, we claim that the entropy of ρε can
be rewritten as

eq:rhologrho-0eq:rhologrho-0 (4.12)

∫
ρε(x) log ρε(x)dx =

n∑
i=1

αiε

(∫
ρiε(x) log ρiε(x)dx+ logαiε

)
+ r2,ε
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where r2,ε ≤ e−
C
ε with C = C(C1, c2, ξ2) when ε� 1. By definition,∫

ρε(x) log ρε(x)dx =

n∑
i=1

αiε

∫
ρiε(x) log

 n∑
j=1

αjερ
j
ε(x)

 dx,

so it suffices to show that for each i ∈ {1, . . . , n} we have

eq:rhologrho-1eq:rhologrho-1 (4.13)

∫
ρiε(x) log

 n∑
j=1

αjερ
j
ε(x)

 dx =

∫
ρiε(x) log ρiε(x)dx+ logαiε + r2,ε

with r2,ε ≤ e−
C
ε . Indeed, on the one hand, by monotonicity of the logarithm it is

clear that

eq:rhologrho-2eq:rhologrho-2 (4.14)

∫
ρiε(x) log

 n∑
j=1

αjερ
j
ε(x)

 dx ≥
∫
ρiε(x) log ρiε(x)dx+ logαiε.

In order to show the matching lower bound we first recall that the means mi
ε of the

νiε are well separated by assumption, minj 6=i |mi
ε−mj

ε| > ξ2. Let δ � ξ
2 to be fixed

below and set Biδ = B(mi
ε, δ) Then we write

eq:rhologrho-3eq:rhologrho-3 (4.15)

∫
ρiε log

( n∑
j=1

αjερ
j
ε

)
=

∫
ρiε log

(
αiερ

i
ε

)
+

∫
Biδ

ρiε

(
log
( n∑
j=1

αjερ
j
ε

)
− log

(
αiερ

i
ε

))
+

∫
(Biδ)

c

ρiε

(
log
( n∑
j=1

αjερ
j
ε

)
− log

(
αiερ

i
ε

))
=:
(∫

ρiε log ρiε + logαiε

)
+ E1

ε + E2
ε .

We first show that the error term E2
ε is exponentially small. To that end, we

first drop the exponential term in the Gaussian density to obtain the crude bound

eq:bd1eq:bd1 (4.16) log
( n∑
j=1

αjερ
j
ε

)
≤ log

( n∑
j=1

αjε
1√

(2πε)d det Σj
ε

)
≤ d

2
log ε−1 + C.

where in the second inequality we use the fact that det Σi
ε is bounded away from

zero, which has been established in (4.9). Moreover, by definition we have

eq:bd2eq:bd2 (4.17) − log
(
αiερ

i
ε

)
≤ d

2
log ε−1 + C +

|x−mi
ε|2

ε

Plugging bounds (4.16) and (4.16) in and using Gaussian concentration as well as
the lower bound on λmin established in (4.5)

eq:rhologrho-4eq:rhologrho-4 (4.18)

E2
ε ≤

∫
(Biδ)

c

ρiε(x)
(d

2
log ε−1 + C +

|x−mi
ε|2

ε

)
dx ≤ C

(
log ε−1 + ε−1

)
e−

Cδ
ε

when ε� 1. Next, we want to bound E1
ε . Notice that mj

ε → mj for j = 1, · · · , n,
hence if x ∈ Biδ and if δ < ξ1, then |x−mj

ε| > ξ1 − δ for any j 6= i when ε� 1. As
a consequence,

(4.19)

∫
Biδ

n∑
j=1,j 6=i

αjερ
j
ε ≤ Cε−

d
2 e−

C(ξ1−δ)
2

ε .
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This together with the elementary inequality

log(x+ y) = log(x) +

∫ x+y

x

1

t
dt ≤ log x+

y

x

for x, y > 0 implies

eq:rhologrho-5eq:rhologrho-5 (4.20)

E1
ε =

∫
Biδ

ρiε

(
log
(
αiερ

i
ε +

n∑
j=1,j 6=i

αjερ
j
ε

)
− log

(
αiερ

i
ε

))
≤
∫
Biδ

∑n
j=1,j 6=i α

j
ερ
j
ε

αiε

≤ Cδdε− d2 e−
C(ξ1−δ)

2

ε .

where we used that αiε is bounded below from zero. Hence (4.13) follows directly
from (4.14)-(4.20).

Finally, (4.10) follows from combining (4.11), (4.12) and the identity∫
ρiε(x) log ρiε(x)dx = −1

2
log
(
(2πε)d det Σi

ε

)
− d

2
.

�

rem:assum Remark 4.7. The assumption that minj 6=i |mi
ε −mj

ε| > ξ2 > 0 is the crucial con-
dition that allows us to express the entropy of the Gaussian mixture in terms of
the mixture of entropies of individual Gaussian (i.e. the equation (4.12)), leading
to the asymptotic formula (4.10). Neither formula (4.12) nor (3.20) is likely to be
true without such an assumption since the cross entropy terms are not negligible.

The following corollary immediately follows from Lemma 4.6 by plugging in the
Laplace approximation of the normalization constant Zµ,ε given in Lemma 3.2 and
rearranging the terms.

cor:dkl-asym4 Corollary 4.8. Assume that lim supε↓0Gε(αε,mε,Σε) <∞. Then

eq:dkl-asym4eq:dkl-asym4 (4.21)

Gε(αε,mε,Σε)

=

n∑
i=1

αiε

(
V ε1 (mi

ε)

ε
+ V2(mi

ε)−
d

2
+

1

2
Tr(D2V ε1 (mi

ε) ·Σ
i
ε)

)

+

n∑
i=1

αiε

(
logαiε −

1

2
log
(
det Σi

ε

)
+ log

( n∑
j=1

βj
))

+ o(1).

rem:4-9 Remark 4.9. Similarly to the discussion in Remark 3.9, the residual in (4.21) is
here demonstrated to be of order o(1), but the quantitative bound that |rε| ≤ Cε
in Lemma 4.10 can be used to extract a rate of convergence. This can be used to
study the limiting behaviour of posterior measures arising from Bayesian inverse
problems when multiple modes are present; see the next section.

5. Applications in Bayesian inverse problems
sec:app

Consider the inverse problem of recovering x ∈ Rd from the noisy data y ∈ Rd,
where y and x are linked through the equation

(5.1) y = G(x) + η.

Here G is called the forward operator which maps from Rd into itself, η ∈ Rd rep-
resents the observational noise. We take a Bayesian approach to solving the inverse
problem. The main idea is to first model our knowledge about x with a prior prob-
ability distribution, leading to a joint distribution on (x, y) once the probabilistic
structure on η is defined. We then update the prior based on the observed data y;
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specifically we obtain the posterior distribution µy which is the conditional distri-
bution of x given y, and is the solution to the Bayesian inverse problem. From this
measure one can extract information about the unknown quantity of interest. We
remark that since G is non-linear in general, the posterior is generally not Gaussian
even when the noise and prior are both assumed to be Gaussian. A systematic
treatment of the Bayesian approach to inverse problems may be found in [24].

In Bayesian statistics there is considerable interest in the study of the asymp-
totic performance of posterior measures from a frequentist perspective; this is often
formalized as the posterior consistency problem. To define this precisely, consider
a sequence of observations {yj}j∈N, generated from the truth x† via

eq:yneq:yn (5.2) yj = G(x†) + ηj ,

where {ηj}j∈N is a sequence of random noises. This may model a statistical ex-
periment with increasing amounts of data or with vanishing noise. In either case,
posterior consistency refers to concentration of the posterior distribution around
the truth as the data quality increases. For parametric statistical models, Doob’s
consistency theorem [8, Theorem 10.10] guarantees posterior consistency under the
identifiability assumption about the forward model. For nonparametric models, in
which the parameters of interest lie in infinite dimensional spaces, the correspond-
ing posterior consistency is a much more challenging problem. Schwartz’s theorem
[22, 2] provides one of the main theoretical tools to prove posterior consistency in
infinite dimensional space, which replaces identifiability by a stronger assumption
on testability. The posterior contraction rate, quantifying the speed that the pos-
terior contracts to the truth, has been determined in various Bayesian statistical
models (see [10, 23, 6]). In the context of the Bayesian inverse problem, the poste-
rior consistency problem has mostly been studied to date for linear inverse problems
with Gaussian priors [14, 1]. The recent paper [25] studied posterior consistency
for a specific nonlinear Bayesian inverse problem, using the stability estimate of
the underlying inverse problem together with posterior consistency results for the
Bayesian regression problem.

In this section, our main interest is not in the consistency of posterior distribu-
tion, but in characterizing in detail its asymptotic behavior. We will consider two
limit processes in (5.2): the small noise limit and the large data limit. In the former
case, we assume that the noise ηi = 1√

i
η where η is distributed according to the

standard normal N(0, Id), and we consider the data yN given by the most accurate
observation, i.e. yN = yN . In the later case, the sequence {ηi}i∈N is assumed to
be independent identically distributed according to the standard normal and we
accumulate the observations so that the data yN = {y1, y2, · · · , yN}. In addition,
assume that the prior distribution is µ0 which has the density

µ0(dx) =
1

Z0
e−V0(x)dx

with the normalization constant Z0 > 0. Since the data and the posterior are fully
determined by the noise η with η = η or η = {ηi}i∈N, we denote the posterior
by µη

N to indicate the dependence. By using Bayes’s formula, we calculate the
posterior distribution for both limiting cases below.

• Small noise limit

eq:postdist1eq:postdist1 (5.3)

µη
N (dx) =

1

Zη
N,1

exp

(
−N

2
|yn −G(x)|2

)
µ0(dx)

=
1

Zη
N,1

exp

(
−N

2

∣∣∣∣G(x†)−G(x) +
1√
N
η

∣∣∣∣2
)
µ0(dx).
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• Large data limit

eq:postdist2eq:postdist2 (5.4)

µη
n(dx) =

1

Zη
N,2

exp

(
−1

2

N∑
i=1

|yi −G(x)|2
)
µ0(dx)

=
1

Zη
N,2

exp

(
−1

2

N∑
i=1

∣∣G(x†)−G(x) + ηi
∣∣2)µ0(dx).

In both cases, we are interested in the limiting behavior of the posterior distribu-
tion µη

N as N →∞. We divide our discussion below according to whether the noise
is fixed or is considered a random variable. For a fixed realization of noise η = η,
by applying the theory developed in the previous section, we show the asymptotic
normality for µη

N in the small noise limit. Furthermore, we obtain a Bernstein-Von
Mises type theorem for µη

N with respect to both limit processes, small noise and
large data.

5.1. Asymptotic Normality. In this subsection, we assume that the data is gen-
erated from the truth x† and a single realization of the Gaussian noise η†, i.e.

y = G(x†) +
1√
N
η†.

Then the resulting posterior distribution µη
N has the density of the form

eq:muepsBIPeq:muepsBIP (5.5)

µη
N (dx) =

1

Zη
N

exp

(
−N

2
|y −G(x)|2 − V0(x)

)
dx

=
1

Zη
N

exp

(
−N

2
|G(x†)−G(x) +

1√
N
η†|2 − V0(x)

)
dx

where Zη
N is the normalization constant. Notice that µη

N has the same form as the
measure defined in (1.1) with ε = 1

N , V
ε
1 (x) = V N1 (x) := 1

2 |G(x†)−G(x) + 1√
N
η†|2

and V2(x) = V0(x).
Now we consider the asymptotics of the measure µη

N in the limit N →∞, under
the following two different assumptions on V0 and G:

assum-bip Assumptions 5.1. (i) V0 ∈ C2(Rd; R), G ∈ C3(Rd; Rd) and G(x) = G(x†) im-
plies x = x†. Moreover, G is a homeomorphism in the neighborhood of x†.

(ii) V0 ∈ C2(Rd; R), G ∈ C3(Rd; Rd) and the zero set of the equation G(x) =

G(x†) is {x†i}ni=1. Moreover x†1 = x† and G is a homeomorphism in the neighborhood

of x†i .

Clearly in either case above, the potentials V ε1 and V2 satisfy the Assumption
2.3. In particular, we have V ε1 (x)→ V1(x) := 1

2 |G(x†)−G(x)|2 for any x ∈ Rd and

that D2V1(x†i ) = DG(x†i )
TDG(x†i ). Recall the set of Gaussian measures A and the

set of Gaussian mixtures Mn and Mξ
n (defined in (4.1) and (4.2)). Again, we set

ξ = (ξ1, ξ2) such that ξ1 ∈ (0, 1) and mini 6=j |xi − xj | ≥ ξ2 > 0.
The following theorem concerning the asymptotic normality of µη

N is a direct
consequence of Corollary 3.4 and Corollary 4.4.

thm:bip Theorem 5.2.
(i) Suppose Assumptions 5.1 (i) holds. Given any N ∈ N, let νN = N(mN ,

1
NΣN ) ∈

A be a minimizer of the functional ν 7→ DKL(ν||µη
N ) within A. Then DKL(νN ||µη

N ) ↓
0 as N →∞. Moreover, mN → x† and ΣN →

(
DG(x†)TDG(x†)

)−1
.
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(ii) Suppose Assumptions 5.1 (ii) holds. Given any N ∈ N, let νN ∈ Mξ
n be a

minimizer of the functional ν 7→ DKL(ν||µη
N ) within Mξ

n. Let νN =
∑N
i=1 α

i
Nν

i
N

with νiN = N(mi
N ,

1
NΣi

N ). Then it holds that as N →∞

mi
N → x†i ,Σ

i
N →

(
DG(x†i )

TDG(x†i )
)−1

and αiN →

[
detDG(x†i )

]−1
· e−V0(x

†
i )∑n

j=1

[
detDG(x†j)

]−1
· e−V0(x

†
j)
.

Theorem 5.2 (i) states that the measure µη
N is asymptotically Gaussian when

certain uniqueness and stability properties hold in the inverse problem. Moreover,
in this case, the asymptotic Gaussian distribution is fully determined by the truth
and the forward map, and is independent of the prior. In the case where the
uniqueness fails, but the data only corresponds to a finite number of unknowns,
Theorem 5.2 (ii) demonstrates that the measure µη

N is asymptotically a Gaussian
mixture, with each Gaussian mode independent of the prior. However, prior beliefs
affect the proportions of the individual Gaussian components within the mixture;
more precisely, the un-normalized weights of each Gaussian mode are proportional
to the value of the prior evaluated at the corresponding unknown.

Remark 5.3. In general, when {ηi}i∈N is a sequence of fixed realizations of the
normal distribution, Theorem 5.2 does not hold for the measure µη

N defined in (5.4)
in the large data case. However, we will show that DKL(νN ||µη

N ) will converge to
zero in some average sense; see Theorem 5.4.

5.2. A Bernstein-Von Mises type result. The asymptotic Gaussian phenome-
non in Theorem 5.2 is very much in the same spirit as the celebrated Bernstein-Von
Mises (BvM) theorem [8]. This theorem asserts that for a certain class of regular pri-
ors, the posterior distribution converges to a Gaussian distribution, independently
of the prior, as the sample size tends to infinity. Let us state the Bernstein-Von
Mises theorem more precisely in the i.i.d case. Consider observing a set of i.i.d
samples XN := {X1, X2, · · · , XN}, where Xi is drawn from distribution Pθ, in-
dexed by an unknown parameter θ ∈ Θ. Let PNθ be the law of XN . Let Π be the
prior distribution on θ and denote by Π(·|XN ) the resulting posterior distribution.
The Bernstein-Von Mises Theorem is concerned with the behavior of the posterior
Π(·|XN ) under the frequentist assumption that Xi is drawn from some true model
Pθ0 . A standard finite-dimensional BvM result (see e.g. [8, Theorem 10.1]) states
that, under certain conditions on the prior Π and the model Pθ, as N →∞

eq:bvm1eq:bvm1 (5.6) dTV

(
Π(θ|XN ), N

(
θ̂N ,

1

N
I−1θ0

))
PNθ0−−→ 0

where θ̂N is an efficient estimator for θ, Iθ is the Fisher information matrix of Pθ
and dTV represents the total variation distance. As an important consequence of
the BvM result, Bayesian credible sets are asymptotically equivalent to frequentist
confidence intervals. Moreover, it has been proved that the optimal rate of conver-
gence in the Bernstein-Von Mises theorem is O(1/

√
N); see, for instance, [5, 11].

This means that for any δ > 0, there exists M = M(δ) > 0 such that

eq:bvm2eq:bvm2 (5.7) PNθ0

(
XN : dTV

(
Π(θ|XN ), N

(
θ̂N ,

1

N
I−1θ0

))
≥M 1√

N

)
≤ δ

Unfortunately, BvM results like (5.6) and (5.7) do not fully generalize to in-
finite dimensional spaces, see counterexamples in [9]. Regarding the asymptotic
frequentist properties of posterior distributions in nonparametric models, various
positive results have been obtained recently, see e.g. [10, 23, 14, 15, 6, 7]. For the
convergence rate in the nonparametric case, we refer to [10, 23, 6].
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In the remainder of the section, we prove a Bernstein-Von Mises type result for
the posterior distribution µη

N defined by (5.3) and (5.4). If we view the observa-
tional noise η and ηi appearing in the data as random variables, then the posterior
measures appearing become random probability measures. Furthermore, exploiting
the randomness of the ηi, we claim that the posterior distribution in the large date
case can be rewritten in the form of the small noise case. Indeed, by completing
the square, we can write the expression (5.4) as

(5.8) µη
N (dx) =

1

Z
η

N,2

exp

(
−N

2
|G(x†)−G(x) +

1

N

N∑
i=1

ηi|2
)
dx

Observe that L
(

1
N

∑N
i=1 ηi

)
= L( 1√

N
η) = N(0, 1

N Id) due to the normality as-

sumptions on η and ηi. As a consequence it makes no difference which formulation
is chosen when one is concerned with the statistical dependence of µη

N on the law of
η. For this reason, we will only prove the Bernstein-Von Mises result for µη

N given
directly in the form (5.3).

For notational simplicity, we write the noise level
√
ε in place of 1√

N
and consider

random observations {yε}, generated from a truth x† and normal noise η, i.e.

yε = G(x†) +
√
εη.

Given the same prior defined as before, we obtain the posterior distribution

µηε(dx) =
1

Zηµ,ε
exp

(
− 1

2ε
|yε −G(x)|2 − V0(x)

)
dx

=
1

Zηµ,ε
exp

(
− 1

2ε
|G(x†)−G(x) +

√
εη|2 − V0(x)

)
dx.

For any fixed η, let νηε be the best Gaussian measure which minimizes the Kullback-
Leibler divergence DKL(ν||µηε) over A. For ease of calculations, from now on we
only consider the rate of convergence under Assumption 5.1 (i); the other case can
be dealt with in the same manner, see Remark 5.9. The main result is as follows.

thm:expdkl Theorem 5.4. There exists C > 0 such that

eq:expdkleq:expdkl (5.9) EηDKL(νηε ||µηε) ≤ Cε

as ε ↓ 0.

With the help of Pinsker’s inequality (2.1) as well as the Markov inequality, one
can derive the following BvM-type result from Theorem 5.4.

Corollary 5.5. For any δ > 0, there exists a constant M = M(δ) > 0 such that

eq:bvm3eq:bvm3 (5.10) Pη
(
η : dTV(µηε , ν

η
ε ) ≥M

√
ε
)
≤ δ

when ε ↓ 0.

Remark 5.6. By comparing the classical BvM result (5.7) with our new BvM-type

result (5.10), we see that the asymptotic Gaussian distribution N(θ̂N ,
1
N I
−1
θ0

) is

replaced by the best (with respect to Kullback-Leibler minimization) Gaussian νηε
and that the optimal convergence rate O(

√
ε) is also achieved.

Remark 5.7. For fixed realization of the noise η, we have shown in Theorem 5.2
(i) that DKL(νN ||µη

N ) ↓ 0 as N → ∞. In fact, by following the proof of the

Laplace method, one can prove that DKL(νN ||µη
N ) = O(1/

√
N). However, we

obtain higher convergence rate in (5.9) (with ε replacing 1/N) mainly because of
symmetric cancellations in the evaluation of Gaussian integrals.



20 Y. LU, A. M. STUART, AND H. WEBER

We start the proof of Theorem 5.4 with an averaging estimate for the normal-
ization constant Zηµ,ε.

Lemma 5.8.

eq:explogZeq:explogZ (5.11) Eη logZηµ,ε ≤
d

2
log(2πε)− V0(x†) + log detDG(x†) + rε

where rε ≤ Cε for some C > 0 independent of ε.

Proof. Take a constant γ ∈ (0, 12 ). We write Eη logZηµ,ε as the sum

Eη logZηµ,ε = Eη
(
logZηµ,ε1|η|≤ε−γ

)
+ Eη

(
logZηµ,ε1|η|≥ε−γ

)
=: I1 + I2.

We first find an upper bound for I2. By definition,

Zηµ,ε =

∫
Rd

exp

(
− 1

2ε
|G(x†)−G(x) +

√
εη|2 − V0(x)

)
dx

≤
∫

Rd

e−V0(x)dx = Z0.

It follows that

I2 ≤ logZ0 · P η(η : |η| ≥ ε−γ) ≤ logZ0 · e−ε
−2γ

.

For I1, we need to estimate Zηµ,ε under the assumption that |η| ≤ ε−γ . Thanks to

the condition (i) on G, when ε� 1 there exists a unique m†ε,η such that G(m†ε,η) =

G(x†) +
√
εη. Moreover, denoting by H the inverse of G in the neighborhood of

G(x†), we get from Taylor expansion that

eq:mdagger0eq:mdagger0 (5.12) m†ε,η = x† +DH(G(x†))
√
εη + ε

∑
|α|=2

∂αH(ξG(x†) + (1− ξ)
√
εη)ηα

with some ξ ∈ (0, 1). Thanks to the smoothness assumption on G, the function H
is at least three times differentiable and hence the coefficients in the summation are
uniformly bounded. Moreover, noting that DH(G(x†)) = DG(x†)−1, we obtain

eq:mdagger1eq:mdagger1 (5.13) m†ε,η = x† +DG(x†)−1
√
εη + εRε(η)

where lim supε↓0 |Rε(η)| ≤ C|η|2 for some positive C which is independent of ε and
η. Next, according to the proof of Lemma 3.2, given any sufficiently small δ > 0,

we can write Zηµ,ε = Iδ,ηε +Jδ,ηε where |Jδ,ηε | ≤ Ce−
C
ε with some C > 0 independent

of η and

Iδ,ηε =

∫
Bδ,ηε

exp

(
− 1

2ε
|G(x†)−G(x) +

√
εη|2 − V0(x)

)
dx

with Bδ,ηε := B(m†ε,η, δ). Now we seek bounds for Iδ,ηε . Thanks to Assumption

5.1 (i) and the fact that m†ε,η → 0, G is a homeomorphism in the neighborhood of

m†ε,η. Therefore there exist positive constants δ1 < δ2 depending only on δ such that

B
(
G(m†ε,η), δ1

)
⊂ G(Bδ,ηε ) ⊂ B

(
G(m†ε,η), δ2

)
. After applying the transformation

x 7→ H(x) in evaluation of the integral Iδ,ηε , we get

Ĩδ1,ηε ≤ Iδ,ηi,ε ≤ Ĩ
δ2,η
ε

where

Ĩδ,ηε :=

∫
B(0,δ)

exp

(
− 1

2ε
|y|2 − V0 ◦H(y +G(m†ε,η))

)
det(DH(y +G(m†ε,η))dy.

In order to estimate Ĩδ,ηε , we define two auxiliary functions in B(0, δ) for small
δ. Let fε,η(·) := exp(−V0 ◦H(· + G(m†ε,η))) det(DH(· + G(m†ε,η)) and let L(·) :=
exp(−V0 ◦H(G(·))) det(DH(G(·)) = exp(−V0(·))/ det(DG(·)). It is worthy of note
that within the ball B(0, δ), all derivatives up to second order of fε,η as well as of
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L can be bounded uniformly with respect to sufficiently small ε and η such that
|η| ≤ ε−γ . Taking the equation (5.13) into account, we can expand L near m† to
get that

eq:feps-eta1eq:feps-eta1 (5.14)
fε,η(0) = L(m†ε,η)

= L(x†) +∇L(x†)T (m†ε,η − x†) +
1

2
(m†ε,η − x†)T∇2L(θx† + (1− θ)m†ε,η)(m†ε,η − x†)

=
exp(−V0(x†))

det(DG(x†))
+ ε

1
2∇L(x†)TDG(x†)−1η + r1,ε,η

with some θ ∈ (0, 1) and the residual |r1,ε,η| ≤ Cε|η|2 for some C > 0. Moreover,
for any y ∈ B(0, δ),

eq:feps-eta2eq:feps-eta2 (5.15) fε,η(y) = fε,η(0) +∇fε,η(0)T y +
1

2
yT∇2fε,η(ξy)y

for some ξ = ξ(y) ∈ (0, 1). Then it follows from (5.14) and (5.15) that
(5.16)

Ĩδ,ηε =

∫
B(0,δ)

exp(− 1

2ε
|y|2)fε,η(y)dy

= ε
d
2

∫
B(0,ε−

1
2 δ)

exp(−1

2
|y|2)fε,η(ε

1
2 y)dy

= ε
d
2

(
fε,η(0)

∫
B(0,ε−

1
2 δ)

exp(−1

2
|y|2)dy +

ε

2

∫
B(0,ε−

1
2 δ)

exp(−1

2
|y|2)yT∇2fε,η(ξy)ydy

)

= (2πε)
d
2

(
exp(−V0(x†))

det(DG(x†))
+∇L(x†)TDG(x†)−1

√
εη + r2,ε,η

)
with |r2,ε,η| ≤ Cε|η|2. Notice that the linear term in the expansion (5.15) van-
ishes from the second line to the third line because the the domain of integration
is symmetric about the origin; the final equality holds because we have counted
the exponentially decaying Gaussian integral outside of the ball B(0, ε−

1
2 δ) in the

residual r2,ε,η. Hence we obtain that for |η| ≤ ε−γ and ε small enough

Iδε,η = (2πε)
d
2

(
exp(−V0(x†))

det(DG(x†))
+ ε

1
2∇L(x†)TDG(x†)−1η + r2,ε,η

)
with |r2,ε,η| ≤ Cε|η|2. As a result, Zηµ,ε satisfies the same bound as above. Then
by using the Taylor expansion of the log function, one obtains that

logZηµ,ε = log

(
(2πε)

d
2 exp(−V0(x†))

det(DG(x†))

)
+ ε

1
2 pT η + r3,ε,η

where p is vector depending only on L,G, V0 and x† and |r3,ε,η| ≤ Cε|η|2. This
implies that when ε is sufficiently small,

I1 = Eη
(
logZηµ,ε1|η|≤ε−γ

)
=
d

2
log(2πε)− V0(x†) + log detDG(x†) + rε.

with |rε| ≤ Cε. Again the first order term ε
1
2 pT η vanishes because of the symmetry

in integration; the bound |rε| ≤ Cε follows from the bound for r3,ε,η and the
Gaussian tail bound. This completes the proof. �

Proof of Theorem 5.4. We prove the theorem by constructing a family of Gaussian
measures {νηε} such that

eq:expdkl-1eq:expdkl-1 (5.17) EηDKL(νηε ||µηε) ≤ Cε



22 Y. LU, A. M. STUART, AND H. WEBER

for some C > 0. Then the theorem is proved by the optimality of νε,η. Recall that

m†ε,η is defined by (5.12). Fixing γ ∈ (0, 12 ), we define νηε = N(mε,η,Σε,η) with
mε,η defined by

mε,η =

{
m†ε,η if |η| ≤ ε−γ ,
x† otherwise

and that Σε,η = DG(mε,η)−1. Clearly, when ε is small enough, mε,η admits
an expansion similar to (5.12). As a consequence, there exist positive constants
C1, c2, C2 which are independent of η, such that lim supε↓0 |mε,η| ≤ C1 and c2 ≤
lim infε↓0 λmin(Σε,η) < lim supε↓0 Tr(Σε) ≤ C2 hold for all η. With the above choice

for (mε,η,Σε,η), an application of Lemma 3.7 with V ε1 (x) = 1
2 |G(x†)−G(x)+

√
εη|2

and V2(x) = V0(x) yields that

eq:expdkl2eq:expdkl2 (5.18) DKL(νηε ||µηε) = V0(mε,η)− d

2
log(2πε) +

1

2
log detDG(mε,η) + logZηµ,ε + rε

where rε ≤ Cε with C = C(C1, c2, C2,MV ). By the definition of mε,η and the
expansion (5.12), it follows from the Taylor expansion for the function x 7→ V0(x)+
1
2 log detDG(x) that when |η| ≤ ε−γ and ε is small enough,

eq:rhologdeteq:rhologdet (5.19) V0(mε,η) +
1

2
log detDG(mε,η) = V0(x†) +

1

2
log detDG(x†) +

√
εqT η+ r̃ε,η

with some q ∈ Rd and |r̃ε,η| ≤ Cε for some C > 0. Then the estimate (5.17)
follows, by taking the expectation of (5.18) and using the equation (5.19) and
Lemma 3.7. �

rem:expdkl Remark 5.9. Theorem 5.4 proves the rate of convergence with the assumption that
G satisfies Assumption 5.1 (i). However, the convergence rate remains the same
when Assumption 5.1 (ii) is fulfilled, and when the best Gaussian measure is re-
placed by the best Gaussian mixture.

6. Conclusions

We have studied a methodology widely used in applications, yet little analyzed,
namely the approximation of a given target measure by a Gaussian, or by a Gauss-
ian mixture. We have employed relative entropy as a measure of goodness of fit.
Our theoretical framework demonstrates the existence of minimizers of the varia-
tional problem, and studies their asymptotic form in a relevant small parameter
limit where the measure concentrates; the small parameter limit is studied by use
of tools from Gamma convergence. In the case of a target with asymptotically uni-
modal distribution the Gamma limit demonstrates perfect reconstruction by the
approximate single Gaussian method in the measure concentration limit; and in
the case of multiple modes it quantifies the errors resulting from using a single
mode fit. Furthermore the Gaussian mixture is shown to overcome the limitations
of a single mode fit, in the case of target measure with multiple modes. These ideas
are exemplified in the analysis of a Bayesian inverse problem in the small noise or
large data set limits, and connections made to the Bernstein-Von Mises theory from
asymptotic statistics.

A key conclusion of this work is that Γ-convergence is a very natural tool for
the study of algorithms in machine learning and asymptotic statistics. Interesting
future directions for the application of ideas from Γ-convergence include the study
of limiting problems in which the target probability measure concentrates on a
manifold, together with the study of inverse problems in infinite dimensional spaces.
New ideas will be needed to tackle both of these cases.
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