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Abstract

In a variety of applications it is important to extract information from a
probability measure µ on an infinite dimensional space. Examples include
the Bayesian approach to inverse problems and possibly conditioned) con-
tinuous time Markov processes. It may then be of interest to find a mea-
sure ν, from within a simple class of measures, which approximates µ. This
problem is studied in the case where the Kullback-Leibler divergence is em-
ployed to measure the quality of the approximation. A calculus of variations
viewpoint is adopted and the particular case where ν is chosen from the set
of Gaussian measures is studied in detail. Basic existence and uniqueness
theorems are established, together with properties of minimising sequences.
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Furthermore, parameterisation of the class of Gaussians through the mean
and inverse covariance is introduced, the need for regularisation is explained,
and a regularised minimisation is studied in detail. The calculus of variations
framework resulting from this work provides the appropriate underpinning
for computational algorithms.

1 Introduction
This paper is concerned with the problem of minimising the Kullback-Leibler di-
vergence between a pair of probability measures, viewed as a problem in the cal-
culus of variations. We are given a measure µ, specified by its Radon-Nikodym
derivative with respect to a reference measure µ0, and we find the closest element
ν from a simpler set of probability measures. After an initial study of the problem
in this abstract context, we specify to the situation where the reference measure
µ0 is Gaussian and the approximating set comprises Gaussians. It is necessarily
the case that minimisers ν are then equivalent as measures to µ0 and we use the
Feldman-Hajek Theorem to characterise such ν in terms of their inverse covari-
ance operators. This induces a natural formulation of the problem as minimisation
over the mean, from the Cameron-Martin space of µ0, and over an operator from
a weighted Hilbert-Schmidt space. We study this problem from the point of view
of the calculus of variations, studying properties of minimising sequences, reg-
ularisation to improve the space in which operator convergence is obtained, and
uniqueness under a slight strengthening of a log-convex assumption on the mea-
sure µ.

In the situation where the minimisation is over a convex set of measures ν,
the problem is classical and completely understood [Csi75]; in particular, there
is uniqueness of minimisers. However, the emphasis in our work is on situations
where the set of measures ν is not convex, such as the set of Gaussian measures,
and in this context uniqueness cannot be expected in general. However some of the
ideas used in [Csi75] are useful in our general developments, in particular method-
ologies to extract minimising sequences converging in total variation. Furthermore,
in the finite dimensional case the minimisation problem at hand was studied by
McCann [McC97] in the context of gas dynamics. He introduced the concept of
“displacement convexity” which was one of the main ingredients for the recent de-
velopments in the theory of mass transportation (e.g. [AGS08, Vil09]). Inspired
by the work of McCann, we identify situations in which uniqueness of minimisers
can occur even when approximating over non-convex classes of measures.

In the study of inverse problems in partial differential equations, when given a
Bayesian formulation [Stu10], and in the study of conditioned diffusion processes
[HSV11], the primary goal is the extraction of information from a probabililty
measure µ on a function space. This task often requires computational methods.
One commonly adopted approach is to find the maximum a posteriori (MAP) es-
timator which corresponds to identifying the centre of balls of maximal probabil-
ity, in the limit of vanishingly small radius [DLSV13, KS05]; in the context of
inverse problems this is linked to the classical theory of Tikhonov-Phillips regular-
isation [EHN96]. Another commonly adopted approach is to employ Monte-Carlo
Markov chain (MCMC) methods [Liu08] to sample the probability measure of in-
terest. The method of MAP estimation can be computationally tractable, but loses
important probabilistic information. In contrast MCMC methods can, in principle,
determine accurate probabilistic information but may be very expensive. The goal
of this work is to provide the mathematical basis for computational tools which lie
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between MAP estimators and MCMC methods. Specifically we wish to study the
problem of approximating the measure µ from a simple class of measures and with
quality of approximation measured by means of the Kullback-Leibler divergence.
This holds the potential for being a computational tool which is both computation-
ally tractable and provides reliable probabilistic information. The problem leads to
interesting mathematical questions in the calculus of variations, and study of these
questions form the core of this paper.

Approximation with respect to Kullback-Leibler divergence is not new and
indeed forms a widely used tool in the field of machine learning [BN06] with
motivation being the interpretation of Kullback-Leibler divergence as a measure
of loss of information. Recently the methodology has been used for the coarse-
graining of stochastic lattice systems [KPT07], simple models for data assimi-
lation [ACOST07, AOS+07], the study of models in ocean-atmosphere science
[MG11, GM12] and molecular dynamics [KP13]. However none of this applied
work has studied the underlying calculus of variations problem which is the ba-
sis for the algorithms employed. Understanding the properties of minimising se-
quences is crucial for the design of good finite dimensional approximations, see
for example [BK87], and this fact motivates the work herein. In the companion
paper [PSSW14] we will demonstrate the use of algorithms for Kullback-Leibler
minimisation which are informed by the analysis herein.

In section 2 we describe basic facts about KL minimisation in an abstract set-
ting, and include an example illustrating our methodology, together with the fact
that uniqueness is typically not to be expected when approximating within the
Gaussian class. Section 3 then concentrates on the theory of minimisation with re-
spect to Gaussians. We demonstrate the existence of minimisers, and then develop
a regularisation theory needed in the important case where the inverse covariance
operator is parameterised via a Schrödinger potential. We also study the restricted
class of target measures for which uniqueness can be expected, and we generalize
the overall setting to the study of Gaussian mixtures. Proofs of all of our results
are collected in section 4, whilst the Appendix contains variants on a number of
classical results which underlie those proofs.

Acknowledgments: The work of AMS is supported by ERC, EPSRC and ONR. GS
was supported by NSF PIRE grant OISE-0967140 and DOE grant DE-SC0002085.
Visits by FJP and GS to Warwick were supported by ERC, EPSRC and ONR. AMS
is grateful to Colin Fox for fruitful discussions on related topics.

2 General Properties of KL-Minimisation
In subsection 2.1 we present some basic background theory which underpins this
paper. In subsection 2.2 we provide an explicit finite dimensional example which
serves to motivate the questions we study in the remainder of the paper.

2.1 Background Theory
In this subsection we recall some general facts about Kullback-Leibler approxima-
tion on an arbitrary Polish space. Let H be a Polish space endowed with its Borel
sigma algebra F . Denote by M(H) the set of Borel probability measures on H
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and let A ⊂M(H). Our aim is to find the best approximation of a target measure
µ ∈ M(H) in the set A of “simpler” measures. As a measure for closeness we
choose the Kullback-Leibler divergence, also known as the relative entropy. For
any ν ∈M(H) that is absolutely continuous with respect to µ it is given by

DKL(ν‖µ) =

∫
H

log

(
dν

dµ
(x)

)
dν

dµ
(x)µ(dx) = Eµ

[
log

(
dν

dµ
(x)

)
dν

dµ
(x)

]
,

(2.1)
where we use the convention that 0 log 0 = 0. If ν is not absolutely continuous
with respect to µ, then the Kullback-Leibler divergence is defined as +∞. The
main aims of this article are to discuss the properties of the minimisation problem

argmin
ν∈A

DKL(ν‖µ) (2.2)

for suitable sets A, and to create a mathematical framework appropriate for the
development of algorithms to perform the minimisation.

The Kullback-Leibler divergence is not symmetric in its arguments and min-
imising DKL(µ‖ν) over ν for fixed µ in general gives a different result than (2.2).
Indeed, if H is Rn and A is the set of Gaussian measures on Rn, then minimising
DKL(µ‖ν) yields for ν the Gaussian measure with the same mean and variance as
µ; see [BN06, section 10.7]. Such an approximation is undesirable in many situa-
tions, for example if µ is bimodal; see [BN06, Figure 10.3]. We will demonstrate
by example in subsection 2.2 that problem (2.2) is a more desirable minimisation
problem which can capture local properties of the measure µ such as individual
modes. Note that the objective function in the minimisation (2.2) can formulated
in terms of expectations only over measures from A; if this set is simple then this
results in computationally expedient algorithms. Below we will usually chose for
A a set of Gaussian measures and hence these expectations are readily computable.

The following well-known result gives existence of minimisers for problem
(2.2) as soon as the set A is closed under weak convergence of probability mea-
sures. For the reader’s convenience we give a proof in the Appendix. We essentially
follow the exposition in [DE97, Lemma 1.4.2]; see also [AGS08, Lemma 9.4.3].

Proposition 2.1. Let (νn) and (µn) be sequences inM(H) that converge weakly
to ν? and µ?. Then we have

lim inf
n→∞

DKL(νn‖µn) ≥ DKL(ν?‖µ?).

Furthermore, for any µ ∈M(H) and for any M <∞ the set

{ν ∈M(H) : DKL(ν‖µ) ≤M}

is compact with respect to weak convergence of probability measures.

Proposition 2.1 yields the following immediate corollary which, in particular,
provides the existence of minimisers from within the Gaussian class:

Corollary 2.2. Let A be closed with respect to weak convergence. Then, for given
µ ∈ M(H), assume that there exists ν ∈ A such that DKL(ν‖µ) < ∞. It follows
that there exists a minimiser ν ∈ A solving problem (2.2).
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If we know in addition that the set A is convex then the following classical
stronger result holds:

Proposition 2.3 ([Csi75, Theorem 2.1]). Assume that A is convex and closed with
respect to total variation convergence. Assume furthermore that there exists a ν ∈
A with DKL(ν‖µ) < ∞. Then there exists a unique minimiser ν ∈ A solving
problem (2.2).

However in most situations of interest in this article, such as approximation by
Gaussians, the set A is not convex. Moreoever, the proof of Proposition 2.3 does
not carry over to the case of non-convex A and, indeed, uniqueness of minimisers
is not expected in general in this case (see, however, the discussion of uniqueness
in Section 3.4). Still, the methods used in proving Proposition 2.3 do have the
following interesting consequence for our setting. Before we state it we recall the
definition of the total variation norm of two probability measures. It is given by

Dtv(ν, µ) = ‖ν − µ‖tv =
1

2

∫ ∣∣∣∣dνdλ(x)− dµ

dλ
(x)

∣∣∣∣λ(dx)

where λ is a probability measure onH such that ν � λ and µ� λ

Lemma 2.4. Let (νn) be a sequence inM(H) and let ν? ∈M(H) and µ ∈M(H)
be probability measures such that for any n ≥ 1 we have DKL(νn‖µ) < ∞ and
DKL(ν?‖µ) <∞. Suppose that the νn converge weakly to ν? and in addition that

DKL(νn‖µ)→ DKL(ν?‖µ).

Then νn converges to ν? in total variation norm.

The proof of Lemma 2.4 can be found in Section 4.1. Combining Lemma 2.4
with Proposition 2.1 implies in particular the following:

Corollary 2.5. Let A be closed with respect to weak convergence and µ such that
there exists a ν ∈ A with DKL(ν‖µ) <∞. Let νn ∈ A satisfy

DKL(νn‖µ)→ inf
ν∈A

DKL(ν‖µ). (2.3)

Then, after passing to a subsequence, νn converges weakly to a ν? ∈ A that realises
the infimum in (2.3). Along the subsequence we have, in addition, that

‖νn − ν?‖tv → 0.

Thus, in particular, if A is the Gaussian class then the preceding corollary
applies.
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Figure 1: The double well potential Φ.

2.2 A Finite Dimensional Example
In this subsection we illustrate the minimisation problem in the simplified situation
where H = Rn for some n ≥ 1. In this situation it is natural to consider target
measures µ of the form

dµ

dLn
(x) =

1

Zµ
exp

(
− Φ(x)

)
, (2.4)

for some smooth function Φ: Rn → R+. Here Ln denotes the Lebesgue measure
on Rn. We consider the minimisation problem (2.2) in the case where A is the set
of all Gaussian measures on Rn.

If ν = N(m,C) is a Gaussian on Rn with mean m and a non-degenerate
covariance matrix C we get

DKL(ν‖µ) = Eν
[
Φ(x)− 〈x,C

−1x〉
2

]
− 1

2
log
(

detC
)

+ log

(
Zµ

(2π)
n
2

)
= Eν

[
Φ(x)

]
− 1

2
log
(

detC
)
− n

2
+ log

(
Zµ

(2π)
n
2

)
. (2.5)

The last two terms on the right hand side of (2.5) do not depend on the Gaussian
measure ν and can therefore be dropped in the minimisation problem. In the case
where Φ is a polynomial the expression Eν

[
Φ(x)

]
consists of a Gaussian expecta-

tion of a polynomial and it can be evaluated explicitly.
To be concrete we consider the case where n = 1 and Φ(x) = 1

4ε(x
2 − 1)2 so

that the measure µ has two peaks: see Figure 1. In this one dimensional situation
we minimise DKL(ν‖µ) over all measures N(m,σ2), m ∈ R, σ ≥ 0. Dropping
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Figure 2: In the figure solid lines denote minima, with the darker line used for the
absolute minimum at the given temperature ε. The dotted lines denote maxima.
At ε = 1/6 two stationary points annihilate one another at a fold bifurction and
only the symmetric solution, with mean m = 0, remains. However even for ε >
0.122822, the symmetric mean zero solution is the global minimum.

the irrelevant constants in (2.5), we are led to minimise

D(m,σ) := EN(m,σ2)
[
Φ(x)

]
− log(σ)

=
(

Φ(m) +
σ2

2
Φ′′(m) +

3σ4

4!
Φ(4)(m)

)
− log(σ)

=
1

ε

(
1

4
(m2 − 1)2 +

σ2

2
(3m2 − 1) +

3σ4

4

)
− log(σ).

We expect, for small enough ε, to find two different Gaussian approximations,
centred near ±1. Numerical solution of the critical points of D (see Figure 2) con-
firms this intuition. In fact we see the existence of three, then five and finally one
critical point as ε increases. For small ε the two minima near x = ±1 are the global
minimisers, whilst for larger ε the minimiser at the origin is the global minimiser.
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3 KL-Minimisation over Gaussian Classes
The previous subsection demonstrates that the class of Gaussian measures is a nat-
ural one over which to minimise, although uniqueness cannot, in general, be ex-
pected. In this section we therefore study approximation within Gaussian classes,
and variants on this theme. Furthermore we will assume that the measure of inter-
est, µ, is equivalent (in the sense of measures) to a Gaussian µ0 = N(m0, C0) on
the separable Hilbert space (H, 〈·, ·〉, ‖ · ‖), with F the Borel σ-algebra.

More precisely, let X ⊆ H be a separable Banach space which is continuously
embedded inH, where X is measurable with respect to F and satifies µ0(X) = 1.
We also assume that Φ : X → R is continuous in the topology of X and that
exp(−Φ(x)) is integrable with respect to µ0. 1 Then the target measure µ is
defined by

dµ

dµ0
(x) =

1

Zµ
exp

(
− Φ(x)

)
, (3.1)

where the normalisation constant is given by

Zµ =

∫
H

exp
(
− Φ(x)

)
µ0(dx) =: Eµ0

[
exp

(
− Φ(x)

)]
.

Here and below we use the notation Eµ0 for the expectation with respect to the
probability measure µ0, and we also use similar notation for expectation with re-
spect to other probability measures. Measures of the form (3.1) with µ0 Gaussian
occur in the Bayesian approach to inverse problems with Gaussian priors, and in
the pathspace description of (possibly conditioned) diffusions with additive noise.

In subsection 3.1 we recall some basic definitions concerning Gaussian mea-
sure on Hilbert space and then state a straightforward consequence of the theo-
retical developments of the previous section, for A comprising various Gaussian
classes. Then, in subsection 3.2, we discuss how to parameterise the covariance
of a Gaussian measure, introducing Schrödinger potential-type parameterisations
of the precision (inverse covariance) operator. By example we show that whilst
Gaussian measures within this parameterisation may exhibit well-behaved min-
imising sequences, the potentials themselves may behave badly along minimising
sequences, exhibiting oscillations or singularity formation. This motivates sub-
section 3.3 where we regularise the minimisation to prevent this behaviour. In
subsection 3.4 we give conditions on Φ which result in uniqueness of minimisers
and in subsection 3.5 we make some remarks on generalisations of approximation
within the class of Gaussian mixtures.

3.1 Gaussian Case
We start by recalling some basic facts about Gaussian measures. A probability
measure ν on a separable Hilbert space H is Gaussian if for any φ in the dual
space H? the push-forward measure ν ◦ φ−1 is Gaussian (where Dirac measures
are viewed as Gaussians with variance 0) [DPZ92]. Furthermore, recall that ν is
characterised by its mean and covariance, defined via the following (in the first

1In fact continuity is only used in subsection 3.4; measurability will suffice in much of the paper.
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case Bochner) integrals: the mean m is given by

m :=

∫
H
x ν(dx) ∈ H

and its covariance operator C : H → H satisfies∫
H
〈x, y1〉〈x, y2〉 ν(dx) = 〈y1, Cy2〉,

for all y1, y2 ∈ H. Recall that C is a non-negative, symmetric, trace-class operator,
or equivalently

√
C is a non-negative, symmetric Hilbert-Schmidt operator. In

the sequel we will denote by L(H), T C(H), and HS(H) the spaces of linear,
trace-class, and Hilbert-Schmidt operators onH. We denote the Gaussian measure
with mean m and covariance operator C by N(m,C). We have collected some
additional facts about Gaussian measures in Appendix A.2.

From now on, we fix a Gaussian measure µ0 = N(m0, C0). We always as-
sume that C0 is a strictly positive operator. We denote the image of H under

C
1
2
0 , endowed with the scalar product 〈C−

1
2

0 ·, C
− 1

2
0 ·〉, by H1, noting that this is

the Cameron-Martin space of µ0; we denote its dual space by H−1 =
(
H1
)?. We

will make use of the natural finite dimensional projections associated to the opera-
tor C0 in several places in the sequel and so we introduce notation associated with
this for later use. Let (eα, α ≥ 1) be the basis ofH consisting of eigenfunctions of
C0, and let (λα, α ≥ 1) be the associated sequence of eigenvalues. For simplicity
we assume that the eigenvalues are in non-increasing order. Then for any γ ≥ 1
we will denote byHγ := span(e1, . . . , eγ) and the orthogonal projection ontoHγ
by

πγ : H → H, x 7→
γ∑

α=1

〈x, eα〉 eα. (3.2)

Given such a measure µ0 we assume that the target measure µ is given by (3.1).
For ν � µ expression (2.1) can be rewritten, using (3.1) and the equivalence

of µ and µ0, as

DKL(ν‖µ) = Eν
[

log

(
dν

dµ
(x)

)
1{ dν

dµ
6=0}

]
= Eν

[
log

(
dν

dµ0
(x)× dµ0

dµ
(x)

)
1{ dν

dµ0
6=0}

]
= Eν

[
log

(
dν

dµ0
(x)

)
1{ dν

dµ0
6=0
}]+ Eν

[
Φ(x)

]
+ log(Zµ). (3.3)

The expression in the first line shows that in order to evaluate the Kullback-Leibler
divergence it is sufficient to compute an expectation with respect to the approxi-
mating measure ν ∈ A and not with respect to the target µ.
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The same expression shows positivity. To see this decompose the measure µ
into two non-negative measures µ = µ‖ + µ⊥ where µ‖ is equivalent to ν and µ⊥
is singular with respect to ν. Then we can write with the Jensen inequality

DKL(ν‖µ) =− Eν
[

log

(
dµ‖

dν
(x)

)
1{ dν

dµ
6=0}

]
≥ − logEν

[
dµ‖

dν
(x)

]
=− logµ‖(H) ≥ 0.

This establishes the general fact that relative entropy is non-negative for our par-
ticular setting.

Finally, the expression in the third line of (3.3) shows that the normalisation
constant Zµ enters into DKL only as an additive constant that can be ignored in the
minimisation procedure.

If we assume furthermore, that the setA consists of Gaussian measures, Lemma 2.4
and Corollary 2.5 imply the following result.

Theorem 3.1. Let µ0 be a Gaussian measure with mean m0 ∈ H and covariance
operator C0 ∈ T C(H) and let µ be given by (3.1). Consider the following choices
for A

1. A1 = {Gaussian measures onH},

2. A2 = {Gaussian measures onH equivalent to µ0},

3. For a fixed covariance operator Ĉ ∈ T C(H)

A3 = {Gaussian measures onH with covariance Ĉ},

4. For a fixed mean m̂ ∈ H

A4 = {Gaussian measures onH with mean m̂}.

In each of these situations, as soon as there exists a single ν ∈ Ai withDKL(ν‖µ) <
∞ there exists a minimiser of ν 7→ DKL(ν‖µ) inAi. Furthermore ν is necessarily
equivalent to µ0 in the sense of measures.

Remark 3.2. Even in the case A1 the condition that there exists a single ν with
finite DKL(ν‖µ) is not always satisfied. For example, if Φ(x) = exp

(
‖x‖4H

)
then

for any Gaussian measure ν onH we have, using the identity (3.3), that

DKL(ν‖µ) = DKL(ν‖µ0) + Eν
[
Φ(x)

]
+ log(Zµ) = +∞.

In the cases A1,A3 and A4 such a ν is necessarily absolutely continuous with re-
spect to µ, and hence equivalent to µ0; this equivalence is encapsulated directly in
A2. The conditions for this to be possible are stated in the Feldman-Hajek Theo-
rem, Proposition A.2.
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3.2 Parametrization of Gaussian Measures
When solving the minimisation problem (2.2) it will usually be convenient to
parametrize the set A in a suitable way. In the case where A consists of all Gaus-
sian measures on H the first choice that comes to mind is to parametrize it by the
mean m ∈ H and the covariance operator C ∈ T C(H). In fact it is often con-
venient, for both computational and modelling reasons, to work with the inverse
covariance (precision) operator which, because the covariance operator is strictly
positive and trace-class, is a densely-defined unbounded operator.

Recall that the underlying Gaussian reference measure µ0 has covariance C0.
We will consider covariance operators C of the form

C−1 = C−1
0 + Γ, (3.4)

for suitable operators Γ. From an applications perspective it is interesting to con-
sider the case where H is a function space and Γ is a mutiplication operator. Then
Γ has the form Γu = v(·)u(·) for some fixed function v which we refer to as a
potential in analogy with the Schrödinger setting. In this case parametrizing the
Gaussian family A by the pair of functions (m, v) comprises a considerable di-
mension reduction over parametrization by the pair (m,C), since C is an operator.
We develop the theory of the minimisation problem (2.2) in terms of Γ and extract
results concerning the potential v as particular examples.

The end of Remark 3.2 shows that, without loss of generality, we can always
restrict ourselves to covariance operators C corresponding to Gaussian measures
which are equivalent to µ0. In general the inverse C−1 of such an operator and
the inverse C−1

0 of the covariance operator of µ0 do not have the same operator
domain. Indeed, see Example 3.8 below for an example of two equivalent centred
Gaussian measures whose inverse covariance operators have different domains.
But item 1.) in the Feldman-Hajek Theorem (Proposition A.2) implies that the

domains of C−
1
2 and C

− 1
2

0 , i.e. the form domains of C−1 and C−1
0 , coincide.

Hence, if we view the operators C−1 and C−1
0 as symmetric quadratic forms on

H1 or as operators from H1 to H−1 it makes sense to add and subtract them. In
particular, we can interpret (3.4) as

Γ := C−1 − C−1
0 ∈ L(H1,H−1). (3.5)

Actually, Γ is not only bounded from H1 to H−1. Item 3.) in Proposition A.2 can
be restated as ∥∥Γ

∥∥2

HS(H1,H−1)
:=
∥∥C 1

2
0 ΓC

1
2
0

∥∥2

HS(H)
<∞; (3.6)

here HS(H1,H−1) denotes the space of Hilbert-Schmidt operators from H1 to
H−1. The spaceHS(H1,H−1) is continuously embedded into L(H1,H−1).

Conversely, it is natural to ask if condition (3.6) alone implies that Γ can be
obtained from the covariance of a Gaussian measure as in (3.5). The following
Lemma states that this is indeed the case as soon as one has an additional positivity
condition; the proof is left to the appendix.
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Lemma 3.3. For any symmetric Γ inHS(H1,H−1) the quadratic form given by

QΓ(u, v) = 〈u,C−1
0 v〉+ 〈u,Γv〉,

is bounded from below and closed on its form domain H1. Hence it is associated
to a unique self-adjoint operator which we will also denote by C−1

0 + Γ. The
operator (C−1

0 + Γ)−1 is the covariance operator of a Gaussian measure on H
which is equivalent to µ0 if and only if QΓ is strictly positive.

Lemma 3.3 shows that we can parametrize the set of Gaussian measures that
are equivalent to µ0 by their mean and by the operator Γ. For fixed m ∈ H and
Γ ∈ HS(H1,H−1) we write NP,0(m,Γ) for the Gaussian measure with mean m
and covariance operator given by C−1 = C−1

0 + Γ, where the suffix (P, 0) is to
denote the specifiction via the shift in precision operator from that of µ0. We use
the convention to set NP,0(m,Γ) = δm if C−1

0 + Γ fails to be positive. Then we
set

A := {NP,0(m,Γ) ∈M(H) : m ∈ H, Γ ∈ HS(H1,H−1)}. (3.7)
Lemma 3.3 shows that the subset ofA in whichQΓ is stricly positive comprises

Gaussians measures absolutely continuous with respect to µ0. Theorem 3.1, with
the choice A = A2, implies immediately the existence of a minimiser for problem
(2.2) for this choice of A:
Corollary 3.4. Let µ0 be a Gaussian measure with mean m0 ∈ H and covariance
operator C0 ∈ T C(H) and let µ be given by (3.1). Consider A given by (3.7).
Provided there exists a single ν ∈ A with DKL(ν‖µ) < ∞ then there exists a
minimiser of ν 7→ DKL(ν‖µ) inA. Furthermore, ν is necessarily equivalent to µ0
in the sense of measures.

However this corollary does not tell us much about the manner in which min-
imising sequences approach the limit. With some more work we can actually char-
acterize the convergence more precisely in terms of the parameterisation:
Theorem 3.5. Let µ0 be a Gaussian measure with mean m0 ∈ H and covariance
operator C0 ∈ T C(H) and let µ be given by (3.1). Consider A given by (3.7). Let
NP,0(mn,Γn) be a sequence of Gaussian measures in A that converge weakly to
ν? with

DKL(νn‖µ)→ DKL(ν?‖µ).

Then ν? = NP,0(m?,Γ?) and

‖mn −m?‖H1 +
∥∥Γn − Γ?

∥∥
HS(H1,H−1)

→ 0.

Proof. Lemma A.1 shows that ν? is Gaussian and Theorem 3.1 that in fact ν? =
NP,0(m?,Γ?). It follows from Lemma 2.4 that νn converges to ν? in total variation.
Lemma A.4 which follows shows that∥∥C 1

2
?

(
C−1
n − C−1

?

)
C

1
2
?

∥∥
HS(H)

+ ‖mn −m?‖H1 → 0.

By Feldman-Hajek Theorem (Proposition A.2, item 1.)) the Cameron-Martin spaces

C
1
2
? H and C

1
2
0 H coincide with H1 and hence, since C−1

n − C−1
? = Γn − Γ?, the

desired result follows.
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The following example concerns a subset of the set A given by (3.7) found
by writing Γ a multiplication by a constant. This structure is useful for numerical
computations, for example if µ0 represents Wiener measure (possibly conditioned)
and we seek an approximation ν to µ with a mean m and covariance of Ornstein-
Uhlenbeck type (again possibly conditioned).

Example 3.6. Let C−1 = C−1
0 + βI so that

C = (I + βC0)−1C0. (3.8)

Let A′ denote the set of Gaussian measures on H which have covariance of the
form (3.8) for some constant β ∈ R. This set is parameterized by the pair (m,β) ∈
H×R. Lemma 3.3 above states that C is the covariance of a Gaussian equivalent
to µ0 if and only if β ∈ I = (−λ−1

1 ,∞); recall that λ1, defined above (3.2) is the
largest eigenvalue ofC0. Note also that the covarianceC satisfiesC−1 = C−1

0 +β
and so A′ is a subset of A given by (3.7) arising where Γ is multiplication by a
constant.

Now consider minimising sequences {νn} from A′ for DKL(ν‖µ). Any weak
limit ν? of a sequence νn = N

(
mn, (I + βnC0)−1C0

)
∈ A′ is necessarily Gaus-

sian by Lemma A.1, 1.) and we denote it by N(m?, C?). By 2.) of the same lemma
we deduce that mn → m? strongly in H and by 3.) that (I + βnC0)−1C0 → C?
strongly in L(H). Thus, for any α ≥ 1, and recalling that eα are the eigenvec-
tors of C0, ‖C?eα − (1 + βnλα)−1λαeα‖ → 0 as n → ∞. Furthermore, nec-
essarily βn ∈ I for each n. We now argue by contradiction that there are no
subsequences βn′ converging to either −λ−1

1 or∞. For contradiction assume first
that there is a subsequence converging to −λ−1

1 . Along this subsequence we have
(1 + βnλ1)−1 → ∞ and hence we deduce that C?e1 = ∞, so that C? cannot
be trace-class, a contradiction. Similarly assume for contradiction that there is a
subsequence converging to∞. Along this subsequence we have (1+βnλα)−1 → 0
and hence that C?eα = 0 for every α. In this case ν? would be a Dirac measure,
and hence not equivalent to µ0 (recall our assumption that C0 is a strictly positive
operator). Thus there must be a subsequnce converging to a limit β ∈ I and we
deduce that C?eα = (1 + βλα)−1λαeα proving that C? = (I + βC0)−1C0 as
required.

Another class of Gaussian which is natural in applications, and in which the
parameterization of the covariance is finite dimensional, is as follows.

Example 3.7. Recall the notation πγ for the orthogonal projection onto Hγ :=
span(e1, . . . , eγ) the span of the first γ eigenvalues of C0. We seek C in the form

C−1 =
(
(I − πγ)C0(I − πγ)

)−1
+ Γ

where
Γ =

∑
i,j≤N

γijei ⊗ ej .

13



It then follows that
C = (I − πγ)C0(I − πγ) + Γ−1, (3.9)

provided that Γ is invertible. Let A′ denote the set of Gaussian measures on H
which have covariance of the form (3.9) for some operator Γ invertible onHγ . Now
consider minimising sequences {νn} from A′ for DKL(ν‖µ) with mean mn and
covarianceCn = (I−πγ)C0(I−πγ)+Γ−1

n . Any weak limit ν? of the sequence νn ∈
A′ is necessarily Gaussian by Lemma A.1, 1.) and we denote it by N(m?, C?). As
in the preceding example, we deduce that mn → m? strongly in H. Similarly we
also deduce that Γ−1

n converges to a non-negative matrix. A simple contradiction
shows that, in fact, this limiting matrix is invertible since otherwise N(m?, C?)
would not be equivalent to µ0. We denote the limit by Γ−1

? . We deduce that the
limit of the sequence νn is in A′ and that C? = (I − πγ)C0(I − πγ) + Γ−1

? .

3.3 Regularisation for Parameterisation of Gaussian Measures
The previous section demonstrates that parameterisation of Gaussian measures in
the set A given by (3.7) leads to a well-defined minimisation problem (2.2) and
that, furthermore, minimising sequences inA will give rise to means mn and oper-
ators Γn converging inH1 andHS(H1,H−1) respectively. However, convergence
in the space HS(H1,H−1) may be quite weak and unsuitable for numerical pur-
poses; in particular if Γnu = vn(·)u(·) then the sequence (vn) may behave quite
badly, even though (Γn) is well-behaved in HS(H1,H−1). For this reason we
consider, in this subsection, regularisation of the minimisation problem (2.2) over
A given by (3.7). But before doing so we provide two examples illustrating the
potentially undesirable properties of convergence inHS(H1,H−1).

Example 3.8 (Compare [RS75, Example 3 in Section X.2]). Let C−1
0 = −∂2

t

be the negative Dirichlet-Laplace operator on [−1, 1] with domain H2([−1, 1]) ∩
H1

0 ([−1, 1]), and let µ0 = N(0, C0), i.e. µ0 is the distribution of a Brownian
bridge on [−1, 1]. In this case H1 coincides with the Sobolev space H1

0 . We note
that the measure µ0 assigns full mass to the space X of continuous functions on
[−1, 1] and hence all integrals with respect to µ0 in what follows can be computed
over X . Furthermore, the centred unit ball in X ,

BX(0; 1) :=
{
x ∈ X : sup

t∈[−1,1]
|x(t)| ≤ 1

}
,

has positive µ0 measure.
Let φ : R → R be a standard mollifier, i.e. φ ∈ C∞, φ ≥ 0, φ is compactly

supported in [−1, 1] and
∫
R φ(t) dt = 1. Then for any n define φn(t) = nφ(tn),

together with the probability measures νn � µ0 given by by

dνn
dµ0

(x(·)) =
1

Zn
exp

(
− 1

2

∫ 1

−1
φn(t)x(t)2 dt

)
,

14



where

Zn := Eµ0 exp
(
− 1

2

∫ 1

−1
φn(t)x(t)2 dt

)
.

The νn are also Gaussian, as Lemma A.6 shows. Using the fact that µ0(X) = 1 it
follows that

exp(−1/2)µ0

(
BX(0; 1)

)
≤ Zn ≤ 1.

Now define probability measure ν? by

dν?
dµ0

(x(·)) =
1

Z?
exp

(
− x(0)2

2

)
noting that

exp(−1/2)µ0

(
BX(0; 1)

)
≤ Z? ≤ 1.

For any x ∈ X we have ∫ 1

−1
φn(t)x(t)2 dt→ x(0)2.

An application of the dominated convergence theorem shows that Zn → Z? and
hence that Z−1

n → Z−1
? and log(Zn)→ log(Z?).

Further applications of the dominated convergence theorem show that the νn
converge weakly to ν?, which is also then Gaussian by Lemma A.1, and that the the
Kullback-Leibler divergence between νn and ν? satisfies

DKL(νn‖ν?) =
1

Zn
Eµ0
[

exp
(
− 1

2

∫ 1

−1
φn(t)x(t)2 dt

)
× 1

2

(
x(0)2 −

∫ 1

−1
φn(t)x(t)2 dt

)]
+
(

log(Z?)− log(Zn)
)
→ 0.

Lemma A.6 shows that νn is the centred Gaussian with covariance Cn given by
C−1
n = C−1

0 + φn. Formally, the covariance operator associated to ν? is given by
C−1

0 + δ0, where δ0 is the Dirac δ function. Nonetheless the implied mutiplication
operators converge to a limit in HS(H1,H−1). In applications such limiting be-
haviour of the potential in an inverse covariance representation, to a distribution,
may be computationally undesirable.

Example 3.9. We consider a second example in a similar vein, but linked to the
theory of averaging for differential operators. Choose µ0 as in the preceding ex-
ample and now define φn(·) = φ(n·) where φ : R → R is a positive smooth
1−periodic function with mean φ. Define Cn by C−1

n = C−1
0 +φn similarly to be-

fore. It follows, as in the previous example, by use of Lemma A.6, that the measures
νn are centred Gaussian with covariance Cn, are equivalent to µ0 and

dνn
dµ0

(x(·)) =
1

Zn
exp

(
− 1

2

∫ 1

−1
φn(t)x(t)2 dt

)
.
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By the dominated convergence theorem, as in the previous example, it also follows
that the νn converge weakly to ν? with

dν?
dµ0

(x(·)) =
1

Z?
exp

(
− 1

2
φ

∫ 1

−1
x(t)2 dt

)
.

Again using Lemma A.6, ν? is the centred Gaussian with covariance C? given by
C−1
? = C−1

0 + φ. The Kullback-Leibler divergence satisfies DKL(νn‖ν?) → 0,
also by application of the dominated convergence theorem as in the previous ex-
ample. Thus minimizing sequences may exhibit multiplication functions which
oscillate with increasing frequency whilst the implied operators Γn converge in
HS(H1,H−1). Again this may be computationally undesirable in many applica-
tions.

The previous examples suggest that, in order to induce improved behaviour
of minimising sequences related to the the operators Γ, in particular when Γ is a
mutiplication operator, it may be useful to regularise the minimisation in problem
(2.2). To this end, let G ⊆ HS(H1,H−1) be a Hilbert space of linear operators.
For fixed m ∈ H and Γ ∈ G we write NP,0(m,Γ) for the Gaussian measure with
mean m and covariance operator given by (3.5). We now make the choice

A := {NP,0(m,Γ) ∈M(H) : m ∈ H, Γ ∈ G}. (3.10)

Again, we use the convention NP,0(m,Γ) = δ0 if C−1
0 + Γ fails to be positive.

Then, for some δ > 0 we consider the modified minimisation problem

argmin
ν∈A

(
DKL(ν, µ) + δ‖Γ‖2G

)
. (3.11)

We have existence of minimisers for problem (3.11) under very general as-
sumptions. In order to state these assumptions, we introduce auxiliary interpola-
tion spaces. For any s > 0, we denote by Hs the domain of C

− s
2

0 equipped with
the scalar product 〈·, C−s0 ·〉 and defineH−s by duality.

Theorem 3.10. Let µ0 be a Gaussian measure with mean m0 ∈ H and covariance
operator C0 ∈ T C(H) and let µ be given by (3.1). Consider A given by (3.10).
Suppose that the space G consists of symmetric operators on H and embeds com-
pactly into the space of bounded linear operators fromH1−κ toH−(1−κ) for some
0 < κ < 1. Then, provided that DKL(µ0‖µ) < ∞, there exists a minimiser
ν? = NP,0(m?,Γ?) for problem (3.11).

Furthermore, along any minimising sequence ν(mn,Γn) there is a subsequence
ν(mn′ ,Γn′) along which Γn′ → Γ? strongly in G and ν(mn′ ,Γn′) → ν(m?,Γ?)
with respect to the total variation distance.

Proof. The assumption DKL(µ0‖µ) < ∞ implies that the infimum in (3.11) is
finite and non-negative. Let νn = NP,0(mn,Γn) be a minimising sequence for
(3.11). As bothDKL(νn‖µ) and ‖Γn‖2G are non-negative this implies thatDKL(νn‖µ)
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and ‖Γn‖2G are bounded along the sequence. Hence, by Proposition 2.1 and by the
compactness assumption on G, after passing to a subsequence twice we can assume
that the measures νn converge weakly as probability measures to a measure ν? and
the operators Γn converge weakly in G to an operator Γ?; furthermore the Γn also
converge in the operator norm of L(H1−κ,H−(1−κ)) to Γ?. By lower semicontinu-
ity of ν 7→ DKL(ν‖µ) with respect to weak convergence of probability measures
(see Proposition 2.1) and by lower semicontinuity of Γ 7→ ‖Γ‖2G with respect to
weak convergence in G we can conclude that

DKL(ν?‖µ) + δ‖Γ?‖2G ≤ lim inf
n→∞

DKL(νn‖µ) + lim inf
n→∞

δ‖Γn‖2G

≤ lim
n→∞

(
DKL(νn‖µ) + δ‖Γn‖2G

)
= inf

ν∈A

(
DKL(ν‖µ) + δ‖Γ‖2G

)
. (3.12)

By Lemma A.1 ν? is a Gaussian measure with mean m? and covariance oper-
ator C? and we have

‖mn −m?‖H → 0 and ‖Cn − C?‖L(H) → 0. (3.13)

We want to show that C? = (C0 + Γ?)
−1 in the sense of Lemma 3.3. In order to

see this, note that Γ? ∈ L(H1−κ,H−(1−κ)) which implies that for x ∈ H1 we have
for any λ > 0

〈x,Γ?x〉 ≤
∥∥Γ?

∥∥
L(H1−κ,H−(1−κ))

∥∥x‖2H1−κ

≤
∥∥Γ?

∥∥
L(H1−κ,H−(1−κ))

(
λ(1− κ)

∥∥x‖2H1 + λ−
1−κ
κ κ
∥∥x‖2H).

Hence, Γ? is infinitesimally form-bounded with respect to C−1
0 (see e.g. [RS75,

Chapter X.2]). In particular, by the KLMN theorem (see [RS75, Theorem X.17])
the form 〈x,C−1

0 x〉 + 〈x,Γ?x〉 is bounded from below and closed. Hence there
exists a unique self-adjoint operator denoted by C−1

0 + Γ? with form domain H1

which generates this form.
The convergence of Cn = (C−1

0 + Γn)−1 to C? in L(H) implies in particular,
that theCn are bounded in the operator norm, and hence the spectra of theC−1

0 +Γn
are away from zero from below, uniformly. This implies that

inf
‖x‖H=1

(
〈x,C−1

0 x〉+ 〈x,Γ?x〉
)
≥ lim inf

n→∞
inf

‖x‖H=1

(
〈x,C−1

0 x〉+ 〈x,Γnx〉
)
> 0,

so that C−1
0 +Γ? is a positive operator and in particular invertible and so is (C−1

0 +

Γ?)
1
2 . As (C−1

0 + Γ?)
1
2 is defined on all of H1 its inverse maps onto H1. Hence,

the closed graph theorem implies that C
− 1

2
0 (C−1

0 + Γ?)
− 1

2 is a bounded operator
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onH. From this we can conclude that for all x ∈ H1∣∣〈x, (C−1
0 + Γn)x〉 − 〈x, (C−1

0 + Γ?)x〉
∣∣

≤
∥∥Γn − Γ?

∥∥
L(H1,H−1)

∥∥x∥∥2

H1

≤
∥∥Γn − Γ?

∥∥
L(H1,H−1)

∥∥C− 1
2

0 (C−1
0 + Γ?)

− 1
2

∥∥2

L(H)

∥∥(C−1
0 + Γ?

) 1
2x
∥∥2

H.

By [RS80, Theorem VIII.25] this implies that C−1
0 + Γ? converges to C−1

0 + Γ?
in the strong resolvent sense. As all operators are positive and bounded away from
zero by [RS80, Theorem VIII.23] we can conclude that the inverses (C−1

0 +Γn)−1

converge to (C−1
0 + Γ?)

−1. By (3.13) this implies that C? = (C−1
0 + Γ?)

−1 as
desired.

We can conclude that ν? = NP,0(m?,Γ?) and hence that

DKL(ν?‖µ) + δ‖Γ?‖2G ≥ inf
ν∈A

(
DKL(ν‖µ) + δ‖Γ‖2G

)
,

implying from (3.12) that

DKL(ν?‖µ) + δ‖Γ?‖2G = lim inf
n→∞

DKL(νn‖µ) + lim inf
n→∞

δ‖Γn‖2G

= lim
n→∞

(
DKL(νn‖µ) + δ‖Γn‖2G

)
= inf

ν∈A

(
DKL(ν‖µ) + δ‖Γ‖2G

)
.

Hence we can deduce using the lower semi-continuity of Γ 7→ ‖Γ‖2G with respect
to weak convergence in G

lim sup
n→∞

DKL(νn‖µ) ≤ lim
n→∞

(
DKL(νn‖µ) + δ‖Γn‖2G

)
− lim inf

n→∞
δ‖Γn‖2G

≤
(
DKL(ν?‖µ) + δ‖Γ?‖2G

)
− δ‖Γ?‖2G

= DKL(ν?‖µ),

which implies that limn→∞DKL(νn‖µ) = DKL(ν?‖µ). In the same way it follows
that limn→∞ ‖Γn‖2G = ‖Γ?‖2G . By Lemma 2.4 we can conclude that ‖νn−ν?‖tv →
0. For the operators Γn we note that weak convergence together with convergence
of the norm implies strong convergence.

Example 3.11. The first example we have in mind is the case where, as in Example
3.8, H = L2([−1, 1]), C−1

0 is the negative Dirichlet-Laplace operator on [−1, 1],
H1 = H1

0 , and m0 = 0. Thus the reference measure is the distribution of a
centred Brownian bridge. By a slight adaptation of the proof of [Hai09, Theorem
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6.16]) we have that, for p ∈ (2,∞], ‖u‖Lp ≤ C‖u‖Hs for all s > 1
2 −

1
p and we

will use this fact in what follows. For Γ we chose multiplication operators with
suitable functions Γ̂ : [−1, 1] → R. For any r > 0 we denote by Gr the space of
multiplication operators with functions Γ̂ ∈ Hr([−1, 1]) endowed with the Hilbert
space structure of Hr([−1, 1]). In this notation, the compact embedding of the
spaces Hr([−1, 1]) into L2([−1, 1]), can be rephrased as a compact embedding of
the space Gr into the space G0, i.e. the space of L2([−1, 1]) functions, viewed as
multiplication operators. By the form of Sobolev embedding stated above we have
that for κ < 3

4 and any 2 x ∈ H1−κ

〈x,Γx〉 =

∫ 1

−1
Γ̂(t)x(t)2dt ≤ ‖Γ̂‖L2([−1,1])‖x‖2L4 . ‖Γ̂‖L2([−1,1])‖x‖2H1−κ .

(3.14)
Since this shows that

‖Γ‖L(H1−κ,H−(1−κ)) . ‖Γ̂‖L2([−1,1])

it demonstrates that G0 embeds continuously into the spaceL(H1−κ,H−(1−κ)) and
hence, the spaces Gr, which are compact in G0, satisfy the assumption of Theorem
3.10 for any r > 0.

Example 3.12. Now consider µ0 to be a Gaussian field over a space of dimension
2 or more. In this case we need to take a covariance operator that has a stronger
regularising property than the inverse Laplace operator. For example, if we denote
by ∆ the Laplace operator on the n-dimensional torus Tn, then the Gaussian field
with covariance operator C0 = (−∆ + I)−s takes values in L2(Tn) if and only
if s > n

2 . In this case, the space H1 coincides with the fractional Sobolev space
Hs(Tn). Note that the condition s > n

2 precisely implies that there exists a κ > 0

such that the spaceH1−κ embeds into L∞(Tn) and in particular into L4[0, T ]. As
above, denote by Gr the space of multiplication operators onL2(Tn) with functions
Γ̂ ∈ Hr(Tn). Then the same calculation as (3.14) shows that the conditions of
Theorem 3.10 are satisfied for any r > 0.

3.4 Uniqueness of Minimisers
As stated above in Proposition 2.3, the minimisation problem (2.2) has a unique
minimiser if the set A is convex. Unfortunately, in all of the situations discussed
in this section, A is not convex, and in general we cannot expect minimisers to be
unique; the example in subsection 2.2 illustrates nonuniqueness. There is however
one situation in which we have uniqueness for all of the choices of A discussed
in Theorem 3.1, namely the case of where instead of A the measure µ satisfies a
convexity property. Let us first recall the definition of λ-convexity.

2Throughout the paper we write a . b to indicate that there exists a constant c > 0 independent
of the relevant quantities such that a ≤ cb.
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Definition 3.13. Let Φ: H1 → R be function. For a λ ∈ R the function Φ is
λ-convex with respect toH1 if

H1 3 x 7→ λ

2
〈x, x〉H1 + Φ(x) (3.15)

is convex onH1.

Remark 3.14. Equation (3.15) implies that for any x1, x2 ∈ H1 and for any t ∈
(0, 1) we have

Φ((1− t)x1 + tx2) ≤ (1− t)Φ(x1) + tΦ(x2) + λ
t(1− t)

2
‖x1 − x2‖2H1 . (3.16)

Equation (3.16) is often taken to define λ-convexity because it gives useful esti-
mates even when the distance function does not come from a scalar product. For
Hilbert spaces both definitions are equivalent.

The following theorem implies uniqueness for the minimisation problem (2.2)
as soon as Φ is (1−κ)-convex for a κ > 0 and satisfies a mild integrability property.
The proof is given in section 4.

Theorem 3.15. Let µ be as in (3.1) and assume that there exists a κ > 0 such
that Φ is (1 − κ)-convex with respect to H1. Assume that there exist constants
0 < ci <∞, i = 1, 2, 3, and α ∈ (0, 2) such that for every x ∈ X we have

−c1‖x‖αX ≤ Φ(x) ≤ c2 exp
(
c3‖x‖αX

)
. (3.17)

Let ν1 = N(m1, C1) and ν2 = N(m2, C2) be Gaussian measures withDKL(ν1‖µ) <
∞ and DKL(ν2‖µ) < ∞. For any t ∈ (0, 1) there exists an interpolated measure
ν1→2
t = N(mt, Ct) which satisfies DKL(ν1→2

t ‖µ) <∞. Furthermore, as soon as
ν1 6= ν2 there exists a constant K > 0 such that for all t ∈ (0, 1)

DKL(ν1→2
t ‖µ) ≤ (1− t)DKL(ν1‖µ) + tDKL(ν1‖µ)− t(1− t)

2
K.

Finally, if we have m1 = m2 then mt = m1 holds as well for all t ∈ (0, 1), and in
the same way, if C1 = C2, then Ct = C1 for all t ∈ (0, 1).

The measures ν1→2
t introduced in Theorem 3.15 are a special case of geodesics

on Wasserstein space first introduced in [McC97] in a finite dimensional situation.
In addition, the proof shows that the constant K appearing in the statement is κ
times the square of the Wasserstein distance between ν1 and ν2 with respect to the
H1 norm. See [AGS08, FÜ04] for a more detailed discussion of mass transporta-
tion on infinite dimensional spaces. The following is an immediate consequence of
Theorem 3.15:

Corollary 3.16. Assume that µ is a probability measure given by (3.1), that there
exists a κ > 0 such that Φ is (1−κ) convex with respect toH1 and that Φ satisfies
the bound (3.17). Then for any of the four choices of sets Ai discussed in Theorem
3.1 the minimiser of ν 7→ DKL(ν‖µ) is unique in Ai.
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Remark 3.17. The assumption that Φ is (1 − κ)-convex for a κ > 0 implies in
particular that µ is log-concave (see [AGS08, Definition 9.4.9]). It can be viewed
as a quantification of this log-concavity.
Example 3.18. As in Examples 3.8 and 3.9 above, let µ0 be a centred Brownian
bridge on [−L

2 ,
L
2 ]. As above we have H1 = H1

0 ([−L
2 ,

L
2 ]) equipped with the

homogeneous Sobolev norm and X = C([−L
2 ,

L
2 ]).

For some C2 function φ : R→ R+ set Φ
(
x(·)

)
=
∫ L

2

−L
2

φ(x(s)) ds. The integra-

bility condition (3.17) translates immediately into the growth condition−c′1|x|α ≤
φ(x) ≤ c′2 exp(c′3|x|α) for x ∈ R and constants 0 < c′i < ∞ for i = 1, 2, 3. Of
course, the convexity assumption of Theorem 3.15 is satisfied if φ is convex. But we
can allow for some non-convexity. For example, if φ ∈ C2(R) and φ′′ is uniformly
bounded from below by −K ∈ R, then we get for x1, x2 ∈ H1

Φ((1− t)x1 + tx2

)
=

∫ L
2

−L
2

φ
(
(1− t)x1(s) + tx2(s)

)
ds

≤
∫ L

2

−L
2

(1− t)φ
(
(x1(s)

)
+ tφ

(
x2(s)

)
+

1

2
t(1− t)K

∣∣x1(s)− x2(s)
∣∣2 ds

=(1− t)Φ(x1) + tΦ(x2) +
Kt(1− t)

2

∫ L
2

−L
2

∣∣x1(s)− x2(s)
∣∣2ds.

Using the estimate∫ L
2

−L
2

∣∣x1(s)− x2(s)
∣∣2ds ≤ (L

π

)2

‖x1 − x2‖2H1

we see that Φ satisfies the convexity assumption as soon as K <
(
π
L

)2.

The proof of Theorem 3.15 is based on the influential concept of displacement
convexity, introduced by McCann in [McC97], and heavily inspired by the infinite
dimensional exposition in [AGS08]. It can be found in Section 4.3.

3.5 Gaussian Mixtures
We have demonstrated a methodology for approximating measure µ given by (3.1)
by a Gaussian ν. If µ is multi-modal then this approximation can result in several
local minimisers centred on the different modes. A potential way to capture all
modes at once is to use Gaussian mixtures, as explained in the finite dimensional
setting in [BN06]. We explore this possibility in our infinite dimensional context:
in this subsection we show existence of minimisers for problem (2.2) in the sit-
uation when we are minimising over a set of convex combinations of Gaussian
measures.

We start with a baisc lemma for which we do not need to assume that the
mixture measure comprises Gaussians.
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Lemma 3.19. LetA,B ⊆M(H) be closed under weak convergence of probability
measures. Then so is

C :=
{
µ := p1ν1 + p2ν2 : 0 ≤ pi ≤ 1, i = 1, 2; p1 + p2 = 1; ν1 ∈ A; ν2 ∈ B}

Proof. Let (νn) = (p1
nν

1
n + p2

nν
2
n) be a sequence of measures in C that converges

weakly to µ? ∈ M(H). We want to show that µ? ∈ C. It suffices to show that a
subsequence of the νn converges to an element in C. After passing to a subsequence
we can assume that for i = 1, 2 the pin converge to pi? ∈ [0, 1] with p1

? + p2
? = 1.

Let us first treat the case where one of these pi? is zero – say p1
? = 0 and p2

? = 1.
In this situation we can conclude that the ν2

n converge weakly to µ? and hence
µ? ∈ B ⊆ C. Therefore, we can assume pi? ∈ (0, 1). After passing to another
subsequence we can furthermore assume that the pin are uniformly bounded from
below by a positive constant p̂ > 0. As the sequence νn converges weakly in
M(H) it is tight. We claim that this implies automatically the tightness of the
sequences νin. Indeed, for a δ > 0 let Kδ ⊆ H be a compact set with νn(Kδ) ≤ δ
for any n ≥ 1. Then we have for any n and for i = 1, 2 that

νin(Kδ) ≤
1

p̂
ν(Kδ) ≤

δ

p̂
.

After passing to yet another subsequence, we can assume that the ν1
n converge

weakly to ν1
? ∈ A and the ν2

n converge weakly to ν2
? ∈ B . In particular, along this

subsequence the νn converge weakly to p1
?ν

1
? + p2

?ν
2
? ∈ C.

By a simple recursion, Lemma 3.19 extends immediately to sets C of the form

C̃ :=
{
ν :=

N∑
i=1

piνi : 0 ≤ pi ≤ 1,

N∑
i=1

pi = 1, νi ∈ Ai},

for fixed N and sets Ai that are all closed under weak convergence of probability
measures. Hence we get the following consequence from Corollary 2.2 and Lemma
A.1.

Theorem 3.20. Let µ0 be a Gaussian measure with mean m0 ∈ H and covariance
operator C0 ∈ T C(H) and let µ be given by (3.1). For any fixed N and for any
choice of set A as in Theorem 3.1 consider the following choice for C

C :=
{
µ :=

N∑
i=1

piνi : 0 ≤ pi ≤ 1,
N∑
i=1

pi = 1, νi ∈ A}.

Then as soon as there exists a single ν ∈ A with DKL(ν‖µ) < ∞ there exists a
minimiser of ν 7→ DKL(ν‖µ) in C. This minimiser ν is necessarily equivalent to
µ0 in the sense of measures.
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4 Proofs of Main Results
Here we gather the proofs of various results used in the paper which, whilst the
proofs may be of independent interest, their inclusion in the main text would break
from the flow of ideas related to Kullback-Leibler minimisation

4.1 Proof of Lemma 2.4
The following “parallelogram identity” (See [Csi75, Equation (2.2)]) is easy to
check: for any n,m

DKL(νn‖µ) +DKL(νm‖µ)

= 2DKL

(
νn + νm

2

∥∥∥∥µ)+DKL

(
νn

∥∥∥∥νn + νm
2

)
+DKL

(
νm

∥∥∥∥νn + νm
2

)
.

(4.1)

By assumption the left hand side of (4.1) converges to 2DKL(ν?‖µ) as n,m→∞.
Furthermore, the measure 1/2(νn+νm) converges weakly to ν? as n,m→∞ and
by lower semicontinuity of ν 7→ DKL(ν‖µ) we have

lim inf
n,m→∞

2DKL

(
νn + νm

2

∥∥∥∥µ) ≥ 2DKL(ν?‖µ).

By the non-negativity of DKL this implies that

DKL

(
νm

∥∥∥∥νn + νm
2

)
→ 0 and DKL

(
νn

∥∥∥∥νn + νm
2

)
→ 0. (4.2)

As we can write

‖νn − νm‖tv ≤
∥∥∥νn − νn + νm

2

∥∥∥
tv

+
∥∥∥νm − νn + νm

2

∥∥∥
tv
,

equations (4.2) and the Pinsker inequality

‖ν − µ‖tv ≤
√

1

2
DKL(ν‖µ)

(a proof of which can be found in [CT12]) imply that the sequence is Cauchy with
respect to the total variation norm. By assumption the νn converge weakly to ν?
and this implies convergence in total variation norm.

4.2 Proof of Lemma 3.3
Recall (eα, λα, α ≥ 1) the eigenfunction/eigenvalue pairs of C0, as introduced
above (3.2). For any α, β we write

Γα,β = 〈eα,Γeβ〉.
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Then (3.6) states that ∑
1≤α,β<∞

λα λβΓ2
α,β <∞.

Define N0 = N2 \ {1, . . . , N0}2. Then the preceding display implies that, for any
δ > 0 there exists an N0 ≥ 0 such that∑

(α,β)∈N0

λα λβΓ2
α,β < δ2. (4.3)

This implies that for x =
∑

α xαeα ∈ H1 we get

〈x,Γx〉 =
∑

1≤α,β<∞
Γα,βxαxβ

=
∑

1≤α,β≤N0

Γα,βxαxβ +
∑

(α,β)∈N0

Γα,βxαxβ. (4.4)

The first term on the right hand side of (4.4) can be bounded by∣∣∣∣ ∑
1≤α,β≤N0

Γα,βxαxβ

∣∣∣∣ ≤ max
1≤α,β≤N0

∣∣Γα,β∣∣‖x‖2H. (4.5)

For the second term we get using Cauchy-Schwarz inequality and (4.3)∣∣∣∣ ∑
(α,β)∈N0

Γα,βxαxβ

∣∣∣∣ =

∣∣∣∣ ∑
(α,β)∈N0

√
λαλβΓα,β

xαxβ√
λαλβ

∣∣∣∣
≤ δ〈x,C−1

0 x〉. (4.6)

We can conclude from (4.4), (4.5), and (4.6) that Γ is infinitesimally form-bounded
with respect to C−1

0 (see e.g. [RS75, Chapter X.2]). In particular, by the KLMN
theorem (see [RS75, Theorem X.17]) the form QΓ is bounded from below, closed,
and there exists a unique self-adjoint operator denoted by C−1

0 + Γ with form
domainH1 that generates QΓ.

If QΓ is strictly positive, then so is C−1
0 + Γ and its inverse (C−1

0 + Γ)−1. As

C−1
0 + Γ has form domain H1 the operator (C−1

0 + Γ)−
1
2C
− 1

2
0 is bounded on H

by the closed graph theorem and it follows that, as the composition of a trace class
operator with two bounded operators,

(C−1
0 + Γ)−1 =

(
(C−1

0 + Γ)−
1
2C
− 1

2
0

)
C0

(
(C−1

0 + Γ)−
1
2C
− 1

2
0

)?
is a trace-class operator. It is hence the covariance operator of a centred Gaussian
measure on H. It satisfies the conditions in of the Feldman-Hajek Theorem by
assumption.

If QΓ is not strictly positive, then the intersection of the spectrum of C−1
0 +

Γ with (−∞, 0] is not empty and hence it cannot be the inverse covariance of a
Gaussian measure.
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4.3 Proof of Theorem 3.15
We start the proof of Theorem 3.15 with the following Lemma:

Lemma 4.1. Let ν = N(m,C) be equivalent to µ0. For any γ ≥ 1 let πγ : H → H
be the orthogonal projector on the space Hγ introduced in (3.2). Furthermore,
assume that Φ: X → R+ satisfies the second inequality in (3.17). Then we have

lim
γ→∞

Eν
[
Φ(πγx)

]
= Eν

[
Φ(x)

]
. (4.7)

Proof. It is a well known property of the white noise/Karhunen-Loeve expansion
(see e.g. [DPZ92, Theorem 2.12] ) that ‖πγx − x‖X → 0 µ0-almost surely, and
as ν is equivalent to µ0, also ν-almost surely. Hence, by continuity of Φ on X ,
Φ(πγx) converges ν−almost surely to Φ(x).

As ν(X) = 1 there exists a constant 0 < K∞ < ∞ such that ν(‖x‖X ≥
K∞) ≤ 1

8 . On the other hand, by the ν-almost sure convergence of ‖πγx−x‖X to
0 there exists a γ∞ ≥ 1 such that for all γ > γ∞ we have ν

(
‖πγx−x‖X ≥ 1

)
≤ 1

8
which implies that

ν
(
‖πγx‖ ≥ K∞ + 1

)
≤ 1

4
for all γ ≥ γ∞.

For any γ ≤ γ∞ there exists another 0 < Kγ <∞ such that ν
(
‖πγx‖ ≥ Kγ

)
≤ 1

4
and hence if we set K = max{K1, . . . ,Kγ∞ ,K∞ + 1} we get

ν
(
‖πγx‖ ≥ K

)
≤ 1

4
for all γ ≥ 1.

By Fernique’s Theorem (see e.g. [DPZ92, Theorem 2.6]) this implies the existence
of a λ > 0 such that

sup
γ≥1

Eν
[

exp
(
λ‖πγx‖2

)]
<∞.

Then the desired statement (4.7) follows from the dominated convergence theorem
observing that (3.17) implies the pointwise bound

Φ(x) ≤ c2 exp(c3‖x‖αX
)
≤ c4 exp(λ‖x‖2X

)
, (4.8)

for 0 < c4 <∞ sufficiently large.

Let us also recall the following property.

Proposition 4.2 ([AGS08, Lemma 9.4.5]). Let µ, ν ∈M(H) be a pair of arbitrary
probability measures onH and let π : H → H be a measurable mapping. Then we
have

DKL(ν ◦ π−1‖µ ◦ π−1) ≤ DKL(ν‖µ). (4.9)
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Proof of Theorem 3.15. As above in (3.2), let (eα, α ≥ 1) be the basis H consist-
ing of eigenvalues of C0 with the corresponding eigenvalues (λα, α ≥ 1). For
γ ≥ 1 let πγ : H → H be the orthogonal projection on Hγ := span(e1, . . . , eγ).
Furthermore, for α ≥ 1 and x ∈ H let ξα(x) = 〈x, eα〉H. Then we can identify
Hγ with Rγ through the bijection

Rγ 3 Ξγ = (ξ1, . . . , ξγ) 7→
γ∑

α=1

ξαeα. (4.10)

The identification (4.10) in particular gives a natural way to define the γ-dimensional
Lebesgue measure Lγ onHγ .

Denote by µ0;γ = µ0 ◦ π−1
γ the projection of µ0 onHγ . We also define µγ by

dµγ
dµ0;γ

(x) =
1

Zγ
exp

(
− Φ(x)

)
,

where Zγ = Eµ0,γ
[

exp
(
−Φ(x)

)]
. Note that in general µγ does not coincide with

the measure µ ◦πγ . The Radon-Nikodym density of µγ with respect to Lγ is given
by

dµγ
dLγ

(x) =
1

Z̃γ
exp

(
−Ψ(x)

)
,

where Ψ(x) = Φ(x) + 1
2〈x, x〉H1 and the normalisation constant is given by

Z̃γ = Zγ(2π)
γ
2

γ∏
α=1

√
λα.

According to the assumption the function Ψ(x)− κ
2 〈x, x〉H1 is convex onHγ which

implies that for any x1, x2 ∈ Hγ and for t ∈ [0, 1] we have

Ψ
(
(1− t)x1 + tx2

)
≤ (1− t)Ψ(x1) + tΨ(x2)− κt(1− t)

2
‖x1 − x2‖2H1 .

Let us also define the projected measures νi;γ := νi ◦ π−1
γ for i = 1, 2. By

assumption the measures νi equivalent to µ0 and therefore the projections νi;γ are
equivalent to µ0;γ . In particular, the νi;γ are non-degenerate Gaussian measures on
Hγ . Their covariance operators are given by Ci;γ := πγCiπγ and the means by
mi;γ = πγmi.

There is a convenient coupling between the νi;γ . Indeed, set

Λγ = C
1
2
2;γ

(
C

1
2
2;γC1;γC

1
2
2,γ

)− 1
2C

1
2
2;γ ∈ L(Hγ ,Hγ). (4.11)

The operator Λγ is symmetric and strictly positive onHγ . Then define for x ∈ Hγ

Λ̃γ(x) := Λγ(x−m1;γ) +m2;γ . (4.12)
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Clearly, if x ∼ ν1,γ then Λ̃γ(x) ∼ ν2,γ . Now for any t ∈ (0, 1) we define the inter-
polation Λ̃γ,t(x) = (1− t)x+ tΛ̃γ(x) and the approximate interpolating measures
ν1→2
t;γ for t ∈ (0, 1) as push-forward measures

ν1→2
t;γ := ν1,γ ◦ Λ̃−1

γ,t . (4.13)

From the construction it follows that the ν1→2
t;γ = N(mt,γ , Ct,γ) are non-degenerate

Gaussian measures onHγ . Furthermore, if the meansm1 andm2 coincide, then we
have m1,γ = m2,γ = mt,γ for all t ∈ (0, 1) and in the same way, if the covariance
operators C1 and C2 coincide, then we have C1,γ = C2,γ = Ct,γ for all t ∈ (0, 1).

As a next step we will establish that for any γ the function

t 7→ DKL(ν1→2
t;γ ‖µγ)

is convex. To this end it is useful to write

DKL(ν1→2
t;γ ‖µγ) = Hγ(ν1→2

t;γ ) + Fγ(ν1→2
t;γ ) + log(Z̃γ) (4.14)

where Fγ(ν1→2
t;γ ) = Eν

1→2
t;γ
[
Ψ(x)

]
and

Hγ(ν1→2
t;γ ) =

∫
Hγ

dν1→2
t;γ

dLγ
(x) log

(
dν1→2
t;γ

dLγ
(x)

)
dLγ(x).

Note that Hγ(ν1→2
t;γ ) is completely independent of the measure µ0. Also note that

Hγ(ν1→2
t;γ ), the entropy of ν1→2

t;γ , can be negative because the Lebesgue measure is
not a probability measure.

We will treat the terms Hγ(ν1→2
t;γ ) and Fγ(ν1→2

t;γ ) separately. The treatment of
Fγ is straightforward using the (−κ)-convexity of Ψ and the coupling described
above. Indeed, we can write

Fγ(ν1→2
t;γ ) = Eν

1→2
t;γ
[
Ψ(x)

]
= Eν1,γ

[
Ψ
(
(1− t)x+ tΛ̃γ(x)

)]
≤ (1− t)Eν1,γ

[
Ψ(x)

]
+ tEν1,γ

[
Ψ(Λ̃γ(x))

]
− κt(1− t)

2
Eν1,γ‖x− Λ̃γ(x)‖2H1

≤ (1− t)Fγ

(
ν1,γ

)
+ tFγ

(
ν2,γ

)
− κt(1− t)

2
Eν1,γ‖x− Λ̃γ(x)‖2H1 . (4.15)

Note that this argument does not make use of any specific properties of the mapping
x 7→ Λ̃γ(x), except that it maps µ1;γ to µ2;γ . The same argument would work for
different mappings with this property.
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To show the convexity of the functional Hγ we will make use of the fact that
the matrix Λγ is symmetric and strictly positive. For convenience, we introduce
the notation

ρ(x) =
ν1;γ

dLγ
(x) ρt(x) :=

dν1→2
t;γ

dLγ
(x).

Furthermore, for the moment we write F (ρ) = ρ log(ρ). By the change of
variable formula we have

ρt(Λ̃γ(x)) =
ρ(x)

det
(
(1− t) Idγ +tΛγ

) ,
where we denote by Idγ the identity matrix on Rγ . Hence we can write

Hγ(ν1→2
t;γ ) =

∫
Hγ

F
(
ρt(x)

)
dLγ(x)

=

∫
Hγ

F

(
ρ(x)

det
(
(1− t) Idγ +tΛγ

)) det
(
(1− t) Idγ +tΛγ

)
dLγ(x)

For a diagonalisable matrix Λ with non-negative eigenvalues the mapping [0, 1] 3
t 7→ det((1 − t) Id +tΛγ)

1
γ is concave, and as the map s 7→ F (ρ/sd)sd is non-

increasing the resulting map is convex in t. Hence we get

Hγ(ν1→2
t;γ ) ≤ (1− t)

∫
Hγ

F
(
ρ(x)

)
dLγ(x) + t

∫
Hγ

F

(
ρ(x)

Λγ

)
det
(
Λγ
)
dLγ(x)

= (1− t)Hγ

(
ν1;γ

)
+ tHγ

(
ν2;γ

)
(4.16)

Therefore, combining (4.14), (4.15) and (4.16) we obtain for any γ that

DKL

(
ν1→2
t;γ

∥∥µγ) ≤(1− t)DKL

(
ν1,γ

∥∥µγ)+ tDKL

(
ν2,γ

∥∥µγ)
− κt(1− t)

2
Eν1,γ‖x− Λ̃γ(x)‖2H1 . (4.17)

It remains to pass to the limit γ → ∞ in (4.17). First we establish that for
i = 1, 2 we have DKL

(
νi,γ
∥∥µγ)→ DKL

(
νi
∥∥µ). In order to see that we write

DKL

(
νi,γ
∥∥µγ) = DKL

(
νi,γ
∥∥µ0,γ

)
+ Eνi,γ

[
Φ(x)

]
+ log(Zγ), (4.18)

and a similar identity holds for DKL

(
νi
∥∥µ). The Gaussian measures νi,γ and

µ0,γ are projections of the measures νi and µ0 and hence they converge weakly
as probability measures on H to these measures as γ → ∞. Hence the lower-
semicontinuity of the Kullback-Leibler divergence (Proposition 2.1) implies that
for i = 1, 2

lim inf
γ→∞

DKL

(
νi,γ
∥∥µγ) ≥ DKL

(
νi
∥∥µ0

)
.
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On the other hand the Kullback-Leibler divergence is monotone under projections
(Proposition 4.2) and hence we get

lim sup
γ→∞

DKL

(
νi,γ
∥∥µγ) ≤ DKL

(
νi
∥∥µ0

)
,

which established the convergence of the first term in (4.18). The convergence of
the Zγ = Eµ0,γ

[
exp

(
− Φ(x)

)]
and of the Eνi,γ

[
Φ(x)

]
follow from Lemma 4.1

and the integrability assumption (3.17).
In order to pass to the limit γ → ∞ on the left hand side of (4.17) we note

that for fixed t ∈ (0, 1) the measures ν1→2
t;γ form a tight family of measures on H.

Indeed, by weak convergence the families of measures ν1,γ and ν2,γ are tight on
H. Hence, for every ε > 0 there exist compact in H sets K1 and K2 such that for
i = 1, 2 and for any γ we have νi,γ(Kc

i ) ≤ ε. For a fixed t ∈ (0, 1) the set

Kt := {x = (1− t)x1 + tx2 : x1 ∈ K1, x2 ∈ K2}

is compact inH and we have, using the definition of ν1→2
t;γ that

ν1→2
t;γ (Kc

t ) ≤ ν1,γ(Kc
1) + ν2,γ(Kc

2) ≤ 2ε,

which shows the tightness. Hence we can extract a subsequence that converges to
a limit ν1→2

t . This measure is Gaussian by Lemma A.1 and by construction its
mean coincides with m1 if m1 = m2 and in the same way its covariance coincides
with C1 if C1 = C2. By lower semicontinuity of the Kullback-Leibler divergence
(Proposition 2.1) we get

DKL

(
ν1→2
t

∥∥µ) ≤ lim inf
γ→∞

DKL

(
ν1→2
t;γ

∥∥µγ) (4.19)

Finally, we have

lim sup
γ→∞

Eν1,γ‖x− Λ̃γ(x)‖2H1 := K > 0. (4.20)

In order to see this note that the measures ργ := ν1,γ [Id +Λ̃γ ]−1 form a tight family
of measures onH×H. Denote by ρ a limiting measure. This measure is a coupling
of ν1 and ν2 and hence if these measures do not coincide we have

Eρ‖x− y‖2H1 > 0.

Hence, the desired estimate (4.20) follows from Fatou’s Lemma. This finishes the
proof.

A Appendix
.

29



A.1 Proof of Proposition 2.1
For completeness we give a proof of the well-known Proposition 2.1, following
closely the exposition in [DE97, Lemma 1.4.2]; see also [AGS08, Lemma 9.4.3].

We start by recalling the Donsker-Varadhan variational formula

DKL(ν‖µ) = sup
Θ

EνΘ− logEµeΘ, (A.1)

where the supremum can be taken either over all bounded continuous functions or
all bounded measurable functions Θ: H → R. Note that as soon as ν and µ are
equivalent, the supremum is realised for Θ = log

(
dν
dµ

)
.

We first prove lower semi-continuity. For any bounded and continuous Θ: H →
R the mapping (ν, µ) 7→ EνΘ − logEµeΘ is continuous with respect to weak
convergence of ν and µ. Hence, by (A.1) the mapping (ν, µ) 7→ DKL(ν‖µ) is
lower-semicontinuous as the pointwise supremum of continuous mappings.

We now prove compactness of sub-levelsets. By the lower semi-continuity of
ν 7→ DKL(ν‖µ) and Prokohorov’s Theorem [Bil09] it is sufficient to show that for
any M < ∞ the set B := {ν : DKL(ν‖µ) ≤ M} is tight. The measure µ is inner
regular, and therefore for any 0 < δ ≤ 1 there exists a compact set Kδ such that
µ(Kc

δ) ≤ δ. Then choosing Θ = 1Kc
δ

log
(
1+δ−1

)
in (A.1) we get, for any ν ∈ B,

log
(
1 + δ−1

)
ν(Kc

δ) = EνΘ

≤M + log(EµeΘ
)

= M + log
(
µ(Kδ) + µ(Kc

δ)
(
1 + δ−1

))
≤M + log

(
1 +

(
δ + 1

))
.

Hence, if for ε > 0 we choose δ small enough to ensure that

M + log(3)

log
(
1 + δ−1

) ≤ ε,
we have, for all ν ∈ B, that ν(Kc

δ) ≤ ε.

A.2 Some properties of Gaussian measures
The following Lemma summarises some useful facts about weak convergence of
Gaussian measures.

Lemma A.1. Let νn be a sequence of Gaussian measures onH with meanmn ∈ H
and covariance operators Cn.

1. If the νn converge weakly to ν?, then ν? is also Gaussian.

2. If ν? is Gaussian with mean m? and covariance operator C?, then νn con-
verges weakly to ν? if and only if the following conditions are satisfied:
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a) ‖mn −m?‖H converges to 0.

b) ‖
√
Cn −

√
C?‖HS(H) converges to 0.

3. Condition b) can be replaced by the following condition:

b’) ‖Cn − C?‖L(H) and Eνn‖x‖2H − Eν?‖x‖2H converge to 0 .

Proof. 1.) Assume that νn converges weakly to ν. Then for any continuous linear
functional φ : H → R the push-forward measures νn ◦ φ−1 converge weakly to
ν ◦φ−1. The measures νn ◦φ−1 are Gaussian measures on R. For one-dimensional
Gaussians a simple calculation with the Fourier transform (see e.g. [LG13, Prop.
1.1]) shows that weak limits are necessarily Gaussian and weak convergence is
equivalent to convergence of mean and variance. Hence ν ◦φ−1 is Gaussian, which
in turn implies that ν is Gaussian. Points 2.) and 3.) are established in [Bog98,
Chapter 3.8].

As a next step we recall the Feldman-Hajek Theorem as proved in [DPZ92,
Theorem 2.23].

Proposition A.2. Let µ1 = N(m1, C1) and µ2 = N(m2, C2) be two Gaussian
measures on H. The measures µ1 are either singular or equivalent. They are
equivalent if and only if the following three assumptions hold:

1. The Cameron Martin spaces C
1
2
1 H and C

1
2
2 H are norm equivalent spaces

with, in general, different scalar products generating the norms – we denote
the space byH1.

2. The means satisfy m1 −m2 ∈ H1.

3. The operator
(
C

1
2
1 C
− 1

2
2

)(
C

1
2
1 C
− 1

2
2

)? − Id is a Hilbert-Schmidt operator on
H.

Remark A.3. Actually, in [DPZ92] item 3) is stated as
(
C
− 1

2
2 C

1
2
1

)(
C
− 1

2
2 C

1
2
1

)?−Id
is a Hilbert-Schmidt operator onH. We find the formulation in item 3) more useful

and the fact that it is well-defined follows since C
1
2
1 C
− 1

2
2 is the adjoint of C

− 1
2

2 C
1
2
1 .

The two conditions are shown to be equivalent in [Bog98, Lemma 6.3.1 (ii)].

The methods used within the proof of the Feldman-Hajek Theorem, as given
in [DPZ92, Theorem 2.23], are used below to prove the following characterisation
of convergence with respect to total variation norm for Gaussian measures.

Lemma A.4. For any n ≥ 1 let νn be a Gaussian measure on H with covariance
operator Cn and mean mn and let ν? be a Gaussian measure with covariance
operator C? and mean m?. Assume that the measures νn converge to ν? in total
variation. Then we have∥∥C 1

2
?

(
C−1
n − C−1

?

)
C

1
2
?

∥∥
HS(H)

→ 0 and ‖mn −m?‖H1 → 0. (A.2)
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In order to proof Lemma A.4 we recall that for two probability measures ν and
µ the Hellinger distance is defined as

Dhell(ν;µ)2 =
1

2

∫ (√
dν

dλ
(x)−

√
dµ

dλ
(x)

)2

dλ(dx),

where λ is a probability measure on H such that ν � λ and µ � λ. Such a λ
always exists (average ν and µ for example) and the value does not depend on the
choice of λ.

For this we need the Hellinger integral

H(ν;µ) =

∫ √
dµ

dλ
(x)

√
dν

dλ
(x)λ(dx) = 1−Dhell(ν;µ)2. (A.3)

We recall some properties of H(ν;µ):

Lemma A.5 ([DPZ92, Proposition 2.19]). 1. For any two probability measures
ν and µ on H we have 0 ≤ H(ν;µ) ≤ 1. We have H(ν;µ) = 0 if and only
if µ and ν are singular, and H(ν;µ) = 1 if and only if µ = ν.

2. Let F̃ be as sub-σ-algebra of F and denote by HF̃ (ν, µ) the Hellinger inte-
grals of the restrictions of ν and µ to F̃ . Then we have

HF̃ (ν, µ) ≥ H(ν;µ). (A.4)

Proof of Lemma A.4. Before commencing the proof we demonstrate the equiva-
lence of the Hellinger and total variation metrics. On the one hand the elementary
inequality (

√
a−
√
b)2 ≤ |a− b| which holds for any a, b ≥ 0 immediately yields

that

Dhell(ν;µ)2 ≤ 1

2

∫ ∣∣∣∣dνdλ(x)− dµ

dλ
(x)

∣∣∣∣λ(dx) = Dtv(ν, µ).

On the other hand the elementary equality (a−b) = (
√
a−
√
b)(
√
a+
√
b), together

with the Cauchy-Schwarz inequality, yields

Dtv(ν;µ) =
1

2

∫ ∣∣∣∣dνdλ(x)− dµ

dλ
(x)

∣∣∣∣λ(dx)

≤ Dhell(ν;µ)

∫ (√
dν

dλ
(x) +

√
dµ

dλ
(x)

)2

λ(dx) ≤ 4Dhell(ν;µ).

This justifies study of the Hellinger integral to prove total variation convergence.
We now proceed with the proof. We first treat the case of centred measures,

i.e. we assume that mn = m? = 0. For n large enough νn and ν? are equiv-
alent and therefore their Cameron-Martin spaces coincide as sets and in partic-

ular the operators C
− 1

2
? C

1
2
n are defined on all of H and invertible. By Proposi-

tion A.2 they are invertible bounded operators on H. Denote by Rn the operator
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(C
− 1

2
? C

1
2
n )(C

− 1
2

? C
1
2
n )?. This shows in particular, that the expression (A.2) makes

sense, as it can be rewritten as∥∥R−1
n − Id

∥∥2

HS(H)
→ 0.

Denote by (eα, α ≥ 1) 3 the orthonormal basis ofH consisting of eigenvectors
of the operator C? and by (λα, α ≥ 1) the corresponding sequence of eigenval-
ues. For any n the operator Rn can be represented in the basis (eα) by the matrix
(rα,β;n)1≤α,β<∞ where

rα,β;n =
〈Cneα, eβ〉√

λα λβ
.

For any α ≥ 1 define the linear functional

ξα(x) =
〈x, eα〉√
λα

x ∈ H. (A.5)

By definition, we have for all α, β that

Eν?
[
ξα(x)

]
= 0, Eνn

[
ξα(x)

]
= 0,

Eν?
[
ξα(x)ξβ(x)

]
= δα,β, and Eνn

[
ξα(x)ξβ(x)

]
= rα,β;n. (A.6)

For any γ ≥ 1 denote by Fγ the σ-algebra generated by (ξ1, . . . ξγ). Furthermore,
denote by Rγ;n and Iγ the matrices (rα,β;n)1≤α,β≤γ and (δα,β)1≤α,β≤γ . With this
notation (A.6) implies that we have

dνn
∣∣
Fγ

dν?
∣∣
Fγ

=
1√

det(Rγ;n)
exp

(
− 1

2

∑
α,β≤γ

ξαξβ
((
R−1
γ;n

)
α,β
− δα,β

))
,

and in particular we get the Hellinger integrals

HFγ
(
νn; ν?

)
=

(detR−1
γ,n)

1
4(

det
(
Iγ+R−1

γ;n

2

)) 1
2

.

Denoting by
(
λα;γ;n, α = 1, . . . , γ

)
the eigenvalues of R−1

γ,n this expression can be
rewritten as

− log
(
HFγ

(
νn; ν?

))
=

1

4

γ∑
α=1

log
(1 + λα;γ;n)2

4λα;γ;n
≤ − log

(
H(νn; ν?)

)
, (A.7)

3Use of the same notation as for the eigenfunctions and eigenvectors of C0 elsewhere should not
cause confusion
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where we have used equation (A.4). The the right hand side of (A.7) goes to zero
as n→∞ and in particular, it is bounded by 1 for n large enough, say for n ≥ n0.
Hence there exist constants 0 < K1,K2 <∞ such that for all n ≥ n0, and all γ, α
we have K1 ≤ λα;γ;n ≤ K2. There exists a third constant K3 > 0 such that for all
λ ∈ [K1,K2] we have

(1− λ)2 ≤ K3

4
log

(1 + λ)2

4λ
.

Hence, we can conclude that for n ≥ n0

∥∥R−1
γ,n − Iγ

∥∥2

HS(Rγ)
=

γ∑
α=1

∣∣λα;γ;n − 1
∣∣2 ≤ −K3 log

(
H(νn; ν?)

)
.

As this bound holds uniformly in γ the claim is proved in the case mn = m? = 0.
As a second step let us treat the case where mn and m? are arbitrary but the

covariance operators coincide, i.e. for all n ≥ 1 we have Cn = C? =: C. As
above, let (eα, α ≥ 1) the orthonormal basis of H consisting of eigenvectors of
the operator C and by (λα, α ≥ 1) the corresponding sequence of eigenvalues.
Furthermore, define the random variable ξα as above in (A.5). Then we get the
identities

Eν?
[
ξα(x)

]
=
m?;α√
λα
, Eνn

[
ξα(x)

]
=
mn;α√
λα

,

covν?
(
ξα(x), ξβ(x)

)
= δα,β, and covνn

(
ξα(x)ξβ(x)

)
= δα,β,

where covν? and covνn denote the covariances with respect to the measures ν? and
νn. Here we have setm?;α := 〈m?, eα〉 and mn;α := 〈mn, eα〉. Denoting as above
by Fγ the σ-algebra generated by (ξ1, . . . , ξγ) we get for any γ ≥ 1

HFγ
(
νn; ν?

)
= exp

(
− 1

8

γ∑
α=1

1

λα

∣∣m?;α −mn;α

∣∣2). (A.8)

Noting that ‖mn −m?‖2H1 =
∑

α≥1
1
λα

∣∣mn;α −m?;α

∣∣2 and reasoning as above in
(A.7) we get that ‖mn −m?‖2H1 → 0.

The general case of arbitrary mn,m?, Cn, and C? can be reduced to the two
cases above. Indeed, assume that νn converges to ν? in total variation. After a
translation which does not change the total variation distance, we can assume that
m? = 0. Furthermore, by symmetry if the the measures N(mn, Cn) converge to
N(0, C?), in total variation then so do the measures N(−mn, Cn). A coupling
argument, which we now give, shows that then the Gaussian measures N(0, 2Cn)
converge to N(0, 2C?), also in total variation. Let (X1, Y1) be random variables
with X1 ∼ N(mn, Cn) and Y1 ∼ N(0, C?) and P(X1 6= Y1) = ‖N(mn, Cn) −
N(0, C?)‖tv and in the same way let let (X2, Y2) be independent from (X1, Y1)
and such that X2 ∼ N(−mn, Cn) and Y2 ∼ N(0, C?) with P(X2 6= Y2) =
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‖N(−mn, Cn)−N(0, C?))‖tv. Then we have X1 +X2 ∼ N(0, 2Cn), Y1 +Y2 ∼
N(0, 2C?) and

‖N(0, 2Cn)−N(0, 2C?)‖tv = P(X1 +X2 6= Y1 + Y2)

≤ P(X1 6= Y1) + P(X2 6= Y2)

= 2‖N(mn, Cn)−N(0, C?)‖tv.

Hence we can apply the first part of the proof to conclude that the desired conclu-
sion concerning the covariances holds.

We now turn to the means. From the fact that N(mn, Cn) and N(0, Cn) con-
verge to N(0, C?) in total variation we can conclude by the triangle inequality that
‖N(mn, Cn)−N(0, Cn)‖tv → 0 and hence logH(N(mn, Cn), N(0, Cn)) → 0.
By (A.8) this implies that

‖C−
1
2

n mn‖H ≤ 8 logH(N(mn, Cn), N(0, Cn))→ 0.

Furthermore, the convergence of
∥∥C 1

2
? (C−1

n −C−1
? )C

1
2
?

∥∥
HS(H)

=
∥∥(C

1
2
? C
− 1

2
n )(C

1
2
? C
− 1

2
n

)?−
Id
∥∥
HS(H)

implies that supn≥1 ‖C
− 1

2
? C

1
2
n ‖L(H) < ∞. So we can conclude that as

desired
‖mn‖H1 ≤

(
sup
n≥1
‖C−

1
2

? C
1
2
n ‖L(H)

)
‖C−

1
2

n mn‖H → 0.

A.3 Characterisation of Gaussian Measures Via Precision Operators

Lemma A.6. Let C0 = (−∂2
t )−1 be the inverse of the Dirichlet Laplacian on

[−1, 1] with domain H2([−1, 1])∩H1
0 ([−1, 1]). Then µ0 = N(0, C0) is the distri-

bution of a homogeneous Brownian bridge on [−1, 1]. Consider measure ν � µ0
defined by

dν

dµ0
(x(·)) =

1

Z
exp

(
− 1

2

∫ 1

−1
θ(t)x(t)2 dt

)
(A.9)

where θ is a smooth function with infimum strictly larger than -π
2

4 on [−1, 1]. Then
ν is a centred Gaussian N(0, C) with C−1 = C−1

0 + θ.

The following proof closely follows techniques introduced to prove Theorem
2.1 in [PSVZ12].

Proof. As above, denote by H = L2([−1, 1]) and H1 = H1
0 ([−1, 1]). Further-

more, let (eα, λα, α ≥ 1) be the eigenfunction/eigenvalue pairs of C0 ordered by
decreasing eigenvalues. For any γ ≥ 1 let πγ be the orthogonal projection on H
ontoHγ = span(e1, . . . , eγ). Denote byH⊥γ = (Id−πγ)H.
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For each γ ≥ 1 define the measure νγ � µ0 by

dνγ
dµ0

(x(·)) =
1

Zγ
exp

(
− 1

2

∫ 1

−1
θ(t)

(
πγx(t)

)2
dt
)
.

We first show that the νγ are centred Gaussian and we characterize their covari-
ance. To see this note that µ0 factors as the independent product of two Gaussians
on Hγ and H⊥γ . Since the change of measure defining νγ depends only on πγx ∈
Hγ it follows that νγ also factors as an independent product. Furthermore, the fac-
tor on H⊥γ coincides with the projection of µ0 and is Gaussian. On Hγ , which is
finite dimensional, it is clear that νγ is also Gaussian because the change of mea-
sure is defined through a finite dimensional quadratic form. This Gaussian is cen-
tred and has inverse covariance (precision) given by πγ(C−1

0 + θ)πγ = πγC
−1πγ .

Hence νγ is also Gaussian; denote its covariance operator by Cγ .
A straightforward dominated convergence argument shows that νγ converges

weakly to ν as a measure on H, and it follows that ν is a centred Gaussian by
Lemma A.1; we denote the covariance by Σ. It remains to show that Σ = C. On
the one hand, we have by Lemma A.1, item 3.), that Cγ converges to Σ in the
operator norm. On the other hand we have for any x ∈ H1 and for γ ≥ 1 that∣∣〈x,C−1

γ x〉 − 〈x,C−1x〉
∣∣ =

∫ 1

−1
θ(t)

(
(Id−πγ)x(t)

)2
dt ≤ ‖θ‖L∞‖(Id−πγ)x(t)‖2L2

≤ ‖θ‖L∞λ2
γ‖x(t)‖2H1

0
.

As the λγ → 0 for γ → ∞ and as the operator C
1
2C
− 1

2
0 is a bounded invertible

operator onH1 this implies the convergence of C−1
γ to C−1 in the strong resolvent

sense by [RS80, Theorem VIII.25]. The conclusion then follows as in the proof of
Theorem 3.10.
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