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ABSTRACT. We study the stochastic Allen-Cahn equation driven by a noise term
with intensity

√
ε and correlation length δ in two and three spatial dimensions.

We study diagonal limits δ, ε→ 0 and describe fully the large deviation behaviour
depending on the relationship between δ and ε.

The recently developed theory of regularity structures allows to fully analyse
the behaviour of solutions for vanishing correlation length δ and fixed noise
intensity ε. One key fact is that in order to get non-trivial limits as δ → 0, it is
necessary to introduce diverging counterterms. The theory of regularity structures
allows to rigorously analyse this renormalisation procedure for a number of
interesting equations.

Our main result is a large deviation principle for these renormalised solutions.
One interesting feature of this result is that the diverging renormalisation constants
disappear at the level of the large deviations rate function. We apply this result
to derive a sharp condition on δ, ε that guarantees a large deviation principle for
diagonal schemes ε, δ → 0 for the equation without renormalisation.

RÉSUMÉ. Nous étudions l’équation d’Allen-Cahn stochastique conduite par un
bruit d’intensité

√
ε et de longueur de corrélation δ en dimensions spatiales deux

et trois. Nous considérons la limite δ, ε→ 0 et nous décrivons complètement le
comportement des grandes déviations associées, suivant les relations entre δ et ε.

La théorie des structures de régularité récemment développée permet d’analyser
le comportement des solutions à intensité de bruit ε fixée dans la limite δ → 0.
Un fait crucial est que, afin d’obtenir des limites non-triviales dans cette lim-
ite, il est nécessaire d’introduire des contretermes divergents. La théorie des
structures de régularité permet d’analyser rigoureusement de telles procédures de
renormalisation pour un nombre d’équations intéressantes.

Notre résultat principal est un principe de grandes déviations pour ces équations
renormalisées. Il est alors intéressant de noter que les constantes de renormalisa-
tion divergentes disparaissent au niveau de la fonction de taux. Une conséquence
de ce résultat est une condition optimale sur le comportement relatif de δ et ε qui
garantit l’existence d’un principe de grandes déviations également pour l’équation
non-renormalisée dans certains régimes.

1. INTRODUCTION

The purpose of this article is to provide large deviation results for a class of
non-linear stochastic PDEs which are driven by space-time white noise, in 2 and 3
spatial dimensions. We are going to study equations of the type

∂tu = ∆u+ Cu− u3 +
√
εξδ , (1.1)

where ξδ is some random driving noise (we will be more specific very soon) and
C ∈ R. In order to avoid complications coming from the effect of boundary
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conditions, we will always assume that the spatial variable takes values in the
d-dimensional torus Td and that the initial datum u0 is fixed.

Equations of this type are popular as phenomenological descriptions in various
situations, e.g. for phase separation (see e.g. [HH77]). From a physical point of
view, the interesting regime is that where the noise is weak (i.e. the typical strength
of the noise, say when tested against smooth test functions, is of order

√
ε � 1)

and almost white (i.e. correlations of ξ decay on a lengthscale δ � 1). In this case,
we denote the noise by

√
εξδ.

In one spatial dimension the solution theory for equation (1.1) is well-understood,
even in the case of vanishing correlation length δ = 0, i.e. in the case where the
noise term ξ is a space-time white noise. In this situation the limit of vanishing
noise strength was described in detail by [FJL82] on the level of large deviation
estimates.

Recently, there have been several works dedicated to studying (1.1) driven by√
εξδ for ε � δ � 1 in arbitrary spatial dimension. For fixed δ > 0, the law of

(1.1) satisfies a large deviation principle as ε→ 0 with rate ε and some rate function
Iδ. Formally, as δ → 0, the sequence of rate functions Iδ converges to a limiting
“rate function” I given by

I (u) =
1

2

∫ T

0

∫
Td

(
∂tu−∆u− Cu+ u3

)2
dx dt .

(With the understanding that I (u) is infinite if the distribution ∂tu−∆u−Cu+u3

is not represented by a square integrable function or if u does not satisfy the
initial condition.) Minimisers of the rate function I subject to certain initial
and terminal conditions were investigated in [ERVE04, KORVE07]. In [CF11]
Cerrai and Freidlin showed that the convergence Iδ → I holds in the sense of
Γ-convergence (with respect to a suitable topology) for arbitrary dimension d. They
used this result to conclude Γ-convergence of the associated quasi potentials.

These results naturally suggest that I should be the rate function for a problem
which does not involve δ anymore. It would be very natural to interpret I as the rate
function for the solutions to (1.1) with noise

√
εξ where ξ denotes space-time white

noise. (In one spatial dimensions d = 1 it is shown in [FJL82] that this is indeed
true). The problem that immediately presents itself is that while the result of [CF11]
holds in any dimension, the equation (1.1) (with fixed C) driven by space-time
white noise is ill-posed in any dimension d ≥ 2. As a matter of fact, if we denote
by u(ε)

δ the solution to (1.1) driven by
√
εξδ and by udet the deterministic solution

to the equation with ξ = 0, then one has

lim
δ→0

lim
ε→0

u
(ε)
δ = udet .

On the other hand, it was shown in [HRW12] that, already in dimension 2, one has
limδ→0 u

(ε)
δ = 0 in a space of distributions for any fixed value of ε!

There is, however, a way to obtain a non-trivial stochastic limit in a scheme with
δ → 0, but the equation (1.1) has to be modified: Consider the solution û(ε)

δ to

∂tu = ∆u+
(
C + 3εC

(1)
δ − 9ε2C

(2)
δ

)
u− u3 +

√
εξδ , (1.2)

where the spatial variable takes values in the d-dimensional torus with d ∈ {2, 3}. In
two spatial dimensions it was shown in [DPD03] that for every fixed ε the solutions
to (1.2) have a non-trivial limit as δ → 0, provided that the δ-dependent constants
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are suitably chosen. Recently, in [Hai13], the first named author developed a theory
of regularity structures allowing to construct a non-trivial limit also in three spatial
dimensions. We denote these limits by û(ε).

Remark 1.1. In dimension d = 2, one can actually take C(2)
δ = 0 and C(1)

δ =
1

4π | log δ|. In dimension d = 3 on the other hand, one has C(1)
δ ∝ δ−1 with a

proportionality constant depending on the details of the regularisation of ξδ, see
(2.24). Furthermore, it is C(2)

δ which should be taken proportional to | log δ| in this
case.

The purpose of this article is to investigate the large deviations of the solutions
obtained from the scheme (1.2) as ε → 0. Our main result, Theorem 4.4, states
that for every T > 0 and every function ε 7→ δ(ε) ≥ 0 with limε→0 δ(ε) = 0,
the laws of the sequence û(ε)

δ(ε) satisfy a large deviation principle in the space

C([0, T ], C1−d/2−κ) (for arbitrarily small κ > 0) with rate ε and rate function I
(see below in Section 2 for a discussion of spaces with negative regularity). This
result includes the case δ = 0: The processes û(ε) do not depend on a correlation
length δ and satisfy a large deviation principle with rate function I . A remarkable
feature of this result is that the diverging renormalisation constants C(1)

δ and C(2)
δ ,

present in (1.2), disappear on the level of the large deviations, independently of the
relationship between δ and ε.

As an immediate consequence of our method, in Theorem 4.7, we make more
precise the condition on δ and ε under which the solutions u(ε)

δ of the equation (1.1)
without renormalisation constants satisfy a large deviation principle. Assume that
the function δ(ε) satisfies

lim
ε→0

εδ(ε)−1 = λ2 ∈ [0,∞],

for d = 3, or limε→0 ε log
(
δ(ε)−1

)
= λ2 for d = 2. If λ = 0 the solutions u(ε)

δ
also satisfy a large deviation principle with rate function I . If λ ∈ (0,∞), we still
obtain a large deviation principle, but this time with a modified rate function that
depends on λ. (And on the regularisation of ξδ in dimension 3.)

The threshold ε �
(

log(δ−1)
)−1 for d = 2 and ε � δ for d = 3 is not

surprising. Indeed, it is quite straightforward to check without reference to the
theory of regularity structures that if this condition is satisfied, then as ε → 0

the solutions u(ε)
δ(ε) converge in probability to udet, with respect to the topology

of uniform convergence (see [HRW12, Section 4] for the argument if d = 2).
Indeed, the same statement holds for arbitrary spatial dimension d ≥ 4 provided
ε � δd−2. It is however important to note that our method to prove the large
deviation principle relies strongly on the understanding of the renormalised equation
even for the schemes without renormalisation. In particular, it is not clear whether a
large deviations principle holds in higher dimensions, even in the regime ε� δd−2.

We would also like to emphasise that the methods developed in this article are
not restricted to the specific equation (1.1). The same arguments would yield similar
results for all equations that can be treated with the methods developed in [Hai13].
In particular, in d = 2 the nonlinear term u3 in (1.1) could be replaced by an
arbitrary polynomial of odd degree with negative leading-order coefficient, and one
has a large deviations principle for the KPZ equation driven by small noise. In
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the same way we could obtain a large deviation principle for the two dimensional
Navier-Stokes equations driven by space-time white noise (see [DPD02] for the
solution theory at ε > 0 fixed, see [BLZ14] for an analysis of the corresponding
rate function).

Finally, we point out that partial results in two spatial dimension were already
obtained by Jona-Lasinio and Mitter in [JLM90]. In [Aid12, Aid09] Aida studied a
related model in one spatial dimension, but with scaling properties akin to the two-
dimensional case. We also want to mention that the theory of regularity structures
grew out of an attempt to generalise the theory of rough paths to higher dimensions.
Large derivation results for rough paths were obtained by [LQZ02, MSS06, FV07].

1.1. Structure of the article. In Section 2 we present a very short summary of
some notions of the theory of regularity structures. In Section 3 we discuss random
variables in a fixed Wiener chaos taking values in a separable Banach space and
their large deviations. Section 4 contains the statements and proofs of our main
results.

Acknowledgements. We are grateful to the anonymous referee for carefully reading the
original manuscript and making various suggestions that improved the exposition. MH
was supported by the Leverhulme trust through a leadership award and the Royal Society
through a Wolfson research award. MH would also like to thank the Institute for Advanced
Study for its warm hospitality and the ‘The Fund for Math’ for funding his stay there, over
the course of which this work was completed. HW was supported by an EPSRC First
Grant.

2. REGULARITY STRUCTURES

In order to prove the type of convergence result mentioned in the introduction,
we make use of the theory of regularity structures developed in [Hai13]. A complete
self-contained exposition of the theory is of course beyond the scope of this article,
so we will content ourselves with a short summary of the theory’s main concepts
and results, when specialised to the specific example of the stochastic Allen-Cahn
equation (1.1). For a concise exposition of the general theory, see also the lecture
notes [Hai14a].

The main ingredient of the theory is that of a regularity structure. In our case,
this consists of a graded vector space T =

⊕
α∈A Tα where A denotes a set of real-

valued indices (called homogeneities) that is locally finite and bounded from below.
Each of the spaces Tα will be finite-dimensional and come with a distinguished
canonical basis. The space T also comes endowed with a group G of continuous
linear transformations of T with the property that, for every Γ ∈ G, every α ∈ A,
and every τ ∈ Tα one has

Γτ − τ ∈ T<α
def
=
⊕
β<α

Tβ . (2.1)

The canonical example to keep in mind is the space T̄ =
⊕

n∈N T̄n of abstract
polynomials in finitely many indeterminates, with A = N and T̄n denoting the space
of monomials that are homogeneous of degree n. In this case, a natural group of
transformations G acting on T̄ is given by the group of translations, which does
indeed satisfy (2.1).
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2.1. Specific regularity structure. The regularity structure that is relevant for the
analysis of (1.1) is built in the following way. First, we start with the regularity
structure T̄ given by all polynomials in d + 1 indeterminates, let us call them
X0, . . . , Xd, which denote the time and space directions respectively. We do
however endow these with the parabolic space-time scaling instead of the more
usual Euclidean scaling so that each factor of the “time” variable X0 increases
the homogeneity by 2. More precisely, one has 1 ∈ T̄0, X0 ∈ T̄2, Xi ∈ T̄1 for
i ∈ {1, . . . , d}, etc.

We then introduce two additional symbols, Ξ and I , which will be interpreted as
an abstract representation of the driving noise ξ and of the operation of convolution
with the heat kernel respectively. Fixing some (sufficiently small in the sequel)
exponent κ > 0, we then postulate that Ξ has homogeneity |Ξ| = −d+2

2 − κ and, if
τ is some formal expression with homogeneity |τ | = α, then I(τ) is a new formal
expression with homogeneity |I(τ)| = α+ 2. We also postulate that I(Xk) = 0
for every multi-index k, which will make sense in view of (2.6) below. (Here, for
k = (k0, . . . , kd), we have used the shorthand Xk = Xk0

0 · · ·X
kd
d .) Furthermore,

if τ, τ̄ are formal expressions with respective homogeneities α, ᾱ, then τ τ̄ = τ̄ τ is
postulated to be a new formal expression with homogeneity α+ ᾱ.

A few examples of formal expression with their respective homogeneities that
can in principle be built in this way are given by

|I(Ξ)2| = 2−d−2κ , |I(I(Ξ)3)| = 5−3d

2
−3κ , |ΞI(Ξ)| = −d−2κ . (2.2)

In order to define our regularity structure T , we do not keep all of these formal
expressions, but only those that are actually useful for the abstract reformulation of
(1.1). More precisely, we consider a collection U of formal expressions which is the
smallest collection containing 1, X , and I(Ξ), and such that

τ1, τ2, τ3 ∈ U ⇒ I(τ1τ2τ3) ∈ U .

Here and below we use X to denote the collection of all Xi for i ∈ {0, 1, . . . , d}.
We then set

W = {Ξ} ∪ {τ1τ2τ3 : τi ∈ U} ,

and we define T as the set of all linear combinations of elements inW . (Note that
since 1 ∈ U , one does in particular have U ⊂ W .) Naturally, Tα consists of those
linear combinations that only involve elements in W that are of homogeneity α.
Furthermore, W is the previously announced set of canonical basis elements of
T . In particular, T contains the first two formal expressions of (2.2), but not the
last one. It follows furthermore from [Hai13, Lem. 8.10] that, for every α ∈ R,W
contains only finitely many elements of homogeneity less than α, so that each Tα is
finite-dimensional.

In order to simplify expressions later, we will use the following shorthand graph-
ical notation for elements of W . For Ξ, we simply draw a dot. The integration
map is then represented by a downfacing line and the multiplication of symbols is
obtained by joining them at the root. For example, we have

I(Ξ) = , I(Ξ)3 = , I(Ξ)I(I(Ξ)3) = . (2.3)

Symbols containing factors of X have no particular graphical representation.
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2.2. Structure group. Let us now describe the structure group G associated to the
space T . For this, we first introduce additional symbols Jk(τ) and denote by T+,
the free commutative algebra generated by

W+
def
=
{
X
}
∪
{
Jk(τ) : τ ∈ W , |τ |+ 2 > |k|} , (2.4)

where k is an arbitrary (d+1)-dimensional multi-index and |k| denotes its “parabolic
length”, i.e.

|k| = 2k0 + k1 + . . .+ kd .

In other words, T+ consists of all linear combinations of products of formal ex-
pressions inW+. We will view Jk as a map from T into T+ by postulating that
it acts linearly on T and that Jk(τ) = 0 for those formal expressions τ for which
|τ |+ 2 ≤ |k|.

With this definition at hand, we construct a linear map ∆: T → T ⊗ T+ in
a recursive way. In order to streamline notations, we shall write τ (1) ⊗ τ (2) as a
shorthand for ∆τ . (This is an abuse of notation, following Sweedler, since in general
∆τ is a linear combination of such terms.) We then define ∆ via the identities

∆1 = 1⊗ 1 , ∆Ξ = Ξ⊗ 1 , ∆Xi = Xi ⊗ 1 + 1⊗Xi ,

and then recursively by the following relations:

∆ττ = τ (1)τ (1) ⊗ τ (2)τ (2) ,

∆I(τ) = I(τ (1))⊗ τ (2) +
∑
`,m

X`

`!
⊗ Xm

m!
J`+m(τ) .

For any linear functional f : T+ → R, we can now define in a natural way a map
Γf : T → T by

Γfτ = (I ⊗ f)∆τ , (2.5)

where I denotes the identity map. Let now G+ denote the set of all such linear
functionals which are multiplicative in the sense that f(τ τ̄) = f(τ)f(τ̄) for any
two elements τ, τ̄ ∈ T+. With this definition at hand, we set

G = {Γf : f ∈ G+} .

It is not difficult to see that these operators satisfy the property (2.1), but it is a
non-trivial fact that the set G of these linear operators does indeed form a group
under composition, see [Hai13, Sec. 8.1].

Remark 2.1. As a matter of fact, we will never need to consider the full space T
as defined above, but it will be sufficient to consider the subspace generated by all
elements of homogeneity less than some large enough number ζ. In practice, it
actually turns out to be sufficient to choose ζ = 2.

Remark 2.2. The construction we just explained depends on the dimension d, so we
should really use the notations T (d), T (d)

+ , etc. In order to keep the notations simple,
we refrain from doing so. Our statements will always either hold for both d = 2, 3,
or if they do not, then the value of d for which they hold will be made clear.



LARGE DEVIATIONS 7

2.3. Models. Now that we have fixed our algebraic regularity structure (T ,G), we
introduce a family of analytical objects associated to it that will play the role of
Taylor polynomials in our theory in order to allow us to describe solutions to (1.1)
locally, up to arbitrarily high order, despite the fact that they are not smooth in the
conventional sense.

From now on, we also fix a value ζ ≥ 2 as in Remark 2.1 and we set T = T<ζ .
This has the advantage that T is finite-dimensional so we do not need to worry
about topologies. We first fix a kernel K : Rd+1 → R with the following properties:

(1) The kernel K is compactly supported in {|x|2 + |t| ≤ 1}.
(2) One has K(t, x) = 0 for t ≤ 0 and K(t,−x) = K(t, x).
(3) For (t, x) with |x|2 + t < 1/2 and t > 0, one has

K(t, x) =
1

|4πt|d/2
e−
|x|2
4t ,

and K is smooth on {|x|2 + |t| ≥ 1/4}.
(4) For every polynomial P : Rd+1 → R of parabolic degree less than ζ, one

has ∫
Rd+1

K(t, x)P (t, x) dx dt = 0 ; (2.6)

in other words, K has essentially all the properties of the heat kernel, except that it
is furthermore compactly supported and satisfies (2.6). The constants 1/2 and 1/4
appearing in the third point are of course completely arbitrary as long as they are
strictly between 0 and 1. The existence of a kernel K satisfying these properties is
very easy to show.

We now denote by S ′ the space of distributions on Rd+1 and by L(T ,S ′) the
space of (necessarily continuous) linear maps from T to S ′. Furthermore, given a
continuous test function ϕ : Rd+1 → R and a point z = (t, x) ∈ Rd+1, we set

ϕλz (z̄) = λ−(d+2)ϕ
(
λ−2(t̄− t), λ−1(x̄− x)

)
, (2.7)

where we also used the shorthand z̄ = (t̄, x̄). Finally, we write B for the set of
functions ϕ : Rd+1 → R that are smooth, compactly supported in the ball of radius
one, and with their values and derivatives up to order 3 bounded by 1.

Given a kernel K as above, we then introduce a set M of admissible models
which will play the role of Taylor polynomials for our solution theory. An admissible
model consists of a pair (Π, F ) of functions

Π: Rd+1 → L(T ,S ′) F : Rd+1 → G
z 7→ Πz z 7→ Fz

with the following properties. First, writing γzz̄ ∈ G+ for the element such that
F−1
z ◦ Fz̄ = Γγzz̄ , they satisfy the analytical bounds∣∣(Πzτ

)
(ϕλz )

∣∣ . λ|τ | ,
∣∣γzz̄(τ̄)

∣∣ . |z − z̄||τ̄ | , (2.8)

uniformly over ϕ ∈ B, λ ∈ (0, 1], τ ∈ W , and τ̄ ∈ W+. Here, with the same
shorthand as before, we set

|z − z̄| = |x− x̄|+
√
|t− t̄| .

The proportionality constants implicit in the notation . of (2.8) are assumed to be
bounded uniformly for z and z̄ taking values in any compact set. We also assume
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that one has the algebraic identity

ΠzF
−1
z = Πz̄F

−1
z̄ , (2.9)

valid for every z, z̄ in Rd+1. Finally, and this is why our models are called admissi-
ble, we assume that

(
Πz1

)
(z̄) = 1, that for every multi-index k and every τ ∈ W

with Xkτ ∈ T ,(
ΠzX

kτ
)
(·) = (· − z)kΠzτ , fz(X

k) = (−z)k , (2.10a)

and that, for every τ ∈ W with Iτ ∈ T (recall that we did truncate T so this is not
true for all τ ), one has the identities

fz(Jkτ) = −
∫

Rd+1
DkK(z̄ − z)

(
Πzτ

)
(dz̄) , |k| < |τ |+ 2 , (2.10b)

(
ΠzIτ

)
(z̄) =

∫
Rd+1

K(z̄ − ¯̄z)
(
Πzτ

)
(d¯̄z) +

∑
k

(z̄ − z)k

k!
fz(Jkτ) . (2.10c)

Here, we wrote similarly to above fz ∈ G+ for the element such that Fz = Γfz .
Recall that we have set Jkτ = 0 if |k| ≥ |τ | + 2, so that the sum appearing on
the second line is automatically always finite. It is not clear in principle that these
integrals converge, but it turns out that the analytic conditions (2.8) guarantee that
this is always the case, see [Hai13, Sec. 5].

Remark 2.3. Since fz ∈ G+, so that it is multiplicative, (2.10a) and (2.10b) do
specify fz (and therefore Fz via (2.5)) completely, once we know Πz . There is
therefore quite a lot of rigidity in these definitions, which makes the mere existence
of admissible models a highly non-trivial fact.

Remark 2.4. Building further on Remark 2.3, it actually turns out that if the map
Π: Rd+1 → L(T ,S ′) satisfies the first analytical bound in (2.8) and is such that,
for F defined from Π via (2.10), one has the identities (2.10) and (2.9), then the
second analytical bound in (2.8) is automatically satisfied. This is a consequence of
[Hai13, Thm. 5.14].

Since we will only ever consider (1.1) with periodic boundary conditions, we
will always assume that the model (Π, F ) is periodic in the following sense. We
are given d vectors e1, . . . , ed ∈ Rd and we denote by Ti : Rd+1 → Rd+1 the
translation maps

Ti : (t, x) 7→ (t, x+ ei) .

We also define the natural action of Ti on test functions by (Tiϕ)(z) = ϕ(T−1
i z).

We then say that the model (Π, F ) is periodic if(
ΠTizτ

)
(Tiϕ) =

(
Πzτ

)
(ϕ) , FTiz = Fz , (2.11)

for every z ∈ Rd+1, every smooth test function ϕ, every τ , and every i. This
definition is consistent in the sense that if Π satisfies the first identity in (2.11) and
F is given by (2.10b), then F automatically satisfies the second identity.

Given two admissible models (Π, F ) and (Π̄, F̄ ), the bounds (2.8) yield a natural
notion of a semi-distance between them by considering, for any given compact
domain D ⊂ Rd+1, the quantity

|||Π− Π̄||| = sup
z∈D

sup
ϕ∈B
λ∈(0,1]

sup
τ∈W

λ−|τ |
∣∣(Πzτ − Π̄zτ

)
(ϕλz )

∣∣ . (2.12)
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While this seminorm does of course depend on the domain D, we will always
take D = I × Rd for some large enough interval I . The precise length of I does
not really matter as long as it contains [−2, T + 2], where T is the final time for
which we wish to obtain our large deviations principle. We will use the following
definition.

Definition 2.5. The space M (d) consists of all periodic admissible models for the
regularity structure (T (d),G) built above in dimension d ∈ {2, 3}. It is endowed
with the metric (2.12) for the domain D = I × Rd with a sufficiently large interval
I .

Remark 2.6. As defined here, the space M (d) is not separable which might lead to
technical difficulties. In practice, these can easily be resolved by defining M (d) as
the closure of the set of smooth admissible models, i.e. the set of models for which
Π: Rd+1 → L(T (d), C∞(Rd+1)) is a smooth function, under the distance (2.12),
which is a separable space.

It is extremely important at this stage to note that M (d) is in general much smaller
than the space of all (periodic in the sense of (2.11)) functions Π: Rd+1 → L(T ,S ′)
such that (2.12) is finite. This is because we still have the requirement that the
identities (2.9) and (2.10) hold. It may also appear that the “norm” (2.12) neglects
to control the second bound in (2.8) but, by Remark 2.4, this bound actually holds
automatically on D′ = I ′ × Rd if we know that |||Π||| is finite on D = I × Rd for I
containing a large enough neighbourhood of I ′. (Essentially D′ needs to be large
enough to contain the support of K(· − z) for every z ∈ D so that one can apply
(2.10b).)

Given any smooth space-time function ξδ which is periodic in the sense that
Tiξδ = ξδ, there is a canonical way of lifting it to an admissible periodic model
Ψ(ξδ) = (Πδ, F δ) as follows. First, we set Πδ

zΞ = ξδ, independently of z, and we
define it on Xk as in (2.10a). Then, we define Πδ

z recursively by (2.10c), as well as
the additional identity (

Πδ
zτ τ̄
)
(z̄) =

(
Πδ
zτ
)
(z̄)
(
Πδ
z τ̄
)
(z̄) . (2.13)

Note that this is guaranteed to make sense if ξδ is a function but not for more general
distributions! It was shown in [Hai13, Prop. 8.27] that if we furthermore define F δ

via (2.10b), then this does indeed define an admissible model for every continuous
function ξδ. It is however very important to keep in mind that not every admissible
model is obtained in this way, or even as a limit of such models. We will use this
fact in Section 2.6 below.

Since an admissible model (Π, F ) is interpreted as an extension of the usual
Taylor polynomials, it is quite natural to define spacesDγ,η which mimic a weighted
version of the Hölder spaces Cγ in the following way.

Definition 2.7. A function U : Rd+1 → T<γ belongs to Dγ,η if, for every compact
domain D, one has

‖U‖γ,η
def
= sup

z∈D
sup
α<γ

‖U(z)‖α
|t|(η−α)∧0

+ sup
z 6=z̄∈D
|z−z̄|≤1

sup
α<γ

‖U(z)− Γzz̄U(z̄)‖α(
|t| ∧ |t̄|

)η−γ |z − z̄|γ−α <∞ .

(2.14)
Here, we wrote ‖τ‖α for the norm of the component of τ in Tα and we used as
before the notation Γzz̄ = F−1

z Fz̄ . We also used t and t̄ as shorthands for the time
components of the space-time points z and z̄.
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Remark 2.8. The powers of t appearing in this definition allow elements of Dγ,η
to exhibit a singularity on the line {(t, x) : t = 0}. This is essential in order to be
able to deal with solutions to (1.1) with distributional initial conditions.

Remark 2.9. In order to streamline notations, we suppressed the dependence on the
domain D in this norm. This is because, similarly to our definition of admissible
models, we will only ever use this on some fixed space-time domain.

The space Dγ,η depends in a crucial way on the underlying model (Π, F ). There-
fore, it is not obvious a priori how to compare elements belonging to Dγ,η, but
based on two different models. This is however crucial when investigating the
continuity of solutions to (1.1) as a function of the underlying model. A natural
distance between elements U ∈ Dγ,η and Ū ∈ D̄γ,η (denoting by D̄γ,η the space
built over the model (Π̄, F̄ )), is given by (2.14), with U(z) replaced by U(z)− Ū(z)
in the first term and U(z)− Γzz̄U(z̄) replaced by

U(z)− Ū(z)− Γzz̄U(z̄) + Γ̄zz̄Ū(z̄)

in the second term. Note that this distance is not a function of U − Ū !
The idea now is to reformulate (1.1) as a fixed point problem in Dγ,η (based on

the canonical model Ψ(ξδ) built above) for suitable values of the exponents γ and
η. As a matter of fact, we will view it as a fixed point problem in the subspace
Dγ,ηU ⊂ Dγ,η consisting of those functions taking values in the linear span of U .
If we consider an admissible model consisting of smooth functions, then one can
define an operatorR acting on Dγ,η and taking values in the space of continuous
functions by (

RU
)
(z) =

(
ΠzU(z)

)
(z) . (2.15)

A remarkable fact, and this is the content of [Hai13, Thm 3.10], is that as soon as
γ > 0 the map

(Π, U) 7→ RU ∈ S ′ (2.16)

given by (2.15) is jointly (locally) Lipschitz continuous with respect to the metric
defined in (2.14) and (2.12), so that it makes sense even in situations where the
definition (2.15) is nonsensical! This of course relies very heavily on the fact
that we only consider admissible models in (2.16) and not arbitrary functions
Π: Rd+1 → L(T ,S ′). The map R is called the reconstruction operator since it
reconstructs the (global) distributionRU from the (local) data U and Π.

2.4. Continuity properties. As we will see below, it turns out that the solution to
(1.1) can be obtained, via a suitable fixed point argument, as a jointly continuous
map of the initial condition and a suitable random model (Π, F ) built from the
underlying space-time white noise. As a consequence of the contraction principle,
it will therefore be sufficient to obtain a suitable large deviations principle for the
random model. For this, we want to reduce ourselves to the “minimal” amount of
information necessary to reconstruct the whole model. Denote byW(d) ⊂ W the
list of symbols of negative order in dimension d, which do not contain any factor
Xi. In dimension d = 2 these are given by

W(2) = {Ξ, , , } ,

while in dimension d = 3, one has

W(3) = {Ξ, , , , , , } . (2.17)
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(Here and in the sequel, we assume that κ is small enough. Otherwise, these lists
could expand.) We also denote by T (d) ⊂ T the linear span ofW(d). We now define
the space M (d) (with d = 2, 3) of “minimal admissible models” in the following
way.

It is natural to take for M (d) the closure of the set of smooth maps Π: Rd+1 →
L(T (d), C∞(Rd+1)) that are periodic in the sense given previously, under the norm
given by (2.18) below. We furthermore impose that the constraint (2.9) holds with
Fz given by (2.10b). Besides providing a bound of the type (2.8), we also want
to ensure that Πz is not just a space-time distribution of order | |, but actually a
continuous function of time with values in a space of distributions of order | |. In
order to formulate this, we denote by B0 a set of test functions just like B, but
depending only on the spatial variable. Their translated and rescaled versions ϕλx
are defined analogously to (2.7). We then assume that Π is such that

sup
λ∈(0,1]

sup
ϕ∈B

sup
τ∈W(d)

sup
z∈D

λ−|τ |
∣∣〈Πzτ, ϕ

λ
z 〉
∣∣ <∞ ,

sup
λ∈(0,1]

sup
ϕ∈B

sup
s∈R

sup
z∈D

λ−|Ξ|
∣∣〈1t≥sΠzΞ, ϕ

λ
z 〉
∣∣ <∞ ,

sup
λ∈(0,1]

sup
ϕ∈B0

sup
z∈D

λ−| |
∣∣〈(Πz )(t, ·), ϕλx〉

∣∣ <∞ ,

(2.18)

where 〈·, ·〉 denotes the usual L2 inner product and D = I × T2 for some fixed
but large enough interval I . Furthermore, we impose that the identities (2.9) and
(2.10) hold. In order for this definition to make sense, we need to make sure that we
have enough data to define the linear maps Fz on T (d). In dimension d = 2, it is
straightforward to verify that ∆τ = τ ⊗ 1 for every τ ∈ W(2), so that the action of
G on T (2) is trivial. The condition (2.9) then reduces to stating that Πz does actually
not depend on z at all. In particular, the space M (2) is a separable Banach space.

In dimension d = 3 and for κ sufficiently small, we note that one has the identities

∆ = ⊗ 1 + ⊗ J ( ) , ∆ = ⊗ 1 + ⊗ J ( ) ,
∆ = ⊗ 1 + ⊗ J ( ) ,

so that the action of Fz on T (3) only requires (2.10b) with τ ∈ { , }. This data is
available from Πz and Πz (which actually do not depend on z), so that the first
condition in (2.18) is indeed meaningful. Note that, unlike M (2), M (3) is not a
linear space. It is however a separable metric space and can be viewed as a closed
subset of the separable Banach space obtained by relaxing (2.9) to the requirement
that Πzτ = Πz̄τ for τ ∈ W(2).

The reason why the spaces M (d) are important is the following result.

Theorem 2.10. For every Π ∈ M (d) there exists a unique admissible model
(Π, F ) ∈ M (d) such that Πzτ = Πzτ for all τ ∈ W(d) and z ∈ Rd+1. Further-
more, the map Π 7→ (Π, F ) is locally Lipschitz continuous.

Proof. This is an immediate consequence of Proposition 3.31 and Theorem 5.14 of
[Hai13]. �

2.5. Abstract fixed point problem. We now reformulate (1.1) as a fixed point
problem in Dγ,ηU for suitable values of γ and η. Note first that by Duhamel’s
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formula, (1.1) is equivalent for smooth ξ to the integral equation

u = P ?
(
(ξ + Cu− u3)1t>0

)
+ Pu0 . (2.19)

Here, P denotes the heat kernel, ? denotes space-time convolution, and Pu0 denotes
the solution to the heat equation with initial condition u0. A local solution is a pair
(u, τ) with τ > 0 and such that (2.19) holds on [0, τ ] × Rd. In order to interpret
this equation as an identity in Dγ,η, we need to find an analogue for the operation
of convolution against P .

It turns out that, provided that γ < γ̄ + 2, that η < | | = 1 − d
2 − κ and that

η̄ > −2, it is possible to construct a linear operator P : Dγ̄,η̄ → Dγ,ηU with the
following properties:

(1) One has the identityRPU = P ?RU .
(2) One has PU = IU + P̃U , where P̃U only takes values in T̄ , the linear

span of {Xk}.
(3) There exists θ > 0 such that

‖P1t>0U‖γ,η ≤ T θ‖U‖γ̄,η̄ ,

where the norms are taken over the domain [0, T ]× R.
Furthermore, even though 1t>0Ξ 6∈ Dγ̄,η̄ with γ̄ and η̄ as above, it turns out that if
the second bound in (2.18) is satisfied (in particular if the model comes from an
element of M (d) as in Theorem 2.10), then there exists an element P1t>0Ξ ∈ Dγ,ηU
satisfying all of the properties (1)–(3). For the precise construction of P and a proof
of these properties, see Section 5, Proposition 6.16, and Theorem 7.1 in [Hai13].

Finally, given a function u of (parabolic) class Cγ , we write Tγu for its Taylor
expansion of (parabolic) order γ, namely(

Tγu
)
(z) =

∑
|k|<γ

Xk

k!

(
Dku

)
(z) ∈ T̄ ⊂ T .

It was then shown in [Hai13, Lemma 7.5] that one has TγPu0 ∈ Dγ,ηU , provided
that u0 ∈ Cα(Td) for some α > η. Note that this is true for arbitrary η ∈ R, in
particular one can have η < 0.

With all of these notations at hand, we can lift (2.19) in a very natural way to a
fixed point problem in Dγ,ηU , by looking for solutions U to

U = P1t>0

(
Ξ + CU − U3

)
+ TγPu0 . (2.20)

According to [Hai13, Prop. 6.12] for U ∈ Dγ,ηU we can actually define U3 as a
modelled distribution. Similarly to (2.19), we call a pair (U, τ) with τ > 0 a local
solution if the identity (2.20) holds on [0, τ)× Rd.

Remark 2.11. For (2.20) to make sense, we need a suitable definition for the element
P1t>0Ξ. As already mentioned, this is the case if the underlying model comes from
an element of M (d).

We will say that local solutions are unique if, whenever (U, τ) and (Ū , τ̄) are
local solutions, one has U(t, x) = Ū(t, x) for t ∈ (0, τ ∧ τ̄ ]. Note also that if
U ∈ Dγ,ηU with γ > 0 and the underlying model comes from an element of M (d),
thenRU is a continuous function of time with values in the space Cβ = Cβ(Td) of
periodic distributions in space of regularity β = | | = 1− d

2 − κ (see for example
[Hai13, Def. 3.7] for a definition of Cβ for β < 0. On a bounded domain, it agrees
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with the Besov space Bβ∞,∞). Given a final time T > 0, we say that a local solution
(U, τ) to (2.20) is maximal if either τ = T or limt→τ ‖(RU)(t, ·)‖β =∞. Given
a final time T , it will be convenient to view solutions as elements of the space
X = C([0, T ], Cη) ∪ {∞} for some η < β, which is a metric space by postulating
that the “cemetery state”∞ is at distance 1 of all other elements.

One then has the following result, where we implicitly assume that κ is suffi-
ciently small (κ < 1/10 is sufficient for example).

Theorem 2.12. Let γ ∈ (1 + 4κ, ζ), and let η ∈ (−2
3 , 1−

d
2 − κ). Then, for every

admissible model (Π, F ) arising from an element of M (d), (2.20) admits a unique
maximal solution in Dγ,ηU .

Furthermore, if there exists a smooth function ξδ such that (Π, F ) = Ψ(ξδ), then
this solution is global and the function u = RU solves (2.19). Finally, define the
solution map SA : R × Cη ×M (d) → X which maps (C, u0,Π) onto RU if the
maximal solution U to (2.20) satisfies τ > T and to∞ otherwise. Then, for every
Z = (C, u0,Π) such that SA(Z) 6=∞, there exists a neighbourhood O of Z such
that SA is Lipschitz continuous from O to X .

Proof. This is a synthesis of the results of [Hai13, Sec. 7] and [Hai13, Sec. 9], see
also [Hai14b] for an informal overview of the proof. The continuous dependence
on C is not stated explicitly there, but is implicit in the proofs.

The only fact which remains to be shown is that the map (Π, F ) 7→ RU is
(locally) continuous with values in X . Indeed, the reconstruction operatorR only
maps the space Dγ,ηU into Cη([0, T ]×Td) in general [Hai13, Prop. 6.9], which is
strictly larger than X . However, one does get continuity of SA into X . The reason
why this is true is that by (2.19) the solutionRU is of the form

RU = P ?
(
ξ + CRU −R(U3))1t>0

)
+ Pu0 ,

withR the reconstruction operator. Since U takes values in Dγ,ηU , it follows from
[Hai13, Prop. 6.12] that U3 takes values in Dγ′,3η for some γ′ > 0. By [Hai13,
Prop. 6.9], one therefore obtains that R(U3) ∈ C3(1− d

2
−κ)([0, T ] × Td), which

in particular shows by usual (parabolic) Schauder estimates that P ?R(U3) takes
values in C([0, T ] × Td) ⊂ X . Combining this with the fact that both Pu0 and
P ? ξ belong to X (the latter as a consequence of the second and third bound in
(2.18)) concludes the proof. �

2.6. Renormalised model. It turns out that, if we take for ξδ some mollification of
space-time white noise then the sequence Ψ(ξδ), with the canonical lift Ψ defined
via (2.13), does not converge in M (d) (and a fortiori not in M (d)). Instead, we fix
two renormalisation constants C(1)

δ and C(2)
δ and we define a “renormalised lift”

Ψ̂δ in the following way. Regarding Π̂δ
z (which actually doesn’t depend on z), we

define it from Π̂δ
zΞ = ξδ via (2.10c).

In dimension d = 2, we then replace (2.13) by the identities

Π̂δ
z =

(
Π̂δ
z

)2 − C(1)
δ , Π̂δ

z =
(
Π̂δ
z

)3 − 3C
(1)
δ Π̂δ

z . (2.21)

We then use Theorem 2.10 to extend this to all of T (2).
In dimension d = 3, we also define Πδ

z on and as in (2.21), but we furthermore
set

Π̂δ
z =

(
Π̂δ
z

)(
Π̂δ
z

)
− C(2)

δ , Π̂δ
z =

(
Π̂δ
z

)(
Π̂δ
z

)
− 3C

(2)
δ Π̂δ

z ,



14 MARTIN HAIRER AND HENDRIK WEBER

Π̂δ
z =

(
Π̂δ
z

)(
Π̂δ
z

)
, (2.22)

where Π̂δ
z and Π̂δ

z are defined from Π̂δ
z and Π̂δ

z through (2.10c). Again, we
then use Theorem 2.10 to extend this to all of T (3). Here, the non-trivial fact that
Π̂δ defined in this way indeed belongs to M (3) was shown in Theorem 8.44 and
Section 9.2 of [Hai13].

As usual, we define F̂ δz through (2.10b) and we write (Π̂δ, F̂ δ) = Ψ̂δ(ξδ). With
these definitions, the following theorem is the main result of [Hai13, Sec. 10].

Theorem 2.13. Let % : Rd+1 → R be a compactly supported smooth function with∫
% = 1 and set

%δ(t, x) = δ−d−2%(δ−2t, δ−1x) , ξδ = %δ ? ξ ,

where ξ is periodic space-time white noise.
There exist choices of constants C(1)

δ and C(2)
δ such that the sequence Ψ̂δ(ξδ)

converges in probability in M (d) to a limiting model Π̂. Furthermore, the function
u = RU , where U is the (local) solution to (2.20) with model Π̂δ is the classical
solution to

∂tu = ∆u+ (3C
(1)
δ − 9C

(2)
δ )u− u3 + ξδ .

Remark 2.14. In dimension 2, we do not need C(2)
δ (i.e. we set it equal to 0), and

C
(1)
δ can be chosen as

C
(1)
δ =

1

4π
log δ−1 + c% , (2.23)

for some constant c% of order 1 which depends on the mollifier %. The precise
expression for c% does not matter at this stage.

In dimension 3 on the other hand, one should take

C
(1)
δ = δ−1

∫
R4

(
P ? %

)
(t, x)2 dt dx , (2.24)

where ? denotes space-time convolution as before and P denotes the heat kernel
(without any truncation). This time, it is the constant C(2)

δ that has to be chosen to
diverge logarithmically:

C
(2)
δ = c log δ−1 + c̄% , (2.25)

with c a universal constant independent of % and c̄% some constant that depends on
the mollifier. The precise values for c and c̄% are irrelevant for our current purpose.

3. LARGE DEVIATIONS FOR WIENER CHAOS

In this section we state and prove a large deviation statement for random variables
taking values in a fixed inhomogeneous Wiener chaos over an arbitrary Gaussian
probability space. These results are then applied in Section 4 to obtain a large
deviation result for the renormalised models constructed from a white noise with
small amplitude.

Large deviation results for random variables in a fixed Wiener chaos have been
studied by several authors, see e.g. [Bor78, Bor84b, Led90, MWNPA92]. For the
reader’s convenience, we give a complete exposition in our context. The core of
our argument is a generalised contraction principle in the spirit of [DS89, Lemma
2.1.4]. We start by recalling the following definition from [DS89].



LARGE DEVIATIONS 15

Definition 3.1. Let (S, d) be a separable metric space. We say that a family
{µε, ε > 0} of probability measures on S satisfies a large deviation principle with
rate ε and rate function I if

(1) I : S → [0,+∞] is lower semicontinuous, has compact sublevel sets and
is not identical to +∞.

(2) For every closed set C ⊆ S we have

limsup
ε→0

ε logµε
(
C
)
≤ − inf

s∈C
I (s) . (3.1)

(3) For every open subset O ⊆ S we have

liminf
ε→0

ε logµε
(
O
)
≥ − inf

s∈O
I (s) . (3.2)

We say that a family of S-valued random variables satisfies a large deviation
principle if their distributions do.

Remark 3.2. All of the large deviation principles in this paper have rate ε and we
will not repeat the rate every time.

We also recall the following version of the contraction principle:

Lemma 3.3. Let {µε, ε > 0} be a family of probability measures on a separable
metric space (S, d) and let I : S → [0,∞] satisfy the first condition of Defini-
tion 3.1 . Let (S′, d′) be another separable metric space, and let {Ψε, ε ≥ 0} be
a family of mappings from S to S′ which are continuous on a neighbourhood of
{s ∈ S : I (s) <∞}. We assume that

(1) The probability measures {µε, ε > 0} satisfy a large deviation principle on
S with rate function I .

(2) For every c ∈ R, there exists a neighbourhood Oc of {s ∈ S : I (s) ≤ c}
such that the mappings Ψε converge uniformly on Oc to Ψ0.

Then the image measures µ−1
ε ◦Ψ−1

ε satisfy a large deviation principle on S′ with
rate function

I ′(s′) = inf{I (s) : s ∈ S, Ψ0(s) = s′} ,
with the convention that the inf equals +∞ if the set is empty.

Proof. This is a direct consequence of [DS89, Exercise 2.1.20 (ii)] (see also [DS89,
Lemma 2.1.4]). Indeed, in this exercise it is shown that the conclusion of the
theorem holds if the Ψε are continuous on all of S and if for all α > 0 we have

limsup
ε→0

ε logµε

(
ξ : d′

(
Ψε(ξ),Ψ0(ξ)

)
> α

)
= −∞ .

Furthermore, given any c ∈ R, the uniform convergence of Ψε on Oc im-
plies that for every α > 0 one can find ε0 such that for ε < ε0 the condi-
tion d′(Ψε(s),Ψ0(s)) > α implies s 6∈ Oc. The LDP for µε then implies that
limsupε→0 ε logµε({s : d′(Ψε(s),Ψ0(s)) > α}) ≤ −c for arbitrary c, so that this
limit has to be −∞.

Furthermore, the condition that the Ψε should be continuous everywhere can
be replaced by continuity in an open neighbourhood of {s ∈ S : I (s) < ∞} –
indeed, just apply the above reasoning to the measures µε conditioned on this open
neighbourhood of {s ∈ S : I (s) <∞} on which the functions Ψε are continuous.
These conditioned measures have the same large deviation behaviour as the original
measures. �
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Now we proceed to the discussion of large deviations for Banach-valued Wiener
chaos. Let (B,H, µ) be an abstract Wiener space, i.e. µ is a centred Gaussian
measure on a separable Banach space B with Cameron-Martin spaceH ⊂ B. Let
(ei)

∞
i=1 be an orthonormal basis ofH consisting of elements of the dual space B?,

where B? ⊂ H is defined by dualising the inclusion H ⊂ B and identifying H?
withH. (Such a basis can always be found.) Then for every ei the linear mapping
ξ 7→ 〈ξ, ei〉 is continuous on B and defines a centred Gaussian random variable
with

∫
〈ξ, ei〉 〈ξ, ej〉µ(dξ) = δij .

Recall that for ξ ∈ R the Hermite polynomials Hk(ξ) are defined by

exp
(
λξ − 1

2
λ2
)

=
∞∑
k=0

λk√
k!
Hk(ξ) ,

i.e. H0(ξ) = 1, H1(ξ) = ξ, H2(ξ) = 1√
2
(ξ2 − 1), H3(ξ) = 1√

6
(ξ3 − 3ξ) etc.

Remark 3.4. The convention used here is that if ξ is a centred normal random
variable with variance 1, then the random variables Hk(ξ) are orthonormal in
L2(Ω).

We call multi-index any sequence α = (α1, α2, . . .) ∈ NN
0 with only finitely

many non-zero entries. We use the convention α! =
∏∞
i=1

(
αi!
)

and |α| =∑∞
i=1 αi.
Then for any multi-index α we define the R-valued function

Hα(ξ) =
∞∏
i=1

Hαi

(
〈ξ, ei〉

)
for ξ ∈ B.

For k ∈ N the k-th homogeneous R-valued Wiener chaos H(k)(µ) = H(k)(µ,R)
is defined as the closure in L2(µ,R) of the linear space generated by the functions
Hα(ξ) with |α| = k.

Let E be a real separable Banach space and denote by Lp(µ,E) (p ∈ [1,∞)) the
space of all E-valued measurable functions Ψ on (B,µ) with

∫
‖Ψ(ξ)‖pE µ(dξ) <

∞. For any k ∈ N the k-th E-valued Wiener chaos H(k)(µ,E) is defined as the
closure in L2(µ,E) of the linear space generated by random variables of the form
Hα(ξ) y with |α| = k and y ∈ E. Equivalently, one can set

H(k)(µ,E)
def
=
{

Ψ ∈ L2(µ,E) :

∫
Ψ(ξ)Hα(ξ)µ(dξ) = 0 for all |α| 6= k

}
.

(3.3)
Indeed, it is obvious that each random variable Ψ(ξ) =

∑
|α|=k yαHα(ξ) with

only finitely many summands satisfies the condition specified in (3.3) and that
this condition is stable under convergence in L2(µ,E). On the other hand, if
Ψ ∈ L2(µ,E) satisfies the condition of (3.3), then the conditional expectation of Ψ

with respect to the σ-algebra FN
def
= σ(〈ξ, e1〉, . . . , 〈ξ, eN 〉) is given by

ΨN (ξ)
def
=

∑
|α|=k

αi=0, i>N

(∫
Ψ(ξ′)Hα(ξ′)µ(dξ′)

)
Hα(ξ) , (3.4)

and the convergence theorem for Banach-valued martingales [?, Prop. V.2.6] shows
that this series converges to Ψ in L2(µ,E) as N goes to infinity. Actually, the
strong integrability properties of random variables in a fixed Wiener chaos (see e.g.
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[Bor84a, Thm. 4.1]) imply the much stronger statement that there exists a constant
C and a sequence βN with limβN →∞ such that∫

exp
(
βN‖Ψ(ξ)−ΨN (ξ)‖

2
k
E

)
µ(dξ) ≤ C . (3.5)

It is important to note here that even though we are using what looks like an L2

theory, E is not assumed to be a Hilbert space. As a matter of fact, this point is
absolutely crucial to our argument.

Fix now a
Ψ(ξ) =

∑
|α|=k

yαHα(ξ) (3.6)

in H(k)(µ,E). Denote by ΨN the same sum restricted to those indices α with
αi = 0 for i > N . For any h ∈ H we can define the homogeneous part of Ψ by

Ψhom(h) =

∫
Ψ(ξ + h)µ(dξ) . (3.7)

The Cameron-Martin theorem implies that for every h ∈ H the random variable
Ψ(ξ+h) is well defined µ-almost surely and that the expectation in (3.7) converges.
For the truncated sum ΨN it is easy to check that(

ΨN

)
hom

(h)
def
=

∫
ΨN (ξ + h)µ(dξ) =

∑
|α|=k

αi=0, i>N

yαh
α,

where hα def
=
∏∞
i=1〈h, ei〉αi . On the other hand we have by the Cameron-Martin

theorem and Cauchy-Schwarz inequality∥∥(ΨN

)
hom

(h)−Ψhom(h)
∥∥
E

=
∥∥∥∫ (ΨN (ξ + h)−Ψ(ξ + h)

)
µ(dξ)

∥∥∥
E

(3.8)

=
∥∥∥∫ exp

(
〈h, ξ〉 − 1

2
|h|2H

)(
ΨN (ξ)−Ψ(ξ)

)
µ(dξ)

∥∥∥
E

≤ exp
(1

2
|h|2H

)∥∥∥ΨN (ξ)−Ψ(ξ)
∥∥∥
L2(µ,E)

,

which implies uniform convergence of the sum

Ψhom(h) =
∑
|α|=k

yαh
α

on bounded subsets ofH.
From now on, we will consider random variables Ψ =

⊕
τ∈W Ψτ , whereW is

some finite index set and each component Ψτ lies in an Eτ -valued inhomogeneous
Wiener chaos of order Kτ . This means that for each τ we can write

Ψτ =

Kτ∑
k=0

Ψτ,k ,

where Ψτ,k ∈ H(k)(µ,Eτ ) and Eτ is some separable Banach space. Let (Ψδ, δ ∈
(0, 1)) be a family of such random variables. We are going to say that Ψδ converges
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to Ψ if for each τ ∈ W and k ≤ Kτ

lim
δ→0

∫ ∥∥Ψδ;τ,k(ξ)−Ψτ,k(ξ)
∥∥2

Eτ
µ(dξ) = 0 . (3.9)

We also define the homogenous part of Ψ as Ψhom =
⊕

τ∈W(Ψτ,Kτ )hom. Note
that in this definition there is no contribution corresponding to the Ψτ,k for k < Kτ

to Ψhom. The reason for this is that this respects the scaling used in (3.10).
The main result of this section is a large deviation statement for the random

variables Ψ when changing the noise intensity. The natural rescaling of the different
coordinates in our context is given by

Ψ(ε)(ξ)
def
=
⊕
τ∈W

ε
Kτ
2 Ψτ (ξ) . (3.10)

The main result of this section states that under the measure µ, the random
variables Ψ(ε) satisfy a large deviation principle that is stable under convergence to
Ψ. For any s =

⊕
τ∈W sτ ∈ E

def
=
⊕

τ∈W Eτ , the rate function is given by

I (s) = inf

{
1

2
|h|2H : h ∈ H with Ψhom(h) = s

}
, (3.11)

where the infimum is interpreted as +∞ if the set is empty.

Theorem 3.5 (Large deviations in Wiener chaos). Assume that Ψδ converges to Ψ
as δ tends to 0 in the sense of (3.9). Choose δ = δ(ε) ≥ 0 such that limε↓0 δ(ε) = 0.
Then the random variables Ψ

(ε)
δ(ε)(ξ) satisfy a large deviation principle on E with

rate ε and rate function I given by (3.11).

Remark 3.6. The reason that the lower order contributions Ψτ,k for k < Kτ vanish
on the level of the large deviation principle is the scaling (3.10). In order to have a
contribution from Ψτ,k one would have to consider ε

k
2 Ψτ,k instead of ε

Kτ
2 Ψτ,k.

As stated above, our argument follows roughly the strategy employed in [DS89]
to prove the classical Freidlin-Wentzell estimates (see [DS89, Sec. 1.4 and Lemma
2.1.4]).

Suppose that for every δ ≥ 0, and every τ ∈ W and k ≤ Kτ we have

Ψδ;τ,k(ξ) =
∑
|α|=k

yα;δ;τ,kHα(ξ) . (3.12)

Denote as before by ΨN ;δ(ξ) the conditional expectation of Ψδ(ξ) with respect to
FN , i.e. the series expansion (3.12) of each Ψδ;τ,k(ξ) is restricted to indices α with
αi = 0 for i > N .

Lemma 3.7. For any fixed N ∈ N the random variables Ψ
(ε)
N,δ(ε)(ξ) satisfy a large

deviation principle with rate function

IN (s) = inf

{
1

2
|h|2H : h ∈ H with (ΨN )hom(h) = s

}
. (3.13)

Proof. As stated above, the random functions ΨN ;δ;τ,k are continuous functions
B → Eτ for every fixed N .
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Note that for every τ ∈ W and k ≤ Kτ and for every multi-index α with |α| = k
we have by Cauchy-Schwarz inequality

‖yα;δ;τ,k − yα;τ,k‖2Eτ =
∥∥∥∫ (Ψδ;τ,k(ξ)−Ψτ,k(ξ)

)
Hα(ξ)µ(dξ)

∥∥∥2

Eτ

≤
∫ ∥∥Ψδ;τ,k(ξ)−Ψτ,k(ξ)

∥∥2

Eτ
µ(dξ) . (3.14)

This converges to zero as δ → 0 by assumption.
In order to apply the contraction principle, Lemma 3.3, it is useful to rewrite the

rescaled random variables as

ε
Kτ
2 ΨN ;δ(ε);τ,k(ξ) = Φ

(ε)
N ;τ,k(ε

1
2 ξ) ,

where
Φ

(ε)
N ;τ,k(ξ)

def
= ε

Kτ−k
2

∑
|α|=k

αi=0, i>N

yα;δ(ε);τ,k Φ(ε)
α (ξ) ,

and

Φ(ε)
α (ξ) =

∞∏
i=1

ε
αi
2 Hαi

(
ε−

1
2 〈ξ, ei〉

)
.

Now it is easy to check, using (3.14) that for k < Kτ the functions Φ
(ε)
N ;τ,k con-

verge to 0 and the functions Φ
(ε)
N ;τ,Kτ

converge to (ΨN ;τ,Kτ )hom, in both cases
uniformly on bounded subsets of B. This implies in particular that the slightly
weaker condition (2) in Lemma 3.3 holds.

Furthermore, it is well known (see e.g. [Led96, Chapter 4]) that under µ, the
random vectors

√
εξ satisfy a large deviation principle on B with rate ε and rate

function

Iξ(h) =

{
1
2 |h|

2
H for h ∈ H,

+∞ else.

Hence, the Lemma follows from the contraction principle, Lemma 3.3. �

Lemma 3.8. Let I be given by (3.11) and let IN be given by (3.13). Then
I : E→ [0,∞] is lower semicontinuous with compact sublevel sets. Furthermore
for any closed set C ⊆ E we have

lim
λ→0

liminf
N→∞

inf
s∈Cλ

IN (s) = inf
s∈C

I (s) . (3.15)

Here Cλ
def
= {s ∈ E : distE(s, C) ≤ λ}.

Proof of Lemma 3.8. As a consequence of (3.8), the assumptions of [DS89, Lemma
2.1.4] are satisfied, from which the first statement immediately follows. The estimate
(3.15) then follows from the first part of the proof of [DS89, Lemma 2.1.4]. �

Lemma 3.9 (Exponential equivalence). We have for every λ > 0

limsup
N→∞

limsup
ε→0

ε logµ
(
ξ : ‖Ψ(ε)

δ(ε)(ξ)−Ψ
(ε)
N ;δ(ε)(ξ)‖E ≥ λ

)
= −∞ .

Proof. We write∫
‖Ψδ(ε);τ (ξ)−ΨN ;δ(ε);τ (ξ)‖2Eτµ(dξ) ≤ 3

∫
‖Ψδ(ε);τ (ξ)−Ψτ (ξ)‖2Eτµ(dξ)
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+ 3

∫
‖Ψτ (ξ)−ΨN ;τ (ξ)‖2Eτµ(dξ)

+ 3

∫
‖ΨN ;τ (ξ)−ΨN ;δ(ε),τ (ξ)‖2Eτµ(dξ) .

The assumption (3.9) on convergence of the Ψδ to Ψ implies that the first term
on the right hand side goes to zero as ε → 0. The conditional expectation is a
contraction onL2(µ,Eτ ), and hence the third term goes to zero as well. In particular,
for fixed N we can find an εN such that for ε < εN the right hand side can be
bounded by 4

∫
‖Ψτ (ξ)−ΨN ;τ (ξ)‖2Eτµ(dξ). As a consequence of the integrability

properties of random variables belonging to a fixed Wiener chaos [Bor84a, Theorem
4.1], we conclude from this that there exists a sequence βN increasing to ∞ as
N →∞ and a constant 0 < C <∞ such that for every N and for every ε < εN
we have ∫

exp
(
βN
∥∥Ψδ(ε);τ (ξ)−ΨN ;δ(ε);τ (ξ)

∥∥ 2
Kτ
Eτ

)
µ(dξ) ≤ C .

Using Chebyshev’s inequality we get for every N and every 0 < ε < εN that

µ
(
ξ : ε

Kτ
2

∥∥Ψδ(ε),τ (ξ)−ΨN ;δ(ε);τ (ξ)
∥∥
Eτ
≥ λ

)
= µ

(
ξ : exp

(
βN
∥∥Ψδ(ε),τ (ξ)−ΨN ;δ(ε);τ (ξ)

∥∥ 2
Kτ
Eτ

)
≥ exp

(
βNλ

2
Kτ ε−1

))
≤ C exp

(
− βNλ

2
Kτ ε−1

)
.

So the result follows. �

With Lemma 3.7, Lemma 3.8, and Lemma 3.9 in hand Theorem 3.5 follows
easily.

Proof of Theorem 3.5. It was already shown in Lemma 3.8 that the rate function
I satisfies the first condition in Definition 3.1, so it remains to establish the upper
bound (3.1) and the lower bound (3.2).

Let C ⊂ E be closed. Then we have for every λ > 0 and N ∈ N that

µ
(
ξ : Ψ

(ε)
δ(ε)(ξ) ∈ C

)
≤ µ

(
ξ : Ψ

(ε)
N ;δ(ε)(ξ) ∈ Cλ

)
+ µ

(
ξ : ‖Ψ(ε)

δ(ε)(ξ)−Ψ
(ε)
N ;δ(ε)(ξ)‖E ≥ λ

)
,

where as above Cλ
def
= {x : distE(x, C) ≤ λ}. According to Lemma 3.9 for any

fixed λ > 0 we can choose N large enough (depending on C) to ensure

limsup
ε→0

ε logµ
(
ξ : ‖Ψ(ε)

δ(ε)(ξ)−Ψ
(ε)
N ;δ(ε)(ξ)‖E ≥ λ

)
≤ − inf

s∈C
I (s) .

On the other hand Cλ is closed, so that Lemma 3.7 implies that for any fixed N

limsup
ε→0

ε logµ
(
ξ : Ψ

(ε)
N ;δ(ε)(ξ) ∈ Cλ

)
≤ − inf

s∈Cλ
IN (s) .

Letting first N go to∞ and then λ to 0 and applying Lemma 3.8 finishes the proof
of the upper bound (3.1).

In a similar way, let O ⊂ E be open and s ∈ O and λ > 0 be such that
{x ∈ E : ‖x− s‖E ≤ 2λ} ⊆ O. Then we have

µ
(
ξ : Ψ

(ε)
δ(ε)(ξ) ∈ O

)
≥ µ

(
ξ : ‖Ψ(ε)

N ;δ(ε)(ξ)− s‖E < λ
)
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− µ
(
ξ : ‖Ψ(ε)

δ(ε)(ξ)−Ψ
(ε)
N ;δ(ε)(ξ)‖E ≥ λ

)
.

As above, Lemma 3.9 implies that for fixed λ > 0 and N large enough (depending
on s) we have

limsup
ε→0

ε logµ
(
ξ : ‖Ψ(ε)

δ(ε)(ξ)−Ψ
(ε)
N ;δ(ε)(ξ)‖E ≥ λ

)
≤ −I (s)− 1 ,

and we get from Lemma 3.7 that for any N

liminf
ε→0

ε logµ
(
ξ : ‖Ψ(ε)

N ;δ(ε)(ξ)− s‖E < λ
)
≥ − inf

{‖x−s‖≤ 1
2
λ}

IN (x) .

Letting again N go to ∞ first and then λ to zero, we obtain the required lower
bound from Lemma 3.8. �

4. LARGE DEVIATIONS FOR STOCHASTIC PDES

In this section we apply our abstract large deviation result, Theorem 3.5, to
the specific setting of the models arising in the solution theory for the stochastic
Allen-Cahn equation. We start by recalling thatW(3)

− = {Ξ, , , , , , }. We

set E
def
=
⊕

τ∈W(3)
−
Eτ , where for τ ∈ W(3)

− \ {Ξ, } the spaces Eτ are given by the

closure of the set of smooth functions (z, z̄) 7→
(
Πzτ

)
(z̄) in the topology given by

the norms
‖Πτ‖ = sup

ϕ,λ,z
λ−|τ |

∣∣(Πzτ
)
(ϕλz )

∣∣ ,

where the supremum runs over λ ∈ (0, 1], z ∈ [−1, T + 1]×Td, and ϕ runs over a
suitable set of test functions as in (2.12). For Ξ and the topology is given by the
norms listed in (2.18). Since these norms are weaker than the supremum norm over
a compact set, it follows from the Stone-Weierstrass theorem that smooth functions
can be approximated by polynomials with rational coefficients, so that the spaces
Eτ are separable.

Note that M
(d)
− can be viewed as a (nonlinear and rather complicated) closed

subset of E. In the case d = 2 one can simplify the situation considerably by
restricting oneself to τ ∈ {Ξ, , , } and by dropping the z-dependence of the
functions Πτ . For the remainder of this section, we will only consider the case
d = 3, the case d = 2 follows mutatis mutandis.

LetH be L2([−2, T + 2]×T3). The Gaussian measure µ with Cameron-Martin
spaceH can be realised on B, the closure of the space of smooth functions in the
Besov space C−

5
2
−κ for any κ > 0, and the triple (B,H, µ) is an abstract Wiener

space. Let % be a mollifying kernel, i.e. % : R× R3 → R is a smooth function with∫
%(z) dz = 1 and compact support contained in the unit ball of R× R3. Then for

ξ ∈ B and for δ ∈ (0, 1) set

ξδ(z) = 〈ξ, %δz〉 , (4.1)

where %δz is defined as above in (2.7). Note that under µ the random distribution ξ is
a realisation of space-time white noise and ξδ is a smooth approximation to ξ.

Remark 4.1. One could also have considered different approximations, like for
example regularisations in space only or in time only. These could also be handled
in the same way, but we restrict ourselves to space-time regularisations in order to
be able to reuse the convergence results obtained in [Hai13].
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Let Ψ(ξδ) = (Πξδ , F ξδ) be the canonical model constructed from Πξδ
y Ξ = ξδ as

described above in (2.10c) and (2.13) (we have added a superscript ξδ to make more
explicit the dependence on the specific realisation of the noise). As discussed in
Section 2.3 and Section 2.4 (Πξδ , F ξδ) lives in M (d) and it is uniquely characterised
by the minimal model i.e. the Πξδτ for τ ∈ W(3)

− .
We show now that the mapping Ψδ that maps the white noise ξ to the minimal

model fits exactly into the framework developed in Section 3. For any δ > 0 set
Ψδ =

⊕
τ∈W(3)

−
Ψδ;τ where Ψδ;τ (ξ)

def
= Πξδτ as above. By construction, for a fixed

realisation of the noise ξ, the distributions ϕ 7→ Πξδ
z τ(ϕ) can be identified with a

smooth function in the two variables z and z̄. In particular, it also takes values in
Eτ .

It follows from the analysis in [Hai13, Sec. 10] that for each τ ∈ W(3)
− and for

δ > 0 the mapping ξ 7→ Ψδ;τ (ξ) belongs to the Eτ -valued inhomogenous Wiener
chaos of order Kτ , where Kτ is the number of occurrences of the symbol Ξ in τ .
More precisely, we have

KΞ = K = 1 , K = 2 , K = 3 , K = K = 4 , K = 5 .

We briefly outline this analysis. Let H⊗sk denote the k-fold symmetric tensor
power of H. We identify H⊗sk with the space of symmetric square integrable
functionsW in k arguments zi ∈ [−2, T + 2]×T3. Then it is well known (see e.g.
[Nua06, Sec 1.1]) that for every k ≥ 1 there is an isometry (up to a factor

√
k!)

Ik : H⊗sk → H(k)(µ,R)

given by iterated stochastic integrals: For all ξ in a set of µ measure one we have

Ik(W)(ξ) =

∫
· · ·
∫
W(z1, . . . , zk) ξ(dz1) . . . ξ(dzk) .

We can thus identify every random variable inH(k)(µ,R) with a symmetric kernel
in k arguments. We can also apply Ik to arbitrary kernels in L2([−2, T+2]×T3)⊗k

by precomposing with the symmetrisation map

W(k)(z1, z2, . . . , zk) 7→
1

k!

∑
σ

W(k)(zσ(1), . . . , zσ(k)) , (4.2)

where the sum runs over all elements σ in the group of permutations of {1, . . . , k}.
The symmetrisation (4.2) is a contraction on L2([−2, T +2]×T3)⊗k. So we obtain∫ (

Ik(W(k))(ξ)
)2
µ(dξ) ≤ k!

∫
W(k)(z1, z2, . . . , zk)

2 dz1 . . . dzk . (4.3)

It is shown recursively in [Hai13, Sec. 10], that for any τ ∈ W(3)
− and for

δ > 0, Πξδ
y (τ) can be characterised by kernels Wδ;τ,k(ȳ, y, ·) ∈ H⊗k for k =

Kτ ,Kτ − 2,Kτ − 4, . . .. The precise form of the kernels can be read off directly
from the graphs , , etc. in (2.3) above (in fact, this is the reason for this notation).

We illustrate this construction for τ = , which is the most involved term. All
other symbols can be dealt with in a very similar (but easier) way. The kernel
Wδ, ,5(ȳ, y, ·) for the contribution in the highest Wiener chaos K = 5 is given by

Wδ, ,5(ȳ, y; z1, . . . , z5)
def
=

∫
dxKδ(z1 − x)Kδ(z2 − x)Kδ(z3 − x) (4.4)
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K(x− ȳ)−K(x− y)

)
Kδ(z4 − y)Kδ(z5 − y) .

Here K denotes the kernel introduced in Section 2.3 and Kδ
def
= K ? %δ. The

connection between (4.4) and the graphical representation is the following: Each
vertex of corresponds to a variable in [−2, T + 2]×T3- the leafs are z1, . . . , z5,
the root corresponds to ȳ and y and the central vertex corresponds to x. Then as
explained in (2.3) every down facing line in corresponds to one occurrence of a
kernel K or Kδ in (4.4): If the line is connected to a leaf, the kernel is Kδ and the
kernel is K otherwise. The variable x corresponding to a vertex that are neither a
leaf nor the root is integrated out. The fact that we have to subtract one occurrence
of the kernel in

(
K(x− ȳ)−K(x− y)

)
corresponds to the second term in (2.10c)

which has to be added to guarantee for the right behaviour near the diagonal ȳ = y
(see [Hai13, Sec. 6 and Sec. 10] for details).

If h ∈ H is an L2-function then it is easy to check from the recursive construction
in (2.10c) and (2.13) that for every test function ϕ the iterated integral∫

〈Wδ, ,5(·, y, z1, . . . z5), ϕ〉h(z1) . . . h(z5) dz1 . . . dz5 (4.5)

yields the value Πhδ
y (ϕ) for the canonical model constructed from Πhδ

y Ξ = hδ
def
=

h ? %δ. Here we have set

〈Wδ, ,5(·, y, z1, . . . z5), ϕ
〉 def

=

∫
Wδ, ,5(ȳ, y, z1, . . . z5)ϕ(ȳ) dȳ . (4.6)

In the case of the regularised white noise ξδ the relationship between the kernels
and the canonical model is slightly more complicated. The iterated stochastic
integral

I5(〈Wδ, ,5(·, y, . . .), ϕ〉) =

∫
〈Wδ, ,5(·, y, z1, . . . z5), ϕ〉 ξ(dz1) . . . ξ(dz5) (4.7)

does not give the value Πξδ
y (ϕ) for the canonical model contracted from ξδ.

Indeed, iterated integrals obey an Itô-type chain rule that produces some extra terms.
These terms can be represented by additional kernelsWδ, ,3(ȳ, y, z1, z2, z3) and
Wδ, ,1(ȳ, y, z1). These kernels are obtained through suitable contractions of the
graph . Their precise form is not relevant for our discussion and we refer to
[Hai13, Sec. 10.5] and [Nua06] for more detailed explanations. Once these kernels
are constructed, the Πξδ

y is given as

Πξδ
y (ϕ)

def
=

∑
k∈{5,3,1}

Ik
(
〈Wδ; ,k(·, y, · · · ), ϕ〉

)
. (4.8)

As above in (4.6) the pointed bracket on the right hand side denotes integration of
the kernelsWδ;τ,k against ϕ in the first variable ȳ, whereas Ik represents the iterated
stochastic integration with respect to the remaining variables zi.

The decomposition (4.8) is useful for several reasons. On one hand, it gives a
natural decomposition of Πξδ into its components in homogenous Wiener chaoses.
Furthermore, (4.8) in conjunction with the estimate (4.3) reduces the problem of
estimating the second moment of the expression Πξδ

y (ϕ) to deriving bounds on
the L2-norm of the kernelsWδ; ,k. Using the equivalence of all moments in a fixed
Wiener chaos, these bounds in turn can then be used as input into a Kolmogorov-like
theorem (see [Hai13, Thm 10.7]) to obtain bounds on

∫
‖Πξδτ(ξ)‖pEτµ(dξ) for

arbitrary 1 < p <∞.
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On the other hand, we can immediately read off from (4.5) and (4.8) the ho-
mogeneous part of Ψδ; . According to the discussion in Section 3, the terms
corresponding to the kernelsW ,k for k = 1, 3 do not influence the value of the
(Ψδ; )hom. For k = K = 5 the construction of the iterated integrals (see [Nua06,
Section 1.1]) yields an explicit expression of the quantity Ψδ; ,5 evaluated at a
shifted noise ξ + h for h ∈ H. For any h ∈ H and every test function ϕ we get for
µ-almost every ξ

Ψδ; ,5(ξ + h)[y, ϕ] =

∫ 〈
Wδ, ,5(·, y, z1, . . . z5), ϕ

〉
(4.9)(

ξ(dz1) + h(z1)dz1

)
· · ·
(
ξ(dz5) + h(z5) dz5

)
.

Here we use square brackets to denote the evaluation of Ψδ; ,5(ξ + h) ∈ E at
y and at a test function ϕ. According to (3.7) (Ψδ; )hom(h) evaluated at (y, ϕ) is
given by the expectation of this expression. But all of the iterated integrals that
involve at least one power of ξ have vanishing expectation. The only term with
non-zero expectation with respect to µ is given by∫

〈Wδ, ,5(·, y, z1, . . . z5), ϕ〉h(z1) . . . h(z5) dz1 . . . dz5 .

According to the discussion around (4.5) this is precisely Πhδ
y (ϕ) for the canonical

model constructed from hδ.
The reasoning for all the other τ ∈ W is similar – we refer to [Hai13, Sec. 10]

for the precise expressions of the kernels Wδ;τ,k. In each case the Ψδ;τ,k live in
H(k)(µ,Eτ ) and in each case the homogenous part (Ψδ;τ )hom(h) is given by the
canonical model constructed from hδ.

Finally, the recursive definition (2.10c) and (2.13) is homogenous in the input ξ.
Replacing the building block ξ by

√
εξ produces Π

√
εξδτ = ε

Kτ
2 Πξδτ almost surely.

This is precisely the rescaling assumed in the abstract setting in (3.10). Hence, we
are in the situation described in Section 3 and we can apply Theorem 3.5 directly to
the functions Ψ

(ε)
δ for fixed δ to obtain the following large deviation result.

Theorem 4.2. For any ε, δ > 0 let (Π
√
εξδ , F

√
εξδ) ∈M (3) be the canonical model

defined recursively via (2.10c) and (2.13) from Π
√
εξδ

y Ξ =
√
εξδ. In the same way,

for h ∈ H let (Πhδ , F hδ) be the canonical model constructed from hδ = h ? %δ.
Then for any fixed value of δ > 0 the distributions of {(Π

√
εξδ , F

√
εξδ), ε > 0}

under µ satisfy a large deviation principle on M (3) with rate ε and rate function

IModel δ

(
(Π, F )

) def
= inf

{
1
2 |h|

2
H : (Πhδ , F hδ) = (Π, F )

}
.

Proof. Theorem 3.5 applied to {Ψ(ε)
δ ; ε > 0} for fixed value of δ yields a large

deviation principle for the random variable
⊕

τ∈W Π
√
εξδτ ∈ E. For s =

⊕
τ∈W sτ

the rate function is given by

Ĩδ(s) = inf
{

1
2 |h|

2
H : Πhδτ = sτ for τ ∈ W(3)

−

}
.

By construction this random variable takes values in M
(3)
− almost surely. As M

(3)
−

is a closed subset of E it follows automatically that the large deviation principle
also holds on M

(3)
− with respect to the relative topology.
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According to Theorem 2.10 the unique extension to an admissible model is
continuous from M

(d)
− to M (d). Hence the contraction principle, Lemma 3.3,

implies a large deviation principle for the full model. The rate function is given by

IModel δ

(
(Π, F )

)
= inf{Ĩδ(s) : s ∈M(3)

− extension of s is (Π, F )}

= inf
{

1
2 |h|

2
H : Πhδτ = sτ for τ ∈ W(3)

− and

extension of s =
⊕
sτ is (Π, F )

}
= inf

{
1
2 |h|

2
H : (Πhδ , F hδ) = (Π, F )

}
,

which is precisely our claim. �

Combining this result with the contraction principle, Lemma 3.3 and Theo-
rem 2.12 we recover the Freidlin-Wentzell type bounds for the stochastic PDE (1.1)
driven by a noise term

√
εξδ for fixed correlation length δ as the noise strength ε

goes to zero. Of course, such bounds can also be derived without any reference to
the theory of regularity structures.

Our approach produces meaningful new results only when considering the limit
δ → 0. Indeed, if we could show that the Ψδ converges to a limit Ψ in the
sense of (3.9) we could apply Theorem 3.5 to obtain a large deviation principle
for any diagonal sequence δ, ε → 0. Unfortunately, as already explained above
in Section (2.6) this is not true. However, if we replace the models Πξδ by the
renormalised models Π̂ξδ as defined above in (2.22) we obtain uniform bounds and
can pass to the limit δ → 0.

More precisely, for any ε > 0 and δ > 0, let (Π̂
√
εξδ , F̂

√
εξδ) ∈ M (3) be the

model defined recursively via (2.10c), (2.21), and (2.22) from Π̂
(ε)
y Ξ =

√
εξδ, and

then extended to all of M (3) by Theorem 2.10. For δ = 0, we write (Π̂
√
εξ, F̂

√
εξ) =

(Π̂
√
εξ0 , F̂

√
εξ0) ∈ M (3) for the limit as δ → 0 of these models, which exists by

Theorem 2.13. As above, for h ∈ H, we write (Πh, F h) for the canonical model
constructed from h. We then have the following result.

Theorem 4.3. Let ε 7→ δ(ε) ≥ 0 be any function satisfying limε→0 δ(ε) = 0. Then
the distributions of {(Π̂

√
εξδ(ε) , F̂

√
εξδ(ε)), ε > 0} under µ satisfy a large deviation

principle on M (3) with rate ε and rate function

IModel

(
(Π, F )

) def
= inf

{
1
2 |h|

2
H : (Πh, F h) = (Π, F )

}
.

Proof. For δ > 0, define the E-valued functions Ψ̂δ(ξ) as Ψ̂δ;τ (ξ) = Π̂ξδτ . It is
shown in [Hai13, Thms 10.7 and 10.22] that for every τ ∈ W(3)

− these Ψ̂δ;τ (ξ)

converge to the limit Ψ̂τ (ξ) in the sense that

lim
δ→0

∫ ∥∥Ψ̂δ;τ (ξ)− Ψ̂τ (ξ)
∥∥2

Eτ
µ(dξ) = 0 .

Furthermore, each Ψ̂τ (ξ) is given by iterated stochastic integrals against kernels
Ŵτ ;k as, for example, above in (4.7). For each τ ∈ W(3)

− the contribution in the
highest Wiener chaosH(Kτ )(µ,Eτ ) is obtained by simply removing the convolution
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with %δ in the definitions of the the integral kernels Kδ. For example, we have

Ŵ ,5(ȳ, y, z1, . . . , z5)
def
=

∫
dxK(z1 − x)K(z2 − x)K(z3 − x) (4.10)(

K(x− ȳ)−K(x− y)
)
K(z4 − y)K(z5 − y) .

This is because the renormalisation procedure described in (2.21) and (2.22) only
affects the contributions in H(k)(µ,Eτ ) for k < Kτ . This implies that for each
τ ∈ W(3)

− the homogeneous part
(
Ψ̂τ

)
hom

(h) is given by Πhτ , the contribution at
level τ for the canonical model constructed from ΠzΞ = h. Hence, for any function
δ(ε) ≥ 0 with limε→0 δ(ε) = 0, Theorem 3.5 yields a large deviation principle on
E for the sequence of random variables Ψ̂

(ε)
δ(ε). From this we obtain a large deviation

principle for the full renormalised models (Π̂
√
εξδ(ε) , F̂

√
εξδ(ε)) using Theorem 2.10

as well as the contraction principle, Lemma 3.3, in the same way as in the proof of
Theorem 4.2 �

Applying Theorem 2.12 and the contraction principle, Lemma 3.3, once more,
we immediately obtain our main result. In order to formulate it, we use the notation

Cu0([0, T ], Cη) def
= {u ∈ C([0, T ], Cη) : u(0, ·) = u0} ,

and Xu0

def
= Cu0([0, T ], Cη) ∪ {∞}. As above we endow Xu0 with a metric by

postulating that {∞} is at distance 1 from every point in Cu0([0, T ], Cη).

Theorem 4.4. Let η ∈ (−3/2, 1− d
2 − κ) as before and, for any ε, δ > 0 and for

any initial datum u0 ∈ Cη, let û(ε)
δ be the unique solution of the SPDE

∂tu = ∆u+ (C + 3εC
(1)
δ − 9ε2C

(2)
δ )u− u3 +

√
εξδ (4.11)

with initial datum u0. Here C ∈ R is arbitrary and the constants C(i)
δ are defined

in (2.24) and (2.25). For ε > 0, let û(ε)
0 be the limit as δ → 0 of these solutions,

constructed in theorems 2.12 and 2.13. (As before we set it equal to ∞ if the
maximal existence time is less or equal to T .)

Let ε 7→ δ(ε) ≥ 0 be a function with

lim
ε→0

δ(ε) = 0 .

Then the sequence û(ε)
δ(ε) satisfies a large deviation principle inXu0 with rate function

I (∞) = +∞ and

I (u) =
1

2

∫ T

0

∫
Td

(
∂tu−∆u− Cu+ u3

)2
dx dt . (4.12)

This is with the understanding that I (u) = +∞ if u /∈ L3([0, T ]×T3) or if the
distribution appearing in the right hand side of (4.12) is not a square integrable
function.

Remark 4.5. The fact that the prefactor for C(1,2)
δ in (4.11) is given by ε and ε2

respectively follows from (3.10) since K = 2 and K = 4. This is also consistent
with the definitions (10.35) and (10.41) in [Hai13].
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Proof. According to Theorem 2.13 the solution of (4.11) can be obtained by first
applying the solution map SA to the renormalised model (Π̂

√
εξδ(ε) , F̂

√
εξδ(ε)).

According to Theorem 4.3 the renormalised models (Π̂
√
εξδ(ε) , F̂

√
εξδ(ε)) satisfy

a large deviation principle on M (3). Denote by M
(3)
H ⊂M (3) the set of models

obtained by the canonical lift of some element h ∈ H. Since the solutions to the
Allen-Cahn equation driven by a noise term inH are global, the map SA does not
take the value∞ on M

(3)
H . Furthermore, as a consequence of Theorem 2.12, the

solution operator SA (for fixed u0 andC) is continuous from an open neighbourhood
of M

(3)
H in M (3) into Cu0([0, T ], Cη). Since M

(3)
H = {IModel < +∞}, the

contraction principle, Lemma 3.3, immediately implies that the û(ε)
δ(ε) satisfy a large

deviation principle on Xu0 = Cu0([0, T ], Cη) ∪ {∞}.
The rate function is given by

I (u) = inf{IModel(Π, F ) : SA(Π, F ) = u}
= inf

{
1
2 |h|

2
H : SA(Πh, F h) = u

}
.

According to Theorem 2.13, for h ∈ H the function SA(Πh, F h) is simply the
classical solution to

∂tu = ∆u+ Cu− u3 + h .

Standard parabolic regularity theory implies that for h ∈ L2([0, T ] × T3) (and
for such an irregular choice of initial condition) u will at least attain values in
L3([0, T ] × T3)). Conversely, if u can be obtained in this way from h we can
simply recover h by setting

h = ∂tu− (∆u+ Cu− u3) .

This concludes the argument. �

Remark 4.6. Actually, we do not expect the renormalised solutions to explode either
for d = 2 or d = 3. Our argument does not imply this, but we can conclude that the
probability of finite time explosion decays faster than e−cε

−1
for any c ∈ (0,∞).

In a very similar way, Theorem 4.3 implies the following large deviation principle
for solutions of the SPDE without renormalisation:

Theorem 4.7. Let η ∈ (−3/2, 1− d
2 − κ) as before. For any ε, δ > 0 and for any

initial datum u0 ∈ Cη let u(ε)
δ be the unique (global) solution of the SPDE

∂tu = ∆u+ Cu− u3 +
√
εξδ , (4.13)

with initial datum u0.
Let ε 7→ δ(ε) > 0 be a function with limε→0 δ(ε) = 0 and

lim
ε→0

εδ−1 = λ2 ∈ [0,∞). (4.14)

Then the u(ε)
δ(ε) satisfy a large deviation principle in C([0, T ], Cη) with rate function

I (u) =
1

2

∫ T

0

∫
Td

(
∂tu−∆u+ Cλu+ u3

)2
dx dt .

where Cλ = C − 3λ2
∫

R4

(
P ? %

)
(t, x)2 dt dx.

Remark 4.8. Recall that P denotes the heat kernel on the 3-dimensional torus
without any truncation. (See also Remark 2.14.)
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Proof. We start by rewriting (4.13) as

∂tu = ∆u+ C̃(ε)u−
(
u3 −

(
3εC

(1)
δ − 9ε2C

(2)
δ

)
u
)

+
√
εξδ

where C̃(ε) = C − 3εC
(1)
δ + 9ε2C

(2)
δ . According to Theorem 2.13 the solution to

this equation can be obtained by applying the solution operator SA corresponding
to the choice C = C̃(ε) to the renormalised model (Π̂

√
εξδ(ε), F̂

√
εξδ(ε)).

According to the assumption (4.14) and to the definition (2.24) and (2.25) of the
constants C(1)

δ and C(2)
δ the C̃(ε) converge to Cλ. Now the argument proceeds like

the proof of Theorem 4.4, noting only that the solution map is locally uniformly
continuous in the choice of C when applying the contraction principle, Lemma 3.3.

�

Remark 4.9. The analogous result for d = 2 can be obtained in a similar way. There,
according to (2.23) we get for the value of the modified constant Cλ = C − λ2 3

4π

under the assumption that limε→0 ε log δ(ε)−1 = λ2 ∈ [0,∞). In particular, the
value of Cλ does not depend on the choice of mollifying kernel %.

Remark 4.10. For d = 3 we could also consider schemes of the form

∂tu = ∆u+ C̃(ε)u−
(
u3 − 3εC

(1)
δ u

)
+
√
εξδ,

i.e. schemes that ignore the logarithmic sub divergence. In this case we recover a
large deviation result with rate function depending on limε→0 ε

2 log δ(ε)−1 = λ2 ∈
[0,∞).

Remark 4.11. Even though our statement does not make reference to regularity
structures, the proof uses heavily the fact that there is a non-trivial renormalised limit
as δ → 0 for fixed ε > 0. In particular, we do not know if a similar statement (but
with stronger assumptions on how δ(ε)→ 0) holds true in four spatial dimensions
where no renormalised solutions are available.
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Ann. Inst. H. Poincaré Probab. Statist. 43, no. 6, (2007), 775–785. arXiv:math/
0512213. doi:10.1016/j.anihpb.2006.11.002.

[Hai14a] M. HAIRER. Introduction to Regularity Structures. ArXiv e-prints (2014). arXiv:
1401.3014. To appear in Braz. J. Prob. Stat.

[Hai14b] M. HAIRER. Singular stochastic PDEs. ArXiv e-prints (2014). arXiv:1403.6353. To
appear in Proc. ICM.

[Hai14c] M. HAIRER. A theory of regularity structures. Invent. Math. 198, no. 2, (2014), 269–
504. arXiv:1303.5113. doi:10.1007/s00222-014-0505-4.

[HH77] P. C. HOHENBERG and B. I. HALPERIN. Theory of dynamic critical phenomena.
Reviews of Modern Physics 49, no. 3, (1977), 435. doi:10.1103/RevModPhys.49.
435.

[HRW12] M. HAIRER, M. D. RYSER, and H. WEBER. Triviality of the 2D stochastic Allen-
Cahn equation. Electron. J. Probab. 17, (2012), no. 39, 14. arXiv:1201.3089. doi:
10.1214/EJP.v17-1731.

[JLM90] G. JONA-LASINIO and P. K. MITTER. Large deviation estimates in the stochastic
quantization of ϕ4

2. Comm. Math. Phys. 130, no. 1, (1990), 111–121. doi:10.1007/
BF02099877.

[KORVE07] R. KOHN, F. OTTO, M. G. REZNIKOFF, and E. VANDEN-EIJNDEN. Action minimiza-
tion and sharp-interface limits for the stochastic Allen-Cahn equation. Comm. Pure
Appl. Math. 60, no. 3, (2007), 393–438. doi:10.1007/s00526-005-0370-5.

[Led90] M. LEDOUX. A note on large deviations for Wiener chaos. In Séminaire de Probabilités,
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