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Abstract

We consider the linear and nonlinear Schrödinger equation with a spatial white noise
as a potential in dimension 2. We prove existence and uniqueness of solutions thanks
to a change of unknown originally used in [8] and conserved quantities.
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1 Introduction

In this work we study a linear or nonlinear Schrödinger equation on a periodic domain
with a random potential given by a spatial white noise in dimension 2. This equation is
important for various purposes. In the linear case, it is used to study Anderson localisation.
It is a complex version of the famous PAM model. In the nonlinear case, it describes the
evolution of nonlinear dispersive waves in a totally disorder medium (see for instance [6],
[7] and the references therein).

If u denotes the unknown, the equation is given by:

du

dt
= ∆u+ λ|u|2u+ uξ, x ∈ T2, t ≥ 0,

where T2 denotes the two dimensional torus, identified with [0, 2π]2, and ξ is a real-valued
spatial white noise. Of course, λ = 0 for the linear equation. A positive λ corresponds to
the focusing case and λ < 0 to the defocusing case. For simplicity, we take λ = ±1 in the
nonlinear case. The qualitative properties of the solutions are completely different in these
two cases.

We are here interested in the question of existence and uniqueness of solutions. This is
a preliminary but important step before studying other phenomena: solitary waves, blow
up, Anderson localisation... The main difficulty is of course due to the presence of the
rough potential. Recall that in dimension 2, a white noise has a negative regularity which
is strictly less than −1. Apparently, since the Schrödinger equation has very few smoothing
properties and since this smoothing is very difficult to use, it seems hopeless to regularize
it.

However, this equation has many other properties. In particular, it is Hamiltonian and
preserves the mass. Using a transformation due to [8] in the context of PAM, we are able to
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use these invariants and construct solutions which have regularity strictly less than 1. More
precisely, we solve a transformed equation in almost H2(T2), the standard Sobolev space
of functions with derivatives up to order 2 in L2(T2). This is rather surprising since the
regularity is comparable to what is obtained in the parabolic case, when strong smoothing
properties are available.

As in the parabolic case, a renormalization is necessary and at the level of the original
equation, the renormalized equation rewrites formally:

du

dt
= ∆u+ λ|u|2u+ u(ξ −∞), x ∈ T2, t ≥ 0.

The transformation u→ ei∞tu transforms the original equation into the renormalized one.
Therefore, the renormalization amounts to renormalize only the phase. A similar remark
was made in [3] in a related but different context.

For λ < 0, we obtain global solution for any initial data satisfying some smoothness
assumptions. For λ > 0, as in the determinstic case, we need a smallness assumption on
the initial data.

We could of course consider the equation with a more general nonlinearity: |u|2σu
with σ ≤ 1. For σ < 1, no restriction on the size of the initial data is required for λ > 0.
Another easy generalization is to consider a general bounded domain and Dirichlet boundary
conditions, as long as they are sufficiently smooth and the properties of the Green function
of the Laplace operator are sufficiently good so that Lemma 2.1 below holds.

The study of the linear equation is closely related to the understanding of the Schrödinger
operator with white noise potential. This is the subject of a recent very interesting article
by Allez and Chouk ([1]) where the paracontrolled calculus is used to study the domain and
spectrum of this operator. It is not clear how this can be used for the nonlinear equation.

We use the classical Lp = Lp(T2) spaces for p ∈ [1,∞], as well as the L2 based Sobolev
spaces Hs = Hs(T2) for s ∈ R and the Besov spaces Bs

p,q = Bs
p,q(T2), for s ∈ R, p, q ∈ [1,∞].

These are defined in terms of Fourier series and Littlewood-Paley theory (see [2]). Recall
that Hs = Bs

2,2 and that, for k ∈ N, s ∈ (0, 1), Bk+s
∞,∞ coincide with the Hölder space

Ck,s(T2).
Throughout the article, c denotes a constant which may change from one line to the

next. Also, we use a small parameter 0 < ε < e−1 and Kε is a random constant which
can also change but such that EKp

ε is uniformly bounded in ε for all p. Similarly, for
0 < ε1, ε2 < e−1, the random constant Kε1,ε2 may depend on ε1, ε2 but EKp

ε1,ε2 is uniformly
bounded in ε1, ε2 for all p.

2 Preliminaries

We consider the following nonlinear Schrödinger equation in dimension 2 on the torus, that
is periodic boundary conditions are assumed, for the complex-valued unknown u = u(x, t):

i
du

dt
= ∆u+ λ|u|2u+ uξ, x ∈ T2, t ≥ 0. (2.1)
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It is supplemented with initial data

u(x, 0) = u0(x), x ∈ T2.

We need some smoothness on the initial data, this will be made precise below. In the
focusing case λ > 0 we need an extra assumption on the size of ‖u0‖L2 which has be small
enough (see (4.3) below).

The potential ξ is random and is a real valued spatial white noise on T2. For simplicity,
we assume that it has a zero spatial average. The general case could be recovered by adding
an additional Gaussian random potential which is constant in space. This would not change
the analysis below.

Formally equation (2.1) has two invariant quantities. Given a solution u of (2.1), the
mass:

N(u(t)) =

∫
T2

|u(x, t)|2dx

is constant in time as well as the energy:

H(u(t)) =

∫
T2

1

2
|∇u(x, t)|2 − λ

4
|u(x, t)|4 − 1

2
ξ(x)|u(x, t)|2dx.

This is formal because the noise ξ is very rough. In dimension 1, the noise has regularity
−1/2− and belongs to Bα

∞,∞ for any α < −1/2, therefore the product ξ|u|2 can be defined
rigorously for u ∈ H1 and this provides a bound in H1. Existence and uniqueness through
regularization of the noise and a compactness argument can then be obtained.

In dimension 2, the noise lives in any space with regularity −1−, that is any regularity
strictly less than −1, and the solution is not expected to be sufficiently smooth to compen-
sate this. In fact, the product is almost well defined for u ∈ H1 and we are in a situation
similar to the two dimensional nonlinear heat equation with space time white noise. We
expect that a renormalization is necessary.

Inspired by [8], we introduce:
Y = ∆−1ξ

(note that this is well defined since we consider a zero average noise, we choose Y also with
a zero average) and v = ueY . Then the equation for v reads

i
dv

dt
= ∆v − 2∇v · ∇Y + v|∇Y |2 + λ|v|2ve−2Y . (2.2)

Now Y has regularity 1− and ∇Y is 0−. Thus this transformation has lowered the roughness
of the most irregular term on the right hand side. At this point It is easier to see why we need
a renormalization: the term |∇Y |2 is not well defined since ∇Y is not a function. However,
the roughness is mild here and it has been known for long that up to renormalization by
a log divergent constant this square term can be defined in the second order Wiener chaos
based on ξ.

Let us be more precise. Let ρε = ε−2ρ( ·ε) be a compactly supported smooth mollifier
and consider the smooth noise ξε = ρε ∗ ξ. We denote by Yε = ∆−1ξε. Then it is proved in
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[8] that for every κ > 0, ξ belongs almost surely to B−1−κ∞,∞ and, as ε → 0, ξε converges in
probability to ξ in B−1−κ∞,∞ .

Also, denoting by
Cε = E

(
|∇Yε|2

)
the quantity : |∇Yε|2 := |∇Yε|2 − Cε converges in Lp(Ω;B−κ∞,∞) for any p ≥ 1, κ > 0 to a
random variable : |∇Yε|2 : in the second Wiener chaos associated to ξ. It is easy to see that
Cε goes to ∞ as | ln ε| as ε→∞:

E
(
|∇Yε|2

)
∼ K0| ln ε|

for some K0 > 0. By stationarity this quantity does not depend on x ∈ T2.
The precise result, whose proof can be found in [8] in the more difficult case of the

space variable in R2 (see the proofs of Lemma 1.1 and Proposition 1.3 in this work), is the
following.

Lemma 2.1. 1 ≥ κ′ > κ > 0 and any p ≥ 1, there exist a constant c independent of ε such
that: [

E
(
‖Yε − Y ‖p

B1−κ′
∞,∞

)] 1
p

≤ cεκ−
2
p

and [
E
(
‖ : |∇Yε|2 : − : |∇Y |2|‖p

B−κ
′

∞,∞

)] 1
p

≤ cεκ−
2
p .

Remark 2.2. Using the monotonicity of stochastic Lp norms in p, one can drop the expo-
nent −2

p in the right hand side. We state the result in this way because this is the bound

that one actually proves. Below, we use this bound with κ− 2
p = κ′

2 (and κ instead of κ′).

Note that for s < s̃, p, r ≥ 1, we have Bs̃
∞,∞ ⊂ Bs

p,r. Thus, bounds in the latter Besov
spaces follow.

Instead of solving equation (2.2) for vε, we consider:

i
dvε
dt

= ∆vε − 2∇vε · ∇Yε + vε : |∇Yε|2 : +λ|vε|2vεe−2Yε (2.3)

and setting uε = vεe
−Yε :

i
duε
dt

= ∆uε + λ|uε|2uε + (uε − Cε)ξε, x ∈ T2, t ≥ 0.

Since Yε is smooth, it is classical to prove that these equations have a unique solution in
C([0, T ];Hk) for an initial data in Hk, k = 1, 2, provided the L2 norm is small for λ > 0
(see for instance [5], Section 3.6). More details are given in Section 4.

The mass and energy are transformed into the two following quantities which are invari-
ant under the dynamic for vε:

Ñε(vε(t)) =

∫
T2

|vε(x, t)|2e−2Yε(x)dx

4



and

H̃ε(vε(t)) =

∫
T2

(
1

2
|∇vε(x, t)|2 +

1

2
v2ε : |∇Yε|2 : −λ

4
|vε(x, t)|4e−2Yε(x)

)
e−2Yε(x)dx.

Since the most irregular term : |∇Yε|2 : here is not as rough as ξ, this transformed energy
is a much better quantity than the original one. It is possible to give a meaning to it for
ε = 0 and use it to get bounds in H1.

Below, we use the following simple results.

Lemma 2.3. For any κ ∈ (0, 1) and any p ≥ 1, there exist a constant independent on ε
such that:

E
(
‖e−2Yε − e−2Y ‖p

B1−κ
∞,∞

)
≤ cε−

2
p
+κ
.

Proof: Since B1−κ
∞,∞ is equal to the Hölder space C1−κ(T2) we have:

‖e−2Yε − e−2Y ‖B1−κ
∞,∞

= ‖e−2Y (e−2(Yε−Y ) − 1)‖B1−κ
∞,∞
≤ ‖e−2Y ‖B1−κ

∞,∞
‖e−2(Yε−Y ) − 1‖B1−κ

∞,∞
.

Then we write:

‖e−2Y ‖B1−κ
∞,∞
≤ 2‖e−2Y ‖L∞‖Y ‖B1−κ

∞,∞
,

‖e−2(Yε−Y ) − 1‖B1−κ
∞,∞
≤ 2‖e−2Y ‖L∞‖e−2Yε‖L∞‖Yε − Y ‖B1−κ

∞,∞

The result follows by Hölder inequality, Lemma 2.1 and Gaussianity to bound exponential
moments of Y and Yε. �

Lemma 2.4. There exists a contant c independent of ε such that:

E
(
‖∇Yε‖4L4

)
≤ c| ln ε|2

and
E
(
‖ : |∇Yε|2 : ‖4L4

)
≤ c(| ln ε|)4.

Proof: It suffices to write:

E
(∫

T2

|∇Yε(x)|4dx
)

=

∫
T2

E
(
|∇Yε(x)|4

)
dx = 12π2C2

ε .

Similarly:

E
(∫

T2

| : |∇Yε(x)|2 : |4dx
)

= E
(∫

T2

(|∇Yε(x)|2 − Cε)4dx
)

= 51πC4
ε .

�
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3 The linear case

In this section, we start with the linear case: λ = 0. Then the equation for vε reads

i
dvε
dt

= ∆vε − 2∇vε · ∇Yε + vε : |∇Yε|2 : . (3.1)

There exists a unique solution in C([0, T ];H2) if vε(0) ∈ H2. We take the initial data

vε(0) = v0 = u0e
Y

and assume below that it belongs to H2.
The mass and energy of a solution are now:

Ñε(vε(t)) =

∫
T2

|vε(x, t)|2e−2Yε(x)dx

and

H̃ε(vε(t)) =

∫
T2

(
1

2
|∇vε(x, t)|2 +

1

2
v2ε : |∇Yε|2 :

)
e−2Yε(x)dx.

They are constant in time under the evolution (3.1).
Since Yε converges in B1−κ

∞,∞ for any κ > 0 as ε tends to zero, we see that the mass gives
a uniform bound in L2 on vε. More precisely:

‖vε(t)‖2L2 ≤ ‖e2Yε‖L∞‖e−2Yε‖L∞‖v0‖2L2 = Kε‖v0‖2L2 (3.2)

with

Kε = ‖e2Yε‖L∞‖e−2Yε‖L∞ . (3.3)

The energy enables us to get a bound on the gradient.

Proposition 3.1. Let κ ∈ (0, 1/2), there exists a random constant Kε bounded in Lp(Ω)
with respect to ε for any p ≥ 1 such that if v0 ∈ H1:∫

T2

|∇vε(x, t)|2dx ≤ Kε

(
H̃ε(v0) + ‖v0‖2L2

)
.

Proof: Since B−κ∞,2 is in duality with Bκ
1,2 we deduce by the standard multiplication rule

in Besov spaces (see e.g. [2], Section 2.8.1)∣∣∣∣∫
T2

v2ε : |∇Yε|2 : dx

∣∣∣∣ ≤ ‖v2ε‖Bκ1,2‖ : |∇Yε|2 : ‖B−κ∞,2 ≤ Kε‖v2ε‖Bκ1,2 ≤ Kε‖vε‖2Bκ2,2 .

Then we note that ‖vε‖2Bκ2,2 = ‖vε‖2Hκ so that by interpolation∣∣∣∣∫
T2

v2ε : |∇Yε|2 : dx

∣∣∣∣ ≤ Kε‖vε‖2(1−κ)L2 ‖vε‖2κH1 .
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It follows∫
T2

|∇vε(x, t)|2dx ≤ KεH̃(vε(t)) +Kε‖vε(t)‖2(1−κ)L2 ‖vε(t)‖2κH1

≤ KεH̃ε(v0) +Kε‖vε(t)‖2L2 +Kε‖vε(t)‖2(1−κ)L2 ‖∇vε‖2κL2

≤ KεH̃ε(v0) +Kε‖v0‖2L2 +
1

2
‖∇vε‖2L2

and hence, by absorbing the last term in the left hand side,∫
T2

|∇vε(x, t)|2dx ≤ Kε

(
H̃ε(v0) + ‖v0‖2L2

)
.

�
Since H̃ε(v0) is bounded for v0 ∈ H1, we obtain a (random) bound on vε in H1 using

similar arguments as above.

Corollary 3.2. There exists a random constant Kε bounded in Lp(Ω) with respect to ε for
any p ≥ 1 such for any v0 ∈ H1:

‖vε(t)‖H1 ≤ Kε‖v0‖H1 , t ≥ 0.

Unfortunately, this regularity is not sufficient to control the product ∇vε · ∇Yε on the
right hand side of (3.1).

The next observation is that, if v0 is smooth enough, vε is time differentiable and setting
wε = dvε

dt it is a solution of:

i
dwε
dt

= ∆wε − 2∇wε · ∇Yε + wε : |∇Yε|2 : . (3.4)

Since wε satisfies the same equation as vε, it has the same invariant quantities. We use in
particular the mass:

Ñ(wε(t)) = Ñ(wε(0)).

Hence:
‖wε(t)‖L2 ≤ KεÑ(wε(0)) ≤ Kε‖wε(0)‖L2 .

This is still true under the assumption that wε(0) ∈ L2, which is equivalent to v0 ∈ H2.

Proposition 3.3. There exist a random constant Kε bounded in Lp(Ω) with respect to ε
for any p ≥ 1 such that if v0 ∈ H2:

‖vε‖H2 ≤ cKε

(
‖v0‖H2 + ‖v0‖L2 | ln ε|2

)
.

Proof: From (3.1), we have:

wε(0) = −i(∆v0 − 2∇v0 · ∇Yε + v0 : |∇Yε|2 :),

so that, thanks to the embedding H1/2 ⊂ L4,

‖wε(0)‖L2 ≤ c
(
‖v0‖H2 + ‖v0‖H3/2‖∇Yε‖L4 + ‖v0‖H1/2‖ : |∇Yε|2 : ‖L4

)
.
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By interpolation we deduce:

‖wε(0)‖L2 ≤ c
(
‖v0‖H2 + ‖v0‖3/4H2 ‖v0‖

1/4
L2 ‖∇Yε‖L4 + ‖v0‖1/4H2 ‖v0‖

3/4
L2 ‖ : |∇Yε|2 : ‖L4

)
≤ c

(
‖v0‖H2 + ‖v0‖L2‖∇Yε‖4L4 + ‖v0‖L2‖ : |∇Yε|2 : ‖4/3

L4

)
≤ c

(
‖v0‖H2 +Kε‖v0‖L2 | ln ε|2

)
,

(3.5)

where:
Kε = ‖∇Yε‖4L4 | ln ε|−2 + ‖ : |∇Yε|2 : ‖4/3

L4 | ln ε|−2.
By Lemma 2.4 and gaussianity, we know that the moments of this random variable are
bounded with respect to ε.

It follows
‖wε(t)‖L2 ≤ Kε

(
‖v0‖H2 + ‖v0‖L2 | ln ε|2

)
.

This in turn allows us to control ‖vε‖H2 . Indeed, from (3.1),

‖∆vε‖L2 ≤ ‖wε(t)‖L2 + 2‖∇vε · ∇Yε‖L2 + ‖vε : |∇Yε|2 : ‖L2

and by similar arguments as above

‖∆vε‖L2 ≤ ‖wε(t)‖L2 +
1

2
‖∆vε‖L2 + cKε‖vε(t)‖L2 | ln ε|2

and finally
‖∆vε‖L2 ≤ Kε

(
‖v0‖H2 + ‖v0‖L2 | ln ε|2

)
.

The result follows thanks to (3.2). �
This bound does not seem to be very useful since it explodes as ε → 0. To use it, we

consider the difference of two solutions.

Proposition 3.4. Let ε2 > ε1 > 0 then for κ ∈ (0, 1], p ≥ 1 there exist a random constant
Kε1,ε2 bounded in Lp(Ω) with respect to ε1, ε2 for any p ≥ 1 such that if v0 ∈ H2

sup
t∈[0,T ]

‖vε1(t)− vε2(t)‖2L2 ≤ Kε1,ε2ε
κ/2
2 | ln ε2|

1+2κ‖v0‖2H2

Proof: We set r = vε1 − vε2 and write:

i
dr

dt
= ∆r − 2r · ∇Yε1 + r : |∇Yε1 |2 : −2∇vε2 · ∇(Yε1 − Yε2) + vε2(: |∇Yε1 |2 : − : |∇Yε2 |2 :).

By standard computations, we deduce:

1

2

d

dt

∫
T2

|r(x, t)|2e−2Yε1 (x)dx

= Im

∫
T2

(
−2∇vε2 · ∇(Yε1 − Yε2) + vε2(: |∇Yε1 |2 : − : |∇Yε1 |2 :)

)
r̄e−2Yε1 (x)dx

≤ 2‖∇vε2 r̄e−2Yε1‖Bκ1,2‖∇(Yε1 − Yε2)‖B−κ∞,2 + ‖vε2 r̄e−2Yε1‖Bκ1,2‖ : |∇Yε1 |2 : − : |∇Yε2 |2 : ‖B−κ∞,2
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the first term of the right hand side is bounded thanks to interpolation and paraproduct
inequalities (see [2]) and we have

‖∇vε2 r̄e−2Yε1‖Bκ1,2 ≤ c‖vε2‖H1+κ (‖vε1‖Hκ + ‖vε2‖Hκ) ‖e−2Yε1‖Bκ∞,2 .

Then, by Proposition 3.3 and interpolation:

‖vε2‖H1+κ ≤ c‖vε2‖
(1+κ)/2
H2 ‖vε2‖

(1−κ)/2
L2 ≤ Kε2(‖v0‖H2 + ‖v0‖L2 | ln ε2|2)(1+κ)/2‖v0‖(1−κ)/2L2

and, by Corollary 3.2, for i = 1, 2

‖vεi‖Hκ ≤ ‖vεi‖κH1‖vεi‖1−κL2 ≤ Kεi‖v0‖κH1‖v0‖1−κL2 ≤ Kεi‖v0‖
κ/2
H2 ‖v0‖

1−κ/2
L2 .

It follows

‖∇vε2 r̄e−2Yε1‖Bκ1,2 ≤ Kε2‖e−2Yε1‖Bκ∞,2‖v0‖
3
2
−κ

L2 (‖v0‖H2 + ‖v0‖L2 | ln ε2|2)
1
2
+κ

The second term is bounded by the same quantity and we deduce:

1

2

d

dt

∫
T2

|r(x, t)|2e−2Yε1 (x)dx

≤ Kε2‖e−2Yε1‖Bκ∞,2‖v0‖
3
2
−κ

L2 (‖v0‖H2 + ‖v0‖L2 | ln ε2|2)
1
2
+κ

×
(
‖∇(Yε1 − Yε2)‖B−κ∞,2 + ‖ : |∇Yε1 |2 : − : |∇Yε2 |2 : ‖B−κ∞,2

)
.

The result follows thanks to integration in time and Lemma 2.1. �
By interpolation, we deduce from Proposition 3.3 and 3.4 the following result.

Corollary 3.5. Let ε2 > ε1 > 0 then for κ ∈ (0, 1], γ ∈ [0, 2), p ≥ 1 there exist a random
constant Kε1,ε2 bounded in Lp(Ω) with respect to ε1, ε2 for any p ≥ 1 such that if v0 ∈ H2:

sup
t∈[0,T ]

‖vε1(t)− vε2(t)‖2Hγ ≤ Kε1,ε2ε
κ
2
(1− γ

2
)

2 | ln ε1|4‖v0‖2H2

We are now ready to state and prove the main result of this section.

Theorem 3.6. Assume that v0 = u0e
Y ∈ Lp(Ω;H2) for some p > 1. For any T ≥ 0,

q < p, γ ∈ (1, 2), when ε → 0, the solution vε of (3.1) satisfying vε(0) = v0 converges in
Lq(Ω;C([0, T ];Hγ)) to v which is the unique solution to

i
dv

dt
= ∆v − 2∇v · ∇Y + v : |∇Y |2 : (3.6)

in C([0, T ];Hγ) such that v(0) = v0.
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Proof: Pathwise uniqueness is clear. Indeed if v ∈ C([0, T ];Hγ) is a solution of (3.6),
it is not difficult to use a regularization argument to justify

d

dt

∫
T2

|v(x, t)|2e−2Y (x)dx = 0.

Now let εk = 2−k, Corollary 3.5 implies that (vεk) is Cauchy in Lq(Ω;C([0, T ];Hγ)). It is
not difficult to prove that the limit v is a solution of (3.6) and

E

(
sup
t∈[0,T ]

‖vεk(t)‖qHγ

)
≤ cE

(
‖v0‖pH2

)q/p
,

E

(
sup
t∈[0,T ]

‖v(t)‖qHγ

)
≤ cE

(
‖v0‖pH2

)q/p
.

Then, by interpolation with γ < γ̃ < 2:

sup
t∈[0,T ]

‖vε(t)− vεk(t)‖2Hγ

≤ c sup
t∈[0,T ]

‖vε(t)− vεk(t)‖2(1−γ/γ̃)
L2 sup

t∈[0,T ]
‖vε(t)− vεk(t)‖2γ/γ̃

H γ̃

≤ c sup
t∈[0,T ]

‖vε(t)− vεk(t)‖2(1−γ/γ̃)
L2 sup

t∈[0,T ]
(‖vε(t)‖H2 + ‖vεk(t)‖H γ̃ )2γ/γ̃ .

By Proposition 3.4, Proposition 3.3 and the above inequality, we deduce:

E

(
sup
t∈[0,T ]

‖vε(t)− vεk(t)‖qHγ

)
≤ cε

κ
2
(2−γ/γ̃))| ln ε|4E

(
‖v0‖pH2

)q/p
.

Letting k →∞, we deduce that the whole family (vε)ε>0 converges to v in Lq(Ω;C([0, T ];Hγ)).
�

4 The nonlinear equation

We now study the nonlinear equation (2.2) and consider its approximation (2.3) with initial
condition

vε(0) = v0 = u0e
Y

and assume below that it belongs to H2.
Again the mass gives a uniform bound in L2 on vε:

‖vε(t)‖2L2 ≤ Kε‖v0‖2L2 . (4.1)

The estimate on the H1 norm using the energy is similar to the linear case. Recall that
the energy is given by:

H̃ε(vε(t)) =

∫
T2

(
1

2
|∇vε(x, t)|2 +

1

2
v2ε : |∇Yε|2 : −λ

4
|vε(x, t)|4e−2Yε(x)

)
e−2Yε(x)dx

and it can be checked that for all t ≥ 0 we have H̃ε(vε(t)) = H̃ε(v0).
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Proposition 4.1. There exists a constant Kε bounded in Lp(Ω) for any p ≥ 1 such that if
v0 ∈ H1 and

‖e−2Yε‖3L∞‖e2Yε‖L∞‖v0‖L2 ≤ 1 if λ = 1 (4.2)

then
‖vε(t)‖2H1 ≤ Kε

(
‖v0‖2H1 + ‖v0‖2L2‖v0‖2H1

)
.

Moreover, the sequence (Kk) = (K2−k) is bounded almost surely.

Remark 4.2. It is classical that the equation for uε is locally well posed in H1, see [5]
Section 3.6. The bound obtained here gives a global bound in H1 for uε so that global
existence and uniqueness hold for uε and thus for vε.

Proof: We proceed as in the proof of Proposition 3.1. We first have∣∣∣∣∫
T2

v2ε : |∇Yε|2 : dx

∣∣∣∣ ≤ Kε‖vε‖2(1−κ)L2 ‖vε‖2κH1

and ∫
T2

|∇vε(x, t)|2dx

≤ KεH̃(vε(t)) +Kε‖vε(t)‖2(1−κ)L2 ‖vε(t)‖2κH1 +
λ

4

∫
T2

|vε(x, t)|4e−2Yε(x)e−2Yε(x)dx

≤ KεH̃ε(v0) +Kε‖v0‖2L2 +
1

2
‖∇vε‖2L2 +

λ

4

∫
T2

|vε(x, t)|4e−2Yε(x)e−2Yε(x)dx.

For λ = −1, the result follows after dropping the last term and using∫
T2

|v0(x)|4e−4Yε(x)dx ≤ Kε‖v0‖4L4 ≤ Kε‖v0‖4H1/2 ≤ Kε‖v0‖2L2‖v0‖2H1

thanks to the Sobolev embedding H1/2 ⊂ L4 and interpolation.
For λ = 1, Gagliardo-Nirenberg inequality (see for instance [4] for a simple proof with

the constant 1/2 used below):∫
T2

|vε(x, t)|4e−4Yε(x)dx ≤ ‖e−2Yε‖2L∞
∫
T2

|vε(x, t)|4dx

≤ 1

2
‖e−2Yε‖2L∞

∫
T2

|vε(x, t)|2dx
∫
T2

|∇vε(x, t)|2dx

≤ 1

2
‖e−2Yε‖3L∞‖e2Yε‖L∞‖v0‖2L2

∫
T2

|∇vε(x, t)|2dx,

where we have made use of ‖vε(t)‖2L2 ≤ ‖e2Yε‖L∞‖e−2Yε‖L∞‖v0‖2L2 according to (3.2). The
result follows easily under assumption (4.2).

The constant Kε is a polynomial in ‖ : |∇Yε|2 : ‖B−κ∞,2 , ‖e−2Yε‖L∞ and ‖e2Yε‖L∞ . By

Lemma 2.1 and Lemma 2.3 and Borel-Cantelli, we know that : |∇Y2−k |2 : and Y2−k converge
almost surely in B−κ∞,∞ and B1−κ

∞,∞ so that Kk is indeed bounded almost surely. �
We now proceed with the H2 bound.

11



Proposition 4.3. There exist a random constants Kε bounded in Lp(Ω) with respect to ε
for any p ≥ 1 such that if v0 = u0e

−Y ∈ H2 and (4.2) holds:

‖vε(t)‖H2

≤ cKε

(
1 + ‖v0‖H2 + ‖v0‖L2 | ln ε|4 + ‖v0‖3H1 + ‖v0‖3L2‖v0‖3H1

)exp(Kε(‖v0‖2
H1+‖v0‖2L2‖v0‖2H1

)
t)
.

Moreover Kk = K2−k is bounded almost surely.

Remark 4.4. We know that if uε(0) ∈ H2, the solution uε lives in H2 (see [4]). Since
uε(0) = v0e

−Yε, we can apply this result.

Proof: As in Section 3, we set wε = dvε
dt which now satisfies:

i
dwε
dt

= ∆wε − 2∇wε · ∇Yε + wε : |∇Y |2 : +λ
(
|vε|2wε + 2Re(vεw̄ε)vε

)
e−2Yε .

From (2.3), we have:

wε(0) = −i(∆v0 − 2∇v0 · ∇Yε + v0 : |∇Yε|2 :) + λ|v0|2v0e−2Yε ,

and as in Proposition 3.3 and using the embedding H1 ⊂ L6:

‖wε(0)‖L2 ≤ c‖v0‖H2 + ‖v0‖L2

(
‖∇Yε‖4L4 + ‖ : |∇Yε|2 : ‖4/3

L4

)
+ ‖e−2Yε‖L∞‖v0‖3H1 .

By Lemma 2.4:

P(‖∇Yε‖4L4 + ‖ : |∇Yε|2 : ‖4/3
L4 ≥ | ln ε|4) ≤ c| ln ε|−2

it follows that
‖wε(0)‖L2 ≤ c‖v0‖H2 +Kε‖v0‖L2 | ln ε|4 +Kε‖v0‖3H1

with Kε having all moments finite and such that K2−k is almost finite by Borel-Cantelli.We
have taken | ln ε|4 instead of | ln ε|2 in the estimate above in order to have this latter property.
Recall that Y2−k converges a.s. in L∞.

We do not have preservation of the L2 norm but:

1

2

d

dt

∫
T2

|wε(x, t)|2e−2Yε(x)dx

= 2λ

∫
T2

Re(vε(x, t)w̄ε(x, t))Im(vε(x, t)w̄ε(x, t))e
−4Yε(x)dx

≤ Kε‖vε(t)‖2L∞
∫
T2

|wε(x, t)|2e−2Yε(x)dx

≤ Kε‖vε(t)‖2H1 (1 + ln(1 + ‖vε(t)‖H2))

∫
T2

|wε(x, t)|2e−2Yε(x)dx

≤ Kε

(
‖v0‖2H1 + ‖v0‖2L2‖v0‖2H1

)
(1 + ln(1 + ‖vε(t)‖H2))

∫
T2

|wε(x, t)|2e−2Yε(x)dx

12



thanks to the Brezis-Gallouet inequality ([4]) and to Proposition 4.1. Then as above we
have:

‖∆vε(t)‖L2 ≤ 2‖wε(t)‖L2 + cKε‖vε(t)‖L2 | ln ε|4 + λ‖|vε(t)|2vεe−2Yε‖L2

≤ 2‖wε(t)‖L2 +Kε‖vε(t)‖L2 | ln ε|4 +Kε‖vε(t)‖3L6 .

By the embedding H1 ⊂ L6 and Proposition 4.1, we deduce

‖vε(t)‖H2 ≤ c‖wε(t)‖L2 +Kε

(
‖v0‖L2 | ln ε|4 + ‖v0‖3H1 + ‖v0‖3L2‖v0‖3H1

)
.

Again, the almost sure boundedness of the different constant Kk is obtained thanks to
Lemma 2.3, Lemma 2.4 and Borel-Cantelli.

To lighten the following computation, we use the temporary notations:

w̃ε = ‖wεe−Yε‖2L2 , αε = Kε

(
‖v0‖2H1 + ‖v0‖2L2‖v0‖2H1

)
,

βε = Kε

(
‖v0‖L2 | ln ε|4 + ‖v0‖3H1 + ‖v0‖3L2‖v0‖3H1

)
.

Then we have:
d

dt
w̃ε ≤ αε (1 + ln(1 + ‖vε‖H2)) w̃ε

≤ αε (1 + ln(1 + c‖wε‖L2 + βε)) w̃ε
≤ αε (1 + ln(1 +Kεw̃ε + βε)) w̃ε.

Hence
d

dt
(1 + ln(1 +Kεw̃ε(t) + βε)) ≤ αε(1 + ln(1 +Kεw̃ε(t) + βε)).

By Gronwall’s Lemma we deduce:

1 + ln(1 +Kεw̃ε(t) + βε) ≤ (1 + ln(1 +Kεw̃ε(0) + βε)) exp(αεt)

and taking the exponential

‖wε(t)‖L2 ≤ Kεw̃ε(t) ≤ cKε(1 +Kεw̃ε(0) + βε)
exp(αεt)

≤ Kε(1 +Kε‖wε(0)‖L2 + βε)
exp(αεt)

≤ Kε(1 +Kε‖v0‖H2 + βε)
exp(αεt).

The result follows. �
We see that this H2 bound is not as good as in the linear case. Due to the double

exponential, we do not have moments here. However, this is sufficient to prove existence
and uniqueness. We now state the main result of this section.

Theorem 4.5. Assume that v0 = u0e
Y ∈ H2 and

‖e−2Y ‖3L∞‖e2Y ‖L∞‖v0‖L2 < 1 if λ = 1. (4.3)
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For any T ≥ 0, p ≥ 1, γ ∈ (1, 2), when ε→ 0, the solution vε of (3.1) satisfying vε(0) = v0
converges in probability in C([0, T ];Hγ)) to v which is the unique solution to

i
dv

dt
= ∆v − 2∇v · ∇Y + v : |∇Y 2 : +λ|v|2ve−2Y (4.4)

with paths in C([0, T ];Hγ) such that v(0) = v0.

Proof: Again, pathwise uniqueness is easy.
Under assumption (4.3), we know that (4.2) holds for ε small enough. Thus we may use

Propositions 4.1 and 4.3.
We take ε2 > ε1 > 0, set r = vε1 − vε2 and write:

i
dr

dt
= ∆r − 2r · ∇Yε1 + r : |∇Yε1 |2 : −2∇vε2 · ∇(Yε1 − Yε2) + vε2(: |∇Yε1 |2 : − : |∇Yε2 |2 :)

+λ|vε1 |2re−2Yε1 − λ(|vε2 |2 − |vε1 |2)vε2e−2Yε1 + λ|vε2 |2vε2(e−2Yε1 − e−2Yε2 ).

By the same arguments as in Section 3 and standard estimates we obtain;

1

2

d

dt

∫
T2

|r(x, t)|2e−2Yε1 (x)dx

≤ c‖e−2Yε1‖Bκ∞,2‖vε2(t)‖H1+κ(‖vε1(t)‖Hκ + ‖vε1(t)‖Hκ)

×
(
‖∇(Yε1 − Yε2)‖B−κ∞,2 + ‖ : |∇Yε1 |2 : − : |∇Yε2 |2 : ‖B−κ∞,2

)
+Kε1(‖vε1‖L∞ + ‖vε2‖L∞)‖vε2‖L∞

∫
T2

|r(x, t)|2e−2Yε1 (x)dx

+Kε1‖vε2‖3L∞(‖vε1‖L2 + ‖vε2‖L2)‖e−2Yε1 − e−2Yε2‖L2

≤ Kε1,ε2‖vε2(t)‖κH2(‖vε1(t)‖H1 + ‖vε1(t)‖H1)2−κε
κ/2
2

+Kε1(‖vε1‖H1 + ‖vε2‖H1)2(1 + ln(1 + ‖vε1‖H2) + ln(1 + ‖vε2‖H2))

×
∫
T2

|r(x, t)|2e−2Yε1 (x)dx

+Kε1,ε2‖vε2‖3H1(1 + ln(1 + ‖vε1‖H2))3/2(‖vε1‖L2 + ‖vε2‖L2)εκ2 ,

by the Brezis-Gallouet inequality. We have used for κ ∈ (0, 1):

‖e−2Yε1 − e−2Yε1‖L2 ≤ 2‖Yε1 − Yε2‖L2(‖e−2Yε1‖L∞ + ‖e−2Yε2‖L∞)

≤ c|ε2|κ‖Y ‖Bκ∞,∞(‖e−2Yε1‖L∞ + ‖e−2Yε2‖L∞)

≤ Kε1,ε2 |ε2|κ.
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Again, the constants Kε1 , Kε1,ε2 above have all moments bounded independently of ε1, ε2
are almost surely bounded in k for ε1 = 2−(k+1), ε2 = 2−k.

We deduce from Gronwall’s Lemma:

ln ‖r‖L2 ≤ Kε1,ε2P (v0)(1 + lnP (v0) + ln | ln ε1|)exp(Kε1,ε2P (v0)t)

+κ exp(Kε1,ε2P (v0)t)(lnKε1,ε2 + lnP (v0) + ln | ln ε1|)−
κ

2
| ln ε2|,

where P (v0) denotes a polynomial in ‖v0‖H2 . By interpolation, we have

ln ‖r‖Hγ ≤ c+ (1− γ

2
) ln ‖r‖L2 +

γ

2
ln ‖r‖H2

so that a similar estimate holds for ln ‖r‖Hγ , γ < 2.
The constants Kε1,ε2 are bounded almost surely when ε1 = 2−(k+1), ε2 = 2−k so that

‖v2−(k+1) − v2−k‖Hγ ≤ C(v0)| ln 2−(k+1)|C(v0)2−
κ
2
(k+1),

where now C(v0) is a random constant depending on ‖v0‖H2 . It follows that v2−k is Cauchy
in C([0, T ], Hγ).

Finally, we reproduce the estimate above for ‖vε(t) − v2−k‖L2 but bound ‖v2−k‖L∞ by
‖v2−k‖Hγ instead of using Brezis-Gallouet inequality. We obtain:

ln ‖vε(t)− v2−k‖L2 ≤ K̃ε,2−kP (v0)(1 + lnP (v0) + ln | ln ε|)exp(K̃ε,2−kP (v0)t)

+κ exp(K̃ε,2−kP (v0)t)(ln K̃ε,2−k + lnP (v0) + ln | ln ε1|)−
κ

2
| ln ε|,

where K̃ε,2−k are constants with moments bounded independently on ε and k. Again, a
similar bound holds for the Hγ norm thanks to an interpolation argument. Letting k →∞
yields:

ln ‖vε(t)− v‖L2 ≤ K̃εP (v0)(1 + lnP (v0) + ln | ln ε|)exp(K̃εP (v0)t)

+κ exp(K̃εP (v0)t)(ln K̃ε + lnP (v0) + ln | ln ε1|)−
κ

2
| ln ε|,

where again K̃ε are constants with bounded moments.
The conclusion follows. �

Remark 4.6. Condition (4.3) is probably not optimal. It can easily be weakened to
λK3

2,εK1,ε‖v0‖L2 < 2, but this is probably not optimal either.
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