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ABSTRACT. We study the invariant measure of the one-dimensional stochastic
Allen-Cahn equation for a small noise strength and a large but finite system.
We endow the system with inhomogeneous Dirichlet boundary conditions that
enforce at least one transition from −1 to 1. (Our methods can be applied to
other boundary conditions as well.) We are interested in the competition between
the “energy” that should be minimized due to the small noise strength and the
“entropy” that is induced by the large system size.

Our methods handle system sizes that are exponential with respect to the in-
verse noise strength, up to the “critical” exponential size predicted by the heuris-
tics. We capture the competition between energy and entropy through upper and
lower bounds on the probability of extra transitions between ±1. These bounds
are sharp on the exponential scale and imply in particular that the probability of
having one and only one transition from −1 to +1 is exponentially close to one.
In addition, we show that the position of the transition layer is uniformly dis-
tributed over the system on scales larger than the logarithm of the inverse noise
strength.

Our arguments rely on local large deviation bounds, the strong Markov prop-
erty, the symmetry of the potential, and measure-preserving reflections.

1. INTRODUCTION

In this paper we study the unique invariant measure of the stochastically per-
turbed Allen-Cahn equation

∂tuε(t, x) = ∂2
x uε(t, x)− V ′(uε(t, x)) +

√
2ε η(t, x), (1.1)

where uε is a one-dimensional order parameter defined for all non-negative times
t ∈ R+ and x ∈ (−Lε, Lε). Here η is a formal expression denoting space-time
white noise and V is a symmetric double-well potential. The canonical choice for
V is

V (u) =
1

4
(1− u2)2,

although more general choices are possible (see Assumption 1.1 below). We are
interested in the properties of the invariant measure for large system sizes,

Lε � 1.

It is well-known that for ε ↓ 0 and fixed system size L, the invariant measure of
the Allen-Cahn equation concentrates on minimizers of the energy∫ L

−L

(
1

2
(∂xu)2 + V (u)

)
dx.
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This follows from large deviation theory. In fact, even for system sizes Lε that
grow with ε, the same is true. Indeed, in [Web10] the second author proved this
fact for Lε ∼ ε−α for any α < 2

3 .
Our main goal in the current paper is to go up to interval sizes that are exponen-

tial with respect to ε−1 and, specifically, to understand the competition between
energy and entropy that emerges in this regime. Let us first consider the effect of
energy on the measure. The intuition is that the invariant measure can be viewed
as a Gibbs measure with the given energy, i.e., that it is in some heuristic sense
proportional to

exp

(
−1

ε

∫ Lε

−Lε

(
1

2
(∂xu)2 + V (u)

)
dx

)
.

The heuristic picture then says that, because of the potential term in the energy,
functions u supported on this measure are most likely to be close to one or the other
minimum of V on most of [−Lε, Lε]. On the other hand, because of the gradient
term in the energy, there is an energetic “cost” c0 for each transition between these
two preferred states, making such transitions unlikely. When the system size is
order-one, this is the end of the story.

Now let us consider the competing effect of entropy on the measure when the
system size is large. Namely, the probability of finding a transition between the
minima of V is increased by the fact that it is possible for the transition to occur
anyplace in the system. Hence, the folklore is that the probability of finding n
transition layers scales like

(Lε)
n exp

(
−nc0

ε

)
. (1.2)

This competition between entropy and energy is captured (on the exponential level)
in our first theorem, Theorem 1.5 below. Our second result, Theorem 1.9, then
shows the uniform distribution of transitions within the domain.

As far as our methods, the central idea is that one can decompose the measure
into conditional measures and the corresponding marginals in order to reduce to
order-one intervals on which one can apply large deviation theory. Along the way,
it is important for us to use measure-preserving reflection arguments that allow us
to transform the underlying Brownian paths. The detailed structure of the (deter-
ministic) energy functional is also critical in our proofs.

We will state our results in detail in Subsection 1.2 after first explaining our
set-up and notation.

1.1. Set-up and notation. For the potential V in (1.1), we need a symmetric
double-well potential with at least superlinear growth at infinity. For simplicity,
we assume that the two minima of V are normalized to be at ±1 and that the mini-
mum value of the potential is zero. To be precise, our assumptions are:

Assumption 1.1. V is a smooth, even potential such that, on (0,∞), V satisfies

V (u) ≥ 0 and V (u) = 0 iff u = 1,

V ′(u) = 0 if and only if u = 1,

V ′′(1) > 0,

V (u) ≥ u1+β/C for u ≥ C for some C <∞ and β > 0. (1.3)
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Remark 1.2. If we assume superquadratic growth on V at infinity (recall that we
have quartic growth of the standard double well potential V (u) = (1 − u2)2/4),
some of our technical lemmas simplify slightly. In particular, one can remove the
dependence of the minimal system size `∗ on M in Lemmas 2.3 and 2.5.

Because of the normalization of our potential, the transitions that we are inter-
ested in are transitions between ±1. We make the notion precise in the following
definition.

Definition 1.3 (Up/down transition layers). We say that u has an up transition
layer on (x−, x+) if

u(x±) = ±1 and |u(x)| < 1 for all x ∈ (x−, x+).

We say that u has a down transition layer on (x−, x+) if the same condition holds
with signs reversed, and that u has a transition layer if it has an up or down tran-
sition layer.

For the boundary conditions on our PDE, we will work with the popular inho-
mogeneous Dirichlet boundary conditions

uε
(
t,±Lε

)
= ±1

ε

∫ `0

−`0
V
(
ε1/2(û− 1) + 1

)
1. (1.4)

Because of the boundary conditions, there is necessarily one up transition layer,
and the question is whether there are additional transition layers. Moreover, if there
are additional layers, they come as a pair of an up layer and a down layer. Note
that our methods can also handle other boundary conditions, for instance periodic
boundary conditions or Dirichlet boundary conditions that do not force a transition
layer to be present.

We will denote the invariant measure of (1.1) subject to the boundary condi-
tions (1.4) by µ−1,1

ε,(−Lε,Lε) and the corresponding expectation by Eµε,−1,1
(−Lε,Lε)(·). We

will often use the fact that the measure µ−1,1
ε,(−Lε,Lε) can be written as a Gaussian

measure with density [Zab89]. Namely, one can express the expectation of any test
function Φ as

Eµε,−1,1
(−Lε,Lε)(Φ) =

EWε,−1,1
(−Lε,Lε)

[
Φ(u) exp

(
− 1

ε

∫ Lε
−Lε V (u) dx

)]
EWε,−1,1

(−Lε,Lε)

[
exp

(
− 1

ε

∫ Lε
−Lε V (u) dx

)] . (1.5)

Here EWε,−1,1
(−Lε,Lε) denotes the expectation with respect to the measure W−1,1

ε,(−Lε,Lε),
which is the distribution of a Brownian bridge on (−Lε, Lε) from −1 to +1 with
variance proportional to ε. Properties ofW−1,+1

ε,(−Lε,Lε) will be discussed in detail in
Section 3.

The deterministic Allen-Cahn equation (set η = 0 in (1.1)) is the L2-gradient
flow of the energy

E(u) :=

∫ Lε

−Lε

(
1

2
(∂xu)2 + V (u)

)
dx. (1.6)
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When we need to refer to the energy on all of R or the localized energy on a
subinterval, we will denote this with a subscript:

E(−∞,∞)(u) =

∫ ∞
−∞

(
1

2
(∂xu)2 + V (u)

)
dx,

E(−`,`)(u) =

∫ `

−`

(
1

2
(∂xu)2 + V (u)

)
dx. (1.7)

As mentioned above, the energy functional will be important for understanding
the invariant measure of the stochastic equation. In particular, the probability of
finding transition layers will depend on the energetic “cost” of a transition layer on
R, that is:

c0 := inf
{
E(−∞,∞)(u) : u(±∞) = ±1

}
. (1.8)

It is well known [MM77] that this cost can be computed explicitly as

c0 =

∫ 1

−1

√
2V (u) du

Ass. 1.1
= 2

∫ 1

0

√
2V (u) du; (1.9)

see the beginning of Section 2 for an explanation.
We will often refer to scaling regimes in our results. To this end, we define the

following notation.

Notation 1.4. The well-established theory of large deviations applies on intervals
whose length is order-one with respect to ε. A main point of this paper, however, is
to obtain estimates on intervals that are exponentially large with respect to ε and
for which, consequently, the established theory does not apply. We therefore use a
subscript of ε in order to distinguish interval lengths that are large with respect to
ε from quantities that are order-one with respect to ε.

To specify bounds with respect to ε, we sometimes make use of the shorthand
notation�, ., and /. To explain: We write

Aε � Bε

if for every C <∞, we have Aε/Bε ≤ 1/C for ε sufficiently small.
We write

Aε . Bε

if there exists a universal constant C <∞ such that Aε ≤ C Bε, and similarly for
Aε & Bε. If both inequalities hold, then we write Aε ∼ Bε.

We write

Aε / Bε

if for every α > 0 we have Aε ≤ Bε + α for ε sufficiently small, and similarly for
Aε ' Bε. If both inequalities hold, then we write Aε ≈ Bε.

We use numbered constants C1, C2, et cetera, to denote specific constants that
we refer to later in the paper. On the other hand, we use C to denote a generic
order-one constant whose value may change from place to place. Throughout the
article, C or a numbered constant Ci is a constant that is universal except for a
possible dependence on the potential V .

We are now ready to state our results.
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1.2. Main results. Recall that the boundary conditions imply that there must be
at least one up layer and that any additional layers come in pairs. We will always
consider the regime where the system size Lε satisfies

1� Lε . exp

(
c′0
ε

)
for some c′0 < c0. (1.10)

(Recall that c0 is the energy cost defined in (1.8).) This is the regime in which one
expects the probability of extra transitions to go to zero and in particular to obey
the energetic and entropic scaling expressed in (1.2). Our first result captures this
behavior on the exponential level.

Theorem 1.5. Suppose that Lε satisfies (1.10). Then for every n ∈ N and γ > 0
sufficiently small, there exists ε0 > 0 such that for ε ≤ ε0, one has the upper bound

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
≤ (Lε)

2n exp

(
−2nc0 − γ

ε

)
,

and the lower bound

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
≥ (Lε)

2n exp

(
−2nc0 + γ

ε

)
.

Remark 1.6. One should note that because of the error term γ, our result sees only
information on the exponential level. In particular, if one has an exponential system
size such that

ε log Lε ≈ c′0 < c0,

then what our result says is that for any n ∈ N we have

ε logµ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
≈ −2n(c0 − c′0).

Remark 1.7. Throughout the paper, when we say “u has 2n + 1 layers,” we mean
that u has at least 2n+ 1 layers.

Remark 1.8. As mentioned above, our techniques can also handle different bound-
ary conditions, e.g., periodic boundary conditions or Dirichlet boundary conditions
that do not enforce a transition layer. For instance, for periodic boundary condi-
tions or Dirichlet conditions u(±Lε) = 1, the probability of 2n transition layers is
bounded above and below by

(Lε)
2n exp

(
−2nc0 ∓ γ

ε

)
,

respectively, while for homogeneous Dirichlet boundary conditions, the probability
of n transition layers is bounded above and below by

(Lε)
n exp

(
−nc0 ∓ γ

ε

)
,

respectively.

Our second main result states that, on scales larger than logarithmic in 1/ε, the
layer location is uniformly distributed in the following sense.
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Theorem 1.9. Consider µ−1,1
ε,(−Lε,Lε) in the regime

| log ε| � Lε . exp

(
c′0
ε

)
for some c′0 < c0. (1.11)

Let dε > 0 be such that
| log ε| � dε ≤ Lε.

Then uniformly for any x such that [x− dε, x+ dε] ⊆ [−Lε, Lε], we have

Lε
dε

µ−1,1
ε,(−Lε,Lε)

(
there is an up layer contained in [x− dε, x+ dε]

)
≈ 1. (1.12)

The theorem says that the probability of finding an up transition layer in a subin-
terval of length 2dε given a system size 2Lε is approximately dε/Lε in the sense
expressed in (1.12), independent of the location of the subinterval. (The existence
of an up transition layer somewhere in the system is forced by the boundary con-
ditions.) In this sense, the layer locations are approximately uniformly distributed.
The theorem is strongest when considering dε at the lower range of validity: It
shows that the uniform distribution holds not only on macroscopic intervals but
also down to the logarithmic scale.

We remark that the uniform distribution of the layer location in our regime is
very different from the characterization of the layer distribution in the case Lε =
| log ε|/4 studied in [BBB08b]; see Subsection 1.4 below for more discussion.

1.3. Methods: Markovianity, compact sets, and reflections. Our approach for
Theorem 1.5 relies on a simple idea. Namely, while we cannot use large deviation
theory directly on (−Lε, Lε), we can use the Markovianity of the underlying ref-
erence measure to reduce to order-one subintervals on which we can. In particular,
by taking large (but order-one) subintervals and conditioning on the boundary val-
ues of a larger, surrounding subinterval, we can take advantage of large deviation
bounds with a cost that is to leading order independent of the subinterval size. This
method is similar in spirit to Freidlin and Wentzell’s approach of calculating the ex-
pected exit time from a metastable domain for a diffusion process with small noise
([FW98], see Subsection 1.4 for a more detailed account of the related literature).

To illustrate the idea, suppose that we want to estimate the probability that there
is a transition layer contained within [−`, `] for some ` large. (Transition layers are
introduced in Definition 1.3 above; roughly, they are layers connecting ±1.) The
Markov property (Lemma 3.2) implies that this probability can be written as

µ−1,1
ε,(−Lε,Lε)

(
transition in(−`, `)

)
=

∫ ∞
−∞

∫ ∞
−∞

ν(du−, du+)µ
u−,u+

ε,(−2`,2`)

(
transition in(−`, `)

)
. (1.13)

Here ν denotes the marginal distribution of the pair (u(−2`), u(2`)), and µu−,u+

ε,(−2`,2`)

denotes the distribution of paths on (−2`, 2`) with boundary conditions u± (see
Section 3 for a precise definition of this measure).

In Subsection 3.2 we establish large deviation estimates for the measures µu−,u+

ε,(−2`,2`)

that hold locally uniformly in the boundary values u±. Hence for u± in some large
compact set, we can integrate over these bounds in (1.13). On the other hand, the
probability that the boundary values u± fall outside of the compact set [−M,M ]
for M � 1 decays exponentially with M (see Lemma 4.1 below).
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x

FIGURE 1.1. A vertical reflection turns a transition layer into a
“wasted excursion” in which (roughly speaking) the path goes
from −1 to 0 and then back to −1. The probability of a wasted
excursion on (−`, `) is approximately independent of the bound-
ary conditions at ±2`.

For boundary values within the compact set [−M,M ], large deviation theory
gives the uniform estimate

µ
u−,u+

ε,(−2`,2`)

(
transition in(−`, `)

)
= exp

(
− 1

ε

(
∆E(transition) + o(1)

))
.

Here ∆E(transition) denotes the difference between the minimal energy of paths
that perform a transition in (−`, `) and the minimal energy of any profile u that
satisfies the boundary conditions u(±2`) = u±. (See Subsection 3.2 for a more
complete discussion.)

Now we arrive at the second problem, which is more subtle. The issue is that
the energy difference ∆E(transition) depends strongly on the boundary conditions.
The cost that we are expecting to recover is c0, defined in (1.8). However, if u− ≈
−1 and u+ ≈ 1, for instance, then the energy difference is approximately zero!
In this case, the information about the probability of a transition is encoded in the
distribution ν.

Our idea to handle the problem of dependence on the boundary conditions relies
on Markovianity and the global symmetries of µ−1,1

ε,(−Lε,Lε). What we want to do
is to transform a transition event into an event that does not feel the influence
of the boundary conditions. Roughly, the new event will be that there are points
x < y < z ∈ (−`, `) such that u(x) ≈ u(z) ≈ −1 while u(y) = 0. (See Figure
1.1 for an illustration and Definitions 2.4 and 2.7 for formal definitions of these
“wasted excursions.”) The expected cost for such an event is also c0, and a little
thought reveals that this should be the energy difference regardless of the boundary
conditions at ±2`. (For a result in this direction, see Lemma 2.5.)

In order to transform transitions into wasted excursions, we use the strong Markov
property (see Lemma 3.3) and the symmetry of V . Specifically, we reflect paths
vertically between certain hitting points of zero in such a way that leaves µ−1,1

ε,(−Lε,Lε)
invariant. For details, see for instance (4.22) and the subsequent calculations in the
proof of Theorem 1.5.

A different reflection operator turns out to be useful when we come to the
proof of the uniform distribution of the layer location in Theorem 1.9. Again
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x

J1 J2

FIGURE 1.2. A point reflection between a hitting point of−1 and
a hitting point of +1 moves the transition from the interval J1 into
the interval J2. As the point reflection preserves the measure, both
events have the same probability.

the Markovianity and the symmetry of µ−1,1
ε,(−Lε,Lε) are crucial. Here the rough

idea is to show that the probability of finding the transition layer in any interval
[y − dε, y + dε] is approximately the same as that of finding the layer in any other
interval [z−dε, z+dε]. In Section 5, we construct a measure-preserving reflection
operator that transforms paths with a transition in [y− dε, y+ dε] into paths with a
transition in (or near) [z − dε, z + dε]. We build this reflection operator using cer-
tain hitting points of −1 and +1 to the left and right of the transition layer. (This
is illustrated in Figure 1.2.) Hence a key point is to prove that, on the set of paths
with a transition in [y − dε, y + dε], such hitting points exist with high probability.
This fact is developed in Lemmas 5.1 and 5.2 using an iterated rescaling argument
and large deviation bounds.

1.4. Background literature and related results. The study of the effect of a
small noise on a physical system has a rich history in the chemistry, physics,
and mathematics literature. With roots in the fluctuation theory of Einstein [Ei10]
(1910), the path integral formulations of Wiener [W30] (1930) and Feynman [Fe48]
(1948) lie at the heart of the large deviation theory for diffusion processes and the
characterization of the corresponding invariant measure. One of the aspects to
receive the most applied interest and significant mathematical attention is the ques-
tion of the first exit time from a metastable basin. The exponential dependence
of the mean exit time on the energy barrier goes back to Van’t Hoff and Arrhe-
nius [VH84, A89] (1889). Refining this picture, the so-called Kramers formula de-
termines the prefactor in terms of the curvature of the potential at the critical points
and was made famous in the 1940 paper by Kramers [Kr40], although the result
(for the overdamped dynamics) had been derived as early as 1927 by Farkas [Fa27].
See the review paper by Hänggi, Talkner, and Borkovec [HTB90] for a thorough
historical survey. The higher dimensional case was analyzed by Landauer & Swan-
son [LS61] in 1961 and further pursued by Langer (see for instance [L69], 1969).

In the mathematics literature, metastability for diffusion processes that depend
only on time (i.e., constant in space) was explored early on in the paper by Pon-
tryagin, Andronov, and Vitt [PAV33] (1933). The mathematical theory of large
deviations was subsequently developed in the 1970s in papers by Wentzell and
Freidlin (see for instance [WF70]) and Kifer [Ki74], and a landmark text is the
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book of Freidlin-Wentzell [FW98] (published in Russian in 1979 and first pub-
lished in English in 1984). On the level of the mean exit time, the Freidlin-Wentzell
theory confirmed the exponential factor in the Kramers formula. The prefactor in
Kramers’ law for d > 1 was established via formal asymptotic expansions in the
famous paper by Matkowsky and Schuss [MS77] in 1977. A rigorous derivation
was given by Sugiura in [S95] and independently and with a different method by
Bovier, Eckhoff, Gayrard, and Klein [BEGK04, BGK05].

The small noise problem for stochastic partial differential equations appears
more recently in the mathematics community. A seminal paper in extending the
Freidlin-Wentzell theory to spatially varying diffusions is the paper of Faris and
Jona-Lasinio [FJ82] from 1982, which specifically established and studied the ac-
tion functional of the stochastic Allen-Cahn differential equation on a bounded
system [0, L]. The invariant measure of stochastically perturbed reaction diffusion
systems (including the Allen-Cahn equation) on a bounded domain is studied by
Freidlin in [Fr88] in 1988. Recently, Barret, Bovier, and Méléard [BBM10, B12]
and Berglund and Gentz [BG12] have established the mean exit time estimate in-
cluding the prefactor for a class of equations including the Allen-Cahn equation.

As we have emphasized in the beginning of the introduction, in this paper we are
concerned with the interplay between small noise and large domain size. Specif-
ically, we are interested in system sizes that are exponential with respect to the
inverse noise strength. Before turning to the invariant measure for unbounded sys-
tems, we remark that there is already an entropic, system-size dependent component
of the mean switching time when there is a “flat” or “degenerate” saddle point, e.g.,
for the Allen-Cahn equation in the periodic case. Specifically, the prefactor picks
up a factor that is proportional to the volume of the degenerate set. This fact was
observed already by Glasstone, Laidler, and Eyring [GLE41] (1941) in the context
of transition state theory, and the estimates in the setting of overdamped diffusions
were developed by Langer [L69] (1969) and Matkowsky & Schuss [MS77] (1977).
See also [VW08] for an independent, also formal, derivation.

The dynamics of the stochastic Allen-Cahn equation (1.1) have been considered
by several authors. In particular, in the groundbreaking works of Funaki [Fu95]
and Brassesco, De Masi, and Presutti [BDMP95], the dynamics of very similar
equations were studied. In [Fu95], the equation (1.1) is considered on the whole
line with boundary conditions that enforce one transition. The noise term

√
2εη

is multiplied by a function with compact support. In terms of our notation, the
noise acts on an interval Lε of length polynomial in ε−1. In [BDMP95], the equa-
tion (1.1) is considered for Lε = ε−1 with Neumann boundary conditions. In both
articles, the initial condition is chosen close to the optimal profile of a single transi-
tion, and it is shown that the solution stays close to an optimal profile on timescales
that are polynomial in ε−1. The evolution of the midpoint of the transition layer is
also characterized: In [Fu95], the interface dynamic is given by a stochastic differ-
ential equation that reflects the spatially dependent noise strength. In [BDMP95],
it is shown that the midpoint performs a Brownian motion. The dynamic behav-
ior observed in both of these articles is consistent with our results on the invariant
measure. In particular, the Brownian motion of interfaces is consistent with the
uniform distribution of layer location that we observe in Theorem 1.9.

Now let us consider the interplay between small noise and large domain size.
The idea of understanding large deviation events on large spatial systems via a
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decomposition into subintervals (intermediate in size between the logarithmic and
exponential scale) is used in the paper [VW08] to heuristically derive the nucle-
ation and propagation dynamics in the setting of an unequal-well potential. In
rigorous work on the invariant measure for the equal-well case, the second author
derived a concentration result for the measures µ−1,1

ε,(−Lε,Lε) in [Web10] for system
sizes that are large but algebraically bounded: specifically, Lε ≤ ε−α for α < 2/3.
The technique used there is completely different from the one employed in the
present article, however. In [Web10], the measure is discretized to make rigorous
the heuristic intuition that µ−1,1

ε,(−Lε,Lε) is a Gibbs measure. Explicit bounds on the
energy landscape and Gaussian concentration inequalities are then used to derive
bounds on this discretized measure. This technique does not appear to be applica-
ble for longer intervals because the discretization errors become too large.

In the articles [BBB08a] and [BBB08b], the special case of intervals growing
like Lε = 1

4 | log ε| is studied. (The prefactor 1/4 depends on a specific choice of
double-well potential.) The article uses the fact pointed out in [RVE05] that the
measure µ−1,1

ε,(−Lε,Lε) can be realized as the distribution of a diffusion process

du(x) = aε
(
u(x)

)
dx+ ε1/2dw(x) u(−Lε) = −1, (1.14)

conditioned on the event u(Lε) = 1. The drift term aε is the logarithmic derivative
of the ground state of the Schrödinger operator −ε2∆ + V . (In most cases, the
drift aε cannot be given explicitly.) This is the extension to bounded intervals of
the well-known equivalence for the measure on the real line, cf. [S79].

Building on the connection between the invariant measure of the PDE and the
process in (1.14), [BBB08b] derives a concentration result around the one-parameter
family of energy minimizers. Furthermore, the authors characterize the asymptotic
distribution of the position of the interfacial layer. It is nonuniform due to the
energetic repulsion from the boundary of the interval. To see this nonuniformity,
the moderate scaling Lε ≈ | log ε| is necessary. Incidentally, this shows that our
lower bound dε � | log ε| in Theorem 1.9 is optimal: Below the scale of | log ε|,
nonuniformity occurs. Loosely speaking, the results in [BBB08b] and ours are
complimentary. They obtain finer results on logarithmically large system sizes, we
obtain coarser results on exponentially large system sizes.

Results similar to (but different from) ours were obtained in [COP93] for a one-
dimensional Ising model with ferromagnetic Kac potential. This is a spin model
whose spins interact not only with their nearest neighbors, but with all spins in a
given range. The authors study the limit in which this range diverges. This corre-
sponds to the limit ε ↓ 0 that we investigate. Their main argument relies on a large
deviation statement for the whole system in a local topology. This large deviation
result implies, for example, that the the local spin averages concentrate around ±1
and that probability to see a transition from −1 to +1 in any given compact in-
terval is exponentially small. The exponential rate is given by the energetic cost
of a transition (similar to the constant c0 in this work). The significant difference
between their large deviation bounds and ours is the dependence on the boundary
condition. Their bounds state that the exponential decay of the probability of ob-
serving a certain behavior on an order-one interval is governed by the energy. We
only get bounds for the measures conditioned on the boundary values on that inter-
val. The difference is easy to appreciate on the level of the results. As mentioned,
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the probability of seeing a transition on a given order-one subinterval in their set-
ting is exponentially small, while—because of our boundary conditions—a similar
statement cannot possibly hold in our case: Indeed, if it were to hold, we could
sum over order-one subintervals and deduce that the probability to see a transition
in the full system goes to zero with the noise, while in fact it is identically equal to
one.

Finally, let us touch on the appearance of measures similar to µ−1,1
ε,(−Lε,Lε) in the

study of Schrödinger operators. The Feynman-Kac formula gives a way to solve
the imaginary time Schrödinger equation (i.e., the heat equation with a potential) in
terms of measures that are absolutely continuous with respect to Wiener measure.
In this context, our model is often referred to as the φ4

1 model and the limit ε ↓ 0
corresponds to the semiclassical limit in which the Planck constant ~ is sent to
zero. Lemma 4.1, for instance, is closely related (but not equivalent to) a statement
about the decay of the ground state for the Schrödinger operator ε2∆ +V as ε ↓ 0.

1.5. Organization. We begin with preliminaries: In Section 2 we collect some
properties of the energy functional, and in Section 3 we collect some probabilistic
properties of µ−1,1

ε,(−Lε,Lε) and of the underlying Gaussian measures. With these pre-
liminaries in hand, we turn in Section 4 to the proof of our first result, Theorem 1.5.
In Section 5 we prove Theorem 1.9, the uniform distribution of the layer location.
Finally, in Section 6 we prove the various technical lemmas that have been used in
support of the main theorems.

2. DETERMINISTIC PRELIMINARIES

In this section we discuss some more details about the energy functional E
(cf. (1.6)). Our goal is to familiarize the reader with the common intuition about
this energy, as well as to present some facts that will guide our method and appear
later in proofs.

As described above, the potential term in the energy favors the states±1 and the
gradient term in the energy leads to an energetic cost for transitions between these
states. Given our large system and the boundary conditions (1.4), it is natural to
consider the problem

inf{E(−∞,∞)(u) : u(±∞) = ±1}.
As we mentioned, the minimum cost c0 can be calculated explicitly (cf. (1.9)).
The calculations underlying this fact appear repeatedly in the proofs of our energy
lemmas, so we begin by recalling them. The so-called Modica-Mortola trick (cf.
[MM77]) uses the elementary inequality a2 + b2 ≥ 2ab to observe:

inf{E(−∞,∞)(u) : u(±∞) = ±1}

= inf

{∫ ∞
−∞

(
1

2
(∂xu)2 + V (u)

)
dx : u(±∞) = ±1

}
≥ inf

{∫ ∞
−∞

√
2V (u)(∂xu) dx : u(±∞) = ±1

}
=

∫ 1

−1

√
2V (u) dx,

which gives a lower bound on the energetic cost. For the matching upper bound,
one observes that the equality a2 + b2 = 2ab holds if and only if a = b, so that the
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minimum energetic cost is achieved precisely when

|∂xu| =
√

2V (u). (2.1)

For our boundary conditions, it is easy to see that the minimum is achieved for the
strictly increasing function that satisfies

∂xu =
√

2V (u). (2.2)

We denote by m the minimizer that is normalized so that m(0) = 0. This function
m is then the unique, centered, stationary solution of the Allen-Cahn equation on
R subject to the given boundary conditions, i.e., the solution of

∂2
xm− V ′(m) = 0 m(0) = 0 and m(±∞) = ±1.

In the case of the standard double-well potential V (u) = (1 − u2)2/4, one has
m(x) = tanh(x/

√
2).

For general potentials satisfying Assumption 1.1, the energy minimizer has sim-
ilar qualitative properties to the hyperbolic tangent. In particular, what will be
important for us is that the minimizer converges exponentially to ±1 as x→ ±∞.

Lemma 2.1 (Exponential decay of minimizer). Under Assumption 1.1 on the po-
tential V , there exists C <∞ such that the global energy minimizer m satisfies

|m(x)− sign(x)| ≤ C exp

(
−
√
V ′′(1)

2
x

)
.

The exponential convergence to±1 follows directly from (2.2) and the quadratic
behavior of V near the minima (cf., Assumption 1.1).

In addition to the exponential convergence to ±1, we see from (2.2) and As-
sumption 1.1 that outside of a neighborhood of ±1, the slope of m is bounded
away from zero. Consequently, there is a characteristic length-scale associated to
a transition layer. We will use this length-scale in an essential way. That is, since
we cannot apply large deviation theory on the full system scale Lε, we will decom-
pose into subsystems of bounded size, typically called 2` or 4`. We will choose the
subsystem size so that (with very large probability) a typical transition layer fits
inside, which requires ` to be large. In order to make these ideas precise, we begin
by introducing the idea of a δ− transition layer. Simply put, instead of connecting
±1, it connects −1 + δ with 1− δ.

Definition 2.2 (δ− transition layer). Fix δ ∈ (0, 1/2) and suppose x− < x+. We
say that u has a δ− up transition layer between x− and x+ if

u(x±) = ±(1− δ) and |u(x)| < 1− δ for all x ∈ (x−, x+).

We say that u has a δ− down transition layer on (x−, x+) if the same condition
holds true with signs reversed, and that u has a δ− transition layer if it has a δ−

up or a δ− down transition layer.

Since it is of course true that

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
≤ µ−1,1

ε,(−Lε,Lε)
(
u has (2n+ 1) δ− transition layers

)
,
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the proof of the upper bound in Theorem 1.5 will be established if we can show
that for any γ > 0 and for sufficiently small δ > 0, there is an ε0 > 0 such that, for
all ε ≤ ε0, we have

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) δ− transition layers

)
. (Lε)

2n exp

(
−2nc0 − γ

ε

)
. (2.3)

The main ingredient for establishing (2.3) is the uniform large deviation estimate
from Proposition 3.4, below, which essentially reduces the problem to one of en-
ergy estimates. We will control the energy of suitable classes of functions up to a
small δ-dependence and ultimately absorb this error term into the large deviation
error γ from the proposition.

One of the first steps will be to understand the length-scale associated to δ−

transition layers. For any δ ∈ (0, 1/2), the optimal transition layer captured by
the energy minimizer m goes from −1 + δ to 1− δ over a finite length-scale, and
“typical layers” perform the transition on a similar length-scale. A question that
we will have to address is how likely it is for a transition to take unusually long to
complete a δ− transition. In the following lemma, we show that the difference of
energies expressed in Proposition 3.4 is large for functions that perform unusually
long transitions (uniformly with respect to the boundary values).

Lemma 2.3 (Long transitions). There exists a C1 < ∞ (depending only on V )
such that, for any M < ∞ and any δ ∈ (0, 1/2), there exists an `∗ < ∞ with the
following property. For any ` ≥ `∗ and u± ∈ [−M,M ], set

Abc := {u ∈ C([−2`, 2`]) : u(−2`) = u− and u(2`) = u+},

Abc
0 := {u ∈ Abc : for all x ∈ [−`, `], u(x) ∈ [−1 + δ, 1− δ]}.

Then we have

inf
u∈Abc

0

E(−2`,2`)(u)− inf
u∈Abc

E(−2`,2`)(u) ≥ 2δ2 `

C1
. (2.4)

The proof of Lemma 2.3 is given in Subsection 6.1. This lemma together with
the large deviation bound from Proposition 3.4 will imply that for γ small with
respect to δ2`, the probability of finding such a layer is bounded above by

exp

(
−2δ2`/C1 − γ

ε

)
≤ exp

(
− δ

2`

C1ε

)
,

which we can make negligible by choosing ` sufficiently large.
Now we would like to show that the exponential factor in the probability of

finding a δ− layer is close to c0, defined in (1.8). Specifically, we expect it to be
approximately ∫ 1−δ

−1+δ

√
2V (s) ds.

The problem, which we already alluded to at the end of Subsection 1.3, is that the
boundary values (for instance u(−2`) ≈ −1, u(2`) ≈ 1) may make it likely to
find a layer. Hence, we will employ reflection operators to transform δ− transition
layers into events that are unlikely regardless of the boundary conditions. We will
call such events wasted δ− excursions:
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Definition 2.4 (Wasted δ− excursion). For any δ ∈ (0, 1/2), we will say that u has
a wasted δ− excursion on (−`, `) if there exist points

−` ≤ x− < x0 < x+ ≤ `

such that
|u(x0)| ≤ δ

and
either |u(x±)− 1| ≤ δ or |u(x±) + 1| ≤ δ.

As described above for long transitions, we will estimate the probability of such
events using the large deviation estimate from Proposition 3.4. We note that the
proposition requires minimizing energy over a ball (in the space of continuous
functions) around the set of interest. Because of the way we have defined wasted
excursions, a ball of radius δ around the set of functions with a δ− excursion in
a given interval is equal to the set of functions with a (2δ)− excursion in that
interval. Hence, our large deviation estimate together with an energetic estimate
will bound the probability that we are after. The following lemma contains the
necessary energetic estimate: namely, that the difference of energies described in
our large deviation estimate is bounded below by c0 plus a small term.

Lemma 2.5. There exists a constant C < ∞ such that for every M < ∞ and
δ ∈ (0, 1/2), there exists a constant `∗ < ∞ with the following property. For any
` ≥ `∗ and any boundary conditions u± ∈ [−M,M ], set

Abc := {u ∈ C([−2`, 2`]) : u(±2`) = u±},

Abc
0 := {u ∈ Abc : u has a wasted δ− excursion in (−`, `)}.

Define the optimal cost

c` := inf
Abc

0

E(−2`,2`)(u)− inf
Abc

E(−2`,2`)(u). (2.5)

Then we have

c` − c0 ≥ −C δ. (2.6)

The proof of Lemma 2.5 is given in Subsection 6.1. It gives us the exponential
factor in the desired estimate (2.3), above.

For the lower bound in Theorem 1.5, we will work with so-called δ+ transition
layers between −1− δ and 1 + δ.

Definition 2.6 (δ+ transition layer). Fix δ ∈ (0, 1/2). We say that u has a δ+ up
transition layer within the interval (−`, `) if there exist points

−` ≤ x− < x+ ≤ `

such that

u(x±) = ±(1 + δ).

We say that u has a δ+ down transition layer on (−`, `) if the same condition holds
true with signs reversed, and that u has a δ+ transition layer if it has a δ+ up or a
δ+ down transition layer.
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In analogy with the δ− transition layers that we use for the upper bound, δ+ tran-
sition layers will be convenient for the lower bound. Since the probability of having
(2n+1) transition layers is greater than the probability of having (2n+1) δ+ tran-
sition layers, it will suffice to show that

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) δ+ transition layers

)
& (Lε)

2n exp

(
−2nc0 − γ

ε

)
.

We will establish this bound by reflecting in order to transform the δ+ transition
layers into some kind of “wasted excursions” whose probability we can bound,
independently of the boundary conditions.

Definition 2.7 (Wasted δ+ excursion). For any δ ∈ (0, 1/2), we will say that u has
a wasted δ+ excursion on (−`, `) if there exist points

−` ≤ x− < x0 < x+ ≤ `
such that

u(x±) ≤ −1− δ, u(x0) = 0.

(We will use only the wasted δ+ excursions that come from below, but of course
it would be straightforward to define the analogue with u(x±) ≥ 1 + δ, and they
would obey the same energetic and probabilistic bounds.)

As in the case of the upper bound, we need an energetic lemma that will control
the contribution to the large deviation estimate for wasted δ+ excursions. Because
of the form of the large deviation estimate that we will develop in Section 3 (see
Proposition 3.5 below), it will be convenient for us to introduce the energy bound
on the following set of functions:

Abc
δ,pre :=

{
u ∈ Abc : there exist points − ` ≤ x− < x0 < x+ ≤ `

with u(x−) ≤ −1− 2δ, u(x+) ≤ −1− 2δ, u(x0) ≥ δ
}
. (2.7)

It is easy to see that a δ ball (with respect to the sup norm) around Abc
δ,pre is equal

to the set of functions with wasted δ+ excursions on (−`, `). This fact is what will
later be useful for the lower bound. For now, we record the following energetic
fact, which plays the role for the lower bound that Lemma 2.5 played for the upper
bound.

Lemma 2.8. There exists a constant C < ∞ such that for every M < ∞ and
δ ∈ (0, 1/2), there exists a constant `∗ < ∞ with the following property. For any
` ≥ `∗ and u± ∈ [−M, 0], set

Abc := {u ∈ C([−2`, 2`]) : u(±2`) = u±}

and Abc
δ,pre as above in (2.7).

Define the optimal cost

c` := inf
Abc
δ,pre

E(−2`,2`)(u)− inf
Abc

E(−2`,2`)(u).

Then we have

c` − c0 ≤ C δ.
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We will need to consider some additional properties of the energy as we prove
the main theorems, but we defer their discussion to a later time when their moti-
vation and hypotheses will be clearer. With the central facts about the energy in
hand, we now turn to the probabilistic background for our paper.

3. PROBABILISTIC PRELIMINARIES

In this section, we collect some probabilistic facts about the Gaussian measures
Wu−,u+

ε,(x−,x+) and the measures µu−,u+

ε,(x−,x+). After stating a precise definition and some
elementary symmetry properties, we will discuss Markov properties satisfied by
these measures in Subsection 3.1 and large deviation bounds in Subsection 3.2.

For every x− < x+, we denote by W0,0
ε,(x−,x+) the distribution of a Brown-

ian bridge with homogeneous boundary conditions on [x−, x+] whose variance is
proportional to ε. To be more precise, W0,0

ε,(x−,x+) is the unique centered Gauss-
ian measure on the space of continuous functions C([x−, x+]) such that, for all
x1, x2 ∈ [x−, x+], one has

EWε,0,0
(x−,x+)

(
u(x1)u(x2)

)
=

ε

x+ − x−

(
(x1 − x−)(x+ − x2) ∧ (x2 − x−)(x+ − x1)

)
. (3.1)

Equivalently, one can say that W0,0
ε,(x−,x+) is the centered Gaussian measure

whose Cameron-Martin space is given by the Sobolev space H1
0 ([x−, x+]) with

vanishing boundary conditions equipped with the homogeneous scalar product

1

ε

∫ x+

x−

∂xu ∂xv dx.

Indeed, the right-hand side of (3.1) is the Green’s function for 1
ε∂

2
x with Dirichlet

boundary conditions.
In the sequel, we often use the notation

Ix−,x+(u) :=
1

2

∫ x+

x−

(
∂xu

)2
dx (3.2)

to denote the Gaussian part of the energy of a function u on the interval (x−, x+).
It is common to think ofW0,0

ε,(x−,x+) as a Gibbs measure

W0,0
ε,(x−,x+) ∝ exp

(
− 1

ε
Ix−,x+(u)

)
du (3.3)

with energy Ix−,x+ and noise strength∝ ε. Of course, (3.3) does not make rigorous
sense because there is no “flat measure” du on path space, and Ix−,x+(u) is almost
surely infinite underW0,0

ε,(x−,x+). The heuristic formula (3.3) is motivated by finite
dimensional approximations and it gives the right intuition for the large deviation
bounds.

For more general boundary conditions u−, u+ ∈ R, we can define Wu−,u+

ε,(x−,x+)

as the image measure ofW0,0
ε,(x−,x+) under the shift map

u(x) 7→ u(x) + h
u−,u+

(x−,x+)(x),
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where h is the affine function interpolating the boundary conditions:

h
u−,u+

(x−,x+)(x) :=
x− x−
x+ − x−

u+ +
x+ − x
x+ − x−

u−. (3.4)

Similarly to (1.5), for any choice of boundary condition u± and on any interval
(x−, x+), we denote by µ

u−,u+

ε,(x−,x+) the probability measure whose density with
respect toWu−,u+

ε,(x−,x+) can be expressed as

dµ
u−,u+

ε,(x−,x+)

dWu−,u+

ε,(x−,x+)

(u) =
1

Zu−,u+

ε,(x−,x+)

exp

(
− 1

ε

∫ x+

x−

V (u) dx

)
. (3.5)

Here we have introduced the notation

Zu−,u+

ε,(x−,x+) := EWε,u−,u+

(x−,x+)

(
exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

for the normalization constant that ensures that µu−,u+

ε,(x−,x+) is indeed a probability
measure.

As we have indicated in the introduction, there are symmetry properties of the
measures Wu−,u+

ε,(x−,x+) and µu−,u+

ε,(x−,x+) that will play an important role in our argu-

ment. Observe for example that bothW0,0
ε,(x−,x+) and µ0,0

ε,(x−,x+) are invariant under
the vertical reflection u 7→ Ru and the horizontal reflection u 7→ Su where

Ru(x) := −u(x) and Su(x) := u(x+ + x− − x).

Furthermore, the measuresW−1,1
ε,(x−,x+) and µ−1,1

ε,(x−,x+) are invariant under the point
reflection u 7→ RSu.

3.1. Markov properties. We first present a two-sided version of the Markov prop-
erty for the measures Wu−,u+

ε,(x−,x+) and µu−,u+

ε,(x−,x+), which states that for any fixed
points x− ≤ x̂− < x̂+ ≤ x+ and for u distributed according to toWu−,u+

ε,(x−,x+) (or
µ
u−,u+

ε,(x−,x+)), the conditional distribution of (u(x), x ∈ [x̂−, x̂+]), given all the infor-

mation about u(x) for x ∈ [x−, x+] \ (x̂−, x̂+), isWu(x̂−),u(x̂+)
ε,(x̂−,x̂+) (or µu(x̂−),u(x̂+)

ε,(x̂−,x̂+) ).
Then in Lemma 3.3, we give the strong Markov property, which states that the
same statement holds true when the deterministic points x̂± are replaced by left
and right stopping points χ±. The proofs of these statements are quite standard.
For completeness, we have included them in Subsection 6.2.

In the case of the measures Wu−,u+

ε,(x−,x+), the Markov property can be stated in

the following way. For x̂− < x̂+, we define the piecewise linearization ux̂+

x̂−
of u

between x̂− and x̂+ as

u
x̂+

x̂−
(x) =

{
h
u(x̂−),u(x̂+)
(x̂−,x̂+) (x) if x ∈ (x̂−, x̂+)

u(x) else.
(3.6)

Recall the definition (3.4) of hu−,u+

(x−,x+). Then the following holds.

Lemma 3.1. Suppose x− ≤ x̂− < x̂+ ≤ x+ are fixed, non-random points. Then
under Wu−,u+

ε,(x−,x+) the random functions u − ux̂+

x̂−
and ux̂+

x̂−
are independent. Fur-

thermore, u − u
x̂+

x̂−
is zero outside of (x̂−, x̂+) and is distributed according to

W0,0
ε,(x̂−,x̂+) between the two points.
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Due to the lack of spatial homogeneity, the corresponding property for the mea-
sures µu−,u+

ε,(x−,x+) has to be stated in a different way. For I ⊆ [x−, x+], we denote
by FI the sigma-algebra generated by u(x) for x ∈ I , completed with respect to
Wu−,u+

ε,(x−,x+).
We also introduce the following notation that extends the measures to paths

on a larger domain by prescribing the values outside of an interval. Suppose that
[x̂−, x̂+] ⊆ [x−, x+] and that u ∈ C([x−, x+]) is a fixed path. We say that u is dis-
tributed according toWu

ε,(x̂−,x̂+), resp. µuε,(x̂−,x̂+), if it almost surely coincides with

u outside of the interval [x̂−, x̂+] and is distributed according to Wu(x̂−),u(x̂+)
ε,(x̂−,x̂+) ,

resp. µu(x̂−),u(x̂+)
ε,(x̂−,x̂+) , on [x̂−, x̂+].

Then the Markov property takes the following form.

Lemma 3.2. Suppose x− ≤ x̂− < x̂+ ≤ x+ are fixed, non-random points. Then
for any bounded measurable test function Φ: C([x−, x+]) → R, we get the fol-
lowing identity:

Eµε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,x̂−] ∨ F[x̂+,x+]

)
= Eµε,u(x̂−,x̂+)

(
Φ
)
. (3.7)

Here F[x−,x̂−] ∨ F[x̂+,x+] denotes the smallest sigma-algebra that contains all
sets in F[x−,x̂−] and F[x̂+,x+].

We will typically use (3.7) in the following way: For given points x− ≤ x1 ≤
x2 ≤ . . . ≤ x2n ≤ x+ and given events Ai ∈ F[x2i−1,x2i], we can write

Eµε,u−,u+

(x−,x+)

(
1A1 . . .1An

)
(3.8)

=

∫
R2n

νx1,...,x2n(du1, . . . , du2n)Eµε,u1,u2

(x1,x2)

(
1A1

)
. . .Eµε,u2n−1,u2n

(x2n−1,x2n)

(
1An

)
.

Here νx1,...,x2n denotes the distribution of the random vector (u(x1), . . . , u(x2n))

under µ−1,1
ε,(x−,x+). Formula (3.8) follows directly by applying (3.7) n times.

To state the strong Markov property, we additionally need the notion of left and
right stopping points. These are defined analogously to stopping times for Markov
processes. A random variable χ− taking values in [x−, x+] will be called a left
stopping point if for all x ∈ [x−, x+] the event {χ− ≤ x} is contained in F[x−,x].
In the same way a random variable χ+ is called a right stopping point if for all x
the event {χ+ ≥ x} is contained in F[x,x+]. In all of our applications the stopping
points χ± are going to be left or rightmost hitting points of a closed set. It is easy to
check that these random points are indeed left and right stopping points as defined
above.

For given left and right stopping points χ±, we define the sigma-algebraF[x+,χ−]

of events that occur left of χ− and the sigma-algebraF[χ+,x+] of events that happen
to the right of χ+ by

F[x−,χ−] :=
{
A ∈ F[x−,x+] : ∀x A ∩ {χ− ≤ x} ∈ F[x−,x]

}
,

F[χ+,x+] :=
{
A ∈ F[x−,x+] : ∀x A ∩ {χ+ ≥ x} ∈ F[x,x+]

}
.

The strong Markov property can be stated in an analogous way to (3.7).

Lemma 3.3. Suppose χ− and χ+ are left and right stopping points with χ− < χ+

almost surely. Suppose that Φ: C([x−, x+]) → R is measurable and bounded.
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Then for any u± ∈ R, we get the following identities

EWε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χ−] ∨ F[χ+,x+]

)
= EWε,u

(χ−,χ+)

(
Φ
)

(3.9)

and
Eµε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χ−] ∨ F[χ+,x+]

)
= Eµε,u(χ−,χ+)

(
Φ
)
. (3.10)

The strong Markov property is a crucial ingredient in the proofs of both Theorem
1.5 and Theorem 1.9. Let us illustrate how it is used in the proof of Theorem 1.5.
Let χ− be the leftmost hitting of zero to the right of a given point x− and χ+ the
rightmost hitting of zero to the left of a given point x+. The values u(χ±) in the
formulas (3.9) and (3.10) are almost surely 0. Then we can use the invariance of
W0,0
ε,(χ−,χ+) and µ0,0

ε,(χ−,χ+) under vertical reflection R to conclude that the whole
right-hand side of (3.9) and (3.10) is invariant under vertical reflection on [χ−, χ+].
In Section 4, we will use this observation to reduce the problem of calculating the
probability of transition layers to computing the probability of wasted excursions
(see Definition 2.4).

3.2. Large deviations. Large deviation estimates for the measures µu−,u+

ε,(x−,x+) con-
stitute an important ingredient for our argument. Large deviation bounds for Gauss-
ian measures with a small variance, e.g., forWu−,u+

ε,(x−,x+), are well-known (see e.g.
[Bog98, Sec. 4.9]). They can be extended to the measures µu−,u+

ε,(x−,x+) with an
“exponential tilting” argument (see e.g. [Var84], or [dH00, p.34] ) in a standard
way. Let Abc represent the set of continuous paths u on [x−, x+] that satisfy
u(x±) = u±. The estimates then state that for every closed set A ⊆ Abc and
every γ > 0, there exists ε0 > 0 such that, for ε ≤ ε0, we have

µ
u−,u+

ε,(x−,x+)(A) ≤ exp
(
− 1

ε

(
∆E(A)− γ

))
. (3.11)

Similarly, for every open set A ⊆ Abc and γ > 0 there exists ε0 > 0 such that, for
ε ≤ ε0, we have

µ
u−,u+

ε,(x−,x+)(A) ≥ exp
(
− 1

ε

(
∆E(A) + γ

))
. (3.12)

Here the energy difference ∆E(A) is defined as

∆E(A) := inf
u∈A

E(u)− inf
u∈Abc

E(u). (3.13)

Here and in the sequel, all topological notions like open and closed refer to the
uniform topology, i.e., the topology generated by

‖u‖∞ := sup
x∈[x−,x+]

|u(x)|. (3.14)

Although we will not make use of it here, we remark that the bounds (3.11) and (3.12)
are also true for different choices of topology. The Gaussian large deviation bounds
hold for any separable Banach space that supports the Gaussian measure, and the
“exponential tilting” works as soon as the exponential density is continuous.

A priori, the choice of ε0 depends not only on γ but also on the interval length
` := x+ − x−, the boundary data u±, and even the set A itself. As pointed
out in Subsection 1.3, however, our argument requires integrating probabilities for
different boundary conditions. Therefore, we need to know that we can choose
the same ε0 for these different boundary conditions simultaneously. Moreover, in
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Lemma 5.1 we will need uniform estimates for measures with different potentials.
Hence, we require uniform large deviation estimates, which is the content of the
following two propositions. They deliver local uniformity with respect to `, u±,A,
and even with respect to the potential function V . To state the result, it is convenient
to introduce the notation

Iu±x± := I(h
u−,u+

(x−,x+)) =
1

2

(u+ − u−)2

x+ − x−
(3.15)

for the minimal Gaussian energy with the given boundary conditions. We will also
write

B(A, δ) =
{
u : ∃v ∈ A, ‖v − u‖∞ ≤ δ

}
for the δ neighborhood of a set A.

Proposition 3.4 (Large deviation upper bound). Fix constants 1 < M,R < ∞
and 0 < `− < `+ < ∞. For any x± ∈ R with x+ − x− ∈ [`−, `+] and any
u± ∈ [−M,M ], let A be a measurable subset of C([x−, x+]) consisting of paths
u that satisfy the boundary conditions u(x±) = u±. Additionally, assume that

inf
u∈A

E(u)− Iu±x± ≤ R. (3.16)

Then for any δ, γ > 0 there exists an ε0 > 0 such that for all ε ≤ ε0 we have

µ
u−,u+

ε,(x−,x+)(A) ≤ exp
(
− 1

ε

(
∆E

(
B(A, δ)

)
− γ
))
, (3.17)

where ∆E is defined in (3.13). This ε0 depends on M,R, `±, δ, and γ but not on
the particular choice of x±, u±. It only depends on the set A through the choice
of R in condition (3.16). Furthermore, ε0 depends on V only through the local
Lipschitz norm

sup
|v|≤M+

√
2−1(`+R+1)+1

|V ′(v)|.

In particular, the same bounds hold for the same ε0 if V varies over a set of
potentials with uniformly bounded local C1-norm. This uniformity of (3.17) with
respect to V will be used in Subsection 6.6. There, it will be applied to the family{

4kV (2−k(u− 1) + 1): k ∈ N
}

of rescaled versions of V .
We also get the corresponding lower bounds without a condition on the minimal

energy of E(u) for u ∈ A.

Proposition 3.5 (Large deviation lower bound). Fix constants M and 0 < `− <
`+ <∞. Suppose that ` = x+ − x− ∈ [`−, `+] and u± ∈ [−M,M ]. Assume that
there exists an energy minimizer

u∗ = argmin
u∈A

E(u)

satisfying u∗ ∈ [−M,M ]. Then, for any γ > 0 and δ > 0 small enough, there
exists ε0 > 0 such that for all ε ≤ ε0 there holds

µ
u−,u+

ε,(x−,x+)

(
B(A, δ)

)
≥ exp

(
− 1

ε

(
∆E

(
A
)

+ γ
))
, (3.18)

where ∆E is defined in (3.13). As above, ε0 depends on M, `±, δ, and γ, but not
on the particular choice of x±, u± or the set A.

The same remark about the uniform dependence on V holds for the lower bounds.
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Remark 3.6. The existence of energy minimizers u∗ inA satisfying u∗ ∈ [−M,M ]
is not necessary and it can be replaced by an approximation. Actually, we will
show the Proposition under the slightly weaker assumption that for every γ > 0
there exists a profile uγ ∈ A with uuγ(x) ∈ [−M,M ] for all x ∈ [x−, x+] and
such that

E(uγ) ≤ inf
u∈A

E(u) + γ. (3.19)

The proofs of these Propositions are essentially a careful copy of the classical
proofs and can be found in Subsection 6.3. Let us remark here that we do not expect
the bounds (3.11) and (3.12) to hold uniformly for all open or closed sets. In fact,
the argument for the classical statements makes use of qualitative properties such as
existence of coverings by finitely many open sets. One sums over this finite number
and uses the fact that, for ε small enough, only the largest summand matters. For
different open or closed sets, this finite number will in general be different, and
the choice of ε0 would also be different . We can resolve this issue by taking the
δ neighborhood of A in the bounds (3.17) and (3.18) as a uniform version of the
topological assumptions on A.

4. PROOFS OF THEOREM 1.5: DOMINATION BY SINGLE TRANSITION LAYER
OF MINIMAL ENERGY

In this section we prove Theorem 1.5. This theorem estimates the exponentially
small probability of having more than one layer (with the correct entropic effect
and exponential factor). Hence, the most likely functions are those with only one
transition layer.

As outlined in Subsection 1.3, at the heart of the method is the idea of de-
composing the invariant measure into conditional measures and the corresponding
marginals, so that we can reduce to estimating the probability of transition layers
on order-one subintervals. When the boundary data of the subinterval falls within a
compact set [−M,M ], large deviation theory will allow us to estimate probabilities
in the spirit of∫ M

−M

∫ M

−M
ν(du−, du+) µ

u−,u+

ε,(−2`,2`)

(
there is a transition layer in (−`, `)

)
.

On the other hand, the probability that |u(±2`)| ≥ M is uniformly small. Before
turning to the proofs of the main theorems, we introduce this fact about the decay
of the one-point distribution.

Lemma 4.1. There exist M1 < ∞, C2 < ∞ (depending only on V ) such that the
following holds. For any M ≥M1, there exists ε0 > 0 such that for all ε ≤ ε0 and
any x0 in (−Lε, Lε) there holds

µ−1,1
ε,(−Lε,Lε)

(
|u(x0)| ≥M

)
≤ exp

(
− M

εC2

)
. (4.1)

The proof of the lemma is given in Subsection 6.4. With this preliminary esti-
mate in hand, we turn now to the proof of Theorem 1.5. We consider separately
the upper and lower bounds.
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Proof of Theorem 1.5. Fix γ > 0. Fix a corresponding δ > 0 sufficiently small.
Let ` and M be large constants to be specified later. To begin with, let ` be large
enough so that (2.4) and (2.6) hold for the given δ. We will divide the system into
2Nε intervals with

Nε :=

⌊
Lε
`

⌋
, (4.2)

labelling the endpoints:

x±k :=

{
±k `, k = 0, . . . , (Nε − 1),

±Lε, k = ±Nε.
(4.3)

We will work with this grid for the rest of this paper.
Then we consider the (overlapping) intervals

Ik := [xk−1, xk+1], for k = −(Nε − 1),−(Nε − 2), . . . , (Nε − 1). (4.4)

Notice that x±Nε is separated from x±(Nε−1) by up to length 2`, while the rest
of the points are separated by length `. Since our energetic estimates will all hold
uniformly for subsystems that are sufficiently large, and our large deviation bounds
will all hold uniformly for subsystems whose length vary within a compact set, it
will not matter that the boundary points may be up to 2` away from the neighboring
points and we will ignore this issue for the rest of the proof.

Upper bound.

Here we will prove the upper bound, i.e., that

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
. (Lε)

2n exp

(
−2nc0 − γ

ε

)
.

As explained in Section 2, for the upper bound we will work with δ− transition
layers, and it will be sufficient to show that for any sufficiently small γ > 0 and
some sufficiently small δ > 0, there is an ε0 > 0 such that for all ε ≤ ε0 we have

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) δ− transition layers

)
. (Lε)

2n exp

(
−2nc0 − γ

ε

)
. (4.5)

Since the probability of transition layers is less than the probability of δ− transition
layers, the proof of the upper bound follows immediately.

The subtle part of the proof will be estimating the probability of a transition
layer on a subsystem. Recall from Subsection 1.3 that we cannot get the expected
cost c0 by estimating the probability

µ
u−,u+

ε,(−2`,2`)

(
u has a δ− transition layer in (−`, `)

)
because of the nontrivial dependence of this probability on the boundary conditions
u±. To avoid this problem, we will use reflection operators to transform δ− tran-
sition layers into wasted δ− excursions (see Definition 2.4 and the accompanying
discussion).

With this scheme in mind, let us now begin our estimates.
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Step 1. Fix γ > 0. Let δ > 0 be a small constant and M < ∞ be a large
constant to be chosen below. Our first step will be to decompose the set of functions
in which we are interested. Namely, we notice that the set of continuous paths u :
[−Lε, Lε] → R satisfying the boundary conditions u(±Lε) = ±1 and exhibiting
at least (2n+1) δ− transition layers is contained in the union of the following three
sets:
• The set of paths that exhibit an atypically large value at one of the xk:

A1 :=
{
u : ∃k ∈

{
− (Nε − 1), . . . , (Nε − 1)

}
: |u(xk)| ≥M

}
. (4.6)

• The complementary set intersected with the set of paths that are bounded away
from ±1 on all of [xk, xk+1] for some k:

A2 := {A1 ∩
{
u : ∃k ∈

{
−(Nε − 1), . . . , (Nε − 2)

}
: (4.7)

u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]
}
.

• The complement of A1 intersected with the set of paths performing (2n +
1) δ− transitions, each of which is completely contained in (at least) one of the
overlapping intervals Ik. We denote this set

A3 := {A1 ∩
{
u : there exist 2n integers

−Nε + 1 ≤ k1 ≤ k2 ≤ · · · ≤ k2n ≤ Nε − 1 such that

in each interval Iki there is a δ− layer
}
.

Note that there might be more than one layer in a single interval; the 2n-tuple
(k1, . . . , k2n) allows for a possible higher multiplicity. There may also be more
than 2n layers; the statement is that there are at least 2n layers.

Above, we have made use of the boundary conditions. Indeed, for A1, we have
omitted the points x±Nε since u(±Lε) = ±1. For A2 we have omitted the boxes
at the boundary since the boundary conditions make it impossible that u(x) ∈
[−1 + δ, 1 − δ] for all x in the box. For A3 we have recalled that the boundary
conditions force there to be at least one transition. Even though u has 2n+1 layers,
we can expect an additional cost only for the 2n “extra” layers and hence only keep
track of 2n layers.

Because the set of interest is contained within the above-mentioned sets, it suf-
fices to bound

µ−1,1
ε,(−Lε,Lε)

(
A1

)
+ µ−1,1

ε,(−Lε,Lε)
(
A2

)
+ µ−1,1

ε,(−Lε,Lε)
(
A3

)
. (4.8)

Step 2. We first give a bound on the probability of A1. This bound follows
directly from Lemma 4.1. In fact, we get

µ−1,1
ε,(−Lε,Lε)

(
A1

)
≤

Nε−1∑
k=−(Nε−1)

µ−1,1
ε,(−Lε,Lε)

(
|u(xk)| ≥M

)
(4.1)
≤

(
2
Lε
`
− 1

)
exp

(
− M

εC2

)
≤ Lε exp

(
− M

εC2

)
. (4.9)
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In particular, we can choose M large enough so that M/C2 ≥ 2nc0 and

µ−1,1
ε,(−Lε,Lε)

(
A1

)
≤ Lε exp

(
− 2nc0

ε

)
.

Hence, the probability of A1 is of higher order with respect to the right-hand side
of (4.5).

We remark that it is here whereM (and therefore also ε0) acquires a dependence
on n.

Step 3. To bound the second probability in (4.8), we write

µ−1,1
ε,(−Lε,Lε)

(
A2

)
≤

Nε−2∑
k=−(Nε−1)

µ−1,1
ε,(−Lε,Lε)

(
u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]

and u(xk−1), u(xk+2) ∈ [−M,M ]
)
. (4.10)

Using the Markov property (3.8), we can write for any k

µ−1,1
ε,(−Lε,Lε)

(
u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]

and u(xk−1), u(xk+2) ∈ [−M,M ]
)

=

∫ M

−M

∫ M

−M
νk−1,k+2(du−, du+)

× µu−,u+

ε,(xk−1,xk+2)

(
u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]

)
, (4.11)

where νk−1,k+2 denotes the marginal distribution of the pair (u(xk−1), u(xk+2)).
We now want to invoke the large deviation bound (3.17) and the energy bound
from Lemma 2.3 for the measures µu−,u+

ε,(xk−1,xk+2). To this end, we observe that
a δ/2 ball around functions contained in [−1 + δ, 1 − δ] consists of functions
contained in [−1 + δ/2, 1− δ/2]. Redefining C1 by up to a factor of 8 to account
for the parameter δ/2 and interval length (here ` rather than 2`), we have that, for
any γ > 0 and δ > 0, there exists an ε0 > 0 such that, for all ε ≤ ε0 and all
u−, u+ ∈ [−M,M ], there holds

µ
u−,u+

ε,(xk−1,xk+2)

(
u(x) ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]

)
≤ exp

(
− 1

ε

(2δ2`

C1
− γ
))
. (4.12)

(Here we have used the fact that Lε � 1, so that we can choose ` > `∗ to satisfy
Lemma 2.3.) Letting γ = 1 and choosing ` so that δ2` ≥ C1, the combination
of (4.10), (4.11), and (4.12) gives

µ−1,1
ε,(−Lε,Lε)

(
A2

)
≤ Lε exp

(
− δ2`

C1 ε

)
, (4.13)

where we have trivially bounded the integral of ν by 1. In particular, for ` large
but order-one (and depending on n, δ), we have that the probability of A2 is also
of higher order with respect to the right-hand side of (4.5).
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Step 4. Finally, we arrive at the subtler part, in which we will need the reflection
operators. To begin with, let k̄ = (k1, . . . , k2n) and write

µ−1,1
ε,(−Lε,Lε)

(
A3

)
≤
∑
k̄∈I

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
, (4.14)

where I is the set of nondecreasing 2n-tuples, i.e.,

I :=
{
k̄ = (k1, k2, . . . , k2n) ∈

{
− (Nε − 1), . . . , (Nε − 1)

}2n

with ki−1 ≤ ki
}
,

and

Ak̄3 := {A1 ∩
{

in each Iki there is a δ− layer
}
. (4.15)

The right-hand side of (4.15) is slightly ambiguous if several indices coincide or in
the case of overlapping intervals, i.e. if ki+1 = ki + 1 for some i. If j subsequent
indices coincide, the right-hand side of (4.15) has to be interpreted as saying that
there are at least j δ− transitions in the corresponding interval. In the case of
overlapping intervals, for instance if ki+1 = ki + 1, the right-hand side of (4.15)
should be interpreted to mean that there are at least two transitions in the interval
[(ki− 1)`, (ki + 2)`] and, moreover, one is fully contained in [(ki− 1)`, (ki + 1)`]
and one is fully contained in [ki`, (ki + 2)`].

The index set satisfies ∣∣I∣∣ . N2n
ε . (Lε)

2n. (4.16)

(Recall our convention for the use of the symbol . introduced in Notation 1.4.)
Hence, to complete the proof of (4.5), it suffices to show that for fixed k̄ ∈ I, we
have

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
. exp

(
−2nc0 − γ

ε

)
. (4.17)

As explained above, the main step is to reduce the problem of estimating the
probability of δ− layers to estimating the probability of wasted δ− excursions.
This will be achieved through suitable reflections.

Let us at first assume that the Ik are well-separated in the sense that

ki ≥ ki−1 + 4 for all i.

Let us also assume that we are away from the boundary, i.e., that

k1 ≥ −Nε + 2, k2n ≤ Nε − 2.

We will consider the possibilities of (a) intervals that overlap or are nearby, (b)
intervals that are the same (ki = ki+1), and (c) boundary intervals at the end of
Step 5.

We start by defining n left stopping points χ1, . . . , χn in the following manner.
For i = 1, . . . , n we set

χi := inf
{
y ≥ xki−1 : u(y) = 0 and |u(x)| = 1− δ
for some x ∈ (xk2i−1−1, y)

}
. (4.18)
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Here we set χi = Lε if the corresponding set is empty. It is easy to see that these
random points are all left stopping points. In a similar fashion, for i = n+1, . . . , 2n
we set

χi := sup
{
y ≤ xki+1 : u(y) = 0 and |u(x)| = 1− δ
for some x ∈ (y, xki+1)

}
. (4.19)

Here we set χi = −Lε if the corresponding set is empty. Then χi is a right stopping
point for all i = n+1, . . . 2n. For any u inAk̄3 , all the left and right stopping points
χi are contained in the corresponding intervals Iki and, furthermore, we have

χ1 < χ2 < . . . < χn < χn+1 < . . . < χ2n. (4.20)

Finally, note that as soon as χi 6= ±Lε, we have that u(χi) = 0.
For any left stopping point χl ∈ {χ1, . . . χn} and any right stopping point χr ∈

{χn+1, . . . , χ2n}, we now define the reflection operator Rχrχl . If χl < χr (which is
the case for any u ∈ Ak̄3 as remarked above), we set

Rχrχl u(x) :=

{
−u(x) for x ∈ [χl, χr],

u(x) for x /∈ [χl, χr].

If χl ≥ χr we set Rχrχl u := u. We clearly have RχrχlR
χr
χl = Id; hence, Rχrχl is

injective and onto. In order to show that Rχrχl preserves µ−1,1
ε,(−Lε,Lε), we observe

that for any measurable and bounded test function Φ: C([−Lε, Lε]) → R, we
have

Eµε,−1,1
(−Lε,Lε)

(
Φ ◦Rχrχl

)
= Eµε,−1,1

(−Lε,Lε)
(
1{χl<χr}Φ ◦R

χr
χl

)
+ Eµε,−1,1

(−Lε,Lε)
(
1{χl≥χr}Φ ◦R

χr
χl

)
= Eµε,−1,1

(−Lε,Lε)

(
1{χl<χr} E

µε,−1,1
(−Lε,Lε)

(
Φ ◦Rχrχl

∣∣F[−Lε,χl] ∨ F[χr,Lε]

))
+Eµε,−1,1

(−Lε,Lε)
(
1{χl≥χr}Φ

)
(3.10)
= Eµε,−1,1

(−Lε,Lε)

(
1{χl<χr} E

µε,u
(χl,χr)

(
Φ ◦Rχrχl

) )
+Eµε,−1,1

(−Lε,Lε)
(
1{χl≥χr}Φ

)
.

Now we can use the fact that on the set {χl < χr} we have almost surely that
u(χl) = u(χr) = 0 and the invariance of the measure µ0,0

ε,(χl,χr)
under the reflection

R : u 7→ −u. Note that the latter property relies on the symmetry of the double-
well potential V . We get

Eµε,−1,1
(−Lε,Lε)

(
1{χl<χr} E

µε,u
(χl,χr)

(
Φ ◦Rχrχl

) )
+ Eµε,−1,1

(−Lε,Lε)
(
1{χl≥χr}Φ

)
= Eµε,−1,1

(−Lε,Lε)

(
1{χl<χr} E

µε,u
(χl,χr)

(
Φ
))

+ Eµε,−1,1
(−Lε,Lε)

(
1{χl≥χr}Φ

)
(3.10)
= Eµε,−1,1

(−Lε,Lε)
(
Φ
)
. (4.21)

Now we are finally ready to define the reflection operator as the composition

R := Rχ2n
χ1
◦ · · · ◦Rχn+2

χn−1
◦Rχn+1

χn . (4.22)

We have again that R2 = Id. For any profile u ∈ Ak̄3 , the operator R acts in the
following way: In intervals of the form (χi, χi+1) for i odd, u is replaced by −u,
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xR R
χ1 χ2 χ3 χ4

FIGURE 4.1. A typical path inA3. The reflection operator R turns
the up and down transitions in the intervals Iki into wasted excur-
sions in the same intervals.

and on the rest of the system, u is left invariant. The action of the operator R on a
typical path in A3 is illustrated in Figure 4.1.

Finally, define the reflection of a set A as

RA = {v : v = Ru for some u ∈ A}.

As a composition of measure-preserving transformations, the operator R preserves
µ−1,1
ε,(−Lε,Lε) as well. Hence, we have in particular that

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)

= µ−1,1
ε,(−Lε,Lε)

(
RAk̄3

)
. (4.23)

This is useful because for u ∈ Ak̄3 the profile Ru has a wasted δ− excursion on each
interval Iki (as is easy to check). In other words, we note that RAk̄3 is a (proper)
subset of the functions with wasted δ− excursions in the given intervals.

Step 5. It remains to bound the probability of the sets RAk̄3 . Again, let us at first
assume that the Ik are well-separated and away from the boundary in the sense
described above. We consider the more general case at the end of this step.

Using the Markov property again, we have

µ−1,1
ε,(−Lε,Lε)

(
RAk̄3

)
≤ µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and in each Iki there is a wasted δ− excursion

)
=

∫ M

−M
· · ·
∫ M

−M
νk1−2,k1+2,k2−2,...,k2n+2

(
duk1−2, duk1+2, duk2−2, . . . , duk2n+2

)
2n∏
i=1

µ
uki−2,uki+2

ε,(xki−2,xki+2)

(
there is a wasted δ− excursion in Iki

)
, (4.24)

where νk1−2,k1+2,k2−2,...,k2n+2 denotes the distribution of the 4n-dimensional mar-
ginal u

(
xk1−2

)
, u
(
xk1+2

)
, u
(
xk2−2

)
, . . . , u

(
xk2n+2

)
.

Now we would like to apply the large deviation bound (3.17) and the energy
bound from Lemma 2.5. We observe that a δ ball around paths with a wasted δ−

excursion is equal to the set of paths with a wasted (2δ)− excursion. As a result,
we get that for any γ > 0 and δ > 0 there exists an ε0 > 0 such that for all ε ≤ ε0

and for all boundary data contained in [−M,M ], the probability of a wasted δ−
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excursion is bounded by

µ
uki−2,uki+2

ε,(xki−2,xki+2)

(
there is a wasted δ− excursion in Iki

)
≤ exp

(
− 1

ε

(
c0 − 2Cδ − γ

))
. (4.25)

Choosing δ sufficiently small with respect to γ and estimating the integral of ν by
1 as usual, we have from the combination of (4.23), (4.24), and (4.25) that (4.17)
holds (up to a redefinition of γ). Thus, finally, (4.14), (4.16), and (4.17) imply

µ−1,1
ε,(−Lε,Lε)

(
A3

)
. (Lε)

2n exp

(
−2nc0 − γ

ε

)
,

which concludes the proof of the upper bound in the well-separated case.
It remains to consider the three special cases: (a) intervals that overlap or are

nearby, (b) intervals that are the same (ki = ki+1), (c) intervals that are boundary
intervals.

Case (a) If two or more intervals overlap (i.e., if ki = ki−1 + 1) or are nearby
(i.e., if ki−1 + 2 ≤ ki ≤ ki−1 + 3), then we lump them together into a single,
larger interval and proceed as in (b), below. The size of the largest possible interval
formed in this way is (4 + 3(2n− 1))`. Our energy estimates require only that the
interval length be sufficiently large and our large deviation estimates are uniform
as long as the interval length falls within a compact set. (Here we rely on the fact
that n is order-one with respect to ε.)

Case (b) If a multi-index k̄ has repeated indices so that there is more than one
δ− transition layer in a single interval, then we will use large deviation estimates
for the event of having more than one wasted δ− excursion in a single interval.

Assume that we have kj = kj+1 = . . . kj+m for some j < 2n and some
1 ≤ m ≤ 2n. Furthermore, assume that the set of m+ 1 indices is maximal in the
sense that either j = 1 or kj−1 ≤ kj − 4 and similarly that either j + m = 2n or
kj+m+1 ≥ kj+m+4. In this case, we define them+1 stopping points χj , . . . χj+m
in the following way.

Consider any index i ∈ {j, . . . , j+m} that satisfies i ≤ n. For i = j, we define
χj as in (4.18). On the other hand, for i > j, we define

χi := inf
{
y ≥ xkj−1 : u(y) = 0 and there are (i− j) δ− layers in (xkj−1, y)

}
.

As usual, we define χi = Lε if the set above is empty.
Now consider any index i ∈ {j, . . . , j+m} that satisfies i > n. For i = j+m,

we define χj+m as in (4.19). On the other hand, for i < j +m, we define

χi := sup
{
y ≤ xkj+1 : u(y) = 0

and there are (m− (i− j)) δ− layers in (y, xkj+1)
}
.

Again, we take the usual definition χi = −Lε if the set above is empty.
As above these random points χi are left stopping points for i ≤ n and right

stopping points for i ≥ n + 1. Furthermore, we still have that (4.20) holds for all
u ∈ Ak̄3 . The measure preserving reflection operator R can be defined as above
in (4.22), and R maps each u ∈ Ak̄3 to a path that has m + 1 wasted δ− excur-
sions in Ikj . (Specifically, we mean m + 1 wasted δ− excursions on intervals
(xi−, x

i
+) ⊂ Ikj for i ∈ {j, . . . , j +m} that are mutually disjoint except for possi-

bly the endpoints.)
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We leave it to the reader to verify that a generalization of Lemma 2.5 is:

Lemma 4.2. There exists C <∞ with the following property. Fix δ > 0. For any
system sizes `1, `2 <∞ sufficiently large and boundary conditions u± ∈ R, set

Abc := {u ∈ C([−`1 − `2, `1 + `2]) : u(−`1 − `2) = u−, u(`1 + `2) = u+},

Abc
0 := {u ∈ Abc : u has m disjoint wasted δ− excursions in (−`1, `1)}.

Define the optimal cost

c` :=
1

m

(
inf
Abc

0

E(−`1−`2,`1+`2)(u)− inf
Abc

E(−`1−`2,`1+`2)(u)

)
.

Then uniformly with respect to the boundary values u±, one has

c` − c0 ≤ C δ.

Case (c) Suppose for instance that there is a transition layer in (x−Nε , x−Nε+1).
Then we know the boundary value u(x−Nε) = u(−Lε) = −1, while the boundary
value u(xNε−2) at the other end of the subinterval is unknown. This is easily
handled by a suitable “one-sided” generalization of Lemma 2.5, which is easy to
prove.

Using the facts from above, the proof of the upper bound is completed by de-
composing Ak̄3 into the various cases and recovering the correct (and identical)
bounds in each case.

Lower bound.

We turn now to the matching lower bound, i.e., that

µ−1,1
ε,(−Lε,Lε)

(
u has (2n+ 1) transition layers

)
& (Lε)

2n exp

(
−2nc0 + γ

ε

)
.

As explained in Subsection 2, for the lower bound we will work with δ+ tran-
sition layers (cf. Definition 2.6). Because of the boundary conditions and the
definition of δ+ layers, it will be sufficient to show that, for some δ ∈ (0, 1/2), we
have

µ−1,1
ε,(−Lε,Lε)

(
u has (2n) δ+ transition layers

)
& (Lε)

2n exp

(
−2nc0 + γ

ε

)
. (4.26)

Indeed, in analogy with the upper bound, the probability of δ+ layers is bounded
above by the probability of transition layers, and because of the boundary condi-
tions there must be an odd number of transitions.

Step 1. Once again, we will use the gridpoints xk defined in (4.3). Our first step
is to get some control on the values of u at the gridpoints. The following lemma,
used below, is established via techniques similar to those used for the upper bound.
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Lemma 4.3. For any M < ∞ sufficiently large, there exists `∗ < ∞ and ε0 > 0
such that, for ` ≥ `∗ and ε ≤ ε0, we have for any Lε satisfying (1.10) that

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 : u(x) ≤ 0 for all x ∈ [−Lε,−2`]

)
≥ 1

3
. (4.27)

Recall the definition of A1 in (4.6).

The proof is similar to the proof of the upper bound, and is deferred to Subsec-
tion 6.5. The main idea is that while the boundary conditions force there to be a
transition layer, with high probability, there is only one transition layer. Moreover,
by symmetry, this layer is as likely to appear on [0, Lε] as it is on [−Lε, 0] (hence
neither probability can be more than 1/2). On the other hand, for u to hit zero
away from the transition layer is energetically unlikely, by arguments similar to
those used for the upper bound.

Step 2. With Lemma 4.3 in hand, we turn to the basic set-up for the lower
bound. In this case, we will not want to use overlapping subintervals. We will
also not work with the full system, but only with intervals on the left-hand side.
Specifically, we will work with

Ik = [xk−1, xk+1] for k ∈ {−(Nε − 4),−(Nε − 8), . . . ,−4} =: E.

We have assumed without loss of generality that 4 divides Nε. (If not, then Nε =
4j + r for some j ∈ N and r ∈ {1, 2, 3}. Replace Nε by Nε − r throughout.)

We remark that, as usual, for an event falling in the interval Ik, we will condition
on the boundary values on a larger interval. Specifically, we will use a Markov de-
composition in which we condition on the boundary values of the enlarged interval

Ĩk := [xk−2, xk+2].

Notice that for all k ∈ E, the enlarged intervals Ĩk are nonintersecting. For future
reference, let us denote the set of boundary indices

Eb := {−(Nε − 2),−(Nε − 6), . . . ,−2}.

The rough idea is to consider sets of functions having 2n layers with a layer in
one of the intervals Ik for 2n distinct values of k ∈ E. Unfortunately, because
we work with functions u that have at least 2n + 1 transitions rather than exactly
2n+1 transitions, a given function umay have more than 2n+1 layers and belong
to more than one of the sets we have just described. Hence we cannot translate the
probability of the union into the sum of the probabilities. In order to work around
this, we will work with more restrictive sets.

Analogous to the set A1 defined in (4.6) above, we define the following set.
Rather than keeping track of all the boundary values, it will be convenient to track
only the boundary values for the extended intervals described above. That is, we
consider

Ã1 :=
{
u : |u(xk)| ≥M for some k ∈ Eb

}
.

We now introduce a set that is analogous to the set Ak̄3 above (but more restric-
tive, for the reason we have explained). For ease of notation, we do not introduce
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a new label. Let k̄ = (k1, . . . , k2n) and consider the set

Ak̄3 :={Ã1 ∩
{

in each Iki with i odd there exists a δ+ up layer

and in each Iki with i even there exists a δ+ down layer and

for k ∈ E \ {ki, 1 ≤ i ≤ 2n} u does not have a δ+ layer in Ik
}
.

Clearly, we have the following inclusion of sets of paths:{
u has (2n) δ+ transition layers

}
⊇
⋃
k̄∈I

Ak̄3, (4.28)

where I is the following set of well-separated indices on the negative x-axis:

I :=
{
k̄ = (k1, k2, . . . , k2n) ∈ E2n : for all i, ki−1 < ki

}
.

Moreover, the sets Ak̄3 for k̄ ∈ I are disjoint, so that (4.28) implies

µ−1,1
ε,(−Lε,Lε)

(
u has (2n) δ+ transition layers

)
≥
∑
k̄∈I

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
. (4.29)

The set on the right-hand side of (4.28) is certainly smaller than the set on the
left-hand side, but the bound will be good enough on the level of scaling since

|I| & N2n
ε & (Lε)

2n. (4.30)

Step 3. Given (4.29) and (4.30), we will be done if we can establish that for any
γ > 0 and for ε > 0 sufficiently small, we have

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
& exp

(
− 2nc0 + γ

ε

)
. (4.31)

To this end, fix any multi-index k̄ ∈ I. We will now bound the probability of
Ak̄3 using reflections, as we did for the upper bound. Indeed, let

χ2i−1 := inf
{
y ∈ Ik2i−1

: u(y) = 0, u(x) = −1− δ

for some x ∈ (xk(2i−1)−1, y)
}
,

χ2i := sup
{
y ∈ Ik2i

: u(y) = 0, u(x) = −1− δ

for some x ∈ (y, xk2i+1)
}
.

Then we define the reflection operator R as

R = Rχ2n
χ2n−1

◦ · · ·Rχ2
χ1
.

By the same argument as above in (4.21) it can be seen that this operator preserves
the measure µ−1,1

ε,(−Lε,Lε). Notice that R creates δ+ wasted excursions in the intervals
Iki and cannot create layers in any interval Ik for k ∈ E \ {ki, 1 ≤ i ≤ 2n}. We
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recover

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)

= µ−1,1
ε,(−Lε,Lε)

(
RAk̄3

)
=

∫ M

−M
· · ·
∫ M

−M
ν−(Nε−2),−(Nε−6),...,−2

(
du−(Nε−2), du−(Nε−6), . . . , du−2

)
2n∏
i=1

µ
uki−2,uki+2

ε,(xki−2,xki+2)

(
there is a wasted δ+ excursion in Iki

)
∏

k∈E\{ki,1≤i≤2n}

µ
uk−2,uk+2

ε,(xk−2,xk+2)

(
there is no δ+ layer in Ik

)
≥
∫ 0

−M
· · ·
∫ 0

−M
ν−(Nε−2),−(Nε−6),...,−2

(
du−(Nε−2), du−(Nε−6), . . . , du−2

)
2n∏
i=1

µ
uki−2,uki+2

ε,(xki−2,xki+2)

(
there is a wasted δ+ excursion in Iki

)
∏

k∈E\{ki,1≤i≤2n}

µ
uk−2,uk+2

ε,(xk−2,xk+2)

(
there is no δ+ layer in Ik

)
. (4.32)

As usual, ν denotes the distribution of boundary values, here at the boundary points
of each extended interval Ĩk for k ∈ E. Note that the second equality follows from
the definition of wasted δ+ excursions. The definition of wasted δ− excursions is
different and led to an inequality in the analogous estimate, cf. (4.24).

We remark that we do not actually need to condition on the boundary values for
every k ∈ E—it would be enough to consider the intervals Ĩk for k ∈ k̄ and the
complementary intervals—but doing it this way keeps notation simple and because
of (1.10), it does not affect our bound by more than an exponentially small amount.

We now turn to the lower large deviation bound (3.18) and the energy bound
from Lemma 2.8 (where we use that the boundary values are in [−M, 0]). We
recall that the set Abc

δ,pre from (2.7) was defined precisely so that

B(Abc
δ,pre, δ) = {u : u has a wasted δ+ excursion in [−`, `]}.

Therefore, applying the large deviation estimate to (4.32), we conclude that for any
γ > 0 and δ > 0 small enough, there exists an ε0 > 0 such that for any k̄ ∈ I and
any ε ≤ ε0, we have

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
≥ exp

(
−2nc0 + γ

ε

)
µ−1,1
ε,(−Lε,Lε)

(
Ak̄4
)
, (4.33)

where

Ak̄4 :=
{
u : u(xk) ∈ [−M, 0] for all k ∈ Eb and

u has no layer in Ik for any k ∈ E \ {ki, 1 ≤ i ≤ 2n}
}
.

At the same time, for any k̄ ∈ I we have

Ak̄4 ⊇ {u ∈ {A1 : u(x) ≤ 0 for all x ∈ [−Lε,−2`]},
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where A1 includes all the gridpoints, as defined in (4.6). Hence by the estimate
(4.27) from Lemma 4.3, the lower bound (4.33) improves to

µ−1,1
ε,(−Lε,Lε)

(
Ak̄3
)
≥ 1

3
exp

(
− 2nc0 + γ

ε

)
, (4.34)

which establishes (4.31) and completes the proof of the lower bound.
�

5. PROOF OF THEOREM 1.9: THE UNIFORM DISTRIBUTION OF THE LAYER
LOCATION

As pointed out in Subsection 1.3, the proof of Theorem 1.9 relies on the con-
struction of a measure-preserving operator Ry,z . This operator maps paths that
exhibit a transition near y to paths that exhibit a transition near z. It is constructed
by performing a point reflection between hitting points of ±1 near y and z.

The main difficulty of the proof is to show that these hitting points exist with
very high probability on the set of paths that perform a transition near y. The
argument for this is provided in the following two lemmas.

The first lemma states, roughly speaking, that in the “bulk,” fluctuations around
±1 are of order ε1/2. The system needs O(| log ε|) space to relax to this scale. For
simplicity, we state the lemma for paths that stay close to 1. By symmetry, the
analogous statement holds near −1.

Lemma 5.1. There exists C < ∞ with the following property. For every `0 < ∞
sufficiently large, there exists ε′0 > 0 such that the following holds. For every ε and
ε0 with ε ≤ ε0 ≤ ε′0, there exists Kε ∈ N with

Kε ∼ log

(√
ε0

ε

)
such that for

`ε := (2Kε + 1)`0

and all u± ∈ [1/2, 3/2], we have

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−`0,`0]
|u(x)− 1| ≥

√
ε

ε0

∣∣∣∣
|u(±(2k − 1)`0)− 1| ≤ 1

2
, k = 1, 2, . . . ,Kε

)
≤ 4 exp

(
− 1

Cε0

)
.

We present the proof in Subsection 6.6. Next we need a lemma that says that
with positive probability, the path actually hits ±1. Again, we state the result for
hitting points of +1. By symmetry, the analogous statement holds for hitting points
of −1.

Lemma 5.2. For any `0 < ∞ sufficiently large, there exist ε0 > 0 and λ ∈ (0, 1)
such that the following holds. For any u± ∈ [1/2, 3/2], any ε ≤ ε0, and Kε, `ε as
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in Lemma 5.1, we get

µ
u−,u+

ε,(−`ε,`ε)

(
∃x ∈ [−`0, `0] such that u(x) = 1∣∣∣|u(±(2k − 1)`0)− 1| ≤ 1

2
, k = 1, 2, . . . ,Kε

)
≥ 1− λ.

The proof of this lemma, also presented in Subsection 6.6, follows as a corollary
to the previous result by a rescaling argument.

Proof of Theorem 1.9. We will show that for some δ ∈ (0, 1/2) and any α > 0, we
have for ε sufficiently small that

1− α ≤ Lε
dε

µ−1,1
ε,(−Lε,Lε)

(
at least one δ− up layer of length ≤ 2`

in [y − dε, y + dε]
)
≤ 1 + α. (5.1)

At the end of the proof, it will not be hard to improve from a δ− up layer of length
less than or equal to 2` to a full up transition layer.

Notation 5.3. For brevity, we will often say “a transition layer≤ 2`” as shorthand
for “a transition layer of length less than or equal to 2`.”

For ε small enough we consider intervals of type Jy,ε = [y − dε, y + dε] ⊆
[Lε, Lε]. The main step of our argument consists of proving that the probabili-
ties of transitions in these intervals Jy,ε for different values of y are roughly the
same. Hence fix two points y, z such that Jy,ε, Jz,ε ⊆ [−Lε, Lε]. Without loss of
generality, assume that y ≤ z.

As above in the proof of Theorem 1.5, let ` and M be a large constants to
be fixed later, and let Nε and x±k be as defined in (4.2) and (4.3). Moreover,
consider the overlapping intervals Ik = [xk−1, xk+1] as in (4.4). Finally, define
as in (4.6) the “bad set” A1 of functions that have boundary values larger than M
in magnitude. In (4.9) above, we have already established that there is a universal
constant C2 <∞ such that

µ−1,1
ε,(−Lε,Lε)

(
A1

)
≤ Lε exp

(
− M

C2 ε

)
.

Hence, for the system sizes Lε that we consider, the probability ofA1 can be made
arbitrarily small by choosing M large.

We now define the set of functions

Jy,ε :=
{
u ∈ {A1 : u has a δ− up layer ≤ 2` in Jy,ε

}
. (5.2)

The set Jz,ε is defined analogously. In Steps 1–3 below, we will establish that the
probabilities of the Jy,ε and Jz,ε are roughly the same. The bounds that we obtain
will be uniform with respect to y and z. Finally, in Step 4 we will show how this
implies (5.1), and in Step 5 we will improve to the statement of Theorem 1.9.

Step 1. The first step consists of proving that on the set Jy,ε, with high probabil-
ity, the profile u is close to −1 on a sufficiently large interval Jεy,− just to the left
of Jy,ε and close to +1 on a sufficiently large interval Jεz,+ just to the right of Jz,ε.

The length hε of each of these auxiliary intervals J εy,− and J εz,+ will be chosen
below such that

| log ε| � hε � dε.
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x

2dεhε

Jy,εJεy,−

xkεy,+xkεy,−

FIGURE 5.1. The interval Jy,ε and the auxiliary interval Jεy,− to its left.

We first fix the “inner” boundary points of Jεy,− and Jεz,+: In units of `, we set

kεy,+ := max
{
k : xk ≤ y − dε

}
− 2,

kεz,− := min
{
k : xk ≥ z + dε

}
+ 2.

Let Kε be as in the statement of Lemma 5.1. The idea is to make the probability of
hitting ±1 on the auxiliary intervals large by concatenating many subintervals of
length Kε` and applying Lemma 5.2 on each subinterval. With this end in mind,
we fix integers K̄ε such that

K̄ε � 1 and hε := `(2Kε + 1)K̄ε � dε. (5.3)

Then we set

kεy,− := kεy,+ − (2Kε + 1)K̄ε and kεz,+ := kεz,− + (2Kε + 1)K̄ε,

and finally

Jεy,− := [kεy,−`, k
ε
y,+`] and Jεz,+ := [kεz,−`, k

ε
z,+`].

(See Figure 5.1 for an illustration of Jy,ε and Jεy,−.)
We also define the following sets of indices

Iε− :=
{
k : kεy,− ≤ k ≤ kεy,+

}
, Iε+ :=

{
k : kεz,− ≤ k ≤ kεz,+

}
.

For later use in (6.81) in the proof of Lemma 5.5, we will make the additional
growth assumption

|Iε±| = (2Kε + 1)K̄ε + 1 ≤ exp(c1/4ε), (5.4)

where c1 > 0 is defined in (6.86), below. This is not a strong condition; we will
typically think of hε as being much smaller.

Finally, we define another set of “unlikely” paths, paths that have extra δ− layers
to the left of Jy,ε or to the right of Jz,ε:

A−y,3 :=
{
u ∈ Jy,ε : there exists x ≤ (kεy,+ + 1) ` with u(x) ≥ 1− δ

}
,

A+
y,3 :=

{
u ∈ Jy,ε : there exists x ≥ (kεz,− − 1) ` with u(x) ≤ −1 + δ

}
,

Ay,3 := A−y,3 ∪ A
+
y,3. (5.5)

We now introduce two lemmas. The proofs of both lemmas are given in Subsec-
tion 6.6. The first lemma is an extension of the upper bound in Theorem 1.5 and
states roughly speaking that conditioned on having a transition in a given interval,
the probability of extra layers somewhere else is small.
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Lemma 5.4. Let Y be a subinterval of [−Lε, Lε] and let x− = k−` and x+ =
k+` be two gridpoints (cf. (4.3)) to the left and to the right of Y respectively with
distance ≥ ` from Y . We denote by JY and AY,3 the sets

JY :=
{
u ∈ {A1 : u has a δ− up layer in Y

}
,

AY,3 :=
{
u ∈ JY and u has another δ− layer outside of [x−, x+]

}
.

Fix any γ > 0 and any M <∞ sufficiently large. For any δ > 0 sufficiently small
and ` <∞ sufficiently large, there exists ε0 > 0 such that, for all ε ≤ ε0, we have

µ−1,1
ε,(−Lε,Lε)

(
AY,3

)
. Lε exp

(
− c0 − γ

ε

)
µ−1,1
ε,(−Lε,Lε)

(
JY
)
. (5.6)

We now apply Lemma 5.4 for Y = Jε,y and for x− = (kεy,+ + 1)` and x+ =
(kεz,− − 1)`. Because of the boundary conditions, the absence of layers to the left
of x− and the right of x+ implies in particular that u ≤ 1− δ to the left of x− and
that u ≥ −1 + δ to the right of x+. Hence we deduce that

µ−1,1
ε,(−Lε,Lε)

(
Ay,3

)
. Lε exp

(
− c0 − γ

ε

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
. (5.7)

The second lemma establishes that, on the other hand, when there are no extra
layers, there is only a small probability of making an excursion from −1 at some
gridpoint in Jεy,− (respectively, an excursion from 1 at some gridpoint in Jεz,+). The
result from the second lemma is exactly the necessary ingredient that we need in
Step 2 in order to invoke Lemma 5.2.

Lemma 5.5. Fix any M < ∞ sufficiently large. For any δ > 0 sufficiently small
and ` <∞ sufficiently large, there exists ε0 > 0 such that for all ε ≤ ε0 we have

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε ∩ {A−y,3 : |u(xk) + 1| ≥ 1

2
for some k ∈ Iε−

)
≤ exp

(
− c1

2ε

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
, (5.8)

and, similarly,

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε ∩ {A+

y,ε : |u(xk)− 1| ≥ 1

2
for some k ∈ Iε+

)
≤ exp

(
− c1

2ε

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
, (5.9)

where c1 is defined in (6.86), below.

Step 2. The second step of the proof consists of showing that paths in the set
Jy,ε have hitting points of −1 in Jεy,− and hitting points of +1 in Jεz,+ with large
probability. This is captured by the following lemma, which is also proved in
Subsection 6.6.

Lemma 5.6. There exists C < ∞ with the following property. Fix any γ > 0
and any M < ∞ sufficiently large. For any δ > 0 sufficiently small and ` < ∞



INVARIANT MEASURES 37

x

Jy,εJεy,−

Jz,ε

Jez,ε

χ+χ−

FIGURE 5.2. The reflection operator Ry,z performs a point reflec-
tion of the path between the left and right hitting points χ±. In this
way the δ− transition in Jy,ε is mapped into Jez,ε.

sufficiently large, there exists ε0 > 0 and λ > 0 such that, for all ε ≤ ε0, we have

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε : no hitting of −1 in Jεy,−

)
≤ 1

2
E(ε)µ−1,1

ε,(−Lε,Lε)
(
Jy,ε

)
, (5.10)

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε : no hitting of +1 in Jεz,+

)
≤ 1

2
E(ε)µ−1,1

ε,(−Lε,Lε)
(
Jy,ε

)
, (5.11)

where the error term satisfies

E(ε) := C

(
λK̄ε + Lε exp

(
− c0 − γ

ε

)
+ exp

(
− c1

2ε

))
, (5.12)

and c1 is defined in (6.86), below.

Step 3. Now we are ready to define the reflection operator Ry,z . First, we define
the following left and right stopping points

χ− := inf
{
x ∈ Jεy,− : u(x) = −1

}
,

χ+ := sup
{
x ∈ Jεz,+ : u(x) = 1

}
.

Here we use the convention that χ− = Lε if there is no hitting point of −1 in Jεy,−
and similarly χ+ = −Lε if there is no hitting point of 1 in Jεz,+. We use these
hitting points to define the reflection operator

Ry,zu(x) :=


u(x) for x ≤ χ−,
−u(χ− + χ+ − x) for χ− < x < χ+,

u(x) for x ≥ χ+,

(5.13)

if χ− ≤ χ+. We set Ry,z to be the identity otherwise. In other words the operator
Ry,z performs a point reflection of the graphs of u between the left and right stop-
ping points χ±. As in Step 4 of the proof of the upper bound in Theorem 1.5, one
argues that the strong Markov property (3.10) implies that Ry,z leaves the measure
µ−1,1
ε,(−Lε,Lε) invariant. The action of the reflection operator is illustrated in Figure

5.2.
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Assume that u ∈ Jy,ε is a path that admits a hitting point of −1 in Jεy,− and a
hitting point of +1 in Jεz,+. Recall that if u ∈ Jy,ε, then u has a δ− up transition
layer of length ≤ 2` in Jy,ε. Under Ry,z the δ− up transition layer is mapped from
Jy,ε to near Jz,ε and we would like to conclude that the reflected path is contained
within Jz,ε.

Unfortunately, the layer does not necessarily fall within Jz,ε. What is true is that
there is a δ− up layer of length less than 2` in the extended interval

Jez,ε := [z − dε − 3`− hε, z + dε + 3`+ hε]. (5.14)

(Recall that hε, the length of the auxiliary intervals, was defined above in (5.3).)
Let us denote by J ez,ε the set of functions with a δ− up transition layer of length

less than 2` in Jez,ε:

J ey,ε :=
{
u : u has a δ− up layer ≤ 2` in Jey,ε

}
.

In Step 2, we had established that

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε : no hitting of −1 in Jεy,− or no hitting of +1 in Jεz,+

)
≤ E(ε)µ−1,1

ε,(−Lε,Lε)
(
Jy,ε

)
.

Hence, as Ry,z leaves µ−1,1
ε,(−Lε,Lε) invariant, we can conclude that

µ−1,1
ε,(−Lε,Lε)

(
J ez,ε

)
≥
(
1− E(ε)

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
. (5.15)

An analogous construction to turn transitions in Jz,ε into transitions near Jy,ε can
be performed to obtain the same bound with Jy,ε and Jz,ε interchanged.

Step 4. In this step, we establish the bound (5.1). For notational convenience
we will establish the bound in the case of the center interval [−dε, dε], but our
argument does not depend on this. More precisely, what we show is that for some
δ > 0 and any α > 0, there exists an ε0 > 0 such that, for ε ≤ ε0, we have∣∣∣∣Lεdε µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 : at least one δ− up layer

of length ≤ 2` in [−dε, dε]
)
− 1

∣∣∣∣ ≤ α. (5.16)

The main ingredient will be the estimate (5.15). We will also use make use of
Lemma 5.4 but except for that, the argument is completely elementary and only
consists of choosing the right intervals and sets of paths.

We first split up the system into smaller blocks. Actually, it will useful to
define two different partitions {Jk,ε, k = −Mε, . . . ,Mε − 1} and {Jem,ε,m =

−M̃ε, . . . , M̃ε − 1} of [−Lε, Lε]. The lengths of the intervals Jk,ε will be chosen
small relative to dε but still large relative to | log ε|. These intervals will be over-
lapping and play the role of Jy,ε when we apply (5.15). The intervals Jem,ε will
be slightly larger than than the intervals Jk,ε and will be of distance 2` away from
each other. They will be used as Jez,ε when applying (5.15).

We fix integers Mε and kε such that

| log ε| �M−1
ε Lε � dε,

and kεM
−1
ε Lε ≤ dε < (kε + 1)M−1

ε Lε. (5.17)
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Then we set d̃ε := Lε/Mε and define the overlapping intervals

Jk,ε := [kd̃ε − 2`, (k + 1)d̃ε + 2`], k = −(Mε − 1), . . . ,Mε − 2.

The boundary intervals are defined as

J−Mε,ε :=[−Lε,−(Mε − 1)d̃ε + 2`] and

JMε−1,ε :=[(Mε − 1)d̃ε − 2`, Lε].

As above in (5.2), we then define the associated sets of paths as

Jk,ε :=
{
u ∈ {A1 : u has δ− up layer of length ≤ 2` in Jk,ε

}
. (5.18)

In order to define the slightly longer intervals, in analogy to the parameters hε
and K̄ from Steps 1–3, we choose parameters h̃ε and ˜̄Kε such that

˜̄Kε � 1 and h̃ε := `(2Kε + 1) ˜̄Kε � min

{
d̃, exp

(
c1

4ε

)}
. (5.19)

These parameters then define the error term E(ε) (see (5.12), above). Then we
define the integers M̃ε and mε such that

Mε

(
1

1 + (h̃εMε)L−1

)
− 1 ≤ M̃ε < Mε

(
1

1 + (h̃εMε)L−1

)
and mεM̃

−1
ε Lε ≤ dε < (mε + 1)M̃−1

ε Lε. (5.20)

As above, we define the intervals

Jem,ε := [mM̃−1
ε Lε + 2`, (m+ 1)M̃−1

ε Lε − 2`], m = −M̃ε, . . . , M̃ε − 1.

Each of these intervals Jem,ε is of length

Lε

M̃ε

− 4` =
Lε
Mε

+ h̃ε − 4`, (5.21)

and in particular these intervals are long enough to use them as Jez,ε in (5.15).
Actually, when comparing (5.21) to (5.14), one notices a discrepancy in the length
of 10` but this can easily be treated by making h̃ε a bit larger.

We define the associated sets of paths

J em,ε :=
{
u : u has a δ− up layer ≤ 2` in Jem,ε

}
,

J e,∗m,ε :=
{
u ∈ J em,ε : u has no δ− up layer in any Jen,ε for any n 6= m

}
.

After these preliminary definitions, we are now ready to proceed to the proof of
(5.16).

As mentioned above, the intervals Jk,ε are overlapping. In particular, every δ−

layer ≤ 2` in [−dε, dε] must be contained in at least one of the Jk,ε. This implies
that

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 : δ− up layer ≤ 2` in [−dε, dε]

)
≤

kε∑
k=−(kε+1)

µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
. (5.22)

In the same way we see that every possible path on [−Lε, Lε] must be either
• in one of the unlikely sets A1 or A2 defined above in (4.6) and (4.7)
• or in at least one of the sets Jk,ε.
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This implies that

Mε−1∑
k=−Mε

µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
≥ 1− µ−1,1

ε,(−Lε,Lε)
(
A1 ∪ A2

)
, (5.23)

and hence we have

max
k

µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
≥

1− µ−1,1
ε,(−Lε,Lε)

(
A1 ∪ A2

)
2Mε

. (5.24)

On the other hand, applying (5.15) gives that for any k and m

µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
≤
(
1− E(ε)

)−1
µ−1,1
ε,(−Lε,Lε)

(
J em,ε

)
. (5.25)

Then, applying Lemma 5.4 with Y = Jem,ε, we have for every m that

(
1− E(ε)

)
µ−1,1
ε,(−Lε,Lε)

(
J em,ε

)
≤ µ−1,1

ε,(−Lε,Lε)
(
J e,∗m,ε

)
. (5.26)

Finally, the sets J e,∗m,ε are all disjoint and in particular, we have

M̃ε−1∑
m=−M̃ε

µ−1,1
ε,(−Lε,Lε)

(
J e,∗m,ε

)
≤ 1,

which implies that

min
m

µ−1,1
ε,(−Lε,Lε)

(
J e,∗m,ε

)
≤ 1

2M̃ε

. (5.27)

We now collect ingredients to deduce the upper bound

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 : u has a δ− up layer ≤ 2` in [−dε, dε]

)
(5.22)
≤

kε∑
k=−(kε+1)

µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
≤ (2kε + 2) max

k
µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
(5.25)
≤ (1− E(ε))−1(2kε + 2) min

m
µ−1,1
ε,(−Lε,Lε)

(
J em,ε

)
(5.26)
≤ (1− E(ε))−2(2kε + 2) min

m
µ−1,1
ε,(−Lε,Lε)

(
J e,∗m,ε

)
(5.27)
≤ (1− E(ε))−2 (kε + 1)

M̃ε

. (5.28)
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The proof of the lower bound now follows along similar lines:

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 : u has a δ− up layer ≤ 2` in [−dε, dε]

)
+µ−1,1

ε,(−Lε,Lε)
(
A1

)
(5.20)
≥

mε−1∑
m=−mε

µ−1,1
ε,(−Lε,Lε)

(
J e,∗m,ε

)
≥ 2mε min

m
µ−1,1
ε,(−Lε,Lε)

(
J e,∗m,ε

)
(5.26)
≥

(
1− E(ε)

)
2mε min

m
µ−1,1
ε,(−Lε,Lε)

(
J em,ε

)
(5.25)
≥

(
1− E(ε)

)2
2mε max

k
µ−1,1
ε,(−Lε,Lε)

(
Jk,ε

)
(5.24)
≥

(
1− E(ε)

)2(
1− µ−1,1

ε,(−Lε,Lε)(A1 ∪ A2)
)mε

Mε
. (5.29)

Now, from the assumptions (5.17) on kε and Mε as well as the assumptions (5.20)
on mε and M̃ε, we have that

1 /
mε

Mε

Lε
dε
≤ 1 and 1 ≤ kε + 1

M̃ε

Lε
dε
/ 1. (5.30)

Moreover, if we choose for instance M ≥ 4C2 c0 in the bound (4.9) on A1, we
recover

Lε µ
−1,1
ε,(−Lε,Lε)

(
A1

)
� 1� dε. (5.31)

Combining (5.28), (5.29), (4.13), (5.30), and (5.31) establishes (5.16), as desired.
Step 5. It remains to remove the restriction on the length of the layer and improve

from a δ− up layer to a full up layer.
The upper bound is immediate, since

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and there exists an up layer in [y − dε, y + dε]

)
≤ µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and δ− up layer in [y − dε, y + dε]

)
≤ µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and δ− up layer ≤ 2` in

[y − dε, y + dε]
)

+µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and u ∈ [−1 + δ, 1− δ] on

all of [xk, xk+1] for some k
)

(5.1),(4.13)
≤ (1 + α)

dε
Lε

+ Lε exp
(
− δ2`

C1ε

)
≤ (1 + 2α)

dε
Lε
,

for ` large enough with respect to 1/δ2.
For the lower bound, on the other hand, we use Step 2 once more. To this

end, we will consider layers falling strictly interior to Jy,ε on the subset J�y,ε :=
[y − dε + hε + 3`, y + dε − hε − 3`]. Then, according to Step 2, there is a high
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probability of hitting±1 on Jy,ε \J�y,ε. More precisely, notice that we can estimate

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and there exists an up layer in [y − dε, y + dε]

)
≥ µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and there exists a δ− up layer ≤ 2` in J�y,ε
and u hits −1 in (y − dε, y − dε + hε + 3`)

and u hits +1 in (y + dε − hε − 3`, y + dε)
)

≥
(
1− E(ε)

)
µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and

there exists a δ− up layer ≤ 2` in J�y,ε
)
, (5.32)

where in the last line, we have applied Lemma 5.6. On the other hand the proba-
bility on the last line can be estimated

µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and δ− up layer ≤ 2` in J�y,ε

)
≥ µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and δ− up layer ≤ 2` in Jy,ε

)
− µ−1,1

ε,(−Lε,Lε)
(
u ∈ {A1 and δ− up layer ≤ 2`

in (y − dε, y − dε + hε + 5`)
)

− µ−1,1
ε,(−Lε,Lε)

(
u ∈ {A1 and δ− up layer ≤ 2`

in (y + dε − hε − 5`, y + dε)
)
. (5.33)

Applying the bound (5.1) to each term in (5.33) and substituting into (5.32) com-
pletes the lower bound.

Finally, recalling the bound (4.9) on the probability of A1 completes the proof
of Theorem 1.9.

�

6. PROOFS OF THE LEMMAS

6.1. Proofs of preliminary energy lemmas. The energy lemmas rely on upper
bounds and lower bounds for the energy over various sets. The upper bounds are
derived based on constructions. (The minimum value of the energy is necessarily
less than or equal to the value that we can achieve with any given construction.) The
lower bound, on the other hand, describes the best possible value for any function
and is based on the so-called Modica-Mortola trick discussed in Section 2. Before
we begin, we make a remark about our constructions.

Remark 6.1. In addition to giving us an ODE for the energy minimizer on R, equa-
tion (2.1) serves as the backbone for the constructions that are used to establish
upper bounds for energy minimization problems on finite systems. For instance,
suppose we want to minimize the energy on (−`, `) subject to u(±`) = ±1. For
` large, we can build a construction that almost achieves the cost c0. Specifically,
consider the centered solution of (2.2) on (−` + a, ` − a) for a = 1/`. Linearly
interpolate from its value at−`+a to−1 at−`, and symmetrically at the other end.
Because of the exponential convergence of the minimizer to ±1 (cf., Lemma 2.1),
the energy on (−`,−`+ a) and (`− a, `) is o(1) as ` ↑ ∞. Similarly, if we mini-
mize the energy over functions satisfying u(±`) = ±M for M large, we can build
a piecewise-defined construction that goes from −M at −` to a neighborhood of
−1 at −`/2, goes from a neighborhood of −1 at −`/2 + a to a neighborhood of 1
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at `/2−a, and goes from a neighborhood of 1 at `/2 toM at `, with linear interpo-
lation near ±`/2 to make the function continuous. The cost of such a construction
is ∫ −1

−M

√
2V (u) du+

∫ 1

−1

√
2V (u) du+

∫ M

1

√
2V (u) du+ o(1)`↑∞,

where we write the integrals separately to emphasize the additivity of the energy
over the three subintervals described above. Because according to (2.1) we can get
a good bound using increasing or decreasing functions, the analogous bounds hold
for u(±`) = ∓M , u(±`) = M , et cetera.

IfM is very large, the constant `∗ in the energy lemmas may also need to be very
large in order to make the o(1) term small. The idea in all of the following proofs
is to make this term small enough so that it can be absorbed into a δ-dependent
term, so the ordering of the constants is important: We fix M (large) and δ (small)
and then choose `∗ large enough so that the term(s) that are o(1) with respect to `
can be absorbed.

In what follows, it will be convenient to introduce the notation:

ϕ−1(u) =

∣∣∣∣ ∫ u

−1

√
2V (s) ds

∣∣∣∣, ϕ+1(u) =

∣∣∣∣ ∫ 1

u

√
2V (s) dx

∣∣∣∣.
Proof of Lemma 2.3. We will establish (2.4) via an upper bound on the energy over
Abc and a lower bound on the energy over Abc

0 . Because of the extra condition in
Abc

0 , the energy on (−`, `) is large (of order δ2`), and we do not have to be as
careful about the boundary conditions as usual. A rough bound will suffice.

Step 1. As explained in Remark 6.1, the upper bound relies on a construction.
Given any u− ∈ [−M,M ], we can use the solution of (2.1) to connect to a neigh-
borhood of 1 or −1, and similarly for u+. If the optimal connection for u− is to
−1 and the optimal connection for u+ is to +1, then in order to build a continu-
ous construction, we incur the additional cost ϕ−1(1) = c0, where we have used
the notation introduced above and recalled the value of c0 from (1.9). (If the op-
timal connection for u− and u+ is to the same value, then the construction does
not incur this extra cost, but the upper bound is still valid.) Putting together these
three pieces of the construction and the small correction terms for continuity (see
Remark 6.1), we can express the upper bound derived in this way as:

inf
u∈Abc

E(−2`,2`)(u) ≤ min{ϕ−1(u−), ϕ+1(u−)}

+ min{ϕ−1(u+), ϕ+1(u+)}+ c0 + o(1)`↑∞. (6.1)

Note that Assumption 1.1 allows that o(1)`↑∞ may depend on M : If u− is very
large, the (near) optimal connection from u− to 1 requires a lot of space. This
explains why `∗ in the statement of the lemma depends on M .

Step 2. Now we turn to the lower bound over Abc
0 . On the one hand, on (−`, `),

the condition inAbc
0 implies that the integral of V over (−`, `) cannot be too small.

Using the quadratic behavior of V near ±1 (see Assumption 1.1), we have for δ
small enough

E(−`,`)(u) ≥
∫ `

−`
V (u) du ≥ V ′′(1) ` δ2

2
. (6.2)
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To integrate over the rest of the interval, we recall the trick of Modica and Mor-
tola that was explained in Section 2. Consider first (−2`,−`). We divide into two
cases: |u−| > 1 and the complement.

If u ∈ Abc
0 and |u−| > 1, then there is a point x− ∈ (−2`,−`) such that

|u(x−)| = 1. In this case, the Modica-Mortola trick on (−2`, x−) gives

E(−2`,−`)(u) ≥ E(−2`,x−)(u) ≥ min{ϕ−1(u−), ϕ+1(u−)}. (6.3)

On the other hand if |u−| ≤ 1, then for ` large enough, we have

min{ϕ−1(u−), ϕ+1(u−)} ≤ V ′′(1) ` δ2

8
. (6.4)

If |u−| > 1, then adding the contributions from (6.2) and (6.3) and subtracting
the contribution from (6.1) gives

inf
u∈Abc

0

E(−2`,2`)(u)− inf
u∈Abc

E(−2`,2`)(u)

≥ V ′′(1) ` δ2

2
−min{ϕ−1(u+), ϕ+1(u+)} − c0 + o(1)`↑∞.

On the other hand if |u−| ≤ 1, then the contributions from (6.2) and (6.1) together
with the bound from (6.4) imply

inf
u∈Abc

0

E(−2`,2`)(u)− inf
u∈Abc

E(−2`,2`)(u)

≥ 3V ′′(1) ` δ2

8
−min{ϕ−1(u+), ϕ+1(u+)} − c0 + o(1)`↑∞.

Since this is a weaker bound, it holds in either case.
Repeating the identical argument on (`, 2`) and in addition absorbing c0 by

V ′′(1)`δ2/8 gives

inf
u∈Abc

0

E(−2`,2`)(u)− inf
u∈Abc

E(−2`,2`)(u)

≥ V ′′(1) ` δ2

8
+ o(1)`↑∞,

which completes the proof of Lemma 2.3. �

Proof of Lemma 2.5. We rewrite the set Abc
0 as

Abc
0 = A− ∪ A+,

where the A± are the sets of paths that perform a wasted excursion starting from
a neighborhood of ±1. We will prove the bound on the energy difference for A+.
The corresponding bound for A− follows in the same way.

As usual, our task is to produce appropriate upper and lower bounds.
Step 1. The upper bound on infAbc E(−2`,2`)(u) is by construction. Consider

the function ū that minimizes E(−2`,2`) subject to

u(±2`) = u±, u(0) = 1,



INVARIANT MEASURES 45

and notice that

E(−2`,2`)(ū) = inf

{∫ 0

−2`

1

2
(∂xu)2 + V (u) dx : u(0) = 1, u(−2`) = u−

}
+ inf

{∫ 2`

0

1

2
(∂xu)2 + V (u) dx : u(0) = 1, u(2`) = u+

}
= ϕ+1(u−) + ϕ+1(u+) + o(1)`↑∞,

uniformly for u± ∈ [−M,M ]. (This can be established by building a construction
by hand, as we have explained in Remark 6.1 and the proof of Lemma 2.3.) Hence,
since ū ∈ Abc, we have the (not necessarily tight) upper bound

inf
Abc

E(−2`,2`)(u) ≤ E(−2`,2`)(ū)=ϕ+1(u−) + ϕ+1(u+) + o(1)`↑∞. (6.5)

Step 2. We now turn to the lower bound on infA+ E(−2`,2`)(u). Recall the
points x± that follow from the definition of A+ and Definition 2.4. Because of the
properties of the potential, we may without loss of generality assume that u(x±) =
1− δ and u(x0) = δ.

We now use the Modica-Mortola trick on (−2`, x−) ∪ (x+, 2`) to recover

E(−2`,x−)(u) + E(x+,2`)(u)

≥ ϕ+1(u−) + ϕ+1(u+)− Cδ2

(6.5)
≥ inf

u∈Abc
E(−2`,2`)(u)− Cδ2 − o(1)`↑∞. (6.6)

On the other hand, applying the Modica-Mortola trick on (x−, x0)∪(x0, x+) gives

E(x−,x0)(u) + E(x0,x+)(u) ≥ 2

∫ 1−δ

δ

√
2V (u) du

(1.9)
= c0 − Cδ. (6.7)

Combining (6.6) and (6.7) completes the proof of Lemma 2.5. �

Proof of Lemma 2.8. Step 1. For the upper bound over Abc
δ,pre, we use the function

ū that minimizes the energy subject to

u(±2`) = u±, u(±`) = −1− 2δ, u(0) = δ.

As in the proof of Lemma 2.5, we observe that ū ∈ Abc
δ,pre and hence the construc-

tion gives an upper bound

inf
Abc
δ,pre

E(−2`,2`)(u) ≤ ϕ−1(u−) + ϕ−1(u+) + 2ϕ+1(0) + Cδ + o(1)`↑∞

(1.9)
= ϕ−1(u−) + ϕ−1(u+) + c0 + Cδ + o(1)`↑∞. (6.8)

Step 2. For the lower bound over Abc, we observe that for any u ∈ Abc, either
there is a point x− ∈ (−2`, 0) and a point x+ ∈ (0, 2`) such that u(x±) is in
a δ neighborhood of 1 or −1, or else the energy (by the same argument as in the
proof of Lemma 2.3) is bounded below by δ2`V ′′(1)/2 for δ small enough. We can
choose ` so large that this is greater than ϕ−1(u−)+ϕ−1(u+) and hence dominates
the boundary terms in (6.8). On the other hand, if the points x± exist, then by the
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usual trick of Modica and Mortola, we recover

inf
Abc

E(−2`,2`)(u)

≥ min{ϕ−1(u−), ϕ+1(u−)}+ min{ϕ−1(u+), ϕ+1(u+)} − Cδ
= ϕ−1(u−) + ϕ−1(u+)− Cδ, (6.9)

where the second line follows by virtue of the boundary conditions u± ∈ [−M, 0]
and the symmetry of the potential.

The combination of (6.8) and (6.9) completes the proof of Lemma 2.8. �

6.2. Proof of the strong Markov property.

Proof of Lemma 3.1. By subtracting hu−,u+

(x−,x+), we can reduce the problem to the

case of zero boundary conditions. Under W0,0
ε,(x−,x+), u− u

x̂+

x̂−
and ux̂+

x̂−
are jointly

Gaussian and centered, because they are both linear images of u. So it is sufficient
to calculate their covariances. Using (3.1), it is easy to see that, for all x1, x2 ∈
[x−, x+], one has

EWε,0,0
(x−,x+)

(
(u− ux̂+

x̂−
)
(
x1

)
u
x̂+

x̂−

(
x2

))
= 0,

and for x1, x2 ∈ [x̂−, x̂+], one has

EWε,0,0
(x−,x+)

(
(u− ux̂+

x̂−
)
(
x1

)
(u− ux̂+

x̂−
)
(
x2

))
=

ε

x̂+ − x̂−

(
(x1 − x̂−)(x̂+ − x2) ∧ (x2 − x̂−)(x̂+ − x1)

)
.

This shows the claim. �

Proof of Lemma 3.2. We start by observing that the statement of Lemma 3.1 im-
plies that

EWε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,x̂−] ∨ F[x̂+,x+]

)
= EWε,u

(x̂−,x̂+)

(
Φ
)
. (6.10)

In order to prove the desired statement (3.7), observe that the density of µu−,u+

ε,(x−,x+)

with respect toWu−,u+

ε,(x−,x+) can be written as

exp
(
− 1

ε

∫ x+

x−

V (u) dx
)

= Ψ−Ψ�Ψ+,

where

Ψ− := exp
(
− 1

ε

∫ x̂−

x−

V (u) dx
)
, Ψ+ := exp

(
− 1

ε

∫ x+

x̂+

V (u) dx
)
,

and Ψ� := exp
(
− 1

ε

∫ x̂+

x̂−

V (u) dx
)

are measurable with respect to F[x−,x̂−], F[x̂−,x̂+], and F[x̂+,x+]. Suppose that test
functions Ξ− and Ξ+ are measurable with respect to F[x−,x̂−] and F[x̂+,x+]. Then
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we get

Eµε,u−,u+

(x−,x+)

(
Φ Ξ− Ξ+

)
(6.11)

=
1

Zu−,u+

ε,(x−,x+)

EWε,u−,u+

(x−,x+)

(
Ξ−Ψ−Φ Ψ�Ξ+Ψ+

)
(6.10)
=

1

Zu−,u+

ε,(x−,x+)

EWε,u−,u+

(x−,x+)

(
Ξ−Ψ−EWε,u

(x̂−,x̂+)

(
Φ Ψ�

)
Ξ+Ψ+

)
=

1

Zu−,u+

ε,(x−,x+)

EWε,u−,u+

(x−,x+)

(
Ξ−Ψ−EWε,u

(x̂−,x̂+)

(
Ψ�
)
Eµε,u(x̂−,x̂+)

(
Φ
)
Ξ+Ψ+

)
(6.10)
= Eµε,u−,u+

(x−,x+)

(
Ξ− Eµε,u(x̂−,x̂+)

(
Φ
)

Ξ+

)
.

This finishes the proof of Lemma 3.2. �

We are now ready to give a proof of the strong Markov property.

Proof of Lemma 3.3: We treat only the Gaussian case (3.9). Equation (3.10) then
follows as in the proof of Lemma 3.2.

We start by proving (3.9) in the case in which χ− and χ+ are left and right
stopping points that attain values in a finite set

{
χ1, . . . , χN

}
. Then we can write

EWε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χ−] ∨ F[χ+,x+]

)
=

N∑
n=1

N∑
m=1

EWε,u−,u+

(x−,x+)

(
Φ1{χ−=χn}1{χ+=χm}

∣∣F[x−,χ−] ∨ F[χ+,x+]

)
=

N∑
n=1

N∑
m=1

1{χ−=χn}1{χ+=χm}E
Wε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χn] ∨ F[χm,x+]

)
(6.10)
=

N∑
n=1

N∑
m=1

1{χ−=χn}1{χ+=χm} E
Wε,u
(χn,χm)

(
Φ
)

= EWε,u
(χ−,χ+)

(
Φ
)
.

In the second equality, we have used the fact that the χ± are left and right stopping
points.

In order to see the general case, we approximate the stopping points by

χN− := inf
{
x = i 2−N : i ∈ Z, x ≥ χ−

}
,

χN+ := sup
{
x = i 2−N : i ∈ Z, x ≤ χ+

}
.

Then χN− and χN+ are stopping points taking values in a finite set and, in particu-
lar, (3.9) holds for them. We have

χN− ↓ χ− and χN+ ↑ χ+ as N ↑ ∞.
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Now, in order to conclude that (3.9) also holds for χ±, we first observe that for any
continuous, bounded Φ: C([x−, x+])→ R, we have for every path u that

EWε,u
(χ−,χ+)

(
Φ
)

= lim
N→∞

EWε,u

(χN− ,χ
N
+ )

(
Φ
)

= lim
N→∞

EWε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χN− ] ∨ F[χN+ ,x+]

)
= EWε,u−,u+

(x−,x+)

(
Φ
∣∣F[x−,χ−] ∨ F[χ+,x+]

)
.

In the first step, we have used that, due to the continuity of u, the measures
Wu
ε,(χN− ,χ

N
+ )

converge weakly to Wu
ε,(χ−,χ+), as can easily be confirmed. In or-

der to see the last line, it suffices to check that the limit in the third line does indeed
satisfy the characteristic properties of a conditional expectation.

This equality can then be extended to arbitrary test functions Φ with a standard
monotone class argument (see e.g. [RY99, Ch. 0, Thm 2.2]).

�

6.3. Proof of large deviation bounds. The large deviation bounds (3.17) and (3.18)
are statements about the quotient of expectations of the form

EWε,u−,u+

(x−,x+)

(
1A(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))
,

see (1.5). Consequently, the results will follow as soon as we establish upper and
lower bounds on these expectations. Throughout this subsection, A will always
denote a set of continuous paths u on [x−, x+] that satisfy the boundary conditions
u(x±) = u±, and topological notions like open or closed will always refer to the
topology of uniform convergence. We will frequently use Ix−,x+(u), the Gaussian
energy of a path (defined in (3.2)), and Iu±x± , the minimal Gaussian energy given
the boundary conditions (defined in (3.15)).

The upper bound for the Gaussian expectation can then be stated as follows.

Lemma 6.2 (Upper bound). Fix constants M < ∞, 0 < `− < `+ < ∞ and
R < ∞. Suppose that ` = (x+ − x−) ∈ [`−, `+] and u± ∈ [−M,M ]. Then for
any δ, γ > 0, there exists an ε0 > 0 such that for any measurable set A satisfying

inf
u∈B(A,δ)

E(u)− Iu±x± ≤ R (6.12)

and for any ε ≤ ε0, we have

EWε,u−,u+

(x−,x+)

(
1A(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≤ exp
(
− 1

ε

(
inf

u∈B(A,δ)
E(u)− Iu±x± − γ

))
. (6.13)

Here ε0 depends on M, `±, sup|v|≤M+
√

2−1(`+R+1)+1
|V ′(v)|, δ, and γ but not on

the particular choice of x±, u±, and it depends onA only through condition (6.12).

As usual in large deviation theory, the derivation of lower bounds for integrals
is reduced to the case of a ball

B(u∗, δ) :=
{
u : ‖u− u∗‖∞ ≤ δ

}
around a suitably chosen profile u∗.
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Lemma 6.3 (Lower bound). Fix constants M and `+ < ∞. Suppose that ` =
x+ − x− ≤ `+, u± ∈ [−M,M ]. Then for any profile u∗ with

sup
x∈(x−,x+)

|u∗(x)| ≤M (6.14)

and any δ, γ > 0, there exists an ε0 > 0 such that for ε ≤ ε0

EWε,u−,u+

(x−,x+)

(
1B(u∗,δ)(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
)

≥ exp
(
− 1

ε

(
E(u∗)− Iu±x± + γ

))
. (6.15)

Here ε0 depends on sup|v|≤M+1 |V ′(v)|, `+, δ, and γ but not on the particular
choice of x±, u± and it depends on u∗ only through the condition (6.14).

Now we give the proofs of Lemmas 6.2 and 6.3. The proofs of Propositions 3.4
and 3.5 are given afterwards.

In order to prove the upper bound, we will invoke the known upper bound for
Gaussian large deviations. In the current context, this can be stated as follows.

Proposition 6.4 (Gaussian large deviation, see e.g. [Bog98, Cor. 4.9.3 ]). For
every closed set A and for any γ > 0, there exists an ε0 > 0 such that for every
ε ≤ ε0 we have

W0,0
ε,(0,1)

(
A
)
≤ exp

(
− 1

ε

(
inf
u∈A

I0,1(u)− γ
))
. (6.16)

The argument for Lemma 6.2 is an adaptation of the proof of [dH00, p. 34].

Proof of Lemma 6.2. Step 1. We start by reducing the general problem to the case
of homogeneous boundary conditions on [0, 1]. To this end, we introduce the fol-
lowing affine transformation. We define the transformation T : u 7→ û, where for
a given path u : [x−, x+]→ R we denote by û ∈ C([0, 1]) the function

û(x) := u
(
x− + ` x

)
− hu−,u+

0,1 (x). (6.17)

Recall from (3.4) that hu−,u+

0,1 (x) = xu+ + (1 − x)u−. It is clear that T is a
bijection between the set of continuous paths u on [x−, x+] with boundary con-
ditions u(x±) = u± and C([0, 1]), the space of continuous paths on [0, 1] with
homogeneous boundary conditions. Furthermore, if u is distributed according to
Wu−,u+

ε,(x−,x+), then û is distributed according to W0,0
`ε,(0,1). Note that the variance

changes due to the rescaling by `.
The expectation that we want to bound can be expressed in terms of û as

EWε,u−,u+

(x−,x+)

(
1A(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

= EW`ε,0,0
(0,1)

(
1Â(û) exp

(
− `

ε

∫ 1

0
V
(
û+ h

u−,u+

0,1

)
dx
))
, (6.18)

where Â :=
{
Tu : u ∈ A

}
. On the other hand, the condition (6.12) and the right-

hand side of the desired bound (6.13) can also be expressed in terms of û, as we
will now do. We have for every u that

E(u) = E
u±
` (û) + Iu±x± ,
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where, for convenience, we have introduced the notation

E
u±
` (û) :=

∫ 1

0

1

2`

(
∂xû

)2
+ `V

(
û+ h

u−,u+

0,1

)
dx.

(Note that we have not included Iu±x± in the definition of the rescaled energy Eu±` ,
because this way Eu±` will appear as the natural rate functional.) Condition (6.12)
can now be expressed as

inf
u∈B(Â,δ)

E
u±
` (û) ≤ R, (6.19)

and for the right-hand side of (6.13), we get

exp
(
− 1

ε

(
inf

u∈B(A,δ)
E(u)− Iu±x± − γ

))
= exp

(
− 1

ε

(
inf

û∈B(Â,δ)
E
u±
` (û)− γ

))
.

Relabelling Â as A and û as u, we conclude that it suffices to show that for
every set A ⊆ C([0, 1]) satisfying

inf
u∈B(A,δ)

E
u±
` (u) ≤ R, (6.20)

we have for ε ≤ ε0 that

EW`ε,0,0
(0,1)

(
1A(u) exp

(
− `

ε

∫ 1

0
V
(
u+ h

u±
0,1

)
dx
))

≤ exp
(
− 1

ε

(
inf

u∈B(A,δ)
E
u±
` (u)− γ

))
. (6.21)

This bound will be established in Steps 2-4.
Step 2.The strategy to prove (6.21) consists of decomposing C([0, 1]) into a set

of paths with high Gaussian energy and a finite number of small balls with lower
Gaussian energy. One can use the Gaussian large deviation bound (6.16) to bound
the probability of the set of high Gaussian energy, which we will make to be a term
of higher exponential order by choosing the Gaussian energy high enough. Then
for the balls with lower Gaussian energy, the expectation over a given ball can be
estimated by bounding an exponential factor by its supremum on that ball, and then
bounding the Gaussian probability of the set using (6.16) again. Finally, one has to
sum over all the balls. As the total number of balls is finite and the bounds decay
exponentially, the largest of the summands determines the behavior.

The main difference with respect to the classical argument in [dH00] is that we
choose a partition of C([0, 1]) into sets that do not depend on A. This is necessary
to ensure that the number of balls is independent of A. The price we have to
pay is that on the right-hand side of (6.21) we take the infimum over the small
neighborhood B(A, δ) of A instead of taking it over A only, as in the classical
argument.

Let us now give the details: First, fix a γ < 1 and let

δ̃ := γ

(
`+ sup
|v|≤
√

2−1(`+R+1)+M+1

|V ′(v)|
)−1

∧ δ ∧ 1

2
. (6.22)
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The sublevel set

K`+R :=
{
u : I0,1 ≤ `+R

}
is compact inC([0, 1]), and we can cover it by a finite numberNδ̃,`+R

of open balls

B(uk, δ̃) of radius δ̃, where uk ∈ K`+R for each k. Note that A does not enter
here, so both the profiles uk and the number Nδ̃,`+R

depend only on γ, δ, `+R,
and sup|v|≤

√
2−1(`+R+1)+M+1

|V ′(v)|, not on the set A or the specific choice of
x±, u±. Actually, it can be checked using the Hölder continuity of functions with
bounded H1-norm that this number grows like exp

(
C
(
R`+δ̃

−1
)2).

Using this covering and the positivity of V , we have for any set A that

EW`ε,0,0
(0,1)

(
1A(u) exp

(
− `

ε

∫ 1

0
V
(
u+ h

u±
0,1

)
dx
))

≤
Nδ̃,`+R∑
k=1

EW`ε,0,0
(0,1)

(
1B(uk,δ̃)∩A(u) exp

(
− `

ε

∫ 1

0
V
(
u+ h

u±
0,1

)
dx
))

+W0,0
`ε,(0,1)

(
A \ ∪kB(uk, δ̃)

)
. (6.23)

Step 3. The last term in (6.23) can now easily be bounded:

W0,0
`ε,(0,1)

(
A \ ∪kB(uk, δ̃)

)
≤ W0,0

`ε,(0,1)

(
{ ∪k B(uk, δ̃)

)
. (6.24)

The set B := { ∪k B(uk, δ̃) is closed and by definition infu∈B I0,1(u) ≥ `+R.
Hence, the Gaussian large deviation bound (6.16) implies that there exists an ε̃0 >
0 such that, for ε ≤ ε̃0, we have

W0,0
ε,(0,1)

(
B
)
≤ exp

(
− 1

ε

(
`+R− γ

))
.

Now we choose ε0 = ε̃0`
−1
+ . Then, for ε ≤ ε0, we can conclude that

W0,0
`ε,(0,1)

(
A \ ∪kB(uk, δ̃)

)
≤ exp

(
− 1

`ε

(
`+R− γ

))
≤ exp

(
− 1

ε

(
R− γ

`−

))
(6.19)
≤ exp

(
− 1

ε

(
inf

u∈B(A,δ)
E
u±
` (u)− γ

`−

))
. (6.25)

Step 4. It remains to bound the sum on the right-hand side of (6.23). Since the
number of summands Nδ̃,`+R

remains constant as ε ↓ 0, the sum is dominated by
the largest summand. Specifically, after fixing γ, δ, `+R and M , we can choose
ε0 > 0 sufficiently small so that ε ≤ ε0 implies

Nδ̃,`+R
= exp

(
1

ε

(
ε log

(
Nδ̃,`+R

)))
≤ exp

(γ
ε

)
. (6.26)

Hence, up to an extra factor of γ, it is sufficient to obtain a good exponential bound
on the largest summand on the right-hand side of (6.23).
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If B(uk, δ̃) ∩ A is empty, the largest summand is zero. Otherwise, we have

EW`ε,0,0
(0,1)

(
1B(uk,δ̃)∩A(u) exp

(
− `

ε

∫ 1

0
V
(
u+ h

u±
0,1

)
dx
))

≤ sup
u∈B(uk,δ̃)

exp
(
− `

ε

∫ 1

0
V
(
u+ h

u±
0,1

)
dx
)
W0,0
`ε,(0,1)

(
B(uk, δ̃)

)
. (6.27)

Due to the lower semi-continuity of I0,1, we can choose ũk ∈ B(uk, δ̃) so that

I0,1(ũk) ≤ inf
u∈B(uk,δ̃)

I0,1(u) + γ. (6.28)

Then the first factor in (6.27) can be bounded above by

exp
(
− 1

ε

(
`

∫ 1

0
V
(
ũk + h

u±
0,1

)
dx− 2δ̃`+ sup

|v|≤‖ũk‖∞+M+1
|V ′(v)|

))
, (6.29)

and we need a bound on ||ũk||∞. First we recall that uk ∈ K`+R, which by defini-
tion gives I0,1(uk) ≤ `+R. Together with the definition of ũk, this gives

I0,1(ũk)
(6.28)
≤ `+R+ γ.

Recalling the homogeneous boundary conditions, this implies that

||ũk||∞ ≤
1

2

∫ 1

0
|∂xũk| dx ≤

1

2

(∫ 1

0
|∂xũk|2 dx

)1/2

≤
√

2−1(`+R+ 1).

Hence, the definition (6.22) of δ̃ implies that the bound in (6.29) improves to

exp
(
− 1

ε

(
`

∫ 1

0
V
(
ũk + h

u±
0,1

)
dx− 2γ

))
. (6.30)

On the other hand, the Gaussian large deviation bound (6.16) and the defini-
tion (6.28) of ũk imply that for every k there exists an ε0 > 0 such that for `+ε ≤ ε0

we have

W0,0
`ε,(0,1)

(
B(uk, δ̃)

)
≤ exp

(
− 1

`ε

(
I0,1

(
ũk
)
− 2γ

))
. (6.31)

As there are only finitely many uk (the selection of which does not depend on A),
we can find an ε0 such that this bound holds for all ũk simultaneously and such
that (6.25) holds as well.

Substituting (6.30) and (6.31) into (6.27) gives for each k that

EW`ε,0,0
(0,1)

(
1B(uk,δ̃)∩A exp

(
− 1

ε
`

∫ 1

0
V
(
u+ h

u±
0,1

)
dx
))

≤ exp
(
− 1

ε

(
E
u±
` (ũk)−

(
2 +

2

`−

)
γ
))

≤ exp
(
− 1

ε

(
inf

u∈B(uk,δ̃)
E
u±
` (u)−

(
2 +

2

`−

)
γ
))

(6.22)
≤ exp

(
− 1

ε

(
inf

u∈B(uk,δ)
E
u±
` (u)−

(
2 +

2

`−

)
γ
))
.

After relabelling γ (for instance by a factor of 6), the above bound together with (6.23), (6.25),
and (6.26) finishes the proof of (6.21).

�
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The proof of the lower bound (6.15) relies on the classical Cameron-Martin
Theorem. In the current context it can be stated as follows.

Theorem 6.5 (Cameron-Martin Thm. e.g.[Hai09, Thm 3.41]). For a fixed f ∈
C([x−, x+]), define the shift map Tf : C([x−, x+]) → C([x−, x+]) by Tf (u) =

u+f . Then the image measure T ∗fW
0,0
ε,(x−,x+) is absolutely continuous with respect

to W0,0
ε,(x−,x+) if and only if f ∈ H1

0 (x−, x+). In that case the Radon-Nykodym
derivative is given by

d T ∗fW
0,0
ε,(x−,x+)

dW0,0
ε,(x−,x+)

(u) = exp
(
− 1

ε
Ix−,x+(f) +

1

ε

∫ x+

x−

∂xf(x) du(x)
))
. (6.32)

Here, as in the case of Brownian motion, the stochastic integral term
1
ε

∫ x+

x−
∂xf(x) du(x) can be defined as the limit of Riemann sums inL2

(
W0,0
ε,(x−,x+)

)
.

In particular, it is a linear mapping in u defined for all u in a measurable subspace
of C([x−, x+]) of full measure (See e.g. [Hai09, Sec. 3]).

Note that (6.32) can formally be derived by expanding the square in the non-
rigorous expression (3.3).

Proof of Lemma 6.3 . We can assume that u∗ ∈ H1, because otherwise the bound
is trivial. As in the proof of the upper bound, (6.15) only gets stronger when we
take a smaller δ. Therefore, it is sufficient to show (6.15) with δ replaced by

δ̃ := γ

(
sup

|v|≤M+1
|V ′(v)|`+

)−1

∧ δ ∧ 1. (6.33)

We begin by stating the simplistic bound

EWε,u−,u+

(x−,x+)

(
1B(u∗,δ̃)

(u) exp
(
− 1

ε

∫ x+

x−

V (u) dx
))

≥ exp
(
− 1

ε
sup

u∈B(u∗,δ̃)

∫ x+

x−

V (u) dx
)
Wu−,u+

ε,(x−,x+)

(
B(u∗, δ̃)

)
. (6.34)

Due to the assumption (6.14) on u∗ and the definition (6.33) of δ̃, we get that

sup
u∈B(u∗,δ̃)

∫ x+

x−

V (u) dx ≤
∫ x+

x−

V (u∗) dx+ sup
|v|≤M+1

|V ′(v)| δ̃ `+

≤
∫ x+

x−

V (u∗) dx+ γ.

It only remains to derive a lower bound on Wu−,u+

ε,(x−,x+)

(
B(u∗, δ̃)

)
in terms of the

Gaussian energy. To this end, we again transform u∗ to an interval of length one
and shift it in a way that it satisfies homogenous boundary conditions, as in the
proof of Lemma 6.2. To be more precise, we assume that u is distributed according
toWu−,u+

ε,(x−,x+) and apply the affine transformation T defined in (6.17). Then Tu =

û is distributed according toW0,0
`ε,(0,1). Therefore, we have to bound the probability
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W0,0
`ε,(0,1)

(
B(û∗, δ̃)

)
, where û∗ := Tu∗. This can be obtained using the Cameron-

Martin Theorem 6.5 with f := û∗. According to (6.32), we have

W0,0
`ε,(0,1)

(
B(û∗, δ̃)

)
= exp

(
− 1

`ε
I0,1

(
û∗
))

EW`ε,0,0
(0,1)

(
1B(0,δ̃)(û) exp

( 1

`ε

∫ 1

0
∂xû∗(x) dû(x)

))
.

Now we will use the trick of sneaking in a cosh function. To this end, we remark
that the map û 7→

∫ 1
0 ∂xû∗(x) dû(x) is linear in û. Also, the measure W0,0

`ε,(0,1)

is invariant under the mapping û 7→ −û and this mapping leaves the ball B(0, δ̃)
invariant. Hence, the last expectation is equal to

EW`ε,0,0
(0,1)

(
1B(0,δ̃)(û) exp

(
− 1

`ε

∫ 1

0
∂xû∗(x) dû(x)

))
.

Therefore, we can write

EW`ε,0,0
(0,1)

(
1B(0,δ̃)(û) exp

( 1

`ε

∫ 1

0
∂xû∗(x) dû(x)

))
=

1

2
EW`ε,0,0

(0,1)

(
1B(0,δ̃)(û)

[
exp

( 1

`ε

∫ 1

0
∂xû∗(x) dû(x)

)
+ exp

(
− 1

`ε

∫ 1

0
∂xû∗(x) dû(x)

)])
= EW`ε,0,0

(0,1)

(
1B(0,δ̃)(û) cosh

( 1

`ε

∫ 1

0
∂xû∗(x) dû(x)

))
≥ W0,0

`ε,(0,1)

(
B(0, δ̃)

)
.

We claim that there exists an ε0 > 0 such that for all ` ≤ `+ and all ε ≤ ε0 this
probability is larger than exp

(
− ε−1γ

)
. Actually, (6.16) even implies that for any

γ̃ > 0 there exists ε̃0 > 0 such that, for `ε ≤ ε̃0, we have the stronger bound

W0,0
`ε,(0,1)

(
{B(0, δ̃)

)
≤ exp

(
− 1

`ε

(
inf

û∈{B(0,δ̃)
I0,1(û)− γ̃

))
.

Note that this ε0 also depends on sup|v|≤M+1 |V ′(v)| as we have potentially
decreased δ in the first step. Then in order to conclude, it is sufficient to observe
that

1

`ε
I0,1

(
û∗
)

=
1

ε

(
Ix−,x+

(
u∗
)
− Iu±x±

)
.

�

Now the proofs of Propositions 3.4 and 3.5 are straightforward. We begin with
the upper bound, Proposition 3.4.

Proof of Proposition 3.4. We want to derive a bound on

µ
u−,u+

ε,(x−,x+)

(
A
)

=
EWε,u−,u+

(x−,x+)

(
1A(u) exp

(
− 1

ε

∫ x+

x−
V (u) dx

))
EWε,u−,u+

(x−,x+)

(
exp

(
− 1

ε

∫ x+

x−
V (u) dx

)) . (6.35)
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The assumptions on A in Proposition 3.4 are identical to those in Lemma 6.2, so
we can conclude from (6.13) that

EWε,u−,u+

(x−,x+)

(
1A(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≤ exp
(
− 1

ε

(
inf

u∈B(A,δ)
E(u)− Iu±x± − γ

))
for ε ≤ ε0. Also this ε0 depends on M,R, , `+, δ, and γ but not on the particular
choice of x±, u±. It only depends on A through the condition (6.12) and on V
through the local Lipschitz constant.

To get a lower bound on the denominator in (6.35), we observe that for every set
of boundary conditions u±, there exists at least one minimizer u∗ of E given these
boundary conditions. Furthermore, this minimizer attains only values in [−M,M ].
This is clear because replacing u∗ by u∗ ∧M ∨ (−M) only decreases the energy.
Therefore, for any δ > 0, we get from (6.15) that

EWε,u−,u+

(x−,x+)

(
exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≥ EWε,u−,u+

(x−,x+)

(
1B(u∗,δ)(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≥ exp
(
− 1

ε

(
E(u∗)− Iu±x± + γ

))
for ε ≤ ε0, where ε0 satisfies the same uniformity assumptions as above. This
finishes the argument. �

The proof of the lower bound is similar.

Proof of Proposition 3.5. To derive a lower bound on µu−,u+

ε,(x−,x+)

(
A
)

for a given γ
we choose uγ as in (3.19). Then we can write using (6.15)

EWε,u−,u+

(x−,x+)

(
1B(A,δ)(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≥ EWε,u−,u+

(x−,x+)

(
1B(uγ ,δ)(u) exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≥ exp
(
− 1

ε

(
inf
u∈A

E(u)− Iu±x± + 2γ
))
,

for ε ≤ ε0 where ε0 can again be chosen uniformly.
To derive a uniform upper bound on the normalization constant we only need

to observe that for any M < ∞ there exists an R < ∞ such that for all u± ∈
[−M,M ], we have

inf
u∈Abc

E(u) ≤ R.

Then (6.13) implies that there exists ε0 > 0 such that uniformly for ε ≤ ε0

EWε,u−,u+

(x−,x+)

(
exp

(
− 1

ε

∫ x+

x−

V (u) dx
))

≤ exp
(
− 1

ε

(
inf

u∈Abc
E(u)− Iu±x± + γ

))
.

This establishes (3.18).
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�

6.4. Proof of the one-point distribution lemma.

Proof of Lemma 4.1. First we remark that, heuristically, the “most difficult” point
to consider is x0 = 0. We present the following proof for precisely this case. The
same proof carries over for any point x0 (with only trivial modifications), but we
present it for x0 = 0 since it simplifies the notation slightly and makes the main
ideas stand out.

Also notice that by the symmetry of the potential (cf. Assumption 1.1) and the
representation (1.5), it suffices to prove

µ−1,1
ε,(−Lε,Lε)

(
u(x0) ≥M

)
≤ exp

(
− M

εC2

)
.

In fact, it will be convenient to establish the estimate in the form

µ−1,1
ε,(−Lε,Lε)

(
u(0) ≥ 4M

)
≤ exp

(
− M

ε C̃2

)
, (6.36)

which is of course equivalent for C2 := 4C̃2. Thus consider the set of functions

A := {u ∈ C([−Lε, Lε]) : u(−Lε) = −1, u(Lε) = 1, andu(0) ≥ 4M}. (6.37)

Define x3M
± as follows:

x3M
− := sup{x ≤ 0: u(x) ≤ 3M} and x3M

+ := inf{x ≥ 0: u(x) ≤ 3M}.

Notice that we may assume without loss of generality that M ≥ 1, and hence,
because of the boundary conditions u(−Lε) = −1 and u(Lε) = 1, the points
x3M
− < 0 < x3M

+ are well-defined for every u ∈ A. The set A can then be divided
into the following two sets:

A1 := {u ∈ A : max{|x3M
− |, x3M

+ } > 1},
A2 := {u ∈ A : max{|x3M

− |, x3M
+ } ≤ 1}.

To bound the probability ofA1, we will use bounds on the potential and a reflection
argument. For A2 we will use a rescaling argument and the large deviation bound
(3.17). The two cases are illustrated in Figure 6.1.

Step 1. We treat A1 first. For u ∈ A1 we have

x3M
+ − x3M

− ≥ 1. (6.38)

The idea is to introduce a reflection over the line u = 2M that preserves the Gauss-
ian measure, and use the decrease of the energy (1.6) under this reflection.

We begin by collecting some facts about the potential V . To begin with, accord-
ing to the growth estimate in (1.3), V grows superlinearly at infinity. Hence, we
may choose C3 sufficiently large so that the following two properties are satisfied.
On the one hand, V grows at least linearly on [C3,∞), i.e., there exists C4 < ∞
such that for u1 ≥ u2 ≥ C3, there holds

V (u1)− V (u2) ≥ 1/C4 (u1 − u2). (6.39)

On the other hand, V (C3) ≥ V (0), so that in particular

V (C3) = sup
u∈[0,C3]

V (u). (6.40)
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x−1 1

4M

3M
x3M
− x3M

+

2M
x2M
− x2M

+

(A) A path in A1.

x−1 1

4M

3M
x3M
− x3M

+

(B) A path in A2.

FIGURE 6.1. The two different cases. To show that A1 has small
probability, we reflect between the x2M

± . This decreases the poten-
tial energy. The probability of A2 can be bounded using a large
deviation argument.

We will use the fact that (6.39) and (6.40) together imply that as long as u1 ≥ C3,
then

u1 ≥ |u2| ⇒ V (u1) ≥ V (|u2|). (6.41)

Now we are ready to reflect. Define x2M
± analogously to x3M

± (noting as above
that they are well-defined for paths in the set of interest). Consider the reflection

operator R
x2M

+

x2M
−

defined as

R
x2M

+

x2M
−
u(x) :=

{
u(x) if x /∈ (x2M

− , x2M
+ )

4M − u(x) if x ∈ (x2M
− , x2M

+ )
, (6.42)

which for the purposes of this lemma we will abbreviate with R. In order to have
R well-defined for all continuous paths u, we define it to be the identity for those
paths u that never exceed the level 2M .

Notice that x2M
− is a right but not a left stopping point, and similarly x2M

+ is a
left but not a right stopping point. In particular, the strong Markov property (3.9)
does not directly imply that R leaves W−1,1

ε,(−Lε,Lε) invariant. Indeed, it is not true

that under W−1,1
ε,(−Lε,Lε) the conditional distribution of u(x) for x ∈ [x2M

− , x2M
+ ],

given the path outside of this interval, is a Brownian bridge.
Still, it is true that the reflection operator R preservesW−1,1

ε,(−Lε,Lε). To see this,
introduce auxiliary stopping points

χ2M
− := inf{x ≥ −Lε : u(x) = 2M} and χ2M

+ := sup{x ≤ Lε : u(x) = 2M}.

As above in (4.18), we use the convention that χ2M
± = ∓Lε if these sets are empty.

On A, these points are well-defined and we automatically have [x2M
− , x2M

+ ] ⊆
[χ2M
− , χ2M

+ ]. The points χ2M
± are left and right stopping points. Therefore, (3.9)



58 FELIX OTTO, HENDRIK WEBER, AND MARIA G. WESTDICKENBERG

implies that the reflection operators R
χ2M

+

χ2M
−

, R
χ2M

+

x2M
+

, and R
x2M
−
χ2M
−

(defined in the same

way as R ) preserveW−1,1
ε,(−Lε,Lε). Observing that

R = R
χ2M

+

χ2M
−
◦Rχ

2M
+

x2M
+
◦Rx

2M
−
χ2M
−
,

we conclude that R also preservesW−1,1
ε,(−Lε,Lε).

We now develop a quantitative, pointwise estimate of the effect of R on the
“bulk energy” V (u). By the definition of x2M

± , we have that u(x) ≥ 2M for all
x ∈ [x2M

− , x2M
+ ], the set where R acts. Hence, it suffices to consider the effect of R

when u(x) ≥ 3M and when u(x) ∈ [2M, 3M). We will first establish that on the
set

{x ∈ [x2M
− , x2M

+ ] : u(x) ≥ 3M},

R decreases the bulk energy significantly. Indeed, on this set, |Ru| ≤ u− 2M and
u− 2M ≥M ≥ C3, so that

V (|Ru|)
(6.41)
≤ V (u− 2M), (6.43)

which together with (6.39) implies that for u(x) ≥ 3M ,

V (u(x))− V (Ru(x))
(1.3)
= V (u(x))− V (|Ru(x)|)

(6.43)
≥ V (u(x))− V (u(x)− 2M)

(6.39)
≥ 2M/C4, (6.44)

which holds in particular on all of [x3M
− , x3M

+ ]. On the other hand, if instead
u(x) ∈ [2M, 3M), then the bulk energy still decreases under R. Indeed, we have
for u(x) ∈ [2M, 3M) that u(x) ≥ Ru(x) ≥M , so that by (6.41) we know

V (u(x))− V (Ru(x)) ≥ 0. (6.45)

Combining (6.44) and (6.45) implies that for all u ∈ A1, we have∫
(−Lε,Lε)

(
V (u)− V (Ru)

)
dx

=

∫
(x2M
− ,x2M

+ )

(
V (u)− V (Ru)

)
dx

≥ 2M(x3M
+ − x3M

− )/C4

(6.38)
≥ 2M/C4. (6.46)

We are now ready to estimate the probability of A1. Indeed, we have that
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1 ≥ µ−1,1
ε,(−Lε,Lε)

(
RA1

)
(1.5)
=

1

Z
EWε,−1,1

(−Lε,Lε)

[
1RA1(u) exp

(
− 1

ε

∫
V (u) dx

)]
inv. of R

=
1

Z
EWε,−1,1

(−Lε,Lε)

[
1A1(u) exp

(
− 1

ε

∫
V (Ru) dx

)]
=

1

Z
EWε,−1,1

(−Lε,Lε)

[
1A1(u) exp

(
− 1

ε

∫ (
V (Ru)− V (u)

)
dx

−1

ε

∫
V (u) dx

)]
(6.46)
≥ exp

(
2M

C4 ε

)
1

Z
EWε,−1,1

(−Lε,Lε)

[
1A1(u) exp

(
− 1

ε

∫
V (u) dx

)]
= exp

(
2M

C4 ε

)
µ−1,1
ε,(−Lε,Lε)

(
A1

)
,

where Z = Z−1,1
ε,(−Lε,Lε) is the normalization constant for µ−1,1

ε,(−Lε,Lε) and all of
the integrals are over [−Lε, Lε]. Moving the exponential to the other side of the
inequality, we get that

µ−1,1
ε,(−Lε,Lε)

(
A1

)
≤ exp

(
− 2M

C4 ε

)
, (6.47)

which gives (6.36) for A1 with C̃2 = C4/2 .

Step 2. Now consider the setA2. Here we will use a rescaling argument and the
large deviation bound (3.17). For u ∈ A2, we can define

χ− := inf{x ∈ [−1, 0] : u(x) = 3M}, χ+ := sup{x ∈ [0, 1] : u(x) = 3M},

with the understanding that χ± = 0 if these sets are empty. These random variables
are left and right stopping points. Hence, the strong Markov property (3.10) implies
that

µ−1,1
ε,(−Lε,Lε)

(
A2

)
= µ−1,1

ε,(−Lε,Lε)

(
u(0) ≥ 4M and χ± 6= 0

)
= Eµε,−1,1

(−Lε,Lε)

(
µ3M,3M
ε,(χ−,χ+)

(
u(0) ≥ 4M

)
1{χ± 6=0}

)
. (6.48)

Therefore, if we can show that

µ3M,3M
ε,(x−,x+)

(
u(0) ≥ 4M

)
≤ exp

(
− M

C̃2ε

)
(6.49)

for all ε sufficiently small (uniformly for −x−, x+ ∈ (0, 1]), then the combination
of (6.48) and (6.49) concludes the proof of (6.36). We can see (6.49) by rescaling.
Indeed, if we transform (x−, x+) into [−1, 1] by applying the affine change of
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variables x→ ∆x
2 x+ x−+x+

2 where ∆x := x+ − x−, we see that

µ3M,3M
ε,(x−,x+)

(
u(0) ≥ 4M

)
=

1

Z
EWε,3M,3M

(x−,x+)

(
1{u(0)>4M} exp

(
− 1

ε

∫ x+

x−

V
(
u(x)

)
dx
))

=
1

Z
EWε̃,3M,3M

(−1,1)

(
1{û(

x−+x+
2

)>4M} exp
(
− (∆x)2

4ε̃

∫ 1

−1
V
(
û(x)

)
dx
))
, (6.50)

whereZ = Z3M,3M
ε,(x−,x+) is the normalization constant for µ3M,3M

ε,(x−,x+) and ε̃ := 1
2ε∆x.

Now, we observe that the family of potentials{(∆x)2

4
V : 0 < ∆x ≤ 2

}
is locally uniformly Lipschitz. In particular, applying Proposition 3.4 for γ and δ
fixed to say γ = δ = 1, there exists ε0 > 0 such that, for ε̃ ≤ ε0 and uniformly in
x±, we have

µ3M,3M
ε̃,(−1,1)(B

bc
+ ) ≤ exp

(
− 1

ε̃

(
inf

û∈B(Bbc
+ ,1)

E∆x(û)− inf
û∈Bbc

E∆x(û)− 1
))
.

Note that the choice of ε0 depends on M .
Here we use the notation

E∆x(û) :=

∫ 1

−1

(
1

2
(∂xû)2 +

(∆x)2

4
V (û)

)
dx

and

Bbc := {û ∈ C([−1, 1]) : û(±1) = 3M},

Bbc
+ :=

{
û ∈ C([−1, 1]) : û(±1) = 3M, û

(
(x− + x+)/2

)
≥ 4M

}
.

Hence, as ε̃ ≤ ε, to establish (6.49) it will be sufficient for us to show

inf
B(Bbc

+ ,1)
E∆x − inf

Bbc
E∆x ≥

M

C̃2

,

and we will in fact establish the stronger bound

inf
B(Bbc

+ ,1)
E∆x − inf

Bbc
E∆x ≥ (M − 1)2

M≥4
≥ M2

2
.

We will establish the first inequality by way of a variational argument. Notice
that we may assume that the infima are achieved (if not, a simple approximation
argument suffices), and so let

û1 := argmin
B(Bbc

+ ,1)

E∆x, û2 := argmin
Bbc

E∆x.

Observe that automatically û1

(
(x− + x+)/2

)
≥ 4M − 1.

We define the auxiliary function û3 := min{û1, 3M}. Notice that according to
the growth assumption (1.3) (or see (6.39)):

V (û1(x)) ≥ V (3M) on {û1 ≥ 3M}. (6.51)
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On the other hand, since û3 ∈ Bbc and as û2 is the minimizer over Bbc, we have

E∆x(û1) − E∆x(û2)

≥ E∆x(û1)− E∆x(û3)

=

∫
{u≥3M}

(
(∂xû1)2 +

(∆x)2

4

(
V (û1)− V (3M)

))
dx

(6.51)
≥

∫ 1

−1
(∂x max{û1 − 3M, 0})2 dx

≥
(

sup
x∈[−1,1]

max{û1 − 3M, 0}
)2

≥ (M − 1)2.

This concludes the proof of (6.36) for A2 and establishes the lemma. �

6.5. Proofs of lemmas from the lower bound of Theorem 1.5.

Proof of Lemma 4.3. Since the proof is similar to (and simpler than) the proof of
the upper bound in Theorem 1.5, we will be somewhat brief. Our goal is to bound
above by 2/3 the complementary event, namely that u(x) > 0 for some x ∈
[−Lε,−2`] or that |u(xk)| > M for some k in the index set. As in the proof of the
upper bound, the probability that |u(xk)| > M can be shown to be exponentially
small in M/ε, cf. (4.9). It remains to bound above the probability that u(x) > 0
for some x ∈ [−Lε,−2`] and |u(xk)| ≤M for all k.

Now fix δ > 0 sufficiently small so that the estimates from the upper bound of
Theorem 1.5 apply. The set {u ∈ {A1 : u(x) > 0 for some x ∈ [−Lε,−2`]} is
contained within the union of:

(1) functions with more than one δ− layer (exponentially unlikely by the upper
bound of Theorem 1.5) ,

(2) functions with a δ− layer longer than 2` (exponentially unlikely for δ2`
large, according to the calculation in Step 3 of the proof of the upper bound,
cf. (4.13)),

(3) functions with one and only one δ− layer, which is at most length 2` and
is contained in [−Lε, 0],

(4) functions with one and only one δ− layer, which is at most length 2` and is
contained in [−2`, Lε], and such that u(x) > 0 for some x ∈ [−Lε,−2`].

By symmetry properties of the measure, i.e. the symmetry with respect to point
reflection of the graph at x = 0 and u = 0, the probability of a δ− layer contained
in [−Lε, 0] is equal to the probability of a δ− layer contained in [0, Lε], hence
neither can be more than 1/2. Therefore, the probability of the event described in
point (3) is less than or equal to 1/2.

By the calculations referred to above, the sum of the probabilities of the sets
described in (1)-(3) is bounded by 1/2 plus exponentially small terms, so we are
finished if we can show that the probability of the set described in (4) is also expo-
nentially small, namely, the probability that: u(x) > 0 for some x ∈ [−Lε,−2`],
|u(xk)| ≤ M for all k, and there is one and only one δ− layer, which is at most
2` and is contained in [−2`, Lε]. Note that the latter implies that u ≤ 1 − δ on
[−Lε,−2`].

This bound is easy to obtain by breaking into subintervals (using conditioning)
and using the large deviation estimate (3.17). Indeed, we reduce to probabilities of



62 FELIX OTTO, HENDRIK WEBER, AND MARIA G. WESTDICKENBERG

the form

µ
uk−2,uk+2

ε,(xk−2,xk+2)

(
u ≤ 1− δ and u(x̂) = 0 for some x̂ ∈ (xk−1, xk+1)

)
,

where uk−2 and uk+2 are arbitrary boundary values in [−M, 1 − δ] and k ∈
{−(Nε − 2),−(Nε − 3), . . . ,−3}. (We also need to consider the boundary in-
terval, where x̂ ∈ (x−Nε , x−(Nε−2)). As usual, this is no more difficult than the
bound for the interior intervals.) After applying Proposition 3.4 (with δ̃ = δ/2), it
remains only to introduce an energetic bound. The bound from Lemma 6.6 below
suffices.

Before stating the energy lemma, we explain the idea in words: If we take a δ/2
ball around the set of interest, then on [xk−1, xk+1], there is a point x0 such that
u(x0) ≥ −δ/2. For ` large, the energy minimizer needs to come very close to ±1
someplace in [xk−2, xk−1] and [xk+1, xk+2], (say within δ/4), and since it cannot
come this close to +1, it is forced into a small neighborhood of −1. Consequently,
the large excursion from −1 at x0 costs almost c0 energy. We give the precise
statement below and prove the lemma at the end of the subsection.

Lemma 6.6. There exists C < ∞ with the following property. For any M large
enough and δ > 0 small enough, consider the boundary conditions u± ∈ [−M, 1−
δ] and define the sets

Abc := {u ∈ C([−2`, 2`]) : u(−2`) = u− and u(2`) = u+},

Abc
0 := {u ∈ Abc : u(x) ≤ 1− δ/2 for all x ∈ [−2`, 2`] and

there is an x0 ∈ [−`, `] such that u(x0) ≥ −δ/2}.

Then there exists `0 = `0(M, δ) such that for ` ≥ `0 there holds

inf
u∈Abc

0

E(−2`,2`)(u)− inf
u∈Abc

E(−2`,2`)(u) ≥ c0 − Cδ.

Proposition 3.4 and Lemma 6.6 together give

µ
uk−2,uk+2

ε,(xk−2,xk+2)

(
u ≤ 1− δ and u(x0) > 0 for some x0 ∈ (xk−1, xk+1)

)
≤ exp

(
−c0 − Cδ − γ

ε

)
.

Finally, we now choose γ and δ sufficiently small and sum over the order Nε ∼ Lε
intervals. Bearing in mind the bound (1.10) on Lε, we observe that there is also an
exponentially small probability of the final set that we have studied. �

Proof of Lemma 6.6. We will be brief, since the proof is similar to the proof of
Lemma 2.5.

First of all, fix M large and δ small. The infimum of the energy overAbc is less
than or equal to the minimum of the energy over functions with u(±2`) = u± and
u(0) = −1. By a standard construction, we have

inf
Abc

E(−2`,2`)(u) ≤ ϕ−1(u−) + ϕ−1(u+) + o(1)`↑∞.

In particular, for `0 large enough and ` ≥ `0, one has

inf
Abc

E(−2`,2`)(u) ≤ ϕ−1(u−) + ϕ−1(u+) + δ. (6.52)
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u−
u+

√
ε/ε0

1

1/2

xK−1 xK `εx−K x−(K−1)−`ε −`0 `0

FIGURE 6.2. By iterated rescaling and application of the large de-
viation bounds we show that the paths relax to a O(ε1/2) - neigh-
bourhood of 1 within a distance of O| log(ε)|.

On the other hand, onAbc
0 , either there exist x− ∈ [−2`,−`] and x+ ∈ [`, 2`] such

that

|u(x±) + 1| ≤ δ/2

or we have u ∈ [−1 + δ/2, 1 − δ/2] on an interval of length `. In the latter case,
we get easily

E(−2`,2`)(u) & `δ2.

Since this is higher order for ` large, we may assume that we are in the former case.
In the former case, we may assume without loss of generality that u(x±) =

−1 + δ and u(x0) = −δ/2. We then use the Modica-Mortola trick to connect
the values (a) u− and u(x−), (b) u(x−) and u(x0), (c) u(x0) and u(x+), and (d)
u(x+) and u+. We conclude in the usual way that

inf
Abc

0

E(−2`,2`)(u) ≥ ϕ−1(u−) + ϕ−1(u+) + c0 − Cδ.

Together with (6.52), this completes the proof of Lemma 6.6. �

6.6. Proof of lemmas related to the uniform distribution.

Proof of Lemma 5.1. Our argument relies on an iterated rescaling, illustrated in
Figure 6.2.

We will define K = Kε ≥ 1 below. We begin by enumerating the partition
{xk}K+1

k=−(K+1) of (−`ε, `ε) with width 2`0, so that

x±1 = ±`0, x±2 = ±3`0, . . . , x±K = ±(2K − 1)`0, x±(K+1) = ±`ε.
For brevity of notation, let

A :=
{
u : |u(xk)− 1| ≤ 1

2
for all k ∈ {−(K + 1),−K, . . . ,K + 1}

}
.

We will use the elementary facts from probability that for any sets A1, A2, and A3,
we have

P (A1 ∩A2) ≤ P (A1 ∩ A3) + P ({A3 ∩A2), (6.53)

P (A1 ∩A2 ∩A3) ≤ P (A1 ∩A2|A3). (6.54)
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We also use the Markov property from Lemma 3.2 to deduce the following
property for conditional measures. If Ain and Ãin are in F[−x2,x2] and Aout is
in F[−`ε,−x2] ∨ F[x2,`ε], then

µ
u−,u+

ε,(−`ε,`ε)

(
Ain
∣∣∣∣u ∈ Ãin ∩ Aout and u(±x2) ∈ (a, b)

)

=

Eµε,u−,u+

(−`ε,`ε)

(
1Aout1u(±x2)∈(a,b)E

µε,u2
−,u

2
+

(−x2,x2)

(
1Ain1Ãin

))
Eµε,u−,u+

(−`ε,`ε)

(
1Aout1u(±x2)∈(a,b)E

µε,u2
−,u

2
+

(−x2,x2)

(
1Ãin

))
≤ sup

u2
±∈(a,b)

µ
u2
−,u

2
+

ε,(−x2,x2)

(
u ∈ Ain

∣∣u ∈ Ãin). (6.55)

Keeping these preliminaries in mind, we now observe that we can make the
following decomposition:

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x1,x1]
|u(x)− 1| ≥ 1

2K+1

∣∣∣∣u ∈ A
)

(6.53)
≤ µ

u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x1,x1]
|u(x)− 1| ≥ 1

2K+1
and

sup
x∈[−x2,x2]

|u(x)− 1| ≤ 1

2K

∣∣∣∣u ∈ A
)

+µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x2,x2]
|u(x)− 1| ≥ 1

2K

∣∣∣∣ u ∈ A
)
.
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For the first term, we can now send the smallness condition into the boundary
conditions in the following way:

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x1,x1]
|u(x)− 1| ≥ 1

2K+1
and

sup
x∈[−x2,x2]

|u(x)− 1| ≤ 1

2K

∣∣∣∣u ∈ A)
(6.54)
≤ µ

u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x1,x1]
|u(x)− 1| ≥ 1

2K+1
and

sup
x∈[−x2,x2]

|u(x)− 1| ≤ 1

2K

∣∣∣∣
|u(x)− 1| ≤ 1

2K
forx ∈ {±x1,±x2} and u ∈ A

)
(6.55)
≤ sup

u2
±∈[1−2−K ,1+2−K ]

µ
u2
−,u

2
+

ε,(−x2,x2)

(
sup

x∈[−x1,x1]
|u(x)− 1| ≥ 1

2K+1

and sup
x∈[−x2,x2]

|u(x)− 1| ≤ 1

2K

∣∣∣∣|u(±x1)− 1| ≤ 1

2K

)
≤ sup

u2
±∈[1−2−K ,1+2−K ]

µ
u2
−,u

2
+

ε,(−x2,x2)

(
sup

x∈[−x1,x1]
|u(x)− 1| ≥ 1

2K+1

∣∣∣∣
|u(±x1)− 1| ≤ 1

2K

)
.

We can iterate this argument to reduce the probability to the form:

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−x1,x1]
|u(x)− 1| ≥ 1

2K+1

∣∣∣∣u ∈ A
)

≤
K∑
k=1

sup
uk±∈[1−2−k,1+2−k]

µ
uk−,u

k
+

ε,(x−(K−k+2),xK−k+2)

(
sup

x∈[x−(K−k+1),xK−k+1]
|u(x)− 1| ≥ 1

2k+1

∣∣∣∣
|u(x±(K−k+2))− 1| ≤ 1

2k

)
. (6.56)

Hence it remains to estimate the individual terms in the sum. The argument in-
volves three steps: a large deviation estimate, concatenation, and an iterated rescal-
ing of the deviation of u from 1.

Step 1: Large deviation estimate. The first step is to derive a uniform large de-
viation bound for the measures µu−,u+

ε,(−3`0,3`0). We show that there exists C < ∞
such that for every `0 <∞ sufficiently large, there exists ε′0 > 0 such that for any
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u± ∈ [1/2, 3/2] and ε ≤ ε′0, we get

µ
u−,u+

ε,(−3`0,3`0)

(
sup

x∈[−`0,`0]
|u(x)− 1| ≥ 1

4

∣∣∣∣|u(±`0)− 1| ≤ 1

2

)
≤ exp

(
− 1

Cε

)
. (6.57)

In the next steps, we will always assume ε0 ≤ ε′0 to be sufficiently small in this
sense, and this is the only restriction on ε0 in the proof of the lemma.

To bound the conditional probability in (6.57) it suffices to establish an upper
bound on

µ
u−,u+

ε,(−3`0,3`0)

(
sup

x∈[−`0,`0]
|u(x)− 1| ≥ 1

4
and |u(±`0)− 1| ≤ 1

2

)
(6.58)

and a lower bound on

µ
u−,u+

ε,(−3`0,3`0)

(
|u(±`0)− 1| ≤ 1

2

)
, (6.59)

uniformly with respect to u± ∈ [1/2, 3/2]). To this end, we turn to the uniform
large deviation estimates from Propositions 3.4 and 3.5. In fact, we do not even
need the second condition in (6.58), and it suffices to bound the probability of the
larger set

A0 :=
{
u ∈ C([−3`0, 3`0]) : u(±3`0) = u±, sup

x∈[−`0,`0]
|u(x)− 1| ≥ 1

4

}
,

The estimate (3.17) gives that for any γ, δ > 0, we have for sufficiently small ε
that

µ
u−,u+

ε,(−3`0,3`0)(A0) ≤ exp
(
− 1

ε

(
∆E

(
B(A0, δ)

)
− γ
))
, (6.60)

where ∆E is defined in (3.13) and

Abc = {u ∈ C([−3`0, 3`0]) : u(±3`0) = u±}.

Consider now a small δ > 0 to be fixed below and a function u ∈ B(A0, δ).
Because the boundary conditions are in [1/2, 3/2] and `0 is large, the infimum of
the energy must take place over functions such that

max

{
min

x∈[−3`0,−`0]
|u(x)− 1|, min

x∈[`0,3`0]
|u(x)− 1|

}
.

1√
`0
. (6.61)

(Indeed, umust be close to either 1 or−1 at some point in each of the intervals, and
if u were instead close to −1 on either interval, satisfying the boundary conditions
would lead to an even greater energetic cost than the one we will arrive at below.)
Let us label the minimizing points x− and x+. Moreover, let us define x∗ to be a
point in (−`0, `0) such that

|u(x∗)− 1| ≥ 1

4
− δ.

As above in Subsection 6.1, we now define ϕ(u) := |
∫ 1
u

√
2V (s) ds| and apply

the “Modica-Mortola trick” on (−3`0, x−), (x−, x∗), (x∗, x+), and (x+, 3`0) to
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recover

inf
B(A0,δ)

E(u) ≥ ϕ(u−)− ϕ(u(x−)) + ϕ(u(x∗))− ϕ(u(x−))

+ϕ(u(x∗))− ϕ(u(x+)) + ϕ(u+)− ϕ(u(x+))
(6.61)
≥ 2ϕ(u(x∗)) + ϕ(u−) + ϕ(u+)− o(1)`0↑∞

≥ 2ϕ1/4 + ϕ(u−) + ϕ(u+)− o(1)`0↑∞ − o(1)δ↓0, (6.62)

where
ϕ1/4 := min{ϕ(3/4), ϕ(5/4)}.

On the other hand, a standard construction gives

inf
Abc

E(u) ≤ ϕ(u−) + ϕ(u+) + o(1)`0↑∞. (6.63)

Now fixing δ > 0 and γ > 0 sufficiently small, the combination of (6.60), (6.62),
and (6.63) gives for sufficiently small ε that

µ
u−,u+

ε,(x−,x+)(A0) ≤ exp

(
−

3/2 ϕ1/4

ε

)
. (6.64)

We now remark that the lower bound on (6.59) follows easily from Proposi-
tion 3.5. Indeed, for a fixed 0 < δ < 1

2 , the set of interest can be written as the δ
ball around the set A1 defined as

A1 :=
{
u : u(±3`0) = u±, |u(±`0)− 1| ≤ 1

2
− δ
}
.

We recover for any γ > 0 and for ε > 0 sufficiently small that

µ
u−,u+

ε,(x−,x+)

(
B(A1, δ)

)
≥ exp

(
− 1

ε

(
∆E

(
A1

)
+ γ
))
, (6.65)

where ∆E is defined in (3.13). The constraint in A1 is inactive/slack in the opti-
mization for `0 sufficiently large, and the usual construction together with the usual
Modica-Mortola estimate thus gives

∆E
(
A1

)
≤ o(1)`0↑∞.

Plugging back into (6.65) gives

µ
u−,u+

ε,(x−,x+)

(
B(A1, δ)

)
≥ exp

(
− 2γ

ε

)
,

which together with (6.64) gives (6.57) with C = 1/ϕ1/4 as long as γ is chosen
sufficiently small.

Step 2: Concatenation. The next step is to prove for any K ∈ N that

µ
u−,u+

ε,(x−(K+1),xK+1)

(
sup

x∈[x−K ,xK ]
|u(x)− 1| ≥ 1

4

∣∣∣∣u ∈ A)
≤ 2K exp

(
− 1

Cε

)
, (6.66)

uniformly for u± ∈ (1/2, 3/2). As usual, the idea is to break up the larger interval
by conditioning on the boundary values. The restriction of the boundary values on
each subinterval to (1/2, 3/2) because of u ∈ A will allow us to apply the uniform
estimate from Step 1.
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We will consider the non-overlapping subintervals [xk, xk+1] for k = −K, . . . ,K−
1. Decomposing the interval in this way gives

µ
u−,u+

ε,(x−(K+1),xK+1)

(
sup

x∈[x−K ,xK ]
|u(x)− 1| ≥ 1

4

∣∣∣∣u ∈ A)

≤
2K∑
k=1

µ
u−,u+

ε,(x−(K+1),xK+1)

(
sup

x∈[xk,xk+1]
|u(x)− 1| ≥ 1

4

∣∣∣∣u ∈ A). (6.67)

Now the Markov property implies that for k ∈ {−K, . . . ,K − 1} we have

µ
u−,u+

ε,(x−(K+1),xK+1)

(
sup

x∈[xk,xk+1]
|u(x)− 1| ≥ 1

4
andu ∈ A

)

= Eµε,u−,u+

(x−(K+1),xK+1)

 K∏
j=−K

1{|u(xj)−1|≤ 1
2
}1{sup[xk,xk+1] |u(x)−1|≥ 1

4
}


(6.55)
≤ sup

uk±∈[1/2,3/2]

µ
uk−,u

k
+

ε,(xk−1,xk+2)

(
sup

x∈[xk,xk+1]

∣∣u(x)− 1
∣∣ ≥ 1

4∣∣∣ max{|u(xk)− 1|, |u(xk+1)− 1|} ≤ 1

2

)
µ
u−,u+

ε,(x−(K+1),xK+1)

(
A
)
.

Hence, using the translational invariance of the measures µu−,u+

ε,(x−,x+), we bound the
right-hand side of equation (6.67) by

2K sup
u±∈[1/2,3/2]

µ
u−,u+

ε,(−3`0,3`0)

(
sup

x∈[−`0,`0]
|u(x)− 1| ≥ 1

4

∣∣∣∣|u(±`0)− 1| ≤ 1

2

)
(6.57)
≤ 2K exp

(
− 1

Cε

)
,

which is what we wanted to show.
Step 3: Rescaling and iteration. In this step, we rescale the deviation of u from

1. We fix k and consider the random variables

û := 2k−1(u− 1) + 1.

For u distributed according to µu−,u+

ε,(−`,`),the profile û is distributed according to a
rescaled version of the measure. Indeed, the Radon-Nikodym density with respect
to the Brownian bridge measure with modified noise strength ε̂ := 4k−1ε and
rescaled boundary conditions is proportional to

exp

(
−1

ε̂

∫ `

−`
4k−1V

(
2−(k−1)(û− 1) + 1

)
dx

)
. (6.68)

Let us give a name to the modified potential

V̂ (û) := 4k−1V (2−(k−1)(û− 1) + 1)

and the associated energy

Ê(û) :=

∫ `

−`

(
1

2
(∂xû)2 + V̂ (û)

)
dx.

We now make a series of observations that will allow us to apply the same large
deviation bounds from Steps 1 and 2 to the rescaled random variables û.
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First consider how the sets involved in (6.56) behave under the rescaling. Notice
that u satisfies

sup
x∈[x−(K−k+2),xK−k+2]

|u(x)− 1| ≥ 1

2k+1

precisely when

sup
x∈[x−(K−k+2),xK−k+2]

|û(x)− 1| ≥ 1

4
.

Similarly, for the set on which we condition, we have that u satisfies

|u(xj)− 1| ≤ 1

2k
for j ∈ {−(K − k + 3), . . . ,K − k + 3}

precisely when û satisfies

|û(xj)− 1| ≤ 1

2
for j ∈ {−(K − k + 3), . . . ,K − k + 3}.

Hence each term in (6.56) can be bounded if we can establish that the bound from
Step 2 also holds for the measure governing û.

In order to show that the estimates from Step 1 and 2 hold uniformly for the
measure of the rescaled random variables û, we need to be able to invoke Propo-
sitions 3.4 and 3.5 (with uniform constants). This in turn requires uniform control
on the boundary values, the minimum energy Ê over the sets of interest, and the
Lipschitz constant of V̂ . The boundary values are easy: On the sets of interest, the
boundary values u± ∈ (1/2, 3/2). On the other hand, the minimum of the energy
Ê is bounded uniformly with respect to k on the sets of interest. Indeed, consider

C :=
{
u : |u(xj)− 1| ≤ 1

2k
for j ∈ {−(K − k + 3), . . . ,K − k + 3}

and sup
x∈[x−(K−k+2),xK−k+2]

|u(x)− 1| ≥ 1

2k+1

}
and let Ĉ denote the image of the set under the transformation u → û. By the
usual method (“Modical Mortola trick” for the lower bound and construction for
the upper bound), one can check that there exists R < ∞ such that, for every
k ∈ N, one has

inf
û∈Ĉ

Ê(û) = 4k−1 inf
u∈C

E(u) ≤ R.

Finally, because of Assumption 1.1, we have a uniform bound on the Lipschitz
constant of V . Indeed, let C := 3/2 + 2`0R + 1. Then uniformly with respect to
k ∈ N, the potential V̂ satisfies

sup
|û|≤C

|V̂ ′(û)| ≤ sup
|u−1|≤2−k+1(C+1)

2k−1 |V ′(u)|

≤ sup |V ′′(τ)|(C + 1),

where the supremum is taken over τ ∈ [1− 2(C + 1), 1 + 2(C + 1)].
Hence, the potential satisfies the requirements of Propositions 3.4 and 3.5. The

remaining requirement in order to invoke large deviation theory is that

4k−1ε ≤ ε0 for all k ≤ K,
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which is true if

4K−1ε ≤ ε0.

Therefore we choose K to be an integer satisfying

1

2K+1
≤
√

ε

ε0
≤ 1

2K−1
. (6.69)

With the restriction (6.69) on K, the arguments used in Step 1 and Step 2 carry
over to the rescaled measures governing the û.

We are now ready to complete the argument. Indeed, recalling the decomposi-
tion from (6.56), we have

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−`0,`0]
|u(x)− 1| ≥

√
ε

ε0

∣∣∣∣u ∈ A
)

(6.69)
≤ µ

u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−`0,`0]
|u(x)− 1| ≥ 1

2K+1

∣∣∣∣u ∈ A
)

(6.56)
≤

K∑
k=1

sup
uk±∈[1−2−k,1+2−k]

µ
uk−,u

k
+

ε,(x−(K−k+2),xK−k+2)

(
sup

x∈[x−(K−k+1),xK−k+1]
|u(x)− 1| ≥ 1

2k+1

∣∣∣∣
|u(x±(K−k+2))− 1| ≤ 1

2k

)
. (6.70)

From the preceding argument, we can now apply the estimate (6.66) for the rescaled
measures to bound the kth summand above by

2(K − k + 1) exp

(
− 1

C 4k−1ε

)
.

Substituting into the right-hand side of (6.70), we deduce

µ
u−,u+

ε,(−`ε,`ε)

(
sup

x∈[−`0,`0]
|u(x)− 1| ≥

√
ε

ε0

∣∣∣∣u ∈ A
)

≤
K∑
k=1

2(K − k + 1) exp

(
− 1

C 4k−1ε

)

= 2
K−1∑
k=0

(K − k)

(
exp

(
− 1

C 4K ε

))4K−k

(6.69)
≤ 2

K−1∑
k=0

(K − k)r4K−k , for r := exp

(
− 1

C ε0

)

≤ 2
∞∑
k′=1

k′rk
′

=
2r

(r − 1)2
≤ 4r for r ∈ (0, 1/4].

�
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Proof of Lemma 5.2. We start by defining some sets. We denote the set of paths
that we condition on by

A := {u ∈ C([−`ε, `ε]) : |u(±(2k − 1)`0)− 1| ≤ 1

2
, k = 1, 2, . . . ,Kε}.

For ε, ε0 > 0 let us also fix the following subset of A

Aε :=

{
u ∈ A : |u(±`0)− 1| ≤

(
ε

ε0

)1/2}
.

Then Lemma 5.1 implies in particular that, for a small but fixed ε0 > 0 and for
ε ≤ ε0, we have

µ
u−,u+

ε,(−`ε,`ε)
(
Aε
)
≥ 1

2
µ
u−,u+

ε,(−`ε,`ε)
(
A
)
. (6.71)

From now on, we fix an ε0 such that this identity holds. This will be the only
restriction on ε0.

Let us also introduce a notation for the set of paths that have a hitting point of 1
in [−`0, `0]

B := {u ∈ C([−`ε, `ε]) : ∃x ∈ [−`0, `0] such that u(x) = 1}.

As a slight abuse of notation we will use the same letter B to denote the set of paths
u ∈ B restricted to [−`0, `0].

Using the Markov property (3.7), we get for any u± ∈ [1/2, 3/2] that

µ
u−,u+

ε,(−`ε,`ε)
(
A ∩ B

)
≥ µu−,u+

ε,(−`ε,`ε)
(
Aε ∩ B

)
(6.72)

= Eµε,u−,u+

(−`ε,`ε)

(
1Aε(u)µ

u(−`0),u(+`0)
ε,(−`0,`0)

(
B
) )

.

Our main task is thus to derive a lower bound for the probabilities

µ
u−,u+

ε,(−`0,`0)

(
B
)

(6.73)

that holds uniformly in the boundary conditions. In view of the definition of Aε, it
is sufficient to consider boundary conditions u± that are O(ε1/2) close to 1:

1−
(
ε

ε0

)1/2

≤ u± ≤ 1 +

(
ε

ε0

)1/2

. (6.74)

As in the proof of Lemma 5.1, we rescale the random profile u around 1, this time
by a factor ε−

1
2 . More precisely, we consider the transformation

û(x) := ε−1/2(u(x)− 1) + 1.

According to its definition, a path u is in the set B if and only if û is in B. Hence,
we can express the probability (6.73) in terms of û.

The random variable û is distributed according to a rescaled version of µu−,u+

ε,(−`0,`0).
The variance of the Gaussian reference measure becomes one and the rescaled
boundary values are

û± := ε−1/2(u± − 1) + 1.

Note that the condition (6.74) implies that these rescaled boundary conditions take
values in an order-one interval around 1. More precisely, the distribution of û is
absolutely continuous with respect toW û−,û+

1,(−`0,`0) and the Radon Nikodym density
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of the rescaled measure is proportional to exp
(
−
∫ `0
−`0 V̂

(
û
)
dx
)

, where V̂ (û) :=

1
εV
(
ε1/2(û− 1) + 1

)
. Hence we can rewrite

µ
u−,u+

ε,(−`0,`0)

(
B
)

=
EW1,û−,û+

(−`0,`0)

(
1B(û) exp

(
−
∫ `0
−`0 V̂ (û) dx

))
EW1,û−,û+

(−`0,`0)

(
exp

(
−
∫ `0
−`0 V̂ (û) dx

)) . (6.75)

The denominator of this expression can be trivially bounded above by 1. To get a
lower bound for the numerator, we can write for example

EW1,û−,û+

(−`0,`0)

(
1B(û) exp

(
−
∫ `0

−`0
V̂ (û) dx

))
≥ EW1,û−,û+

(−`0,`0)

(
1B∗(û) exp

(
−
∫ `0

−`0
V̂ (û) dx

))
≥ W û−,û+

1,(−`0,`0)

(
B∗
)

inf
û∈B∗

exp
(
−
∫ `0

−`0
V̂ (û) dx

)
. (6.76)

Here we have made the probability smaller by restricting the integration to the set

B∗ :=

{
û ∈ B : sup

x∈[−`0,`0]
|û(x)− 1| ≤ 3ε

−1/2
0

}
.

Using the translation invariance of the Gaussian measures, we can get a lower
bound on the Gaussian probabilities that holds uniformly in the boundary condi-
tions. For example, set

B∗∗ :=
{
û ∈ C([−`0, `0]) : sup

x∈[−`0,`0]
û(x) ∈ (ε

−1/2
0 , 2ε

−1/2
0 ),

and inf
x∈[−`0,`0]

û(x) ∈ (−2ε
−1/2
0 ,−ε−1/2

0 )
}
.

Then, on the one hand, for every path û ∈ B∗∗ and for all uε,± ∈ [1 − ε−1/2
0 , 1 +

ε
−1/2
0 ], the shifted paths û + h

û−,û+

(−`0,`0) lies in B∗. (Recall the definition (3.4) of

the affine profile hû−,û+

(−`0,`0)). On the other hand, by definition, shifting by hû−,û+

(−`0,`0)

transforms the measureW0,0
1,(−`0,`0) intoW û−,û+

1,(−`0,`0). This implies that

W û−,û+

1,(−`0,`0)

(
B∗
)
≥ W0,0

1,(−`0,`0)

(
B∗∗
)

=: c > 0. (6.77)

Hence it remains to get a lower bound on the second term in (6.76). As above in
the proof of Lemma 5.1, Assumption 1.1 on V and Taylor’s formula imply that V̂
satisfies

sup
|u−1|≤3 ε

−1/2
0

sup
ε∈(0,1)

ε−1V
(
ε1/2(u− 1) + 1

)
=: C <∞.

Plugging this into (6.76), we get

inf
û∈B∗

exp
(
−
∫ `0

−`0
V̂ (û) dx

)
≥ exp(−2C`0).
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Hence, summarizing this calculation, we get uniformly for all u± satisfying (6.74)
that

µ
u−,u+

ε,(−`0,`0)

(
B
)
≥ c exp(−2C`0).

Finally, plugging this back into (6.72), we get

µ
u−,u+

ε,(−`ε,`ε)
(
A ∩ B

)
≥ c exp(−2C`0)µ

u−,u+

ε,(−`ε,`ε)
(
Aε
)

(6.71)
≥ 1

2
c exp(−2C`0)µ

u−,u+

ε,(−`ε,`ε)
(
A
)
.

Thus we get the desired conclusion for 1− λ := 1
2c exp(−2C`0). �

Proof of Lemma 5.4. Step 1. We begin by ruling out long layers to the left and
to the right of Y . Once we know that layers are bounded in length, we can use
a reflection argument as in the proof of Theorem 1.5 to turn them into wasted
excursions and estimate their probability. To this end, we define the set AY,2 of
functions that are bounded away from ±1 on a whole subinterval outside of Y :

AY,2 := {u ∈ JY : there exists a k with
k ≤ k− or k ≥ k+ − 1 such that

u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]} .

As usual, we note that AY,3 is contained within AY,2 ∪ (AY,3 ∩ {AY,2). Our first
step is to show that (5.6) holds for AY,2. In fact, AY,2 is of higher order for M and
δ2` sufficiently large.

The set AY,2 can be written in the obvious way as the union of sets AkY,2 that
have bad behavior on a given subinterval [xk, xk+1]. Without loss of generality,
suppose that k ≤ k−.

Then we introduce the following sets for a Markovian decomposition:

A	k := {u : |u(xj)| ≤M for all j ≤ k − 1} ,
A⊕k := {u : |u(xj)| ≤M for all j ≥ k + 2,

and at least one δ− up layer ≤ 2` in Y
}
,

A�k := {u : |u(xj)| ≤M for j = k − 1, . . . , k + 2} ,
A�δ,k :=

{
u ∈ A�k : u ∈ [−1 + δ, 1− δ] on all of [xk, xk+1]

}
.

We remark that

A	 ∈ F[−Lε,xk−1], and A⊕ ∈ F[xk+2,Lε],

while A� ∈ F[xk−1,xk+2] and A�δ,k ∈ F[xk−1,xk+2].

Consequently, the decompositionsAkY,2 = A	k ∩A
�
δ,k∩A

⊕
k and JY = A	k ∩A

�
k ∩

A⊕k lend themselves to an application of the Markov property from Lemma 3.2.
We will often use such decompositions in the proofs below.

In the proof at hand, the Markov property from Lemma 3.2 gives

µ−1,1
ε,(−Lε,Lε)

(
AkY,2

)
≤ sup

u±∈[−M,M ]

Eµε,u−,u+

(xk−1,xk+2)(1A�δ,k)

Eµε,u−,u+

(xk−1,xk+2)(1A�k )
µ−1,1
ε,(−Lε,Lε)(JY ).
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It suffices to bound the ratio of expectations on the right-hand side. For the denom-
inator, we observe that

inf
u±∈[−M,M ]

Eµε,u−,u+

(xk−1,xk+2)(1A�k ) ' 1 (6.78)

for M sufficiently large. In fact, this bound follows immediately from the large
deviation bound (3.17) and a simple energy estimate applied to the complement.

Hence, it suffices to bound the numerator. Recalling the bound (4.12), the ex-
pectation in the numerator can be estimated by

exp

(
−1

ε

(
δ2`

C1
− 2γ

))
≤ exp

(
−δ

2`− 1

εC1

)
.

For δ2` sufficiently large, this drops below the threshold expressed in the exponen-
tial in (5.7). Hence, summing the probabilities of AkY,2 over k, the probability of
AY,2 is negligible in the sense that, in order to establish (5.7), it suffices to show
that it holds for ÃY,3 := AY,3 \ AY,2. For ease of notation, we drop the tildes for
the remainder of the proof of the lemma.

Step 2. We will now show the desired bound for AY,3. That is, we will show
that for any γ > 0 there exists an ε0 > 0 such that for all ε ≤ ε0 we have

µ−1,1
ε,(−Lε,Lε)

(
AY,3

)
. Lε exp

(
− c0 − γ

ε

)
µ−1,1
ε,(−Lε,Lε)

(
JY
)
.

The proof uses a reflection argument very similar to the argument in the proof of
the upper bound in Theorem 1.5.

As above in (5.5) the set AY,3 can be expressed as AY,3 = A−Y,3 ∪ A
+
Y,3 where

A−Y,3 =
{
u ∈ {A1 ∩ {AY,2 : u has a δ− up layer

contained in [−Lε, k−`] and a δ− up layer ≤ 2` in JY
}
,

A+
Y,3 =

{
u ∈ {A1 ∩ {AY,2 : u has a δ− down layer

contained in [k+ `, Lε] and a δ− up layer ≤ 2` in JY
}
.

We will only give the bound for the setA−Y,3. The proof of the corresponding bound
forA+

Y,3 follows in the same way. The setA−Y,3 is contained in the union of k from
−(Nε − 1) to k− of the sets

A−,kY,3 :=
{
u ∈ {A1 : u has a δ− up layer

contained in [xk−1, xk+1] and a δ− up layer ≤ 2` in Y
}
.

As in the proof of Theorem 1.5, we will transform the additional δ− transition
layer into a wasted δ− excursion to control the probability. We need to reflect in
such a way as to (a) create a wasted excursion in [xk−1, xk+1] and (b) leave at least
one δ− up layer in Y . To this end, we define the left stopping point capturing the
additional δ− up layer

χ− = inf{x > xk−1 : u(x) = 0

and u(y1) = −1 + δ for some y1 ∈ (xk−1, x)}
and the right stopping point

χ+ := sup
{
x ≤ y+ : u(x) = 0 and there exist y1 < y2

both in (x, y+) with u(y1) = −1 + δ, u(y2) = 1− δ
}
,
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where y+ := supY is the right boundary of Y . As before we will use the conven-
tion that χ± = ∓Lε if these sets are empty. As in the proof of Theorem 1.5, the
reflection operator

R = Rχ+
χ− ,

reflects the paths u between the stopping points χ± while preserving µ−1,1
ε,(−Lε,Lε).

On the other hand, it maps the set A−,kY,3 into the set

Â−,kY,3 :=
{
u ∈ {A1 : at least one wasted δ− excursion in [xk−1, xk+1]

and at least one δ− up layer ≤ 2` in JY
}
.

Hence, the estimate (5.7) will follow if we can establish, uniformly in k, that

µ−1,1
ε,(−Lε,Lε)

(
Â−,kY,3

)
≤ exp

(
−c0 − γ

ε

)
µ−1,1
ε,(−Lε,Lε)(JY ), (6.79)

which will follow from the Markov property and a large deviation estimate. Indeed,
let us define the following sets:

A	k := {u : |u(xj)| ≤M for all j ≤ k − 2 } ,
A⊕k :=

{
u : |u(xj)| ≤M for all j ≥ k + 2 and at least one δ− up layer ≤ 2` in Y

}
,

A�k := {u : |u(xj)| ≤M for j = k − 2, . . . , k + 2} ,
A�w,k :=

{
u ∈ A�k : u has a wasted δ− excursion in [xk−1, xk+1]

}
.

Then we can decompose Â−,kY,3 = A	k ∩A
�
w,k ∩A

⊕
k and JY = A	k ∩A

�
k ∩A

⊕
k , so

that applying the Markov property as in Lemma 3.2 gives

µ−1,1
ε,(−Lε,Lε)

(
Â−,kY,3

)
≤ sup

u±∈[−M,M ]

Eµε,u−,u+

(xk−2,xk+2)(1A�w,k)

Eµε,u−,u+

(xk−2,xk+2)(1A�k )
µ−1,1
ε,(−Lε,Lε)(JY ). (6.80)

It now remains to estimate the ratio of expectations. Recalling (6.78), it suffices
to bound the numerator. For this purpose, we remark that (4.25) yields that for any
γ > 0 and for δ > 0 sufficiently small, we have

Eµε,u−,u+

(xk−2,xk+2)(1A�w,k) ≤ exp
(
− 1

ε
(c0 − γ)

)
(where, as usual, we have redefined γ by a factor of two). Substituting these up-
per and lower bounds, (6.80) improves to (6.79), and the proof of Lemma 5.4 is
complete. �

Proof of Lemma 5.5. We will show (5.8). The proof of (5.9) is similar. We can as-
sume that the interval Jεy,− is contained in [−Lε, Lε]; if it is not, the proof becomes
even simpler.

Given the bound (5.4) on
∣∣Iε−∣∣, it is clearly sufficient to prove that for any fixed

k ∈ Iε−, we have

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε ∩ {A−3,y : |u(xk) + 1| ≥ 1

2

)
≤ exp

(
− 3c1

4ε

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
. (6.81)
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This in turn will follow trivially from

µ−1,1
ε,(−Lε,Lε)

(
u ∈ Jy,ε : |u(xk) + 1| ≥ 1

2
, u ≤ 1− δ on [xk−1, xk+1]

)
≤ exp

(
− 3c1

4ε

)
µ−1,1
ε,(−Lε,Lε)

(
Jy,ε

)
. (6.82)

In order to establish (6.82), we again introduce a decomposition. This time we
define the sets

A	k := {u : |u(xj)| ≤M for all j ≤ k − 2} ,
A⊕k := {u : |u(xj)| ≤M for all j ≥ k + 2,

at least one δ− up layer ≤ 2` in Jy,ε
}
,

A�k := {u : |u(xj)| ≤M for j = k − 2, k − 1, . . . , k + 2,

u ≤ 1− δ on [xk−1, xk+1]} ,

A�1/2,k :=

{
u ∈ A�k : |u(xk) + 1| ≥ 1

2

}
.

The set on the left-hand side of (6.82) can be written asA	k ∩A
�
1/2,k ∩A

⊕
k , and we

have the containment

A	k ∩ A
�
k ∩ A

⊕
k ⊆ Jy,ε,

so that applying the Markov property from Lemma 3.2 leads to

µ−1,1
ε,(−Lε,Lε)

(
A	k ∩ A

�
1/2,k ∩ A

⊕
k

)
≤ sup

u±∈[−M,1−δ]

Eµε,u−,u+

(xk−2,xk+2)

(
1A�

1/2,k
(u)
)

Eµε,u−,u+

(xk−2,xk+2)

(
1A�k

(u)
) µ−1,1

ε,(−Lε,Lε)(Jy,ε).

Therefore, to show the desired estimate (6.82), it is sufficient to establish

sup
u±∈[−M,M ]

Eµε,u−,u+

(xk−2,xk+2)

(
1A�

1/2,k
(u)
)

Eµε,u−,u+

(xk−2,xk+2)

(
1A�k

(u)
) ≤ exp

(
− 3c1

4ε

)
. (6.83)

To get a lower bound for the denominator, we will as usual use the large devia-
tion lower bound from Proposition 3.5. For this, we note that

A�k = B(A, δ)
where A = {u : |u(xj)| ≤M − δ for j = k − 2, . . . , k + 2,

u ≤ 1− 2δ on [xk−1, xk+1]}.

Therefore, the large deviation bound gives that for any γ > 0 and for ε small
enough

µ
u−,u+

ε,(xk−2,xk+2)

(
A�k

)
≥ exp

(
−1

ε

(
∆E(A) + γ

))
. (6.84)

To get an upper bound for the numerator of (6.83), on the other hand, we will
use the large deviation upper bound from Proposition 3.4. For this, we observe that
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the closed δ/2 ball around A�1/2,k is the set

Ã :=

{
u : |u(xk)| ≤M + δ, for j = k − 2, . . . , k + 2,

u ≤ 1− δ/2 on [xk−1, xk+1], |u(xk) + 1| ≥ 1− δ
2

}
,

so that the large deviation bound gives

µ
u−,u+

ε,(xk−2,xk+2)

(
A�1/2,k

)
≤ exp

(
−1

ε

(
∆E(Ã) + γ

))
. (6.85)

We substitute (6.84) and (6.85) into the ratio on the left-hand side of (6.83) and
observe that there is a cancellation of the second factor in the energy difference
(see equation (3.13)):

µ
u−,u+

ε,(xk−2,xk+2)

(
A�1/2,k

)
µ
u−,u+

ε,(xk−2,xk+2)

(
A�k

) ≤ exp

(
−1

ε

(
inf
u∈Ã

E(u)− inf
u∈A

E(u)− γ
))

.

Hence, the final ingredient that we need is the following energetic fact.

Lemma 6.7. There exists C < ∞ such that for any M large enough and δ > 0
small enough, there exists `∗ < ∞ with the following property. Let ` ≥ `∗ and
consider the boundary conditions u± ∈ [−M,M ]. Define the sets A and Ã as

A :={u : |u(x)| ≤M − δ for x = −2`, −`, . . . , 2`,
u ≤ 1− 2δ on [−`, `]},

Ã :=

{
u : |u(x)| ≤M + δ for x = −2`, −`, . . . , 2`,

u ≤ 1− δ/2 on [−`, `], |u(0) + 1| ≥ 1− δ
2

}
.

Then there holds

inf
u∈Ã

E(xk−2,xk+2)(u)− inf
u∈A

E(xk−2,xk+2)(u) ≥ c1 − Cδ,

where

c1 := 2 min

{∫ −1/2

−1

√
2V (s) ds,

∫ −1

−3/2

√
2V (s) ds

}
. (6.86)

This lemma is virtually identical to Lemma 6.6. The principal difference is
that here the excursion from −1 is only of magnitude 1/2. This changes only the
leading order cost (from c0 to c1). We omit the proof of the lemma. �

Proof of Lemma 5.6. We will prove only (5.10), the proof of (5.11) being essen-
tially the same. We will always assume that the left endpoint of the interval Jεy,−
is greater than or equal to −Lε (since otherwise the boundary condition at −Lε
trivially implies the result).

Notice that the set of paths u ∈ Jy,ε that do not hit −1 in Jεy,− is contained in
the following two sets
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• The set of paths (a) in A−y,3 (extra δ− layers: recall (5.5)) or (b) without
extra layers but more than 1/2 away from −1 at a gridpoint for some k in
Iε−.
• The set A−y,4 of paths in Jy,ε that are within 1/2 of −1 at all gridpoints

with k ∈ Iε− but do not hit −1 in Jεy,−.

Hence, because of the bounds already established in Lemmas 5.4 and 5.5, we will
be done as soon as we show

µ−1,1
ε,(−Lε,Lε)

(
A−y,4

)
≤ λK̄ε µ−1,1

ε,(−Lε,Lε)
(
Jy,ε

)
. (6.87)

We remark for reference below that we may assumeM ≥ 3/2 so that |u(xk)−1| ≤
1/2 implies |u(xk)| ≤M .

The interval Jεy,− can naturally be divided up into K̄ε subintervals of length
`(2Kε + 1). We set

k̄j := kεy,−+j(2Kε+1) for j = 0, . . . , K̄ε, and Īj := [xk̄j , xk̄j+1
] for j ≤ K̄ε−1.

We want to use the Markov property and then apply Lemma 5.2 on these subinter-
vals. Therefore, as usual, we introduce some sets for a decomposition.

A	 :=
{
u : |u(xk)| ≤M for k ≤ kεy,−

}
,

A⊕ :=
{
u : |u(xk)| ≤M for k ≥ kεy,+, δ− up layer ≤ 2` in Jy,ε

}
,

A�bc :=
{
u : |u(xk̄j )− 1| ≤ 1

2
for j = 0, . . . , K̄ε

}
,

A�j :=
{
u : |u(xk)− 1| ≤ 1

2
for xk ∈ Īj

}
,

A�−1,j :=
{
u ∈ A�j : no hitting of −1 in Īj

}
.

We now write A−y,4 as the intersection

A−y,4 = A	 ∩ A⊕ ∩ A�bc ∩
( K̄ε−1⋂

j=0

A�−1,j

)
, (6.88)

and apply the Markov property (Lemma 3.2) K̄ε times to deduce

µ−1,1
ε,(−Lε,Lε)

(
A	 ∩ A⊕ ∩ A�bc ∩

( K̄ε−1⋂
j=0

A�−1,j

))

= Eµε,−1,1
(−Lε,Lε)

(
1A	(u)1A⊕(u)1A�bc

(u)

K̄ε−1∏
j=0

Eµε,u(xk̄j
,xk̄j+1

)

(
1A�−1,j

(u)
) )
. (6.89)

According to Lemma 5.2, we have

Eµε,u(xk̄j
,xk̄j+1

)

(
1A�−1,j

(u)
)
≤ λEµε,u(xk̄j

,xk̄j+1
)

(
1A�j

(u)
)
,
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uniformly over all paths u that satisfy u(xk̄j ),u(xk̄j+1
) ∈ [−3/2,−1/2]. We insert

this bound into (6.89) and then use the Markov property once more to recover

µ−1,1
ε,(−Lε,Lε)

(
A	 ∩ A⊕ ∩ A�bc ∩

( K̄ε−1⋂
j=0

A�−1,j

))

≤ λK̄ε Eµε,−1,1
(−Lε,Lε)

(
1A	(u)1A⊕(u)1A�bc

(u)

K̄ε−1∏
j=0

Eµε,u(xk̄j
,xk̄j+1

)

(
1A�j

(u)
) )

= λK̄εµ−1,1
ε,(−Lε,Lε)

(
A	 ∩ A⊕ ∩ A�bc ∩

( K̄ε−1⋂
j=0

A�j
))
. (6.90)

Since

A	 ∩ A⊕ ∩ A�bc ∩
( K̄ε−1⋂

j=0

A�j
)
⊆ Jy,ε,

the combination of (6.88) and (6.90) completes the proof of (6.87). �
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