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Introduction

Jean Bourgain began his career working in the geometry of Banach spaces. At

that time, the late ’70s and early ’80s, several of the most prominent figures in the

field had begun to focus on the study of quantitative problems in finite-dimensional

spaces rather than on the more traditional infinite-dimensional theory which was, at

least in spirit, qualitative. These quantitative problems suited Jean’s mathematical

temperament perfectly1 and in the early ’80s he produced some of the most crucial

ideas that underpin the subject and some of his most striking and beautiful results.

Since this part of Jean’s work is all over 30 years old it is natural that the areas in

question have developed considerably since the time he was involved with them. So

this article will discuss the relevant parts of Jean Bourgain’s early work and describe

at least briefly how they were followed up.

The study of finite-dimensional normed spaces has fed into at least 3 areas of

mathematics that have been very successful in recent decades. Metric geometry has

become a staple of mathematical computer science and the theory of algorithms:

the geometry of convex domains has been revitalised and now provides a subtle

probabilistic picture of high-dimensional space: and the study of random operators

is central to the field of data-compression. (The latter field also has deep connections

to number theory and quantum mechanics but research in those directions is in a

rather different spirit.) Jean played a seminal role in each of these developments.

This article discusses aspects of each of these three areas. Section 1 starts with

a brief background on normed spaces and convex domains. It then discusses the im-

portant reverse Santaló inequality of Bourgain and Milman, Dvoretzky’s Theorem,

the “slicing problem” made popular by Jean, the conjecture of Kannan, Lovász and

1This viewpoint is echoed in the article by Tao [T] in this volume.
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Simonovits concerning the Poincaré inequality for convex domains and the “cen-

tral limit problem” raised by the present author and solved by Klartag. Section 2

describes the origins of metric geometry, the “Ribe programme” proposed by Jean,

and his striking results about how close a metric space must be to a subset of Hilbert

space. It then discusses the subsequent development of the Ribe programme and

the non-linear Dvoretzky Theorem by a number of mathematicians and mathemat-

ical computer scientists, especially Mendel and Naor. Section 3 discusses a rather

specific topic within the huge field of random matrices or operators: restricted in-

vertibility. Jean proved some extremely delicate results in this area which it would

be impossible to discuss in detail and many of the methods he developed are closely

related to his work in harmonic analysis (which forms the subject of other articles

in this collection). However one part of this work, that relates specifically to the

famous Kadison-Singer problem, seems to me to be so characteristic of Jean’s style

and so enjoyable to read that I will explain the proof. At the end of the section I

will briefly mention the recent solution of the Kadison-Singer problem by Marcus,

Spielman and Srivastava.

Jean Bourgain is most famous for long and extremely complex papers in which

he brings his enormous mastery of analytic techniques to bear on deep problems.

He did write a number of such articles in the areas I will be discussing but in the

end his most enduring contributions rely more on striking insights and his vision of

the subject’s future. So I have taken the opportunity to sketch several proofs that

are not especially long, in sufficient detail that the general mathematical reader

can really appreciate them. Bourgain was an enormous inspiration to analysts of

my generation. Rather than try to give a comprehensive account of these fields I

decided that it was more important to convey some of the delight we felt watching

him produce these beautiful arguments.

1 High-dimensional geometry

Functional analysis was originally concerned mainly with infinite-dimensional spaces

and operators between them: most especially the spaces of functions that appear in

PDE, quantum mechanics and harmonic analysis. All normed spaces of a given finite

dimension are isomorphic to one another so in a crude sense they are all Euclidean

spaces and it might seem that there is nothing more to say. But at a quantitative

level this is far from true.

In [Jo] Fritz John proved that if X is a d-dimensional normed space then there is

a linear bijection T : X → `d2 with ‖T‖.‖T−1‖ ≤
√
d. We express this by saying that

X is
√
d-isomorphic to `d2. John proved the theorem by regarding X as Rd equipped

with a norm and considering the ellipsoid of largest volume E inside the unit ball
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BX of X. (He showed among other things that this ellipsoid is indeed unique.) John

proved that that BX ⊂
√
dE . Since the ellipsoid is the unit ball of an Euclidean

norm, the inclusions

E ⊂ BX ⊂
√
dE

imply the theorem. Thus John proved a theorem in functional analysis by asking

geometric questions involving volume and tangency of convex domains: the unit

balls of normed spaces. His theorem is sharp in that there are normed spaces such

as `d∞ and `d1 whose “distance” from Euclidean space in this sense, is
√
d: spaces

which look very unlike Euclidean spaces. Since every symmetric convex set with

non-empty interior in Rd is the unit ball of a norm on the space, and vice versa, the

study of finite-dimensional normed spaces is in principle equivalent to the study of

these convex sets but in practice the viewpoints are quite different and in spite of

John’s Theorem the two areas of mathematics remained largely separate for many

years.

The classical theory of convex geometry developed by Minkowski and Blaschke

grew out of the isoperimetric principle: that among domains of a given volume the

Euclidean balls have the smallest surface area. The Brunn-Minkowski inequality,

which generalises the isoperimetric inequality, states that if C and D are non-empty

compact subsets of Rd then the set C +D of sums

{c+ d : c ∈ C, d ∈ D}

has large volume: vol(C + D)1/d ≥ vol(C)1/d + vol(D)1/d. While the statement

makes no mention of convexity, much of the power of the inequality stems from the

following fact. Suppose C is a compact convex set in Rd and e is a unit vector. Scan

across C with hyperplanes perpendicular to e, measuring the (d − 1)-dimensional

volume of the slices of C. The volume of the slice regarded as a function of the

hyperplane’s position, has a concave logarithm. (See [B2] for a detailed discussion.)

1.1 Bodies and their polars

After the Brunn-Minkowski Theorem, probably the most famous classical fact about

convex domains is the Blaschke-Santaló inequality, [Bla] and [S]. If C is a convex

set in Rd then its polar is

C◦ = {y ∈ Rd : 〈x, y〉 ≤ 1, for all x ∈ C}.

The inequality states that if C has the origin as its centre of mass then the product

of the volumes of C and its polar is at most the corresponding product for the

standard Euclidean ball Bd in Rd:

vol(C) vol(C◦) ≤ vol(Bd)
2.
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One of Minkowski’s motivations for studying convex domains was what is now

known as the geometry of numbers, which involves the interplay between lattices

in Rd and domains, usually convex ones. In this context the number theorist K.

Mahler asked what lower bound can be put on these volume products. By John’s

Theorem it is clear that if C is a symmetric convex set then

vol(C) vol(C◦) ≥
(

1√
d

)d
vol(Bd)

2.

However if we consider the pair in which C is the unit ball of `d∞ and C◦ the ball of

`d1 the volume product is 4d

d!
and this is more than(

2

π

)d
vol(Bd)

2.

Thus, as far as Mahler’s question is concerned, the spaces that seem the furthest from

being Euclidean, appear to behave as if they are rather close to Euclidean. Mahler

conjectured that among symmetric convex domains the cube and its polar, the unit

balls of `d∞ and `d1, have the smallest volume product. The fact that for this pair,

the product is much larger than you might guess, indicates just how powerful such

a result would be. Mahler’s conjecture is still unproved but for most purposes what

matters is an approximate statement: the reverse Santaló inequality of Bourgain

and Milman [BM].

Theorem 1 (Bourgain-Milman). There is a constant K, independent of dimension,

so that for all symmetric convex domains C

vol(C) vol(C◦) ≥
(

1

K

)d
vol(Bd)

2.

The assumption of symmetry was quickly removed in subsequent works: the more

general statement, for convex domains that may not be symmetric, doesn’t really

add anything to the original. This reverse Santaló inequality is a theorem that is

used so frequently that people forget they are doing it. Duality is central to the

study of normed spaces and this theorem allows you to flip back and forth between

spaces and their duals without losing significant information about the volumes of

the unit balls.

The proof of this remarkable fact depends upon a longish programme that drew

together the two viewpoints: the linear theory of finite-dimensional normed spaces

and the geometry of convex domains. The programme is described in loving de-

tail in the book by Pisier [P1]. The real starting point for this unification was a

seminal theorem of Dvoretzky [D] from the late ’50s that answered a question of

Grothendieck.
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Theorem 2 (Dvoretzky). For each natural number k and each ε > 0 there is a

natural number d with the property that every normed space of dimension d contains

a subspace of dimension k which is (1 + ε)-isomorphic to `k2.

The original proof of the Bourgain-Milman Theorem used a subtle but rather

technical estimate2 of Milman’s [Mi2] depending upon the distribution of the stan-

dard rotation-invariant measure on the Euclidean sphere together with the theory

of type and cotype developed principally by Kwapień, Maurey and Pisier: see in

particular [K], [Ma2] and [P2]. Both Dvoretzky’s Theorem and the theory of type

and cotype were also important motivations for the development of metric geometry

which will be discussed in the second section of this article.

1.2 Slicing

In the introduction it was mentioned that we now have a view of domains in high-

dimensional space, especially convex domains, that is inspired by probability theory.

Suppose C is a convex domain in Rd of volume 1. Its indicator 1C is the density

of a random vector: X say. For each unit vector θ we can consider the random

variable 〈X, θ〉. After an appropriate affine transformation we can arrange that

each of these random variables has mean 0 (the centre of mass of C is the origin)

and that they all have the same variance (the inertia tensor of C is a multiple of the

identity). If so then we call the domain isotropic. Now if our domain is the cube

[−1/2, 1/2]d in Rd then its indicator function is the joint density of IID random

variables (X1, X2, . . . , Xd) uniformly distributed on [−1/2, 1/2]. Its marginal in the

direction θ = (1/
√
d, 1/
√
d, . . . , 1/

√
d) is

1√
d

d∑
i=1

Xi

and so by the Central Limit Theorem it is almost Gaussian (with variance indepen-

dent of d). During the late ’80s and early ’90s it became more and more apparent

that the indicator of any convex domain should exhibit features that we expect of

the joint density of independent random variables.

The Brunn-Minkowski inequality stated earlier implies that each of the marginals

〈X, θ〉 of C has a density on the line, fθ say, whose logarithm is concave. That

guarantees that the density decreases exponentially fast as we move away from the

function’s maximum value. This in turn ensures that if L2 is the variance of fθ then

the maximum value of fθ must be around 1/L. If C is a symmetric isotropic convex

domain then for each θ the density fθ attains its maximum at 0 where its value is

2Milman calls it the “lower M∗ estimate”
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the (d − 1)-dimensional volume of the slice of C by the subspace orthogonal to θ.

Hensley [H] pointed out that as a result, any symmetric isotropic convex domain in

Rd has the property that the volumes of its central slices are all about the same as

one another. Formally

Theorem 3 (Hensley). There are constants c1 and c2 so that the following is true.

Let d be a natural number and C an isotropic convex domain in Rd with∫
C

〈x, θ〉2 dx = L2

for all unit vectors θ. Then for every 1-codimensional subspace H of Rd

c1
L
≤ vol(C ∩H) ≤ c2

L
.

If the indicator of the domain C does indeed behave like the joint density of

IID one-dimensional random variables then it should look like the product of those

densities: in particular its value at 0 (which is 1) should be roughly the product of the

d values fe1(0), fe2(0), . . . , fed(0) of its marginals, in a set of orthogonal directions.

Each of these values is roughly 1/L so we would expect L to be roughly 1, or roughly

constant, independent of dimension.

Clearly the expectation of the square of the length of the random vector X is∫
C

|x|2 dx =
d∑
i=1

∫
C

〈x, ei〉2 dx = dL2.

So for any C the value of L is at least as large as that of the Euclidean ball: the

Euclidean ball packs a given volume as close as possible to the origin. For this

set the value of L is approximately 1/
√

2πe and so it is indeed roughly a constant

independent of dimension. The conjecture that there is a constant upper bound as

well as a constant lower bound for the values of L is known as the “slicing problem”

and is often attributed to Bourgain although I’m not convinced that he ever really

believed it.

Conjecture 4 (Bourgain). There is a constant K independent of d so that for any

isotropic convex domain of volume 1, L ≤ K.

Soon after the slicing problem started attracting attention it became clear that

more or less equivalent problems had been asked about convex domains over many

years dating back as far as the work of Sylvester. The conjecture is known to be

true for quite a few families of unit balls, in the sense that there is a uniform bound

for all members of the family independent of dimension: for example it is quite easy

to prove for the unit balls of finite-dimensional `p spaces.
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It is easy to see that for any symmetric isotropic domain in d dimensions the

value of L is at most about
√
d just because the domain cannot have larger width

than the Euclidean ball in every direction. The question is whether this upper bound

can be improved to a constant. In one of his most celebrated early works Bourgain

[Bo3] improved the bound to d1/4(log d)α for some power α.

Theorem 5 (Bourgain). For some α > 0, if C is an isotropic convex domain in Rd

then (
1

d

∫
C

|x|2
)1/2

≤ d1/4(log d)α.

The logarithmic factor in Bourgain’s Theorem was removed by Klartag by com-

bining his “isomorphic slicing theorem” [Kl1] with a deep result of Paouris [Pao].

1.3 Subsequent developments

Since Bourgain and Milman proved the reverse Santaló inequality there have been a

number of other, very different, proofs for example by Kuperberg [Ku] and Nazarov

[Na]. Fairly recently Giannopoulos, Paouris and Vritsiou [GPV] gave a proof that

is much more in the spirit of convex geometry and is surprisingly elementary. The

development of high-dimensional geometry during the last 30 years has been guided

by the Bourgain-Milman Theorem and its proof, by the slicing problem and by two

other conjectures. The first of these, proposed in [KLS], concerns the spectral gap

for the Neumann Laplacian on a convex domain. In concrete terms it states the

following:

Conjecture 6 (Kannan, Lovász and Simonovits). There is a constant K indepen-

dent of d so that for any isotropic convex domain C ⊂ Rd of volume 1, and every

differentiable f : C → R with mean f̄ =
∫
C
f we have∫

C

(
f − f̄

)2 ≤ K2L2

∫
C

‖∇f‖2.

A Poincaré inequality of this kind is known to hold for every open domain but

the value of the constant K can be huge for nasty domains. Even if the domain is

convex the constant can be large if the domain is long and thin. The conjecture

is that once we apply a linear map to make our domain isotropic the constant is

bounded independently of C and the dimension d. If f is a linear function then the

inequality is an identity with K = 1 because it is just the definition of L. So the

conjecture states that, up to a constant, the linear functions are the worst for the

Poincaré inequality.

The second conjecture, publicised by the author and also Brehm and Voigt (see

[ABP] and [BV]), was known as the central limit problem for convex domains and
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describes a sense in which their indicator functions do indeed behave like the joint

densities of independent random variables. Its rough statement is the following.

Conjecture 7 (Ball, Brehm-Voigt). The 1-dimensional marginals of an isotropic

domain are approximately Gaussian in all but a tiny proportion of directions.

It was explained in [ABP] that this conjecture is very much weaker than the

KLS conjecture (applied to the function x 7→ ‖x‖2). As was mentioned in the

introduction, a proof of the conjecture was found by Klartag [Kl2]. A completely

different proof was given by Fleury, Guédon and Paouris [FGP]. The KLS conjecture

on the other hand is very far from being proved.

The slicing problem and the KLS conjecture are also related to one another.

Formally they are independent: the Poincaré inequality takes for granted that the

natural length scale in C is L (however large that is) while the slicing conjecture

claims that L is always at most a fixed number. However the natural feeling is that

the two are effectively opposites of one another. The Poincaré inequality says that

linear functions deviate most rapidly: the slicing conjecture says that linear functions

do not deviate rapidly at all. However it was demonstrated by the present author

that the KLS conjecture actually implies the slicing conjecture and an extended

version of the argument appears in [BN]. With hindsight it may not be so surprising

that KLS implies the slicing conjecture. KLS implies that most of the volume of the

body lies in a fairly thin shell. The isotropic property guarantees that this volume

is distributed rather uniformly around the shell. If the slicing conjecture fails then

the shell has large radius and it is plausible that the convexity of the domain fills in

so much that the volume of the domain must be larger than 1.

Currently the best bound known in the KLS conjecture is d1/4 which follows

from the work of Eldan [El] and Lee and Vempala [LV]. The latter article provides

a very clear and readable overview of the state of the art. My personal feeling is

that the slicing problem and the KLS conjecture are too optimistic but I would be

very reluctant to guess the correct order of the constants.

2 Metric geometry

In 1976 Ribe [R] proved a rigidity theorem which effectively states that finite-

dimensional properties of a Banach space are determined up to isomorphism by the

metric structure of the space without any reference to its linear structure. Prompted

by this, Bourgain [Bo1] proposed a research programme which is now known as “The

Ribe Programme”: to find explicit metric descriptions of the most important invari-

ants of normed linear spaces. He himself started the programme by providing a
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metric characterisation of superreflexivity. A Banach space X is called superreflex-

ive if every space whose finite-dimensional spaces embed into X, must automatically

be reflexive. Elementary functional analysis courses often contain the theorem that

uniformly convex spaces are reflexive. Since uniform convexity is a finite-dimensional

property they are therefore superreflexive. Clearly any space which is linearly iso-

morphic to a uniformly convex space will also be superreflexive. A series of works

by James and Enflo [J] and [E2] demonstrated that actually these are the only ones.

Another characterisation of superreflexivity, in terms of the growth of martingales

in the space, was found by Pisier in [P3]. These beautiful results provide geometric

characterisations of superreflexivity but still rely on the linear structure. Bour-

gain [Bo1] showed that superreflexivity holds precisely if the space does not contain

copies of arbitrarily large binary trees (viewed as metric spaces in the obvious way).

Needless to say the real point of the Ribe programme is not merely to find metric

equivalents of linear properties. The broader aim is to mimic the well-developed

theory of normed spaces in the non-linear setting.

In studying normed spaces it is frequently useful to know that the unit ball of a d-

dimensional normed space has an ε-net with no more than about
(
5
ε

)d
elements (and

that you can’t make do with significantly fewer). So a metric space with around 10d

elements should be capable of mimicking all the bad behaviour of a d-dimensional

normed space: that an n-point metric space is as bad as a log n-dimensional normed

space. One’s first instinct is that general metric spaces must by potentially much

wilder than normed spaces. There is some limit to this wildness since every metric

space with n points can be isometrically embedded into `n∞. But that is a far cry

from a log n-dimensional normed space. Nevertheless there was a feeling in the early

’80s that in studying finite-metric spaces the logarithm of the number of elements

should play a role something like the dimension of a normed space.

This feeling got a boost from a famous paper of Johnson and Lindenstrauss [JL].

They studied extensions of Lipschitz maps from metric spaces into Hilbert space

and in order to do so they proved the dimension-reduction lemma stating that any n

points in Euclidean space can be embedded in an Euclidean space of dimension only

about log n, with very little distortion of the distances between points. This lemma

has been used repeatedly in the theory of algorithms since a dataset embedded in

a space of low dimension is much easier to search than one in a space of higher

dimension. Following this article Joram Lindenstrauss especially, promoted the idea

that there should be a subtle analogue of the theory of normed spaces but for general

metric spaces.

In view of John’s Theorem it was natural to ask how far could an n-point metric

space be from a subset of Hilbert space. If an n-point metric space does indeed look

like a subset of a log n-dimensional normed space then the answer should be at most
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√
log n. This is too much to ask but in [Bo2] Bourgain found essentially the correct

order: log n. His argument is not very long but it is one of his most striking and

has inspired a huge range of subsequent arguments in the field of metric geometry

and the theory of algorithms in mathematical computer science. This will be the

subject of Section 2.1 below.

In the following year Bourgain wrote two other articles that played a key role

in starting the field of metric geometry. Just as John’s Theorem concerning the

distance between normed spaces prompts one to ask about the distance of a finite

metric space from a subset of Euclidean space, so Dvoretzky’s Theorem prompts one

to ask how large a subset must a metric space contain, that is actually embeddable

in Hilbert space with at most a constant distortion. Again, the first result in this

direction was proved by Bourgain, this time in collaboration with Figiel and Milman,

[BFM]. They proved that every n-point metric space contains a subset of at least

about log n elements that can be almost perfectly embedded in Euclidean space.

This non-linear Dvoretzky Theorem was the start of a long development which will

be discussed in Section 2.3 below. The second of the two articles [BMW] discussed a

metric version of a linear invariant: the type of a normed space. This and subsequent

work in this area by the present author and Mendel and Naor will be discussed in

Section 2.2. The Ribe programme as a whole is explained in more detail in the

present author’s article [B3] and the much more detailed survey by Naor [N].

The field of metric geometry is now extremely active not least because of its

connections to theoretical computer science. It was founded in the early ’80s and

I think it is fair to say that J. Lindenstrauss and J. Bourgain were the principal

architects.

2.1 How Euclidean is a metric space?

As explained above, Bourgain [Bo2] proved the following remarkable theorem which

has hugely influenced subsequent developments in metric geometry.

Theorem 8 (Bourgain). There is a constant K so that if X is an n-point metric

space there is a map f : X → `2 so that for every pair of points x, y ∈ X

1

K log n
d(x, y) ≤ ‖f(x)− f(y)‖ ≤ d(x, y).

Bourgain constructs the map f as follows. He indexes the coordinates of an

Euclidean space (of the correct dimension) by the non-empty subsets A of X. Each

point x ∈ X is mapped to the vector whose A-coordinate is the distance d(x,A)

scaled by a weight factor
√
pA. The weights are chosen so that

∑
A⊂X pA = 1 which

automatically ensures that if x and y are points in X the distance between their
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images satisfies

‖f(x)− f(y)‖2 =
∑
A⊂X

pA (d(x,A)− d(y, A))2 ≤
∑
A⊂X

pA d(x, y)2 ≤ d(x, y)2.

Thus a subset A is chosen randomly according to the distribution determined by

the probabilities pA and the problem is to show that for every pair x and y the

expectation of (d(x,A)− d(y, A))2 is at least about 1
(logn)2

d(x, y)2.

The really remarkable thing about the proof is that the weight pA depends only

upon the size of A and not in any way upon the metric space in question. Somehow,

a typical set in X can detect more or less how far apart are the points x and y,

regardless of how they sit in the metric space. The random set is chosen as follows.

Pick an integer j between 1 and 1 + log2 n (each integer equally likely) and now

choose a random set by including each point of the space with probability p = 1/2j,

independently of the others (and excluding it with probability 1− p). The following

proof that this works is a slight modification of Bourgain’s original argument, due

to Matousek and Naor.

If B1 ⊂ X is a set in X with 2j elements then the random set chosen with

p = 1/2j will miss B1 with probability (1− p)2j which is about 1/e. If B2 has only

2j−1 elements then the random set is more likely to miss it but still with probability

only 1/
√
e. As long as the sets are disjoint (so their points are chosen independently)

there is a fair chance that the random set will miss the larger, B1, but meet the

smaller, B2.

Now fix x and y in X and for each j let rj be the smallest radius for which the

balls B(x, rj) and B(y, rj) around x and y both contain at least 2j points of the

metric space. At least one of the open balls B◦(x, rj) and B◦(y, rj) contains fewer

than 2j points: let’s assume that the first one does so. Up to the point where rj is

about say d(x, y)/3 the sets B◦(x, rj) and B(y, rj−1) will be disjoint and so there is

a fixed probability that a random set whose points are chosen with probability 1/2j

misses the first and hits the second. For such a set A

(d(x,A)− d(y, A))2 ≥ (rj − rj−1)2.

If we replace each rj by r̃j, the minimum of rj and d(x, y)/3, we get that for all j

(d(x,A)− d(y, A))2 ≥ (r̃j − r̃j−1)2.

Averaging over the (at most) 1 + log2 n different values of j we get

‖f(x)− f(y)‖2 ≥ c

1 + log2 n

∑
j

(r̃j − r̃j−1)2
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for some constant c. By the Cauchy-Schwarz inequality the latter is at least

c

(1 + log2 n)2

(∑
j

(r̃j − r̃j−1)

)2

.

Since the greatest value of r̃j is d(x, y)/3 and the least is 0, this gives the lower

bound we want.

In harmonic analysis it is common to consider what is happening on many differ-

ent length scales: indeed one might almost regard this as the definition of harmonic

analysis. Usually one chooses the lengths, 1, 1/2 1/4 and so on, from the start.

Here Bourgain gives the idea a twist. He chooses the numbers of points in the balls

B(x, rj) to be powers of 2 and lets the radii take care of themselves. This idea has

reappeared quite regularly in metric geometry.

The idea and the theorem itself have also been used in many articles in theo-

retical computer science: the following are just a smattering. Linial, London and

Rabinovich [LLR] find a polynomial-time random embedding of a metric space into

Hilbert space that achieves Bourgain’s bound and, as the authors point out, the

overall structure of the proof follows Bourgain’s. The max-flow/min-cut problem

for a single commodity is famously easy to solve but if there are several commodi-

ties it becomes NP-hard. In [AR], which uses the Linial, London and Rabinovich

result, Aumann and Rabani obtain a cut which approximates the optimal one (in

size). The way they do this illustrates rather well one of the reasons that embed-

dings of metric spaces play a role in the theory of algorithms. The problem naturally

associates vectors in Rk to the vertices of the network and their aim is to find a

cut by using a hyperplane to partition these vectors into two subsets. In order for

the method to work they need to embed the metric space consisting of the vectors

equipped with the `∞ norm, into a better space. The use of hyperplanes to find cuts

in combinatorial settings itself appears quite frequently in the theory of algorithms:

most famously in the paper of Goemans and Williamson [GW]. Feige [F] uses an

extension of the embedding method to tackle what looks like a completely different

problem: the so-called bandwidth problem for graphs: how badly the edges of the

graph must be stretched to peg the vertices at points 1, 2, 3 and so on.

2.2 Metric type and cotype

The most successful family of achievements within the Ribe programme has been

the development of metric equivalents of the linear invariants known as type and

cotype. As metioned earlier the original linear theory was due predominantly to

Kwapień, Maurey and Pisier. A normed space X has type p if there is a constant

12



T so that for every sequence of vectors x1, . . . , xn in X

Ave‖ ± x1 ± x2 ± · · · ± xn‖p ≤ T p
n∑
1

‖xi‖p

where the average is taken over all choices of sign in the vector sum. It has cotype

q with constant C if

n∑
1

‖xi‖q ≤ CqAve‖ ± x1 ± x2 ± · · · ± xn‖q

for every such sequence. The parallelogram identity shows that Hilbert space has

type and cotype 2: the best possible. If 1 ≤ p ≤ 2 the space Lp has type p and

cotype 2, while if 2 ≤ q <∞, Lq has type 2 and cotype q. A result of Kwapień [K]

shows that only Hilbert space can possess both type 2 and cotype 2.

The non-linear theory began formally with an article by Bourgain, Milman and

Wolfson [BMW] who introduced a metric form of the type invariant, but it had

been anticipated by an article of Enflo [E1]. He asked: for which spaces X is it

true that there is a constant T so that for every n and every embedding of the

corners of the cube {−1, 1}n into X, the average squared length of the cube’s 2n

diagonals is at most nT 2 times the average squared length of the cube’s n2n−1 edges?

Bourgain, Milman and Wolfson [BMW] chose a modification of Enflo’s property as

their definition of metric type (for 1 < p ≤ 2) and showed that a space with linear

type p has metric type r for all r < p. They also proved a metric analogue of Pisier’s

`1 theorem (see [P2]) which states that the finite-dimensional L1-spaces are the only

obstructions to type:

Theorem 9 (Pisier). If a normed space X fails to have type p for every p > 1 then

there is a constant C so that for every n, X has a subspace Y which is C-isomorphic

to the n-dimensional L1-space, `n1 .

The main theorem in [BMW] states that a metric space which has no non-trivial

metric type contains a non-linear analogue of the finite-dimensional `1 spaces.

Theorem 10 (Bourgain, Milman, Wolfson). If a metric space X fails to have type

p for every p > 1 (the space has no non-trivial metric type) then there is a constant

C so that for every n, X has a subset which is C-Lipschitz equivalent to the metric

space {−1, 1}n with the Hamming metric it inherits from `n1 .

Thus although there need not be a copy of anything like a linear space, a metric

space with no type must include a copy of the Hamming cube. This was the first

really convincing sign that metric spaces might have a subtle structure that parallels

that of normed spaces.
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The obvious question arising from this article was “What is metric cotype?”

This question is made difficult by the fact that one cannot simply compare edges

and diagonals of a cube in the opposite order to Enflo: the resulting inequality

never holds in any space. One answer was given in the author’s paper [B1] which

introduces the properties of Markov type and cotype. These describe the behaviour

of time-reversible stationary Markov chains in the space: for example a space has

Markov type 2 if time-reversible Markov chains only wander about
√
m times as far

in m steps as they do in one step. The properties were introduced in order to study

extensions of Lipschitz maps. At the time it was not known whether the Markov

type 2 property held in any normed space other than Hilbert space. This problem

was solved some 10 years later in [NPSS]. Their result combined with those from

[B1] gives the following non-linear analogue of a linear extension theorem of Maurey

[Ma1] that generalises the result of Kwapień.

Theorem 11 (Ball, Naor, Peres, Schramm, Sheffield). If 1 < p ≤ 2 ≤ q < ∞, A

is a subset of Lq and S : A→ Lp is a Lipschitz map, then there is a Lipschitz map

S̃ : Lq → Lp which extends S: so S̃(a) = S(a) for each a ∈ A.

Although Markov cotype is well adapted for the purpose of Lipschitz extensions

it does not fulfil the demand of the Ribe programme for a metric version of the linear

cotype. In their paper [MN1] Mendel and Naor finally found an appropriate metric

analogue. The test for cotype is the Maurey-Pisier Theorem which states that if a

normed space X fails to have cotype q for every q <∞ (the space has no non-trivial

cotype) then X contains uniformly isomorphic copies the finite-dimensional L∞-

spaces, `n∞. Mendel and Naor not only found the metric version of cotype they also

found the right obstructions by proving an analogue of the Maurey-Pisier Theorem

for a variant of metric cotype. The two parts of the problem are closely linked: the

cotype condition depends on grids rather than cubes and the obstruction they build

in the absence of metric cotype is not just a discrete cube in `∞ but a large grid.

2.3 The non-linear Dvoretzky Theorem

The optimal form of Dvoretzky’s Theorem proved by Milman [Mi1] guarantees that

each normed space of dimension d contains an almost Euclidean subspace of dimen-

sion k ≈ log d. If a metric space of size n ≈ ed points roughly corresponds to a

normed space of dimension d then it should have a subset of size about ek = log n

points. Bourgain, Figiel and Milman [BFM] proved that this is indeed so.

Theorem 12 (Bourgain, Figiel, Milman). For every ε > 0 there is a constant K

so that for every n, every n-point metric space contains a subset of size at least

(log n)/K which is 1 + ε Lipschitz equivalent to a subset of Euclidean space.
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Dvoretzky’s Theorem is proved by finding a subspace of fairly large dimension

in which a norm is almost constant on the Euclidean unit sphere and then using

linearity to deduce that the norm and the Euclidean norm are almost the same on

the whole subspace. No such method is available in a general metric space so it

is extremely hard to imagine how one can detect an almost Euclidean subset of a

metric space (let alone find it). The proof of Theorem 12 constructs a subset of each

metric space which is much more special than being almost Euclidean: it is almost

an ultrametric space, meaning that every triangle in the space has its two longer sides

equal. Such a metric space has a highly restricted structure: it can be represented

as the leaves of a tree in which the distance between any two leaves depends only

upon the identity of their nearest common ancestor. It is a nice exercise to check

that every ultrametric space can indeed be embedded in Hilbert space. As a result,

at first sight Theorem 12 looks like a cheat: that it doesn’t really have anything

much to do with Euclidean space. It looks as though what is happening is that log n

points is such a small part of an n-point space that you can find them satisfying

an incredibly restrictive condition that happens to imply that they sit in Euclidean

space but implies much more. In fact the opposite is true. Theorem 12 was the

beginning of a remarkable story showing that finite metric spaces actually contain

quite large ultrametric subsets that act as a kind of skeleton of the space: the space

is a fleshed-out version of its ultrametric skeletons.

It is easy to check that the space `d∞ does not have approximately Euclidean

subspaces of dimension larger than log d: (see [B2] for an elementary discussion of

the problem). So it was natural to believe that the result of [BFM] gave the correct

dependence on d whatever distortion of the metric we allow on the subset. However

Bartal, Linial, Mendel and Naor [BLMN] discovered that if the distortion is allowed

to be more than 2, there are very much larger subsets.

Theorem 13 (Bartal, Linial, Mendel, Naor). For every C > 2 there is a constant

α(C) > 0 so that every n-point metric space contains subsets of size at least nα

which are C-Lipschitz equivalent to an ultrametric space.

The threshold C > 2 is sharp: if we insist that the distortion of the metric on

the subset is less than 2, we can find Euclidean subsets only of logarithmic size, as

in the earlier theorem of [BFM]. However, once we allow the metric to be distorted

by a factor of more than 2 the size jumps to a power of n and by increasing the

distortion we can take this power as close to 1 as we wish. As one might expect,

these very much larger subsets are of significance in applications to the theory of

algorithms. The ultrametric skeleton idea appears in an article of Mendel and Naor

[MN2] who prove that

Theorem 14 (Mendel, Naor). For each ε > 0 there is a constant C = C(ε) so that
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for any metric space X and probability measure µ on X there is a subset S of X

which is 1/ε equivalent to an ultrametric space and a probability measure ν on S for

which

ν (B(x, r)) ≤ µ (B(x,Cr))1−ε

for each metric ball B(x, r) in X.

So, however you measure the sizes of different parts of X, the skeleton S is well

represented in each part: it really is a skeleton not just a subset.

3 Restricted invertibilty and the Kadison-Singer

problem

In 1959 Kadison and Singer [KS] asked a question about the uniqueness of extensions

of certain linear functionals called pure states, on C∗-algebras. In 1979 Anderson

[A] found a reformulation of the problem solely in terms of matrices acting on finite-

dimensional Euclidean spaces. The question can be reformulated further in terms of

finite families of vectors as follows. (This reformulation was mentioned at the end

of the article [BT] without proof. It is proved in the article of Casazza and Tremain

[CT].)

Problem 15 (Kadison-Singer). Is there a number r so that for any m and any unit

vectors u1, u2, . . . , um in Hilbert space satisfying∥∥∥∥∥∑
i

λiui

∥∥∥∥∥
2

≤ 2
∑
i

λ2i

we can partition the sequence into r subsequences σ1, σ2, . . . , σr so that each subse-

quence satisfies ∥∥∥∥∥∥
∑
i∈σj

λiui

∥∥∥∥∥∥
2

≥ 1

2

∑
i∈σj

λ2i ?

So the question is asking whether the original sequence can be broken into a bounded

number of subsequences each of which looks rather like an orthonormal basis.

At the time this problem looked far out of reach but a natural question that is

obviously weaker is whether it is possible to select a fixed proportion m/r of the

vectors satisfying the lower bound. It is trivial to check that one can select about√
m with the desired property but getting a fixed proportion of m is much harder.

Bourgain and Tzafriri published a series of papers on this question: in the first [BT]

they proved the following selection theorem which is an absolute gem.
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Theorem 16 (Bourgain-Tzafriri). There is a constant c > 0 so that if u1, u2, . . . , um
are unit vectors in Euclidean space satisfying∥∥∥∥∥

m∑
1

λiui

∥∥∥∥∥ ≤M

(
m∑
1

λ2i

)1/2

for some M and every sequence of scalars (λ1, . . . , λm), then there is a subset σ ⊂
{1, 2, . . . ,m} containing at least cm/M2 of the indices so that for this subset∥∥∥∥∥∑

i∈σ

λiui

∥∥∥∥∥ ≥ c

(∑
i∈σ

λ2i

)1/2

. (1)

Thus the map T : `m2 → `2 which takes the standard unit vectors to the vectors

u1, u2, . . . , um respectively, when restricted to a proportion c/M2 of the standard

basis, is nicely invertible (as a map onto its image). The proof of this theorem is

quite remarkable. It employs a combination of random and non-random selections

and invokes a combinatorial principle which appears to have nothing whatsoever to

do with the problem. Moreover the proof proceeds in 3 steps, the first two of which

look far too weak to be of any real use.

In the first step the authors randomly select a proportion k of the vectors σ1
satisfying the much weaker `∞ estimate:∥∥∥∥∥∑

i∈σ1

λiui

∥∥∥∥∥ ≥ 1

2
max
i∈σ1
|λi|. (2)

In the second step they select about half of the vectors in σ1 so that for this new

subset σ2 they get a lower `1 estimate:∥∥∥∥∥∑
i∈σ2

λiui

∥∥∥∥∥ ≥ 1

2
√
k

∑
i∈σ2

|λi|. (3)

This selection is non-random and depends upon the Sauer-Shelah lemma from com-

binatorics [Sau] and [Sh]. Finally in the third step Bourgain and Tzafriri use another

selection (which might be called semi-random) of about half the vectors in σ2 for

which they get the bound in equation (1).

The `∞ lower bound in equation (2) is equivalent to the statement that each

ui, for i ∈ σ1, is at least distance 1/2 from the span of the other vectors indexed

by σ1. Once you have decided to prove this seemingly extremely weak statement it

is easy to see that a random selection will do it. Choose indices independently at

random with probability about 1/(10M2). The expected square of the length of the

projection of any of the unit vectors onto the span of the randomly chosen ones will
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be small. So at least half of the random collection will have the property required.

Let this set of indices be σ1 and k be the number of indices chosen.

The second step is rather magical and it depends upon the Sauer-Shelah Lemma:

Theorem 17 (Sauer-Shelah). Suppose F is a collection of choices of sign (εi) ∈
{−1, 1}n with more than

r−1∑
j=0

(
n

j

)
elements. Then there is a set τ ⊂ {1, 2, . . . , n} of at least r indices with the property

that for any choice of sign (δj)j∈τ indexed by τ there is an element of F , whose

restriction to τ is δ.

Now, yet another way to state the `∞ lower bound (2) is that the biorthogonal

vectors (φ)i∈σ1 to the (ui)i∈σ1 each have norm at most 2. By the parallelogram law

at least 2k−1 of the sums ∑
i∈σ1

εiφi

(as (εi) runs over all 2k choices of sign) have norm at most 2
√
k. So there is a set of

indices σ2 comprising at least half of the indices in σ1 so that every choice of sign

(δi)i∈σ2 can be extended to a choice of sign (εi) on σ1. This ensures that the original

ui indexed by σ2 satisfy the `1 estimate∥∥∥∥∥∑
i∈σ2

λiui

∥∥∥∥∥ ≥ 1

2
√
k

∑
i∈σ2

|λi|.

At this point in the argument Bourgain and Tzafriri originally used a direct

exhaustion argument to select a further subset which satisfies the conclusion of the

theorem. They explain that N. Kalton pointed out that an important theorem of

Grothendieck [G] could be used instead. We actually need what Pisier calls the “little

Grothendieck Theorem” (see [P4] Theorem 5.2). This consequence of Grothendieck’s

Theorem was first stated in this form by Lindenstrauss and Pe lczynski [LP].

Theorem 18 (little GT). There is a constant K with the following property. Let

T : `m∞ → `2 be linear. Then there is a probability measure {p1, p2, . . . , pm} on the

set of indices so that for every θ = (θi) ∈ `m∞

‖Tθ‖ ≤ K‖T‖
(∑

piθ
2
i

)1/2
.

If we now consider the biorthogonal vectors (ψi)i∈σ2 for the smaller set of indices,

they satisfy an upper `∞ bound,∥∥∥∥∥∑
i∈σ2

θiψi

∥∥∥∥∥ ≤ 2
√
kmax
i∈σ2
|θi|.
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Hence if we define a linear map T : `
|σ2|
∞ → `2 by mapping the standard basis vectors

to the vectors (ψi) then T is bounded by 2
√
k. By the little GT we can find positive

numbers pi whose sum is 1 satisfying∥∥∥∥∥∑
i∈σ2

θiψi

∥∥∥∥∥ ≤ 2K
√
k

(∑
i∈σ2

piθ
2
i

)1/2

.

At least half of the pi must be at most 4/k since there are at least k/2 of them and

they add up to 1. If we take σ to be the set of these indices then on this set∥∥∥∥∥∑
i∈σ

θiψi

∥∥∥∥∥ ≤ 4K

(∑
i∈σ

θ2i

)1/2

.

In their article [BT] Bourgain and Tzafriri prove a related result for more general

Lp spaces.

Theorem 19 (Bourgain-Tzafriri). For every p ∈ [1,∞] and every real M and pos-

itive ε there is a constant c with the following property. If the matrix (aij) acts on

`mp with norm at most M and its diagonal entries are equal to 0, then there is a

set σ ⊂ {1, 2, . . . ,m} containing at least a proportion cm of the indices so that the

principal submatrix (aij)i,j∈σ has norm on `
|σ|
p at most ε.

The case p = 2 follows quite easily from the Theorem 16 just discussed. The

general case is quite a bit more intricate. It uses similar ideas to the `2 case together

with the sort of delicate computations in Lp spaces that Bourgain employed in other

problems such as the Λp problem.

In 2008 a completely different proof of Theorem 16 was published by Spielman

and Srivastava [SS] based on step by step modification of a quadratic form: a method

that they had used with Batson [BSS] for graph sparsification. Finally in 2014 Mar-

cus, Spielman and Srivastava [MSS] combined this with a delicate use of interlacing

polynomials to solve the full Kadison-Singer problem.
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[BN] K. M. Ball and V. H. Nguyen, Entropy jumps for isotropic log-concave

random vectors and spectral gap, Studia Math. , (2012), 81–96.

[BLMN] Y. Bartal, N. Linial, M. Mendel and A. Naor, On metric Ramsey-type

phenomena, Ann. of Math. 162, (2005), 643–709.

[BSS] J. Batson, D.A. Spielman and N. Srivastava, Twice Ramanujan sparsifiers,

SIAM J. Comput. 41, (2012), 1704–1721.
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