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Chapter 0. Introduction

This course continues the second year Combinatorics course. As in that course we shall

cover several different topics which are related more by the style of argument than by

the nature of the mathematical objects we study. The choice of topics will show that

combinatorics is closely related to other areas of mathematics and has many uses. For

example we shall introduce error-correcting codes which enable us to send messages

accurately over noisy communication channels or to store information on media that

may get corrupted. The CDs and DVDs that you play have information encoded on

them in such a way that even if you scratch them or drive over a bump while playing

the CD, the music comes out as it should.

Another topic will be graph colouring. This relates to the discussion of planar graphs

last year. We shall construct a polynomial that describes how many ways we can colour

a graph and which is related to polynomials that occur in statistical mechanics.

To provide a little more structure to the course I will divide it into two volumes whose

chapters are loosely related: Patterns and Graph Theory.

The second volume will follow on quite naturally from several parts of last year’s course:

the chapters on planar graphs and colouring, trees, Hall’s Theorem and Ramsey Theory.

The first will introduce several new topics which can loosely be regarded as describing

special mathematical structures which exhibit patterns that are important or useful.

The latter probably needs some explanation by means of an example.

A Steiner system with parameters n, k and t is a set Ω with n elements and a family F
of subsets of Ω each having k elements, with the property that each t-element subset

of Ω is contained in exactly one member of F . For example if t = 1 we just want a

partition of Ω into sets of size k, which is possible if k|n. If k = t then we can take all

the sets of size t. If k = n then we can take F = {Ω}.

Thus a Steiner system is a family of subsets which has a certain uniformity or symmetry

to it. We shall be studying some special examples of Steiner systems in the case t = 2:

the so-called finite projective planes. In this case we want a family of sets of size k

with each pair of points contained in exactly one of them. Each one contains
(
k
2

)
pairs

and the total number of pairs is
(
n
2

)
. So the number of sets in the family is(

n
2

)(
k
2

)
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so we need k(k − 1) to be a factor of n(n− 1).

Now we can also consider how many sets contain a fixed element x. Each of these

contain k − 1 pairs {x, y} and there are n− 1 such pairs altogether. So the number of

such sets is
n− 1

k − 1
.

So we also need k − 1 to be a factor of n− 1.

The simplest non-trivial case is t = 2, k = 3 and n > 3. We need 2|n − 1 so n is odd

and 6|n(n− 1) so n = 5 won’t work. The simplest case is thus t = 2, k = 3 and n = 7.

This example exists and is called the Fano plane.

Each pair of points is contained in exactly one “line”. This Steiner system has the

additional property that each pair of lines meet in exactly one point.

As we saw, for a Steiner system with parameters n, k and t = 2 to exist we need

k − 1|n− 1 and k(k − 1)|n(n− 1) while if t = 1 we just need k|n. For general t there

are t conditions of a similar type. It is not obvious that a Steiner system exists just

because these conditions hold. It was proved by Wilson in the 70’s that Steiner systems

exist for t = 2 whenever the parameters satisfy the appropriate divisibility conditions

and n is large enough and by Keevash very recently for general t.
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The two volumes will be divided up as follows.

Patterns

1. Projective planes and Latin squares

2. Error-correcting codes

3. Discrete geometry

4. Partially-ordered sets

Graph Theory

5. Graph colouring: the chromatic polynomial

6. Matroids

7. Random graphs

8. The regularity method
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Volume I. Patterns

Chapter 1. Projective planes and Latin squares

Projective planes

There is a deep connection between algebra and geometry but once one moves beyond

linear algebra to questions about polynomial maps there is a certain inconvenience to

the usual vector space structure in which we do geometry. This inconvenience stems

from an asymmetry. Any two points in the plane belong to a line but it is not true that

any two lines meet in a point: they could be parallel. Motivated in part by the theory

of perspective in painting, mathematicians realised that they could study an extended

geometry: projective geometry: in which two lines can meet “at infinity”.

In this chapter we shall study the discrete analogue in which our projective planes

have only finitely many points. The basic example is as follows. Let F be a field and

consider the vector space F3 with the point (0, 0, 0) removed: F3 − {0}. Regard two

points (a, b, c) and (x, y, z) as equivalent if there is a (non-zero) element λ of the field

so that

(a, b, c) = λ(x, y, z).

The projective plane over F, denoted FP2 consists of the equivalence classes of non-zero

points in F3.

Equivalently we can think of the elements of the projective plane as the lines in F3

that pass through the origin. Any two points which are multiples of one another lie on

the same line through the origin. How can we picture this space of lines in the case

F = R?
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Consider a sphere centred at the origin.

Each line exits the sphere at two antipodal

points. So we can think of the collection

of lines as being the sphere but with every

pair of opposite points identified with one

another.

Locally the set of lines looks like a patch of

the sphere. But we can’t see how to join

the patches together in 3 dimensions.

A line in the projective plane corresponds to a great circle on the sphere (with opposite

points identified). This in turn consists of all points which are perpendicular to a given

direction: all points (x, y, z) satisfying an equation

λx+ µy + νz = 0

where λ, µ and ν are elements of F that are not all zero.

In this chapter we shall study the discrete analogue in which our projective planes have

only finitely many points. If the field is finite with q elements then F3−{0} has q3− 1

elements. Each equivalence class has q − 1 elements because there are q − 1 non-zero

elements of F to scale by. So there are

q3 − 1

q − 1
= q2 + q + 1

elements of FP2.

A line in this space consists of the equivalence classes of all points satisfying an equation

λx+ µy + νz = 0

where λ, µ and ν are elements of F that are not all zero. Note that the definition

makes sense because if two points are in the same equivalence class then either they
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both satisfy

λx+ µy + νz = 0

or neither does.

Notice that if we multiply each of the coefficients λ, µ and ν by a non-zero element of

the field then we get the same solutions: the same set of points satisfying the equation.

We can thus think of the line as being given not by the coefficient sequence (λ, µ, ν)

itself but by an equivalence class of sequences: a point of FP2 rather than of F3−{0}.
Each point of FP2 determines a line in FP2. It might be that two distinct points of

the projective plane gave rise to the same line: the same set of solutions. We shall

check that this doesn’t happen.

Suppose (λ, µ, ν) and (α, β, γ) are non-zero points defining the same line. Assume that

λ 6= 0. Note that (µ,−λ, 0) lies on the line so

αµ− βλ = 0.

Hence β = λ−1αµ and in the same way γ = λ−1αν. But this implies that

(α, β, γ) = λ−1α(λ, µ, ν)

showing that our two points (λ, µ, ν) and (α, β, γ) belong to the same equivalence class.

Let’s look at the simplest case in which F = Z2: the field of two elements {0, 1} in

which 1 + 1 = 0. In this case the equivalence classes only have one element each so we

can think of the points in the projective plane as the seven points

(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1).

Each line contains 3 points: for example x = 0 is satisfied by the points

(0, 1, 0), (0, 0, 1), (0, 1, 1)

while x+ y + z = 0 is satisfied by

(0, 1, 1), (1, 0, 1), (1, 1, 0).

This projective plane is called the Fano plane and is often drawn as shown. The lines

have different colours.
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(1,0,0)

(0,1,0)

(0,0,1)

(1,1,0)

(1,0,1)

(0,1,1)

(1,1,1)

As we would expect, any two distinct points determine one line.

Lemma (Points in the projective plane). Any two distinct points in FP2 belong

to exactly one line.

Proof Let the points be (equivalence classes of) (a, b, c) and (x, y, z). Form the vector

product:

(λ, µ, ν) = (bz − cy, cx− az, ay − bx).

It is easy to check that λa + µb + νc = 0 and λx + µy + νz = 0 so both our points

lie on the line defined by λ, µ and ν. We need to check that the coefficients are not

all zero. Suppose that they were. We know that a, b and c are not all zero so we can

assume that a 6= 0.

Now set θ = a−1x. Using the fact that cx− az = ay − bx = 0 we get

x = θa

y = θb

z = θc

showing that (a, b, c) and (x, y, z) belong to the same equivalence class and contradict-

ing the fact that they are distinct.
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Finally we want to show that there is only one such line. Suppose that

λa+ µb+ νc = 0 (1)

λx+ µy + νz = 0. (2)

We want to show that (λ, µ, ν) is equivalent to the vector product that we know gives

one such line. We know that bz − cy, cx − az and ay − bx are not all zero so assume

that φ = bz − cy 6= 0. Multiplying (1) by z and (2) by c and subtracting we get

λ(cx− az) = µ(bz − cy) = µφ

and in a similar way we have

λ(ay − bx) = ν(bz − cy) = νφ.

We thus have

λ = φ−1λ(bz − cy)

µ = φ−1λ(cx− az)

ν = φ−1λ(ay − bx)

as required.

What the preceding proof shows is that if (a, b, c) and (x, y, z) are non-equivalent non-

zero elements of F3 then there is an unique equivalence class of elements (λ, µ, ν) of

F3 − {0} satisfying

λa+ µb+ νc = λx+ µy + νz = 0.

This shows that any two distinct points lie on an unique line but it also shows that

any two distinct lines meet in an unique point.

Lemma (Lines in the projective plane). Any two distinct lines in FP2 meet in

exactly one point.

Based on the algebraic construction we shall define a combinatorial object that we shall

call a finite projective plane.
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Definition (Finite Projective Plane). A finite projective plane is a finite set P of

points and a set L of subsets of P called lines satisfying

• Each pair of points belong to exactly one line

• Each pair of lines contain exactly one common point

• There are 4 points, no three of which belong to a single line

The third condition rules out certain degenerate cases which fail to possess the kind of

symmetry properties that we would like. Finite projective planes have a very regular

structure which we shall prove in the theorem below. To begin with we have a simple

lemma.

Lemma (Point-Line matching). Let (P,L) be a FPP, l one of its lines and p a point

not on l. Then the number of points on l is equal to the number of lines through p.

Proof Each point on l lies on exactly one line through p and each line through p meets

l in exactly one point.

Theorem (FPP structure). Let (P,L) be a FPP. Then there is a number q with the

property that

1. Each line contains q + 1 points

2. Each point lies on q + 1 lines

3. There are q2 + q + 1 points

4. There are q2 + q + 1 lines

The number q is called the order of the FPP.
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Proof 1. It suffices to show that any two lines contain the same number of points (and

call this q + 1). Suppose l and l′ are two lines. By the lemma it is enough to find a

point p not on either line since in that case each line has as many points as there are

lines through p. Consider the 4 points guaranteed by the third property: p1, p2, p3 and

p4. If one of them is in neither line we are done. So assume they are all in l or l′ and

observe that there must be two in each line: say p1, p2 ∈ l and p3, p4 ∈ l′. Now consider

the line l13 containing the points p1 and p3 and the line l24 containing the points p2
and p4. These lines meet at a point p.

p1

p2

p3

p4

p

l l'

I claim that p cannot lie on l or l′. If p were on l then l13 and l would be the

same line since they also contain p1. Then we would have p3 on l as well as p1 and p2
contradicting the 4 point property. Similarly p cannot be on l′.

2. Let p be a point. By the lemma it suffices to find a line not containing p. Look

at the 4 points p1, p2, p3 and p4 and assume that p 6= p1. Then the line containing

p1 and p2 and the line containing p1 and p3 cannot both contain p since they already

meet at p1.

3. Let p be a point and consider the q+ 1 lines passing through p. No two of them

meet except at p, each contains q points other than p and they cover the plane. So the

total number of points is (q + 1)q + 1 = q2 + q + 1.

4. Each point belongs to q + 1 lines and each line contains q + 1 points so the

number of lines must equal the number of points.

The number q defined in the preceding theorem is called the order of the FPP. We

have seen that if F is a field of q elements then there is an FPP of order q. There

exist finite fields of every prime power order q = pk where p is prime and k ≥ 1. There

are FPPs that do not come from fields but it is conjectured that all FPPs have prime

power order.
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Latin squares

A Latin square is an n× n arrangement of symbols: each one of n symbols occurring

once in every row and once in every column:

A B

B A

A B C

B C A

C A B

Any group table is an example. For C4

0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Two n × n Latin squares A = (aij) and B = (bij) are said to be orthogonal if the n2

pairs (aij, bij) include all possible pairs of one symbol from A and one from B. For

example if we look at
A B C

B C A

C A B

and

1 2 3

3 1 2

2 3 1

and merge the two squares then the pairs are

(A, 1) (B, 2) (C, 3)

(B, 3) (C, 1) (A, 2)

(C, 2) (A, 3) (B, 1)

To finish this chapter we shall investigate a rather surprising link between FPPs and

orthogonal Latin squares. In order to do so we build up the FPP from two points as

follows.
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y

a1a2

Choose two points in the FPP: say x and y. They lie on a line containing q − 1 other

points: a1, . . . , aq−1. The FPP contains q2 other points. The point x lies on q other

lines, the x-lines, that cover the other q2 points. The point y lies on q other lines,

the y-lines, that also cover the other q2 points. Each x-line meets each y-line. The

q2 intersections are the other points which thus have a Cartesian product structure: a

grid.

a1 also lies on q other lines that cover the grid. Each of these meets each x-line and

each y-line. So each line through a1 locates q places in the grid: one in each row and

one in each column. Hence these q lines through a1 generate a Latin square in the

grid. Call the symbols in the grid a11 for the first line, a12 for the second line and so

on. The q − 1 points a1, . . . , aq−1 on the xy-line thus generate q − 1 Latin squares.
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a1a2

In the example above the point a1 generates

a13 a11 a12
a11 a12 a13
a12 a13 a11

while the point a2 generates
a22 a21 a23
a23 a22 a21
a21 a23 a22.

I claim that these q− 1 Latin squares are pairwise orthogonal. Let a1 and a2 be two of

the other points on the xy line. Each lies on q other lines corresponding to the symbols

a1j and a2j used in their Latin squares. Each a1 line meets each a2 line at one of the

q2 points of the grid. So every possible pair of symbols appears when the grids are

merged. This process can be reversed as you will show in the HW.

Theorem (FPPs and Latin squares). There is an FPP of order q > 1 if and only

if there are q − 1 pairwise orthogonal q × q Latin squares.
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Chapter 2. Error-correcting codes

Introduction

Suppose you want to send a message which you represent in binary: as a string of 0s

and 1s. You can send each bit: a 0 or a 1. But there is a chance that the receiver will

detect the opposite. To avoid this you could send each bit several times over: instead

of sending 1 you send a string of ten: 1111111111. If the receiver detects 1111011101

s/he can be pretty sure that what was sent was meant to be 1. But if you do this, the

rate at which you transmit your messages is decreased by a factor of ten.

The procedure just described of replacing
0 by 0000000000

1 by 1111111111
constitutes an error-correcting code. You insist that only certain strings of ten bits are

allowed and you make sure that they look very different from one another so that there

is no danger that one will be converted into another by noise.

It turns out, rather remarkably, that if you design your code carefully you can achieve

almost perfect accuracy with only a limited decrease in the rate of transmission. To

get an idea of why this is let us compare two different codes. The first will be the

simple repetition code
0 is replaced by 00

1 is replaced by 11
This code detects one bit errors: if you receive 01 you know that there has been an

error. In order for you to receive the wrong message the channel has to corrupt two

bits instead of 1. The rate of this code is 1/2.

Now suppose we use this code to send two bits worth of information. We encode as

follows
00 is replaced by 0000

10 is replaced by 1100

01 is replaced by 0011

11 is replaced by 1111
We use 4 bits to encode 2 bits worth of information and the channel can only fool us

by switching 2 bits.

However using 3 bits we can get the same defence against noise, provided we encode

carefully.
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00 is replaced by 000

10 is replaced by 110

01 is replaced by 011

11 is replaced by 101
Any two of these strings differ in 2 places so to fool us, the channel has to corrupt 2

bits, but this code has rate 2/3 instead of 1/2. So by choosing the admissible strings

carefully you can get the same accuracy at a better rate.

The collection of admissible strings used for this code 000 110 011 101 is a special

structure within the collection of all strings of length 3.

(0,0,0)
(1,1,0)

(1,0,1)

(0,1,1)

The points we use are well spaced and exhibit a geometric pattern.

Block Codes

We shall examine only what are called block codes, in which the message you send is

broken into blocks, each of which can be decoded without reference to the rest of the

message. We called these blocks the admissible strings earlier. A more common term

is codeword. In order to use the code you need to decide how to map the messages you

want to send onto the codewords that you actually transmit. We saw an example in

which we encoded the actual messages as
00 is replaced by 000

10 is replaced by 110

01 is replaced by 011

11 is replaced by 101

18



For our purposes it won’t matter how you map your messages onto the codewords: all

that matters is how well-separated the codewords are. The codewords are built out

of “letters” from an “alphabet”. For most communication the alphabet has just two

letters: 0 and 1 and we call the code a binary code. We think of 0 and 1 as elements

of the field Z2. Recall that in this field 1 + 1 = 0. If the codewords have length n they

can be thought of as elements of the vector space Zn
2 .

The codewords we used above

000 110 011 101

are elements of Z3
2 and we can see that they actually form a linear subspace of this

vector space. For example

110 + 011 = 101.

We shall be concerned only with examples like this. If the codewords form a subspace

of Zn
2 we call the code a linear code.

In order to specify how good the code is we define the Hamming distance of two

codewords as the number of positions in which they differ: so

110 and 011

are distance 2 apart. We want to find codes in which every pair of codewords are far

from one another. Linear codes have a simple feature that makes this easier to achieve:

there is a kind of “automatic” separation.

Lemma (Separation of linear codes). Suppose C ⊂ Zn
2 is a linear subspace and

every element of C, other than 00 . . . 0, contains at least d coordinates equal to 1.

Then the code is d-separated: every pair of codewords are at least Hamming distance

d apart.

Proof Suppose u and v are two codewords that differ only in d− 1 or fewer places.

Then u + v = u− v is a codeword which has a 1 only in the places where u and v

differ, contradicting the hypothesis.

It is also very simple to determine the rate of a linear code. If the code uses n trans-

mitted bits to send k-bits worth of information then the code has rate k/n. So if there
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are 2k codewords in Zn
2 the rate is k/n. More generally the rate of a binary block code

C of length n is
log2 |C|

n
.

Now if C is a linear subspace of Zn
2 of dimension k then it has 2k elements: so the rate

is just
dimC

n
.

For example if

C = {000, 110, 011, 101}

then the minimum number of 1s in a non-zero codeword is 2. The code is 2-separated.

C is a 2-dimensional subspace of Z3
2 and the rate is 2/3.

So our aim is to look for k-dimensional subspaces of Zn
2 whose non-zero elements contain

plenty of 1s to get a good separation and we want k to be pretty large to get a high

rate. Since we want our subspace to have large dimension it is usually easier to define

it by using a small number n− k of linear equations rather than a basis of size k. For

example, the code

{000, 110, 101, 011}

consists of the elements (x1, x2, x3) of Z3
2 which contain an even number of 1s. This

means they are the elements satisfying

x1 + x2 + x3 = 0.

The code is defined by a parity check.

The Hamming Codes

The aim of this section is to describe a family of quite efficient 3-separated binary codes.

We will do it by using parity check rules. Let r be a positive integer and n = 2r− 1 be

the length of the code we are going to describe. The code will be an n− r dimensional

subspace of Zn
2 so we need r linear equations to specify it and its rate will be almost 1

n− r
n

= 1− r

n
≈ 1− log2 n

n
.

The linear equations will be arranged into an r × n matrix B so the code will be

C = {x ∈ Zn
2 : Bx = 0} .
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The Hamming code is specified by the fact that the columns of B are all the binary

numbers from 1 to n. If r = 3, n = 7:

B =

 1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1


Observe that (1, 1, 1, 0, . . . , 0) ∈ C what ever the value of r since the first 3 columns of

B have 0 below the top two rows. So the code cannot be more than 3-separated. In

the HW you will see that it is 3-separated.

We saw that linear codes have the advantage that you can make them well-separated

in a fairly simple way. Their structure also makes them relatively simple to decode

and this is particularly true for the Hamming codes. What do we mean by “decode”.

We receive a message and break it into blocks of the right length n. For each block

we want to decide which codeword was originally sent. If the block we receive is a

codeword then we assume that it was the true message. If not we want to find the

closest codeword to what we received and will then decode as that codeword. The

Hamming code has the property that if x is not a codeword then it is distance 1 away

from a codeword and from exactly one of them.

Lemma (Decoding a Hamming code). Let C be the Hamming code of length n =

2r − 1. Then if x ∈ Zn
2 but x /∈ C there is one and only one element of C at distance

1 from x.

Proof Suppose x is not a codeword. We want to modify one bit and arrive at a

codeword. Consider the vector

u = Bx ∈ Zr
2.

If u were 0 it would tell us that x ∈ C. So we know that u is a non-zero element of Zr
2.

For each i, if ui is zero it means that x satisfies the ith parity rule while if ui = 1 it

means that x violates that rule. But u is one of the columns of B: indeed, if u is the

binary representation of the number m then u is the mth column. So if we change the

mth bit of x to obtain x̃ we will correct all the parity rules that x violated and leave

unchanged all the ones that x satisfied. So x̃ is a codeword.

On the other hand the columns of B are all different so if we change a single bit

other than the mth we will not arrive at a codeword. Thus there is only one codeword

at distance 1 from x.
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This tells us exactly how to decode the Hamming code. If we receive something other

than a codeword we decode as the closest codeword and it is easy to find which that

is by the procedure used in the proof.

The code has 2n−r elements. Each one is the closest codeword to a variety of non-

codewords: how many?

Lemma (The domain of a codeword). Let C be the Hamming code of length n =

2r − 1. Then each codeword is the closest codeword to n other elements of Zn
2 .

Proof You have n possible bits to flip.

Thus each codeword sits at the centre of a little cloud of 2r strings: itself and n = 2r−1

others which are adjacent to it.

There are 2n−r codewords, each one decodes the 2r strings that belong to its cloud.

This just covers all 2n elements of Zn
2 (showing again that each string can only be

adjacent to a single codeword). The Hamming code is a 3-separated code and can

correct an error of one bit. If one bit of the original message is altered, we stay in the

cloud of the original word and get the correct decoding. More generally, if you have a

code that is (2e+ 1)-separated, it can correct e errors. HW.

The little cloud picture that we have of the Hamming code can be used to get a bound

on how good a code can be. Suppose we have a binary code of length n that is (2e+1)-

separated. Then for each code word x, all the strings that are distance at most e are

closer to x than to any other word. So the clouds (or balls) of radius e around the

codewords are disjoint from one another. How many strings are there in each ball?

How many strings can you get to by changing at most e bits?

If you change 0 bits you stay where you are: 1 string. If you change 1 bit you have a
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choice of n to change: n strings. If you change 2 bits:
(
n
2

)
strings. So the balls have

1 + n+

(
n

2

)
+

(
n

3

)
+ · · ·+

(
n

e

)
elements. Since all the balls are disjoint we have

|C|
e∑
i=0

(
n

i

)
≤ 2n.

We have proved the following.

Lemma (Sphere-packing bound). Let C be a (2e + 1)-separated binary code of

length n. Then

|C|
e∑
i=0

(
n

i

)
≤ 2n.

Shannon’s Theorem

The subject of coding theory was really started by Claude Shannon who demonstrated

the fact that was mentioned in the introduction: that by choosing a good code we can

communicate with almost perfect accuracy up to a fixed rate that depends only upon

how good our communication channel is.

Suppose we have a binary communication channel (sending 0 and 1) which flips each

bit with probability p. Let R = 1 + p log2 p + (1 − p) log2(1 − p). This is called the

capacity (or Shannon capacity) of the channel.

Theorem (Shannon’s Coding Theorem). Using a binary communication channel

with probability p of flipping each bit we can find a code with rate almost 1 + p log2 p+

(1− p) log2(1− p) which achieves almost perfect accuracy.
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Proof (Sketch) Choose a large value of n for the length of a block code. The number of

bits that get flipped has a binomial distribution with mean np and standard deviation√
np(1− p) which is much smaller than np. So there is almost no chance that we will

flip many more than np bits. Let d be a bit bigger than np. It is tempting to look for

a (2d + 1)-separated code with the correct rate. We can’t easily guarantee to achieve

this but we don’t have to.

Choose M codewords from Zn
2 independently at random. So for each choice we

have probability 1/2n of picking each of the possible elements of Zn
2 and the choices

are independent. This will be our code.

A codeword is sent and we receive something. We look for the codeword closest to

what we receive. What could go wrong? It is possible that our channel switches more

than d bits in which case we can’t hope to choose the correct codeword. If the channel

switches at most d bits then the message we receive is within d bits of the original

so the only problem would be that the message we receive is also within d bits of the

wrong codeword. So the probability that we make a mistake is at most the sum of two

probabilities:

1. The probability that we flipped more than d bits.

2. The probability that the message received whatever it is, is within d of one of

the other M − 1 codewords.

The first probability is very small because of the way in which we chose d. The second

probability is at most M − 1 times the probability that the string we receive is within
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d of one particular codeword. The latter probability is

the number of strings within d of a particular string

2n

=

∑d
i=0

(
n
i

)
2n

.

If d is not too big then the sum of binomial coefficients is about the same size as the

last one
(
n
d

)
. So we need (M − 1)

(
n
d

)
to be small compared to 2n.

(M − 1)

(
n

d

)
= α2n.

The rate of the code is

log2M

n
≈ 1

n
log2

(
2n(
n
d

))+
log2 α

n
= 1− 1

n
log2

(
n

d

)
+

log2 α

n
.

The last term is small even if α is very small (1/n10 say) so we want to show that

1

n
log2

(
n

d

)
≈ −p log2 p− (1− p) log2(1− p).

By Stirling’s formula

1

n
log2

(
n

d

)
=

1

n
log2

(
n!

d!(n− d)!

)
≈ 1

n
log2

(
nn

dd(n− d)n−d

)

=
1

n
log2

(
nn

(np)np(n(1− p))n(1−p)

)

=
1

n
log2

(
1

pp(1− p)(1−p)

)n
= −p log2 p− (1− p) log2(1− p).

Where does the free lunch come from? If we fix the rate then the number of bit

flips we protect against, d, is proportional to n. Likewise if we fix the probability p

the expected number of bits that we flip is np: also proportional to n. So it looks as

though changing from n to 2n doesn’t help: we might as well use an n-bit code and just

follow one codeword by another. The key lies in the fact that the standard deviation
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√
np(1− p) does not scale like n. As you increase n the chance that you flip np + εn

bits decreases to 0. So by protecting against this number of flips (which you can do at

a fixed rate) you cause the probability of error to approach 0.

Shannon’s Theorem tells us that there are good codes but it doesn’t tell us how to find

them. The theorem uses a random code which is problematic for two reasons. Gener-

ating random strings with many bits is costly (and strictly speaking impossible). If you

choose the codewords at random the code will be very difficult to decode: there won’t

be a nice decoding algorithm as there was for the Hamming codes. From this point

on, the theory of error-correcting codes turns almost exclusively to the construction of

useful codes.
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Chapter 3. Discrete geometry

Introduction

In this chapter we study finite collections of points in Rd and convex combinations of

them. What is there to say? Quite a lot.

A set C in Rd is called convex if whenever x, y ∈ C and λ ∈ [0, 1] we have (1−λ)x+λy ∈
C: the line segment joining x to y is also in C.

Convex Not convex

The unit ball of any normed space (Rd, ‖.‖) is convex. For example the Euclidean

sphere or the cube

The expression (1 − λ)x + λy ∈ C is called a convex combination of x and y. More

generally if x1, x2, . . . , xm are points in Rd then a convex combination of these points
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is a point of the form
m∑
1

λixi

where the λi are non-negative and add up to 1.

It is easy to check that if C is convex and x1, x2, . . . , xm ∈ C then any convex combi-

nation of these points also belongs to C. For example if x, y, z ∈ C then

x+ y

2
∈ C

and hence
x+ y + z

3
=

2

3

(
x+ y

2

)
+

1

3
(z) ∈ C.

It is also easy to see that a “convex combination of convex combinations is a convex

combination”. We shall be particularly interested in convex sets with only finitely

many “corners”. We shall start gently.

It is clear that the intersection of any number of convex sets is again convex. This

means that if I give you any set E in Rd you can consider all convex sets that include

E, and their intersection will be the smallest convex set including E. This is called the

convex hull of E or conv(E). The convex hull conv(E) has the following properties:

• E ⊂ conv(E)

• If C is convex and E ⊂ C then conv(E) ⊂ C.

We have an easy theorem.

Theorem (The convex hull). If E ⊂ Rd then conv(E) consists of all convex combi-

nations of points in E.

Proof Let CC be the set of convex combinations of points in E.

Any convex combination of points in E is automatically a convex combination of

points in conv(E). This set is convex so every point of CC belongs to conv(E). Hence

CC ⊂ conv(E).

In the other direction it is clear that CC ⊃ E since each point of E is a combination

of itself. So it suffices to check that CC is convex and therefore includes conv(E). But

we already remarked that a convex combination of convex combinations is again a

convex combination: so CC is convex.
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Separation

We shall be concerned almost entirely with convex sets that are closed and in almost

all cases they will also be bounded and hence compact. The most fundamental fact

related to convexity is the separation principle. This has many forms: the simplest is

the following.

Theorem (The separation principle). If C ⊂ Rd is a compact, convex set and

x /∈ C then there is a hyperplane separating x from C. In other words there is a linear

functional φ on Rd and a number α so that

• φ(x) > α but

• φ(c) < α for each c ∈ C.

This theorem is closely related to the Hahn-Banach Theorem that you may see in

Functional Analysis II but the finite-dimensional version is easier to prove.

Proof Consider the function c 7→ ‖x− c‖ on C. This function is continuous and so has

a minimum on C: there is a closest point of C to x. Call it u. Since x /∈ C we know

that u 6= x.

x

u

Now define φ : Rd → Rd by

φ(y) = 〈x− u, y〉.

Since φ(x) − φ(u) = 〈x − u, x − u〉 = ‖x − u‖2 > 0 we can choose a number α with

φ(u) < α < φ(x).

To complete the proof we just need to check that if c ∈ C then φ(c) ≤ φ(u).

Notice that up till now we have not used the convexity of C. Suppose that c ∈ C

and φ(c) > φ(u). Consider the combinations (1− δ)u+ δc which belong to C for each
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δ ∈ [0, 1]. I claim that if δ is small enough the combination will be closer to x than u

is, giving us a contradiction.

x

u

c

The square of the distance to x is

‖x− ((1− δ)u+ δc)‖2 = ‖x− u− δ(c− u)‖2

= ‖x− u‖2 − 2δ〈x− u, c− u〉+ δ2‖c− u‖2

= ‖x− u‖2 − 2δφ(c− u) + δ2‖c− u‖2.

Since φ(c− u) > 0 this expression will be less than ‖x− u‖2 if δ > 0 is small enough.

We can immediately get a corollary which we use repeatedly:

Theorem (Supporting hyperplanes). If C ⊂ Rd is a compact, convex set and x is

on the boundary of C then there is a hyperplane supporting C at x.

In other words there is a non-zero linear functional φ on Rd so that φ(c) ≤ φ(x)

for each c ∈ C.

Proof Homework.

Corollary (Half-spaces). If C ⊂ Rd is a compact, convex set then C can be expressed

as an intersection of half-spaces.
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Proof For each point x outside C there is a half-space containing C and not x. So the

intersection of all half-spaces containing C, is C.

We can relax the hypothesis of the Separation Theorem: we don’t need a compact

convex set: a closed one will do.

Theorem (The separation principle). If C ⊂ Rd is a closed, convex set and x /∈
C then there is a hyperplane separating x from C. In other words there is a linear

functional φ on Rd and a number α so that

• φ(x) > α but

• φ(c) < α for each c ∈ C.

Proof Homework.

It is not difficult to see that every linear functional on Rd is of the form

x 7→
d∑
1

xiyi = 〈x, y〉

(just like the one in the preceding proof). This will be HW. From now on when I talk

about linear functionals on Rd I will automatically think of them this way.

Some of the most important convex sets in Rd are the polyhedra or polytopes as they

are often called. A polytope is the convex hull of finitely many points: its corners.

Equivalently it is the intersection of finitely many half-spaces: {x : 〈x, u〉 ≤ α} (assum-

ing this intersection is bounded). The fact that these two definitions are equivalent is

not quite trivial: it will emerge from a more detailed study of convex sets.
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Extreme points

Definition (Extreme points). If C is a convex set in Rd, an extreme point of C is

a point c ∈ C which is not in the interior of any line segment contained in C. In other

words, if x and y belong to C, 0 < λ < 1 and

c = (1− λ)x+ λy

then in fact x = y = c.

In the figure, a and b are extreme but c is not.

a

c

b

We shall see that every compact convex set has plenty of extreme points. To begin

with we need to relate the two concepts we have.

Lemma (Extreme points of faces). Let H be a supporting hyperplane to the compact

convex set C. Then H ∩ C is compact and convex and every extreme point of H ∩ C
is an extreme point of C.

C H

Proof The fact that H ∩ C is compact and convex is clear. Suppose x is an extreme

point of H∩C. Then it does not lie in the interior of a line segment in H∩C. Suppose

it did lie in one inside C. Then the segment would have points on either side of H.

But this is impossible since C is on one side of H.
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Theorem (Extreme point theorem). A compact convex subset of Rd is the convex

hull of its extreme points.

Proof We shall use induction on the dimension. Let x be a point in a compact convex

C. If x is an extreme point of C there is nothing to prove. If not, it lies on a line

segment inside C which we may extend in each direction until it hits the boundary of

C: say at u and v.

x

u

v
Let H be a supporting hyperplane to C at u. Then H ∩C is a compact convex set

in d− 1 dimensions so u belongs to the convex hull of its extreme points and hence the

extreme points of C. The same is true of v and hence x.

This theorem has an immediate strengthening.

Theorem (Caratheodory). Each point of a compact convex subset of Rd is a convex

combination of d+ 1 of its extreme points.

Proof We use induction on the dimension. Assume the corresponding result for sets in

d− 1 dimensions. Let x be a point in a compact convex C ⊂ Rd. Choose an extreme

point u of C and look at the line passing through u and x. It exits C at u on one side

of x and some other point y on the other.
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x

u

y

Let H be a supporting hyperplane to C at y. By the inductive hypothesis y is a

convex combination of d extreme points in H ∩ C. Then x is a convex combination of

these and u.

Polytopes and duality

For the moment, let’s call C a polyhedron if it is a bounded intersection of finitely many

half-spaces and a polytope if it is the convex hull of finitely many points. We want to

show that every polyhedron is a polytope and vice versa. Let’s start with the first.

Theorem (Polyhedra are polytopes). Every polyhedron in Rd is a polytope.

Proof Let C be the intersection of half-spaces S1, S2, . . . , Sn bounded by hyperplanes

H1, H2 . . . , Hn. Since C is compact, it suffices to show that it has only finitely many

extreme points. Hence it suffices to show that each extreme point of C is the intersec-

tion of some d of the hyperplanes which meet only at that point: because there are at

most
(
n
d

)
of these intersections.

We use induction on dimension yet again to prove this statement. In dimension 1

it is obvious. Assume it is true (mutatis mutandis) for polyhedra in lower dimensions

than d. Let c be an extreme point of C. If it lay in the interior of all the half-spaces

there would be a ball around it inside C and so c would not be extreme. So c lies on at

least one of the Hi: say H1. Now H1∩C is a polyhedron inside the (d−1)-dimensional

hyperplane H1 and c is one of its extreme points. So by the inductive hypothesis, c is

the intersection of d− 1 of the Hi which (inside H1) meet only at c. Therefore c is the

intersection of d of the Hi which meet only at c.
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We shall deduce the reverse implication from what we just proved using what is called

duality. If C is a compact convex set then we define its polar to be

C◦ =
{
y ∈ Rd : 〈x, y〉 ≤ 1, for all x ∈ C

}
.

Under appropriate conditions, polarity creates a pairing between C and C◦ which is

why we call it duality.

Lemma (Polarity). If C is a compact convex set containing the point 0 then

C◦◦ = (C◦)◦ = C.

Proof For each y ∈ C◦ we know that each point x of C satisfies the inequality 〈x, y〉 ≤ 1.

So C ⊂ C◦◦. The only danger is that there might be a point x outside C satisfying

〈x, y〉 ≤ 1, for all y ∈ C◦.

If x is such a point use the separation theorem to find a linear functional u 7→ 〈u, y〉
on Rd and a number α with 〈x, y〉 > α but 〈c, y〉 < α for each c ∈ C. Since 0 ∈ C we

have α > 0 and by rescaling y we may assume α = 1. The vector y therefore belongs

to C◦. But we know that 〈x, y〉 > 1 so indeed x /∈ C◦◦.

Let C = {x ∈ Rd : ‖x‖2 ≤ 1} be the Euclidean ball in Rd. What is its polar?

C◦ = {y : 〈x, y〉 ≤ 1 for all x with ‖x‖2 ≤ 1}.

If ‖y‖ ≤ 1 then y ∈ C◦ because

〈x, y〉 ≤ ‖x‖2‖y‖2

by the Cauchy-Schwarz inequality. On the other hand, if ‖y‖2 = r > 1 then x = y/r ∈
C and

〈x, y〉 = 〈y/r, y〉 =
‖y‖22
r

= r > 1

so y /∈ C◦. The Euclidean unit ball is its own polar.

More generally, if C is the unit ball of a normed space X = (Rd, ‖.‖) then C◦ is the

unit ball of X∗.

We need one further very small lemma.
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Lemma (The polar of a polytope). If C is the convex hull of a finite set {x1, x2, . . . , xm}
then

C◦ =
{
y ∈ Rd : 〈xi, y〉 ≤ 1, for all i

}
.

In other words we don’t have to check that 〈x, y〉 ≤ 1 for every x ∈ C, just the vertices.

Proof Homework.

Thus the vertices of C correspond to the facets of C◦.

0

x is a vertex of C if the corresponding (d − 1)-dimensional face of C◦ lies in the

hyperplane {y : 〈x, y〉 = 1}.

Examples of polars

C is the convex hull of (1, 0), (0, 1) and (1, 1). By the Polar of a Polytope Lemma C◦

is the intersection of half-spaces

{(x, y) : (1, 0).(x, y) ≤ 1} or equivalently {(x, y) : x ≤ 1}

{(x, y) : y ≤ 1}

{(x, y) : x+ y ≤ 1}.
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So

C◦ = {(x, y) : x ≤ 1} ∩ {(x, y) : y ≤ 1} ∩ {(x, y) : x+ y ≤ 1}

What are the vertices of the polar of C: the convex hull of (1,−3), (−3, 1) and (1, 1)?

This time 0 is in the interior of C. So C = C◦◦ and C◦ is a polytope whose vertices

correspond to the facets of C.
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The facets lie in the lines (x = 1), (y = 1) and (x+ y = −2). The latter is

(−1/2x− 1/2y = 1).

So the vertices of the polar are (1, 0), (0, 1) and (−1/2,−1/2).

Polytopes are polyhedra

Lemma (Inversion of order). If C and D are convex sets with D ⊂ C the C◦ ⊂ D◦.

Proof If 〈x, y〉 ≤ 1 for every x ∈ C then automatically this is true for every x ∈ D. So

if y ∈ C◦ then y ∈ D◦.

Theorem (Polytopes are polyhedra). Every polytope in Rd is a polyhedron.

Proof We use induction on dimension. Let C be the convex hull of finitely many points.

If it lies in a hyperplane then we can use the inductive hypothesis.

So assume that it does not lie in a hyperplane. Pick a point u in C and then d

points v1, v2, . . . , vd in C for which the set of points {vi − u : 1 ≤ i ≤ d} span Rd.

The convex hull of the points u, v1, . . . , vd has non-empty interior: it contains a ball of

radius r say around the average

u+ v1 + v2 + · · · vd
d+ 1

.
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Assume by translating that this point is 0 and that C is the convex hull of x1, x2, . . . , xm.

We know that if ‖x‖ ≤ r then x ∈ C. I claim that the polar C◦ is bounded.

If y ∈ C◦ and ‖y‖ = K then ry/K has norm at most r so it belongs to C. Therefore

〈ry/K, y〉 = r/K‖y‖2 = rK ≤ 1.

So K ≤ 1/r. Thus C◦ lies in the ball of radius 1/r and is bounded.

We know that

C◦ =
{
y ∈ Rd : 〈xi, y〉 ≤ 1, for all i

}
and have thus proved that C◦ is a polyhedron. By the previous theorem it is a polytope:

the convex hull of y1, y2, . . . , ym say. But this implies that

C = C◦◦ =
{
x ∈ Rd : 〈x, yi〉 ≤ 1, for all i

}
and is therefore a polyhedron.

Radon’s Lemma and Helly’s Theorem

The last couple of results are more combinatorial in nature. The first is very simple

but surprisingly useful.

Lemma (Radon). Suppose we have a set of d+2 points in Rd. Then we can partition

it into two subsets whose convex hulls overlap.

Let’s look at the case d = 2: 4 points in the plane. They might form the corners of a

convex quadrilateral in which case the diagonals meet.

Alternatively they might be the corners of a triangle and a point inside it. In either

case we can partition as dictated by Radon’s Lemma and it is clear that 4 points is
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exactly the right number in the sense that usually there will be exactly one point in

the intersection.

The problem with proving the general result in Rd is that we have to decide how to

partition the points. There are many different choices and different structures. With

5 points in R3 we could have a tetrahedron and a point inside it or a triangle and a

line segment piercing it: how do we decide which?

Proof (of Radon) Let the points be x1, x2, . . . , xd+2. Consider the d+2 points in Rd+1

given by

yi = (xi, 1)

obtained by adjoining an extra coordinate to each xi and setting it equal to 1. There

is a non-zero linear combination of the yi which is equal to 0:∑
aiyi = 0.

Each coefficient ai has a sign: let’s assume that the first k of them are positive (or 0)

and the last m = d+ 2− k are negative (or 0). Relabel the first k as λ1, λ2, . . . , λk and

the last m as −µk+1,−µk+2, . . . ,−µd+2 (so the λi and µj are non-negative).

We have that
∑
λiyi =

∑
µjyj. This means that

∑
λixi =

∑
µjxj and by consid-

ering the final coordinate, that
∑
λi =

∑
µj = β > 0. Then the vectors∑ λi

β
xi and

∑ µj
β
xj

are convex combinations of two disjoint subsets of the xi and these two vectors are

equal.

Suppose that instead of asking whether we can partition into two sets whose convex

hulls intersect we ask about partitioning into 3 subsets whose convex hulls share a

common point. If we are to have a hope of doing this we will need to start with more

than d + 2 points. The right number turns out to be 2d + 3 and in general if we are

partitioning into k subsets we need (k − 1)(d+ 1) + 1.

For example if d = 2 and k = 3 we get 7 points and these can be partitioned into a

triangle and two line segments which will usually meet in at most a single point or into

two triangles and a point inside both.
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The more general theorem does hold but is much harder to prove than Radon’s Lemma.

Theorem (Tverberg). Each set of (k− 1)(d+ 1) + 1 points in Rd can be partitioned

into k subsets whose convex hulls have a non-empty intersection.

The simplest proof is by means of something called the Colourful Caratheodory The-

orem. HW

The next theorem is a rather striking dual version of Caratheodory. It looks like a kind

of quantitative compactness for convex sets. Recall the following characterisation of

compactness. A space is compact if and only if whenever {Kα} is a family of closed

sets in the space with empty intersection, there is some finite number that have empty

intersection.

Theorem (Helly). Let C1, C2, . . . , Cm be a family of compact convex sets in Rd and

suppose that any d + 1 have a non-empty intersection. Then the whole family has a

non-empty intersection.

Proof We use induction on the number of sets m. If there are d + 1 sets then there is

nothing to prove. Now suppose that we have m sets and we know the result for fewer

sets. If m > d + 2 then the inductive step is easy. We know that every collection of

d+ 2 of our sets have a common point. Let us look at the family of m− 1 sets

C1 ∩ C2, C3, C4, . . . , Cm.

The intersection of any d + 1 of these sets is the intersection of at most d + 2 of the

original ones and so is non-empty. By the inductive hypothesis the intersection of these

m− 1 sets is non-empty. But this is just
⋂m
i=1Ci.
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This doesn’t work if m = d + 2 because we use the d + 2 case in the inductive

step: this is really the crucial case. Suppose we have d + 2 sets C1, C2, . . . , Cd+2. For

each one of these, Ci we know that the remainder have a common point: call it xi. So

x1 ∈ C2∩C3∩ . . .∩Cd+2 and so on. By Radon’s Lemma we can partition this collection

of points into two subsets whose convex hulls intersect: let’s say in the point u.

I claim that u belongs to all the Ci. It suffices to check that it belongs to Cd+2.

The point xd+2 falls into one of the subsets in the Radon partition and u is a con-

vex combination of the points in the other subset. So u can be written as a convex

combination

u =
d+1∑
i=1

λixi.

Now for each i < d+ 2 we know that xi ∈ Cd+2. So u ∈ Cd+2.
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Chapter 4. Partially ordered sets and set systems

Introduction

A partially-ordered set or poset is a set Ω together with a relation ≤ between elements

of the set satisfying

• x ≤ x for all x ∈ Ω

• If x, y ∈ Ω and x ≤ y and y ≤ x then x = y

• If x, y, z ∈ Ω and x ≤ y and y ≤ z then x ≤ z.

These are the relations you expect from an ordering but whereas in the real numbers we

insist that any two elements are related, here we do not. The reals are totally ordered

but we are looking at partial orders.

The basic example is the set of subsets of [n] = {1, 2, . . . , n}, ordered by inclusion. We

call this P([n]) the power set of [n].

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

∅

A chain in a poset is a totally ordered subset: eg.

∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3}.

An antichain in a poset is a collection of elements no two of which are related: eg.

{1}, {2}, {3}
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or

{1}, {2, 3}.

Clearly within P([n]) the sets of any fixed size form an antichain. If two different sets

have the same number of elements then neither can be included in the other. So for

each k there is an antichain in the poset with
(
n
k

)
members. The largest of these will

be the one or ones in the middle: if n is even then it has size(
n

n/2

)
while if n is odd there are two largest ones at level (n− 1)/2 and (n+ 1)/2. In either

case the largest has size (
n

bn
2
c

)
.

Sperner’s Theorem

We shall start by proving the following theorem of Sperner.

Theorem (Sperner’s Theorem). Let (Ω,⊂) be the poset P([n]) partially ordered by

inclusion.

Then the largest antichain in Ω has(
n

bn
2
c

)
elements.

It is clear that an antichain of this size exists: just pick all the subsets with bn
2
c

elements. We will deduce Sperner’s Theorem from a stronger statement due to Lubell,

Yamamoto and Meshalkin.

Theorem (The LYM inequality). Let (Ω,⊂) be the poset P([n]) partially ordered

by inclusion and F an antichain in Ω.

Then ∑
A∈F

1(
n
|A|

) ≤ 1.

Thus each set of size k in the antichain is given a weight 1

(n
k)

and the total weight of

all sets in the antichain is at most 1. Since each weight is at least

1(
n
bn
2
c

)
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there can be no more than (
n

bn
2
c

)
elements of the antichain proving Sperner’s Theorem.

Proof (of LYM) Each of the n! orders of the symbols 1, 2, . . . , n corresponds to a

maximal chain in Ω: for example the order 2, 4, 3, 1 gives the chain

∅ ⊂ {2} ⊂ {2, 4} ⊂ {2, 4, 3} ⊂ {2, 4, 3, 1}.

Now regard the collection of maximal chains as a probability space by giving them

equal probability 1/n!. For each A ⊂ {1, 2, . . . , n} let EA be the event consisting of

those maximal chains in which A appears. If A and B belong to F then EA and EB
are disjoint because A and B cannot belong to the same chain. So∑

A∈F

P(EA) ≤ 1.

To finish we just need to check that if A has k elements then its probability is
1

(n
k)

. How many maximal chains does A belong to? k!(n − k)! because we put in the

elements of A in any order and then the remaining n−k elements in any order. So the

probability of EA is just
k!(n− k)!

n!
=

1(
n
k

) .
It is easy to see that if you can cover the poset with m chains then you cannot find an

antichain with more than m elements. Hence another way to prove Sperner’s Theorem

would be to find a cover of the poset using(
n

bn
2
c

)
chains. This is a bit trickier. Our proof of the LYM inequality used a similar idea but

was simpler because we looked at a multiple covering by all the maximal chains and

then counted how often each set was covered.

Interestingly enough it is possible to go in the other direction: to deduce that there is

a covering by chains from the fact that antichains are not too big: as we shall see in

the next section.
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Dilworth’s Theorem

Theorem (Dilworth). Let (Ω,≤) be a poset in which every antichain has at most m

elements. Then Ω can be covered by m chains.

Recall from last year Hall’s Marriage Theorem.

Theorem (Hall’s Marriage Theorem). Let G be a bipartite graph with vertex classes

A and B. For each subset U ⊂ A let Γ(U) be the set of neighbours of vertices in U :

Γ(U) = {b : ab is an edge for some a ∈ U} .

If for every U ⊂ A the set Γ(U) is at least as large as U then G contains a complete

matching from A into B.

Dilworth’s theorem has the same flavour as Hall’s Theorem in that the condition is

trivially necessary and turns out rather surprisingly to be sufficient. More is true:

Hall’s Theorem can be deduced very simply from Dilworth’s Theorem. HW

The proof below is taken from Bollobás’ book.

Proof (of Dilworth) We shall use induction on the number of elements of the poset.

If it has 1 element there is nothing to prove.

Suppose (Ω,≤) has more than one element and the result is true for smaller posets.

Let m be the size of the largest antichain in Ω. Choose a maximal chain C in Ω. It

might be that Ω − C contains no antichain larger than m − 1 in which case we can

cover it with m− 1 chains by the inductive hypothesis and we have finished.

If not then let {a1, a2, . . . , am} be an antichain in Ω − C. Let S− = {x ∈ Ω :

x ≤ ai, for some i} and S+ = {x ∈ Ω : x ≥ ai, for some i}. Neither of these can be

the whole of Ω since for example the maximal element of C is not in S−. So, by the

inductive hypothesis again each can be covered by m chains:

S− =
m⋃
1

C−i and S+ =
m⋃
1

C+
i .

Each of these decompositions covers all ai and the ai lie in different chains so assume

that ai ∈ C−i and ai ∈ C+
i for each i.

If we can show that ai is the maximal element in C−i and the minimal element in

C+
i then we can join these chains together and cover Ω with m chains. If not then for

example we can find an i and an x ∈ C−i with ai < x. Since x ∈ S− there is a j 6= i

with x ≤ aj. But then ai < aj contradicting the fact that we had an antichain.
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Covering by chains

Dilworth’s Theorem and the trivial observation that the largest antichain cannot be

more than the number of chains in a covering, show that the size of the largest antichain

is equal to the minimum number of chains with which we can cover.

Dilworth’s Theorem and Sperner’s Theorem together show that the poset P([n]) can

be covered by
(
n
bn
2
c

)
chains. It is natural to ask whether we can show this directly. The

answer is yes and the most obvious argument uses Hall’s Theorem. Choose r < n/2

and look at the sets of size r and those of size r + 1. I claim that there is a 1-1 map f

from the first collection into the second so that for each set A of size r

A ⊂ f(A).

For example

{1} {2} {3}

{1,2} {1,3} {2,3}

Proof Consider the bipartite graph in whose vertex classes are the sets of size r and

the sets of size r + 1 respectively and in which A is adjacent to B if A ⊂ B.

{1}

{2}

{3}

{1,2}

{1,3}

{2,3}

Each set of size r (on the left) has n− r neighbours since we can extend it to a set of

size r+ 1 using any of the remaining symbols. Each set of size r+ 1 (on the right) has

r+1 neighbours since we can throw out any one of its elements. Note that n−r ≥ r+1
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since r ≤ (n− 1)/2. Now suppose we have a collection F of sets on the left. The total

number of edges coming out is (n− r)|F| and they must be incident to at least

(n− r)|F|
r + 1

≥ |F|

sets on the right.

So the hypothesis of Hall’s Theorem holds and we have a matching from the sets

of size r into the sets of size r + 1.

Now we can build chains covering the collection of subsets by putting together all these

matchings. Suppose k is bn
2
c. We can build chains covering all the sets of size at most

k in the following way. ∅ is matched to a singleton: say {a}. This starts a chain. Now

consider the matching of all singletons into sets of size 2. The set {a} is matched to

say {a, b} so we extend the earlier chain to

∅ ⊂ {a} ⊂ {a, b}

and start new chains for each of the other singletons. Now we match all pairs into

triples: some of these extend the chains containing the pairs that we already used:

others start new chains. Continuing in this way we get up all the way to level k. If n

is odd we can go a step further up to k + 1: if n is even we stop at k.

{1} {2} {3} {4}

{1,2} {1,3} {2,3}

∅

{1,4} {2,4} {3,4}

Now we can carry out the mirror image process from the top downwards. If we matched

∅ to {a} we can match {1, 2, . . . , n} to {1, 2, . . . , n} − {a} and so on.
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{1} {2} {3} {4}

{1,2} {1,3} {2,3}

∅

{1,4} {2,4} {3,4}

{2,3,4}{1,3,4}{1,2,4}{1,2,3}

{1,2,3,4}

We can join the up chains and the down chains together at level k or k+1. Each chain

contains a set at level k so we have
(
n
k

)
chains.

This construction gives another proof of Sperner’s Theorem since as we already re-

marked it is obvious that if you can cover with m chains then every antichain has

at most m elements. The construction has a nice “improvement” in which we insist

that each chain is “symmetric”: that it consists of sets of size 0, 1, 2, . . . , n or of size

1, 2, . . . , n− 1 and so on. This improvement cannot be deduced just from Hall’s The-

orem as we did the earlier construction because (as we saw) the chains don’t match

up.

{1} {2} {3} {4}

{1,2} {2,3} {1,3}

∅

{1,4} {2,4} {3,4}

{1,2,4}{1,3,4}{2,3,4}{1,2,3}

{1,2,3,4}

Theorem (de Bruijn, Tengbergen and Kruyswijk). The poset P([n]) can be

decomposed into
(
n
bn
2
c

)
symmetric chains.

Although the Hall Theorem argument used above is probably the most obvious one,
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the proof of the symmetric result is actually shorter although it is rather clever.

Proof We use induction on n. For n = 1 we have the single chain (∅, {1}) which is

symmetric.

Now suppose we have a decomposition of the subsets of {1, 2, . . . , n− 1} into sym-

metric chains. For each such chain (A1, A2, . . . , Ak) we form two new chains:

(A1, A2, . . . , Ak, Ak ∪ {n})

and

(A1 ∪ {n}, A2 ∪ {n}, . . . , Ak−1 ∪ {n}).

These chains cover the subsets of {1, 2, . . . , n} because for each old subset A we include

A and A ∪ {n}.

The first type of chain is one set longer so it becomes symmetric in the new poset. The

second type is one set shorter but starts with a set which is one element larger than

the original chain so it too is symmetric in the new poset. The construction ensures

that in each chain each set has one more element than the set before it so each one

contains an element of size bn
2
c so there are exactly

(
n
bn
2
c

)
chains.

On the face of it something is wrong with the proof. We seem to double the number of

chains at each step. In going from n− 1 odd to n even the middle binomial coefficient

does double in size:

1, 3, 3, 1

becomes

1, 4, 6, 4, 1

for example. But in going from n − 1 even to n odd the coefficient does not quite

double.

What happens is that if n− 1 is even there are some chains containing only 1 element

at level (n− 1)/2. In that case the second type of chain

(A1 ∪ {n}, A2 ∪ {n}, . . . , Ak−1 ∪ {n})

isn’t really there because k = 1.
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{1} {2} {3} {4}

{1,2} {2,3} {1,3}

∅

{1,4} {2,4} {3,4}

{1,2,4}{1,3,4}{2,3,4}{1,2,3}

{1,2,3,4}

When we move to n = 5 we get 6 chains of the first type but only 4 of the second type

giving 10 as required.

VC dimension and the Sauer-Shelah Lemma

Let Ω be a set such as the plane R2 or [n], and F a family of its subsets. Can we

measure how complicated F is?

The question arose originally (in a specific form) in connection with statistical sampling.

If (Xi) are independent samples of a random variable X then the sequence of values

should be distributed like X itself. What does this mean? If I is an interval of the line

then with probability 1, the proportion of our sample that falls into I is close to what

it should be
|{i ≤ n : Xi ∈ I}|

n
→ P(X ∈ I).

If P(X ∈ I) = p then the quantity |{i ≤ n : Xi ∈ I}| is the sum of n independent

Bernoulli random variables Yi

P(Yi = 1) = p, P(Yi = 0) = 1− p.

By the strong law of large numbers

1

n

n∑
1

Yi → p

with probability 1.
|{i ≤ n : Xi ∈ I}|

n
→ P(X ∈ I).
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In fact much more is true. The Glivenko-Cantelli theorem says that this convergence

occurs uniformly over all intervals:

sup
I

∣∣∣∣ |{i ≤ n : Xi ∈ I}|
n

− P(X ∈ I)

∣∣∣∣→ 0.

Break the line up into m intervals I1, I2, . . . , Im, with probabilities 1/m. For large n

we will have ∣∣∣∣ |{i ≤ n : Xi ∈ Ij}|
n

− P(X ∈ Ij)
∣∣∣∣ ≤ 1

m2

for all j.

Now for a general interval we can approximate it by unions of our special intervals:

�

For which families of sets can we guarantee this uniformity? Does it work for the family

of all sets? No because if you give me the sequence of values X1, X2, . . . I can look

at the set A = {X1, X2, . . .} which gets probability 1 from each sample but may have

probability zero for the original random variable.

It turns out that the GC Theorem holds for any family which is not too complicated

in a sense that we will describe. For a finite set U = {u1, u2, . . . um} we say that the

family F shatters U if for every subset V ⊂ U we can find an element A ∈ F which

cuts V out of U in the sense that A ∩ U = V .

For example, suppose U consists of 3 corners of a triangle in the plane and F is the

family of half-spaces. Each of the 8 subsets of U can be obtained by intersecting U

with an appropriate half-space.
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However if we pick 4 points in the plane we cannot shatter the set with half-spaces.

Any half-space containing the red points must contain at least one of the blue points.

This is really a consequence of Radon’s Lemma. Exercise: check that you cannot

shatter 4 points one of which is in the convex hull of the other three. So in this sense

the family of half-spaces is not too complicated. It can shatter (certain) sets of size 3

but no set of size 4.

We can ask for a general family F “What is the biggest set we can shatter?” The answer

is called the Vapnik-Cervonenkis dimension of F . The VC-dimension of a family F of

subsets of Ω is the largest k for which there is a subset of Ω of size k, which is shattered

by F . The VC-dimension of the family of half-spaces in the plane is 3.

Suppose that Ω is [n]. How large can a family of subsets be before it shatters a set of

size k? If F consists of all sets of size at most k − 1 then it will not shatter a set of

size k. So the family can certainly have as many as

k−1∑
i=0

(
n

i

)
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elements. It turns out that this is the largest number of members the family can have.

Theorem (Sauer-Shelah Lemma). Let F be a family of subsets of [n] with more

than
k−1∑
i=0

(
n

i

)
members (for some k ≤ n). Then F shatters a subset of [n] of size k.

Proof We use induction on n. If n = 1 the theorem is obvious. So suppose that n > 1

and the result holds for smaller ground sets.

Given the family F we create two families of sets in [n − 1]. F1 will consist of all

subsets A of [n − 1] for which at least one of A and A ∪ {n} belongs to F . F2 will

consist of all subsets A of [n− 1] for which both A and A ∪ {n} belong to F .

I claim that |F| = |F1|+ |F2|. Clearly

|F1| =
∑

A⊂[n−1]

1A∈F1 and |F2| =
∑

A⊂[n−1]

1A∈F2

and

|F| =
∑

A⊂[n−1]

1A∈F +
∑

A⊂[n−1]

1A∪{n}∈F .

So it suffices to check that for every A ⊂ [n− 1]∑
A⊂[n−1]

1A∈F +
∑

A⊂[n−1]

1A∪{n}∈F =
∑

A⊂[n−1]

1A∈F1 +
∑

A⊂[n−1]

1A∈F2 .

We can do it by checking cases

• If A ∈ F but A ∪ {n} /∈ F then A is in F1 but not in F2.

• If A /∈ F but A ∪ {n} ∈ F then A is in F1 but not in F2.

• If A ∈ F and A ∪ {n} ∈ F then A is in F1 and in F2.

In each case the set A is counted the same number of times on each side.

Now we know that

k−1∑
i=0

(
n

i

)
=

k−1∑
i=0

(
n− 1

i

)
+

k−1∑
i=1

(
n− 1

i− 1

)
=

k−1∑
i=0

(
n− 1

i

)
+

k−2∑
i=0

(
n− 1

i

)
by the Pascal triangle property of binomial coefficients.
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So if |F| >
∑k−1

i=0

(
n
i

)
then either |F1| >

∑k−1
i=0

(
n−1
i

)
or |F2| >

∑k−2
i=0

(
n−1
i

)
. In the

first case the inductive hypothesis tells us that the family F1 shatters a subset of [n−1]

of size k. In that case F will shatter the same subset. In the second case the family F2

shatters a subset σ of [n− 1] of size k − 1. For each set B in F2 both B and B ∪ {n}
belong to F which ensures that F shatters the set σ ∪ {n} which has size k.

What is the number of different sets that we can cut out of m points in the plane with

half-spaces? Since we can’t shatter a set of size 4 the maximum is(
m

0

)
+

(
m

1

)
+

(
m

2

)
+

(
m

3

)
or roughly m3/6. Actually the true number is less than this if m is large. When m = 5

the sum is 1 + 5 + 10 + 10 = 26 but in fact you can only cut out 22 sets. For general

m the number is m(m− 1) + 2. HW
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Volume II. Graph Theory

Chapter 5. Graph colouring

Recap

A graphG is a collection of vertices V = {v1, v2, . . . , vn} together with a set of edges E

each of which is a pair of vertices. For example if V = {1, 2, 3} and E = {{1, 2}, {2, 3}}
we get

1

2

3
We don’t allow loops, multiple edges or directed edges unless we explicitly say so. A

number of special graphs turn up a lot: The path Pn of length n which has n + 1

vertices:
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The cycle Cn of length n: The complete graph Kn:

One of the most famous problems in combinatorics was the 4-colour problem. Is it

possible to colour every plane map with 4 colours so that neighbouring countries have

different colours? We can rephrase this in terms of plane graphs. Is it possible to colour

the vertices of a plane graph with 4 colours so that adjacent vertices have different

colours?

This was answered in the affirmative by Appel and Haken in 1976. They used a

computer aided reduction of hundreds of critical cases. In last year’s course we proved

the 5-colour theorem.
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Our purpose in this course will be to study graph colouring as a question in its own

right independent of planarity. If I give you a graph, can you colour its vertices with k

colours so that any pair of adjacent vertices get different colours? How many colours

do you need for the answer to be yes? The Chromatic Number χ(G) of a graph G is

the smallest number of colours with which the vertices of G can be coloured so that

adjacent vertices have different colours.

There are some simple examples. The complete graph Kn on n vertices needs n colours.

A cycle of even length can be coloured with 2 colours. More generally, a graph is

bipartite if and only if its chromatic number is at most 2. A cycle of odd length needs

3 colours. The triangle is the obvious example.

A graph whose maximum degree is ∆ needs at most ∆ + 1 colours. Start with a vertex

and choose a colour. Now look at another vertex and choose a colour for it. We can

keep doing this because we always have a spare colour to use on each new vertex. A

planar graph has chromatic number at most 4: the 4-Colour Theorem.

Brooks’ Theorem

The bound ∆ + 1 for the number colours needed to colour a graph with maximum

degree ∆ is rarely sharp.

Theorem (Brooks’ Theorem). Let G be a connected graph with maximum degree ∆.

Unless G is a complete graph or an odd cycle, the chromatic number of G is at most

∆.

We shall give a proof of this theorem due to Lovász and we shall need a bit of prepa-

ration. Some observations are obvious: if ∆ = 1 the only connected graph is K2. If

∆ = 2 the graph is a path or a cycle.

Lemma (Lemma to Brooks’ Theorem). Let G be a connected graph with maximum

degree ∆ which has a vertex of degree less than ∆. Then the chromatic number of G

is at most ∆.

Proof Let x be a vertex of degree less than ∆. For each vertex determine its distance

to x: the length of the shortest path to x. Now consider the vertices furthest from

x. Each one is adjacent to a vertex which is closer to x so the graph induced by the

furthest vertices has degree at most ∆ − 1. So we can colour it with ∆ colours. Now

consider the vertices one step closer to x. Again each is adjacent to a vertex closer to
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x so we can colour each of these with ∆ colours taking into account the colours used

for the previous layer. Continue until only x remains. It has degree at most ∆− 1 so

we have a colour left for x.

The proof we shall give of Brooks’ Theorem is a slight variant of the one found by

Lovász and breaks into cases according to how well-connected the graph is. A graph

is called k-connected if we need to remove at least k vertices in order to disconnect it.

So a connected graph is 1-connected. A 2-connected graph remains connected even if

you take away a vertex: whichever one you take away.

Recall that an induced subgraph of a graph G is a subgraph that consists of a subset

of the vertices of G and all the edges of G that connect vertices in this subset.

Theorem (Brooks’ Theorem). Let G be a connected graph with maximum degree

∆. Unless G is a complete graph or an odd cycle, the chromatic number χ(G) is at

most ∆.

Proof We may assume that ∆ ≥ 3 and that G is not a complete graph. We consider 3

cases.

Case 1 Suppose G is (connected but) not 2-connected and let v be a vertex whose

removal disconnects G.

v

Consider the subgraph of G induced by a connected component of G − {v} together

with v. It has a vertex, namely v, with degree at most ∆ − 1 and so can be coloured

with our ∆ colours using the lemma. By permuting the colourings for the different

components we can ensure that v gets the same colour in each case and then put them

together to give a colouring for G.

Case 2 Suppose G is 2-connected but not 3-connected and let (u, v) be a pair of vertices
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whose removal disconnects G. I want to colour the subgraph of G induced by each

component of G− {u, v} together with u and v and then put the colourings together.

v

u

If u and v are adjacent then in each of the colourings they get different colours and

so by permuting colours in the different colourings we can put them together.

If u and v are not adjacent then we can add in the edge uv each time we colour

a component, without increasing the maximum degree beyond ∆. However we might

increase the degrees of both u and v back to ∆ and then have no vertex of degree less

than ∆ to apply the lemma.

v

u

This happens if and only if G− {u, v} has just two components L and R and u and v

each have just one edge going into one of them: say R. In this case, replace v by its

neighbour w in R. The vertices u and w disconnect G and now in each component of

G− {u,w} at least one of u and w has at most ∆− 2 neighbours.
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v

u

w

Therefore when we add in the edge uw each piece still has maximum degree ∆ and at

least one vertex of smaller degree.

Case 3 This is really the crucial case. Suppose G is 3-connected. I claim that we can

find an induced path in G of length 2, uxv say. Let S be a maximal complete subgraph

of G. Since G is connected but not complete there is a vertex u of G that is not in S

but is adjacent to a vertex x in S. By the maximality of S there is another vertex v of

S to which u is not adjacent.

v

ux

Colour the vertices u and v with the same colour. The graph G−{u, v} is connected

so each vertex in it has a distance from x in this graph. Colour the vertices furthest

from x respecting the colour of u and v: each of these has a neighbour closer to x so

we can always colour with our ∆ colours. Continue colouring vertices closer and closer

to x. Finally, when we reach x it has two neighbours u and v with the same colour so

we have a spare colour for x.
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The Chromatic Polynomial

For a graph G we define the function PG : N → N ∪ {0} as follows. PG(k) is the

number of different ways to colour the graph G with k colours in such a way that

adjacent vertices receive different colours. (Two colourings are different if there is a

vertex which gets different colours in the two colourings).

Example (The chromatic polynomial of a complete graph).

PKn(k) = k(k − 1)(k − 2) . . . (k − n+ 1).

If k < n then we cannot colour Kn with k colours so PKn(k) = 0. If k ≥ n then we

can colour: how many ways are there to do it? We can choose any one of k colours

for the first vertex, any one of the remaining k − 1 for the second and so on. So

PKn(k) = k(k− 1)(k− 2) . . . (k− n+ 1). Notice that this formula gives 0 if 1 < k < n.

So it is the correct value for all positive integers.

Example (The chromatic polynomial of a path).

PPn(k) = k(k − 1)n.

If k = 1 and n ≥ 1 then we cannot colour. If k > 1 we can choose any colour for the

first vertex. Now colour each of the vertices in turn, moving along the path. At each

point we have a choice of k − 1 colours since we just have to avoid the one next door

that we already coloured. So PPn(k) = k(k − 1)n. Again this is the correct value for

k = 1.

The empty graph En of order n is the graph with n vertices and no edges.

Example (The chromatic polynomial of an empty graph).

PEn(k) = kn.
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We have k choices for each vertex so PEn(k) = kn.

So we have seen that

PKn(k) = k(k − 1)(k − 2) . . . (k − n+ 1)

PPn(k) = k(k − 1)n

PEn(k) = kn

In each case the function PG is a polynomial. This turns out to be true for all graphs.

This fact will be the first theorem of the section. It is not something obvious.

It looks as though we should use induction on the number of vertices. Pick a vertex:

colour the rest. Now ask how many choices we have for the last vertex. The problem

is that it depends not only on the number of neighbours but also on whether those

neighbours got the same colour. Instead we shall use induction on the number of edges.

Suppose G is a graph on n vertices and xy is an edge. Let G−{xy} be the new graph

we get by deleting that edge. Every colouring of G with k colours is also an admissible

colouring of G − {xy}. But G − {xy} has a few more colourings: namely those in

which x and y are given the same colour. It turns out that we can count the number

of colourings of G − {xy} in which x and y get the same colour by using a different

graph which we will call G/{xy}. We then have

PG(k) = PG−{xy}(k)− PG/{xy}(k).

As long as this other graph has fewer edges than G we have a viable inductive step.

What is this other graph? How can we construct a graph which is like G−{xy} except

that when we colour it we force the vertices x and y to have the same colour? Suppose

G is the 5-cycle with x and y as shown. We can replace the two vertices x and y by a

single vertex z and join it to each vertex that used to be adjacent to either of x or y.

We “pinch” the vertices x and y together.
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Now, if you have a colouring of G − {xy} with x and y getting the same colour (say

red) you can turn it into a colouring of the new graph: colour z red and all the other

vertices as they were. Any vertex that was adjacent to either x or y can’t have been

red. On the other hand, if you have a colouring of the new graph you can transfer it

back to G− {xy} by choosing the colour of z for both of x and y.

What happens in a more complicated situation in which some of the neighbours of x

are also neighbours of y? Nothing changes. We can still pinch together x and y and

join the new vertex to all the vertices that were adjacent to either x or y. Again, each

colouring of G − {xy} in which x and y have the same colour corresponds to exactly

one colouring of G/{xy}.

If G is a graph and {x, y} an edge of G we define G/{xy} to be the graph obtained

from G by replacing x and y by a single vertex adjacent to all neighbours of either x

or y and leaving all other vertices and the edges between them, the same.

Theorem (The chromatic polynomial). For any graph G in which {x, y} is an

edge and any k ≥ 1

PG(k) = PG−{xy}(k)− PG/{xy}(k).

Consequently PG is a polynomial.

Proof Every colouring of G− {xy} with k colours either assigns different colours to x

and y in which case it corresponds to a colouring of G or assigns them the same colour.
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So it suffices to check that the number of colourings of G − {xy} in which x and y

receive the same colour is equal to the number of colourings of G/{xy}.
If you have a colouring of G−{xy} with x and y getting the same colour (say red)

you can turn it into a colouring of the new graph: colour the new vertex red and all

the other vertices as they were. Any vertex that was adjacent to either x or y can’t

have been red. On the other hand, if you have a colouring of the new graph you can

transfer it back to G− {xy} by choosing the colour of the new vertex for both x and

y.

We now deduce that PG is a polynomial by induction on the number of edges. If

G has no edges it is the empty graph and we already saw that its PEn(k) = kn. If G

has an edge {x, y} we can write PG as a sum of chromatic polynomials of graphs with

fewer edges so it too is a polynomial.

Let’s have an example in which we use the recurrence to calculate a chromatic poly-

nomial.

Example (The chromatic polynomial of a cycle). The chromatic polynomial of

the n-cycle is

PCn(k) = (k − 1)n + (−1)n(k − 1).

Proof If n = 3 then the n-cycle is K3 so we know its chromatic polynomial. The formula

gives

(k − 1)3 + (−1)3(k − 1) = (k − 1)3 − (k − 1)

= (k − 1)(k2 − 2k + 1− 1) = k(k − 1)(k − 2)

as required.

Now suppose that n > 3 and the result holds for smaller cycles. If G = Cn then

G− {xy} = Pn−1 and G/{xy} = Cn−1. Consequently

PG(k) = k(k − 1)n−1 − (k − 1)n−1 − (−1)n−1(k − 1)

= (k − 1)n + (−1)n(k − 1)

completing the inductive step.

Note that if k = 2 this expression is 0 if n is odd but 2 if n is even.

65



There are indeed two ways to colour an even cycle with 2 colours.

When the chromatic polynomial was introduced there was a hope that it might solve the

4-colour problem. This turned out to be hopelessly optimistic. However the polynomial

is of considerable interest. Among other things it is intimately connected to statistical

mechanics. There are a number of properties of the polynomial that we can immediately

deduce from the recurrence relation.

Theorem (Simple properties of the chromatic polynomial). If G is a graph of

order n then PG has degree n and its leading coefficient is 1. The coefficients of PG
alternate in sign. For any graph G, PG(0) = 0.

Proof For the first part we use induction on the number of edges. We already saw that

for the empty graph PEn = kn which is a monic polynomial of degree n. Now suppose

G has some edges and the result holds for graphs with fewer edges. We have

PG(k) = PG−{xy}(k)− PG/{xy}(k).

The graph G − {xy} has order n and fewer edges so PG−{xy} is a monic polynomial

of degree n. The graph G/{xy} has order n − 1 and fewer edges so its chromatic

polynomial does not contribute to the kn term in PG.

For the second we can also use induction. For the empty graph the coefficients are

all zero after the first so they have the correct signs. Since PG/{xy} has degree n− 1 its

coefficients have the opposite sign to those of PG−{xy} so when we subtract we maintain

the signs.

For the third we again use induction. PEn(k) = kn is 0 if k = 0 so the induction

starts. The inductive step is obvious.

Thus if G is a graph of order n then

PG(k) = kn − cn−1kn−1 + cn−2k
n−2 − · · ·
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In the HW I will ask you to determine the coefficients cn−1 and cn−2 in terms of

properties of G. As was mentioned in the introduction and a couple of slides earlier,

the chromatic polynomial is related to statistical mechanics. The partition function

for the Potts model of quantum spin systems is equivalent via a change of variable to

the Tutte polynomial and a special case to the chromatic polynomial.
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Chapter 6. Matroids

Introduction

In the combinatorics course we proved Kirchoff’s Matrix Tree Theorem by using a link

between acyclic graphs and independent sets in a vector space. This link can be put

into a more abstract setting which is sometimes useful: the theory of matroids. Recall

the Exchange Lemma stating that if A and B are two linearly independent sets in a

vector space and A is larger than B then we can transfer an element a from A to B so

as to produce a linearly independent set {a} ∪B.

Definition (Matroid). A matroid is a set E together with a collection I of its subsets

satisfying

• ∅ ∈ I

• If A ⊂ B and B ∈ I then A ∈ I

• If A,B ∈ I and |A| > |B| then there is an element a ∈ A for which {a}∪B ∈ I.

The sets in I are called the independent sets of the matroid. While this section is not

strictly speaking graph theory, one can think of matroids as generalisations of graphs.

The basic example of a matroid is any collection E of vectors in a vector space with

I being the collection of linearly independent subsets of E. Very simple examples

of matroids are the uniform matroids. If E is a set, r is a positive integer and I is

the collection of subsets of E that have at most r elements then (E, I) is a matroid.

Exercise.

The next example is the one that we already met. Let G be a graph and E the set

of its edges. The family I will consist of all the sets of edges that contain no cycles.

Suppose G has n vertices and for each pair {i, j} with i < j let eij be the vector

(0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)

which has a 1 in the ith place and −1 in the jth.

We saw in the combinatorics course that the vectors corresponding to a set of edges

are linearly independent if and only if the edges form no cycle. So the pair (E, I) is a

matroid. Let’s see a direct proof of this. We shall need the following from last year:
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Lemma (Tree properties). For a graph G with n vertices, any two of the following

implies the third (and hence that G is a tree).

• G has n− 1 edges

• G is connected

• G is acyclic

Lemma (Graphic matroids). If G is a graph, E is its edge set and I is the family

of acyclic subsets of E then (E, I) is a matroid.

Proof The first two matroid properties are obvious. Suppose that A and B are two

acyclic sets of edges with |A| > |B|. Look at the graph GB whose vertex set is that of

G and whose edges are those in B. It is acyclic so its components are trees. We want to

find an edge e in A that crosses between different components of GB since then {e}∪B
is acyclic. If there is no such edge then all edges in A lie within the components of GB.

But since A is acyclic it cannot have more edges in each component than a tree does:

so it cannot have more elements than B. Here we used the Tree Properties Theorem.

As explained earlier we know from last year’s course that Graphic Matroids can be

represented by systems of vectors. This situation has a formal name. A matroid (E, I)

is said to be representable over a field F if there is a map φ : E → V into a vector space

V over F such that for each A ⊂ E, A ∈ I if and only if φ(A) is a linearly independent

set in V .

Graphic matroids can be represented over any field. The uniform matroid U4,2 cannot

be represented over Z2. HW However Un,r is representable over the reals for every n

and r. HW

Rado’s Theorem

Recall from last year Hall’s Marriage Theorem.

Theorem (Hall’s Marriage Theorem). Let G be a bipartite graph with vertex classes

A and B. For each subset U ⊂ A let Γ(U) be the set of neighbours of vertices in U :

Γ(U) = {b : ab is an edge for some a ∈ U} .
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If for every U ⊂ A the set Γ(U) is at least as large as U then G contains a complete

matching from A into B.

Another way to state this is as follows. Suppose that S1, S2, . . . , Sn are subsets of a set

E and for each set σ ⊂ {1, 2, . . . , n} of indices∣∣∣∣∣⋃
i∈σ

Si

∣∣∣∣∣ ≥ |σ|.
Then we can find a transversal: a set {e1, e2, . . . , en} of n distinct elements of E with

ei ∈ Si for each i. To prove it we apply Hall’s Theorem to the bipartite graph in which

the Si are vertices on the left and E the set of vertices on the right with an edge {Si, e}
if e ∈ Si. Exercise.

Now suppose that we have sets Si in a matroid (E, I). Under what conditions can we

find a transversal that is independent? For a set A ⊂ E let the rank r(A) of A be the

size of the largest independent set inside A. From the matroid properties we can see

that if I is an independent subset of A then we can extend I to an independent set

in A with r(A) elements. Among other things, all maximal independent sets have the

same size.

Theorem (Rado’s Theorem). Let (E, I) be a matroid and S1, S2, . . . , Sn be subsets

of E. Suppose that for each set σ ⊂ {1, 2, . . . , n} of indices

r

(⋃
i∈σ

Si

)
≥ |σ|.

Then there is an independent transversal: a set {e1, e2, . . . , en} ∈ I of n distinct

elements of E with ei ∈ Si for each i.

Just as in Hall’s Theorem the sufficient condition is obviously necessary. If an inde-

pendent transversal exists then the union⋃
i∈σ

Si

includes {ei : i ∈ σ} which is independent and so the rank of the union is at least |σ|.
The problem is the sufficiency.

The key to the proof is to observe that the rank function on a matroid is submodular

which for our purposes means that for any A,B ⊂ E

r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).
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To see this let r(A ∪ B) = m and r(A ∩ B) = k, choose an independent set of size k

in A ∩ B and extend it to an independent set of size m in A ∪ B. The extended set

contains no further elements in A ∩B: suppose it contains a elements in A−B and b

in B − A.

a k b

Then m = a+ k + b and hence

r(A ∪B) + r(A ∩B) = m+ k = (a+ k) + (b+ k) ≤ r(A) + r(B)

as required.

Proof (of Rado) Suppose each Si had just one element. Then⋃
i

Si

is a set of size n whose rank is n. So it contains an independent set of size n, itself,

which consists of the single element from each Si. We shall show that if some Si has

more than one element we can remove one of them without violating the hypothesis.

By doing this repeatedly we eventually arrive at the case we already considered.

So suppose S1 contains two elements a and b. If we can’t throw out either one then

there must be two sets of indices σ and τ not containing 1 for which

r

(
(S1 − {a}) ∪

⋃
i∈σ

Si

)
= |σ|

and

r

(
(S1 − {b}) ∪

⋃
i∈τ

Si

)
= |τ |.

Let A = (S1 − {a}) ∪
⋃
i∈σ Si and B = (S1 − {b}) ∪

⋃
i∈τ Si.
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Now

A ∪B =
⋃

i∈σ∪τ∪{1}

Si

A ∪B =
⋃

i∈σ∪τ∪{1}

Si

so

r(A ∪B) ≥ |σ ∪ τ |+ 1.

A ∩B ⊃
⋃
i∈σ∩τ

Si

so

r(A ∩B) ≥ |σ ∩ τ |.

Hence

|σ|+ |τ |+ 1 = |σ ∪ τ |+ |σ ∩ τ |+ 1

≤ r(A ∪B) + r(A ∩B)

≤ r(A) + r(B)

= |σ|+ |τ |

giving a contradiction.

This proof has an amusing history. It was found by Welsh but actually combines a proof

that Rado gave, not for his theorem but for Hall’s Theorem, with the submodularity

idea.

We will use Rado’s Theorem to prove a lovely theorem of Horn.

Theorem (Horn’s Theorem). Suppose x1, x2, . . . , xn are vectors in a vector space

and for each set σ of indices

dim(span({xi : i ∈ σ})) ≥ |σ|
2
.

Then the set of vectors can be partitioned into two linearly independent sets.
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Proof Define a matroid (E, I) as follows: the set E consists of 2 copies of the vectors

x1, x2, . . . , xn. Call them x1, x2, . . . , xn and x′1, x
′
2, . . . , x

′
n. A subset will be independent

in the matroid if its x elements are linearly independent and its x′ elements are linearly

independent. We need to check that this is a matroid. If A and B are in I and A

is larger than B then either A has more x elements or more x′ elements than B (or

both). In the first case we can choose an x element from A to add to B so that the

enlarged collection of x elements is still linearly independent (and the x′ elements are

unchanged) so the enlarged B is still in I. Similarly in the second case.

Now choose subsets S1 = {x1, x′1} and so on. An independent transversal consists

of one vector with each index, some of them x and some x′. The x vectors are linearly

independent and so are the x′ vectors so this is just a partition of the vectors into two

linearly independent sets. So it suffices to check that the Si satisfy the hypothesis of

Rado’s Theorem. Let σ be a set of indices. By the hypothesis of the theorem there is

a subset τ ⊂ σ of at least half the size for which the vectors {xi : i ∈ τ} are linearly

independent. But then ⋃
i∈σ

Si

contains the set ⋃
i∈τ

Si

which has at least |σ| elements and is independent in the matroid.

Matroids and greed

Matroids have an intriguing connection with greedy algorithms. Suppose we have a

finite set E whose elements have non-negative weights {wi : i ∈ E}. Suppose also we

have a family I of subsets of E which is monotone: A ∈ I and B ⊂ A implies that

B ∈ I. We want to choose a set in I whose total weight is as large as possible.

One way to try to do it is greedily. Order the elements of E by weight:

w1 ≥ w2 ≥ · · · ≥ wn.

Go through the elements in turn and include an element if it does not throw you out

of I.

Theorem (Matroid Greedy Theorem). Suppose (E, I) is a matroid with a weight

function w : E → [0,∞). Then the greedy algorithm yields the highest weight element

of I.
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The proof will show that if there is an independent set with larger weight than the set

created by our algorithm then the algorithm would have run differently.

Proof Suppose that the greedy algorithm chooses a set b1, b2, . . . , bk in that order and

note that this is a maximal element of I otherwise there would be an element we could

include that would have been included when it was considered.

Suppose that there is another maximal element of I with a larger sum: say {c1, c2, . . . , ck}
necessarily with the same number of elements. Let j be the first index for which

w(cj) > w(bj). The set {c1, c2, . . . , cj} is larger than {b1, b2, . . . , bj−1} so there is an

element ci of the former that can be included into the latter without leaving I.

We have w(ci) ≥ w(cj) > w(bj). So there is some r ≤ j with w(br−1) ≥ w(ci) >

w(br). But that means that when ci was considered it would have been included by

the algorithm instead of br.

There is a converse to this theorem. If a family of sets is not a matroid then we can

cook up a weight function for which the greedy algorithm does not work. Suppose A

and B are sets in a monotone family F with |A| > |B| but that for all x ∈ A− B the

augmented set B ∪ {x} is not in F .

Define the weight function as follows

w(e) =



|A|+ 1 if e ∈ B

|A| if e ∈ A−B

0 otherwise.

The elements of our set will be ordered as follows:

B, (A−B), E − A.

w(e) =



|A|+ 1 if e ∈ B

|A| if e ∈ A−B

0 otherwise.

The algorithm will choose all elements of B and then no element of A−B. The total

weight will be (|A|+ 1)|B| ≤ (|A|+ 1)(|A| − 1) < |A|2. But the set A is in the family

and all its elements have weight at least |A|.
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An obvious application of the Matroid Greedy Theorem is to the identification of

minimal spanning trees. Suppose we are given a graph with weights on the edges. An

important problem is to find the spanning tree with the smallest total weight. For

example if the vertices are towns and the weights are the distances between towns you

might want to find the cheapest way to connect all the towns with an electrical grid.

We know that the spanning trees are the maximal independent sets in the graphic

matroid of the graph.

The fact that we are trying to find the minimal spanning tree rather than maximal

makes no difference because we can replace each weight w by M −w where M is some

number bigger than all the weights. We know that the greedy algorithm will work.

We order the edges in increasing order of weight and then pick them one by one, never

including an edge that makes a cycle.
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Chapter 7. Random graphs

Introduction

In the chapter on Ramsey Theory in last year’s course we saw an example of the use

of random constructions in graph theory: namely the following theorem.

Theorem (Erdös lower bound for R(s, s)). Let s ≥ 3. Then

R(s, s) ≥ 2(s−1)/2.

The idea is to colour the edges of Kn randomly. We colour each one red with probability

1/2 and blue with probability 1/2 and we colour the edges independently: the choice

for one edge is not affected by the choices for the others.

Proof Colour the edges of Kn red or blue independently at random with probability

1/2 each. What is the chance that a fixed set of s vertices form a red Ks? There are

s(s− 1)/2 edges to go red: so the chance is

2−s(s−1)/2.

The chance that a fixed set of s vertices is monochromatic is just twice as big:

2× 2−s(s−1)/2.

What is the expected number of monochromatic Ks graphs? There are
(
n
s

)
places

where it could occur. So the expected number is(
n

s

)
2× 2−s(s−1)/2 <

2ns

s!2s(s−1)/2
.

If we arrange for this number to be less than 1 then there will be colourings without

any monochromatic Ks. If n ≤ 2(s−1)/2 then we succeed.

Historically this argument was the start of a mathematical field called “Random Graph

Theory” which has now become closely associated with the mathematical study of

models in statistical physics. The theory has two slightly different themes.

• The construction of graphs with special properties (as in the argument above)

• The study of random graphs in their own right, sometimes as models for real

world networks
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This chapter will contain an example of each theme. In the first we shall see that a

graph can have large chromatic number even if it is quite sparse. In the second we shall

discuss the connectedness of random graphs. Both parts will use the following model:

fix the order n of the graph and vertices labelled 1, 2, . . . , n say. Fix a probability

p ∈ (0, 1) and include each edge with probability p independently of all the other

edges. (So the earlier argument corresponded to p = 1/2 but now we just look at the

graph consisting of say the red edges.)

The Poisson Distribution

Before we discuss this model further we shall recall the Poisson distribution. A Poisson

random variable with mean µ is a random variable X which takes the values 0, 1, 2, . . .

with probabilities
P(X = 0) = e−µ

P(X = 1) = e−µ µ

P(X = 2) = e−µ µ2

2

P(X = 3) = e−µ µ3

6

...
...

Observe that
∞∑
k=0

P(X = k) = e−µ
∞∑
k=0

µk

k!
= e−µeµ = 1

which is required for a probability distribution. The mean is indeed µ:

EX = e−µ
∞∑
k=0

k
µk

k!
= e−µ

∞∑
k=1

k
µk

k!
= e−µµ

∞∑
k=1

µk−1

(k − 1)!
= µ.

One can calculate the variance in a similar way but an alternative is to look at the

moment generating function:

m(t) = EeXt =
∞∑
k=0

EXk

k!
tk.

We have

m(t) =
∞∑
k=0

EXk

k!
tk = EeXt = e−µ

∞∑
k=0

µk

k!
ekt = e−µeµe

t

.

77



Now

m(0) = 1.

m′(0) = EX.

m′′(0) = EX2.

We have

m′′(t) = e−µeµe
t (
µet + µ2E2t

)
.

and so

EX2 = µ+ µ2.

Hence the variance is

EX2 − (EX)2 = µ+ µ2 − µ2 = µ.

The variance of the Poisson is the same as its mean. Since the standard deviation is the

square root of the variance, this tells us that when µ is large the Poisson concentrates

around its mean. The figure shows the Poisson distribution with mean 20.
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The Poisson distribution was originally created as an approximation to the binomial

distribution. If n is large and X is a B(n, p) random variable then the probability that

X = k is well approximated by e−µµk/k! as long as k is small compared to
√
n and

kp is small. However the distribution is now of fundamental importance “in its own

right”. It measures the number of random events that occur in a given time interval for

a variety of processes, in particular radioactive decay. For a sample of a radio-isotope,

the number of decay events occurring in a time interval T has a Poisson distribution

with mean λT where λ is a parameter depending upon the substance.

If µ is large then the probability that X = 0 is very small: e−µ. We shall see that just

using the mean and variance we can get a much weaker estimate that is occasionally
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useful. If the mean is µ and there were a fair chance of being at zero then the variance

would be around µ2 not just µ.

var(X) = E(X − EX)2 ≥ Prob(X = 0)(−EX)2 = Prob(X = 0)(EX)2.

Hence

Prob(X = 0) ≤ var(X)

(EX)2
=

1

µ
.

The Poisson Picture

Let us return to the random graph model. Fix the order n of the graph and vertices

labelled 1, 2, . . . , n say. Fix a probability p ∈ (0, 1) and include each edge with proba-

bility p independently of all the other edges. We use Gn,p to denote a random graph

in this model and write for example

Prob(Gn,p is connected)

for the probability that a randomly chosen graph will be connected.

Each vertex has n − 1 potential edges coming out of it so if p = K/n we expect the

vertex to have degree about K. As p increases the graph is likely to become denser so

it will be more likely to be connected or have a higher chromatic number. The graph

certainly won’t be connected if it has isolated vertices: vertices of degree 0. It is easy

to calculate the expected number of these.

For each vertex the probability that it has no edges is (1 − p)n−1. So the expected

number of isolated vertices is n(1− p)n−1. This will be equal to Q if

(1− p)n−1 =
Q

n

or

p = 1−
(
Q

n

) 1
n−1

= 1− exp

(
logQ− log n

n− 1

)
≈ log n− logQ

n− 1
.

Thus if p = logn−logQ
n

the expected number of isolated vertices is about Q. The different

vertices are not quite independent because there is an edge between each pair: if one is

isolated the others are a bit more likely to be isolated. But they are almost independent.

So we expect that the number of isolated vertices has roughly a Poisson distribution

with mean Q. In that case the probability that no vertex is isolated would be e−Q.
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It turns out that for this type of random graph, the most likely way for it to be

disconnected is to have isolated vertices. Once we choose p large enough to rule them

out, the graph is almost bound to be connected. The most famous theorem in this

direction is the following:

Theorem (Erdös-Rényi). Let

p = p(n) =
log n

n
+
cn
n
.

Then

Prob (Gn,p is connected)→


0 if cn → −∞

e−Q if cn → − logQ

1 if cn →∞

The probability p = logn
n

is called a threshold for connectedness. If you choose edges

with slightly higher probability the graph is almost bound to be connected: if you

choose edges with slightly lower probability the graph is almost bound not to be con-

nected. The graph shows the probability of being connected as a function of p for

n = 10, 000. The probability changes suddenly from 0 to 1 as you cross the threshold.

(log n)/n (2 log n)/n

0.25

0.5

0.75

1

The same phenomenon happens in models of quantum systems. As you cool a liquid

you pass the freezing point and suddenly the whole structure changes into a crystal.

We shall prove the limiting cases of the theorem above.
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Theorem (Connectedness of random graphs). Let

p = p(n) =
log n

n
+
cn
n
.

Then

Prob (Gn,p is connected)→
{

0 if cn → −∞
1 if cn →∞

The main difference between this and the theorem above is that we only get an estimate

Prob (Gn,p is connected) ≤ 1

Q

rather than e−Q.

The usual definition of threshold is rather weaker than we are proving here.

Definition (Thresholds for random graphs). A sequence pn is called a threshold

for a property of Gn,p if

Prob (Gn,λnpn has the property)→
{

0 if λn → 0

1 if λn →∞

As mentioned earlier, the other topic in this chapter will be the chromatic number of

random graphs. Finding the chromatic number of a random graph was a long process

involving subtle papers by Grimett and McDiarmid, Bollobás,  Luczak, Shamir and

Spencer, Alon and Krivelevich, Friedgut, Achlioptas and Naor. The most recent result

here is essentially the following:

Theorem (The two values of the chromatic number). Let k be an integer and

2k log k − 2 log k

n
< p = p(n) <

2k log k

n
.

Then

Prob (χ(Gn,p) = k or k + 1)→ 1

as n→∞.

We shall prove something much weaker but at least we detect the correct order of the

probability:
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Theorem (The chromatic number of a random graph). Suppose the probability

p satisfies

p ≥ 2k log k + 4k

n

Then

Prob (χ(Gn,p) ≤ k) ≤ e−n/(2k).

For this value of p with k quite a bit smaller than n the random graph Gn,p is pretty

sparse, not only in that its average degree is much less than n but also, as we shall see,

in that it doesn’t even have many short cycles.

Lemma (Short cycles in a random graph). Let g and n be integers with,

5

n
≤ p ≤ n1/g

n

and let X be the number of cycles of length at most g − 1 in Gn,p. Then

EX ≤ n

4
.

Using these two facts we shall be able to demonstrate the existence of graphs with

large chromatic number and no short cycles.

We will repeatedly use the following facts which are left as exercises.

• For 0 < p < 1 and any m we have e−mp/(1−p) ≤ (1− p)m ≤ e−mp

• For 1 ≤ k ≤ n (
n

k

)
≤
(en
k

)k
.

• (Markov or Chebyshev Inequality) If X is a non-negative random variable

and t > 0 then

Prob(X > t) ≤ 1

t
EX.

Before we start let’s recall how the linearity of the expectation enables us to compute

expectations quite easily. For example let’s calculate the expected number of triangles

in Gn,p. There are
(
n
3

)
possible triangles. Each triangle has probability p3 of being

included since we need all three of its edges to be included. For each triangle T let IT
be the random variable that is equal to 1 if T appears and 0 if not. Then the number

of triangles in Gn,p is ∑
IT .
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The random variables IT are not independent: if one triangle is in, then any triangle

that shares an edge with it is more likely to be in. But that is irrelevant as far as the

expectation is concerned.

E
∑

IT =
∑

EIT .

The expectation of IT is p3 because the random variable is 1 with probability p3 and 0

otherwise. So the expected number of triangles is
(
n
3

)
p3.

In the 2018 exam, Question 4 asked for a proof that if p = cn
n

with cn → ∞ then the

probability that Gn,p contains no triangles tends to 0. In fact p = 1/n is a threshold

for containment of a triangle.

We now return to the results that we shall prove. We begin with the chromatic number.

The chromatic number

Theorem (The chromatic number of a random graph). Suppose the probability

p satisfies

p ≥ 2k log k + 4k

n

Then

Prob (χ(Gn,p) ≤ k) ≤ e−n/(2k).

If a graph is coloured with k colours then one of the colour classes has at least n/k

vertices in it. So it suffices to prove that if r is the integer satisfying

n

k
≤ r <

n

k
+ 1

then the probability that Gn,p contains an independent set of r vertices is less than

e−r/2.

Theorem (The independence number of a random graph). Suppose the proba-

bility p satisfies

p ≥ 2k log k + 4k

n

and r ≥ n/k. Then

Prob (Gn,p has an independent set of size at least r) ≤ e−r/2.
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Proof There are
(
n
r

)
options for this independent set and for it to be independent we

need all the
(
r
2

)
possible edges to be missing. So the probability is at most(

n

r

)
(1− p)r(r−1)/2 ≤

(en
r

)r
(1− p)r(r−1)/2

≤ (ek)r (1− p)r(r−1)/2

=
(
e2k2(1− p)r−1

)r/2
.

Now

e2k2(1− p)r−1 ≤ e2k2e−(r−1)p ≤ e3k2e−rp

≤ e3k2e−np/k ≤ e3k2e−2 log k−4 = e−1

which implies that the probability is at most e−r/2.

We now move on to the lemma about cycles.

Lemma (Short cycles in a random graph). Let g and n be integers with,

5

n
≤ p ≤ n1/g

n

and let X be the number of cycles of length at most g − 1 in Gn,p. Then EX ≤ n
4
.

Proof The number of different cycles of length j is at most nj and for a sequence of

j vertices to be a cycle we need all j edges to be included so the expected number of

cycles of length j is at most njpj. Hence

EX ≤
g−1∑
3

(np)j ≤ (np)g − 1

np− 1
≤ (np)g

4
≤ n

4
.

We can combine these two estimates quite easily to deduce that there exist graphs

with large chromatic number and no short cycles. We take a random graph Gn,p with

p = (log n)/n. This will satisfy the hypothesis of the Independent Set Theorem if

2k log k + 4k ≤ log n which is true if n is large and

k ≤ log n

2 log log n
.
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It will satisfy the hypothesis of the cycle lemma if n1/g ≥ log n which says that

g ≤ log n

log log n
.

If X is the number of short cycles then EX ≤ n/4 and so by Markov’s Inequality

Prob(X > n/2) ≤ 1

2
.

So with high probability our random graph has no independent set larger than n/k

and with probability 1/2 it has only n/2 short cycles. So there is a graph having both

these properties. If we remove one vertex from each short cycle we remove all the short

cycles and don’t make the independent sets any bigger. We thus obtain a graph with

at least n/2 vertices, no cycles of length less than g and chromatic number at least

n/2

n/k
=
k

2
.

Corollary (Large chromatic number and large girth). For large n there is a

graph of order at most n with chromatic number at least

log n

4 log log n
− 1

and no cycles shorter than
log n

log log n
− 1.

Now let’s move on to the connectedness.

Connectedness

Theorem (Connectedness of random graphs). Let

p = p(n) =
log n

n
+
cn
n
.

Then

Prob (Gn,p is connected)→
{

0 if cn → −∞
1 if cn →∞
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Proof The case cn → ∞ is a straightforward calculation even though it is slightly

messy. In order for Gn,p to be disconnected there must be a number k ≤ n/2 and a

partition of the vertices into two sets of size k and n− k with no edges between them.

For each k the number of such partitions is
(
n
k

)
and the number of edges between the

two halves is k(n− k). So the probability of such a partition is at most

n/2∑
k=1

(
n

k

)
(1− p)k(n−k) ≤

n/2∑
k=1

(en
k

)k
(1− p)k(n−k).

Now
en

k
(1− p)n−k ≤ en

k
e−p(n−k).

By differentiating with respect to k it is easy to check that this expression decreases

until k = 1/p and then increases until k = n/2. So it is never more than the larger of

ene−p(n−1) and 2ee−pn/2.

The first is e1+pne− logn−cn ≤ e2e−cn and the second is 2ee−(logn+cn)/2. Both expressions

are at most e−dn for some sequence dn →∞ and so the probability of disconnectedness

is at most
n/2∑
k=1

(e−dn)k

and for large n this is at most

2e−dn → 0.

For cn → −∞ we will show that the graph is likely to contain an isolated vertex.

Let X be the number of isolated vertices. We know that

EX = n(1− p)n−1 ≥ ne−p(n−1)/(1−p)

= ep/(1−p)ne−(logn+cn)/(1−p) = ep/(1−p)n−p/(1−p)e−cn/(1−p)

Since p = pn ≤ logn
n
→ 0 and cn → −∞ the first factor converges to 1 while the last

tends to ∞ with n. The middle factor is the reciprocal of

exp

(
p log n

1− p

)
≤ exp

(
(log n)2

n− log n

)
→ 1.

Hence

EX →∞

as n→∞.
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If we knew that X had a Poisson distribution we could conclude that Prob(X = 0)

is small. We don’t have a simple way to describe the distribution of X but we can

investigate its moments: in particular EX2. The variance of a Poisson random variable

is equal to its expectation: we shall show something similar for X.

For each k let Ik be 1 or 0 according to whether the vertex k is isolated. Then

X =
∑n

1 Ik.

EX2 = E
∑
jk

IjIk =
∑
j

EI2j +
∑
j 6=k

EIjIk =
∑
j

EIj +
∑
j 6=k

EIjIk.

We already know that for each j, EIj = (1 − p)n−1. For j 6= k the product IjIk is 1

only if the two vertices have no edges incident to them. There are 2n−3 possible edges

since each vertex has n− 1 possible edges but one edge is shared. So

EIjIk = (1− p)2n−3.

Hence

EX2 = n(1− p)n−1 + n(n− 1)(1− p)2n−3 = EX +
n− 1

n(1− p)
(EX)2.

Therefore the variance of X is

var(X) = EX2 − (EX)2 = EX +

(
n− 1

n(1− p)
− 1

)
(EX)2

= EX +
np− 1

n(1− p)
(EX)2 ≤ EX +

p

1− p
(EX)2.

Since p ≤ (log n)/n is small this is roughly the expectation of X as we had hoped.

Now

var(X) = E(X − EX)2 ≥ Prob(X = 0)(−EX)2 = Prob(X = 0)(EX)2.

So

Prob(X = 0) ≤ var(X)

(EX)2
≤ 1

EX
+

p

1− p
→ 0.

The estimate we got for Prob(X = 0) is roughly 1/EX and is much weaker than e−EX

which is what we expect from the Poisson distribution. In order to get a better estimate

we would have to consider higher moments.
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To finish this chapter we shall make some remarks concerning concentration of the

number of edges which will be of interest when we look at regularity methods. Let us

look at a random graph from our model and two disjoint sets of vertices with k and m

members. The number of possible edges between them is km. The number selected is

Binomial B(km, p). So its mean is kmp and variance is kmp(1− p) which is certainly

not more than kmp.

Now suppose that our vertex sets are of reasonable size: say at least n/10 and p is not

too small: say at least 1/(10n). Then the mean is at least n/103 and the variance is

no larger. So the distribution looks like this.

mean

In a random graph we can predict with considerable accuracy how many edges will

cross from one set of vertices to another as long as those sets are fairly large.
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Chapter 8. The regularity method

In 1975 Szemerédi proved that if a set of positive integers S has the property that

lim sup
|S ∩ {1, 2, . . . , n}|

n
> 0

then S contains arbitrarily long arithmetic progressions:

(a, a+ b, a+ 2b, . . . , a+ kb).

Thus if from time to time S contains a fixed proportion of the numbers between 1 and

n then it contains long arithmetic progressions. In order to do this he developed a

remarkable structure theorem for graphs (and hypergraphs): the Regularity Theorem.

The theorem states (roughly) that every graph can be decomposed into a small number

of pieces where the graph looks random and a small extra bit.

For sets A,B ⊂ G we define the edge density between A and B to be

d(A,B) =
The number of edges from A to B

|A|.|B|
.

We say that the pair (X, Y ) of subsets of G is ε-regular if for all A ⊂ X and B ⊂ Y

with |A| ≥ ε|X| and |B| ≥ ε|Y | we have

|d(A,B)− d(X, Y )| ≤ ε.

This says that the edges between X and Y appear to have been chosen randomly with

probability p = d(X, Y ). (Compare with the statement made at the end of the random

graph chapter.)

Theorem (Szemerédi’s Regularity Lemma). For every ε > 0 and m ∈ N there

are M,N ∈ N so that if G is a graph of order n > N then we can partition the vertices

of G as V0 ∪ V1 ∪ . . . ∪ Vk where |V1| = |V2| = · · · = |Vk|, m < k < M , |V0| < εn and

all but εk2 of the pairs (Vi, Vj) are ε-regular.
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V0

The Regularity Lemma is most often used via one of its consequences called the Graph

Removal Lemma.

Theorem (Graph Removal Lemma). For every ε > 0, every k and every graph H

of order k, there is a δ > 0 so that if G is a graph of order n, either we can remove

εn2 edges from G so as to leave no copy of H or G contains δnk copies of H.

Either we can remove a small proportion of the edges of G so as to eliminate all H

subgraphs, or G contains about as many copies of H as it possibly could:
(
n
k

)
. How do

we deduce it?

V0

Partition G into about 1/ε pieces. Throw out all the edges inside the Vi, all the edges

from V0, all the edges in the irregular pairs and all the edges in sparse pairs. If we have

a copy of H remaining it is formed by turquoise edges; edges between pairs (Vi, Vj)

that are regular and pretty dense.
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V0

You have a copy of H using edges between pairs (Vi, Vj) that are regular and pretty

dense. If you choose vertices from the pieces more or less randomly there is a good

chance they will form a copy of H. So there will be many ways to do it.

To finish this short chapter we will deduce Roth’s Theorem on arithmetic progressions.

Theorem (Roth). If a set of positive integers S has the property that

lim sup
|S ∩ {1, 2, . . . , n}|

n
> 0

then S contains arithmetic progressions of length 3:

(a, a+ b, a+ 2b).

The theorem automatically implies that S must contain infinitely many such progres-

sions.

Proof Choose n large for which

|S ∩ {1, 2, . . . , n}|
n

> ε

and form a graph as follows. The vertices belong to 3 classes C1, C2 and C3 each

of which has 3n vertices labelled with the integers from 1 to 3n. Edges will go only

between vertex classes. Let Sn = S ∩ {1, 2, . . . , n}. An edge (u, v) between C1 and

C2 will be included if v − u ∈ Sn and similarly between C2 and C3. An edge (u,w)

between C1 and C3 will be included if (w − u)/2 ∈ Sn.
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We now look at triangles in G. If the triangle consists of u ∈ C1, v ∈ C2 and w ∈ C3

with v − u = w − v then we call the triangle trivial. The triangle looks like a line in a

picture of G.

C1

C2

C3

For each a ∈ Sn we can find at least n trivial triangles

u, u+ a, u+ 2a

as u runs from 1 to n. These triangles are edge disjoint so to remove them all we would

need to remove more than εn.n = εn2 edges. By the removal theorem the graph must

contain at least δn3 triangles. But there can’t be more than 3n2 trivial triangles so

there must be a non-trivial one:

u v w

with v − u, w − v and (w − u)/2 ∈ Sn and not all the same. Let a = v − u, b = w − v
and c = (w − u)/2 = (a+ b)/2.

HW08

Show that for every ε if d is large enough, every subset A of Zd
3 with at least ε3d

elements contains distinct vectors x, y and z such that x+ y + z = 0.
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