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Abstract

This note describes continued fraction representations for the rational ap-

proximations to ζ recently found by the author. It is tempting to think that

these continued fractions might be analysed using a souped up version of the

Worpitzky argument so as to produce zero-free regions for the approximations.

Introduction

The author’s previous article [B] describes a sequence of rational functions which

approximate ζ at least in the critical strip.

The rational functions in question are the ratios

Fm(s)

(s− 1)Gm(s)

where for each m, (s− 1)Gm(s) is a rational function of s that is close to h1−sm Γ(s)

and Fm(s) is a rational function of s that is close to h1−sm Γ(s)ζ(s) (and hm is the

harmonic number
∑m

1 1/j).

The sequence converges locally uniformly to ζ, at least to the right of the line

{s : <s = 0}, (with the obvious convention at s = 1). After I circulated the article

a number of people asked me whether my sequence could be generated by a simple

continued fraction and I said I did not believe it. However each individual rational

function can of course be written as a continued fraction in many different ways.

The aim of this article is to describe one way which produces a fraction that may

be susceptible of analysis.
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By using the fact that Gm approximates the Gamma function with an error that

is quite easy to estimate one can check that Gm does not vanish at s = σ + it if

0 < σ < 1 and |t| is smaller than a multiple of log logm. But the argument relies

on the fact that Γ itself has no zeros. Obviously if we are to use the functions Fm

to understand ζ we need an “intrinsic” way to find zero-free regions: an approach

which uses only the very special shape of the rational functions.

In Section 1 we shall see that the function Gm has a continued fraction which can

be directly analysed without reference to any property of the Gamma function so as

to demonstrate that Gm has no zeros σ + it in the critical strip where |t| is smaller

than about
√

logm: so much higher up than is guaranteed by the simple-minded

argument. In Section 2 we shall prove that the function Fm has a continued fraction

which shares at least some important features with the one for Gm.

1 An asymptotic series and a continued fraction

for Gm

The rational approximations to ζ whose existence was proved in [B] are defined as

follows. For each integer m ≥ 0 we define

pm(t) = (1− t)
(

1− t

2

)
. . .
(

1− t

m

)
and the coefficients (am,j) by

pm(t) =
m∑
0

(−1)jam,jt
j.

We then set

Fm(s) =
m∑
0

am,jBj

s+ j − 1

where the Bj are the usual Bernoulli numbers and

Gm(s) =
m∑
j=0

(−1)j
am,j

s+ j − 1
.

For example

F3(s) =
1

s− 1
− 11

12s
+

1

6(s+ 1)
=

3s2 + 10s+ 11

12(s− 1)s(s+ 1)
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and

G3(s) =
1

s− 1
− 11

6s
+

1

s+ 1
− 1

6(s+ 2)
=

s2 + 6s+ 11

3(s− 1)s(s+ 1)(s+ 2)
.

The function Gm is a rational function with poles at 1, 0, −1 and so on, which

decays like 1/s2 at infinity. As a result we can expand it as a linear combination of

reciprocals

1

(s− 1)s
,

1

(s− 1)s(s+ 1)
,

1

(s− 1)s(s+ 1)(s+ 2)
. . . .

The coefficients are essentially just the coefficients am−1,j defined above. More pre-

cisely

ms(s− 1)Gm(s) = am−1,0 +
2am−1,1
s+ 1

+
6am−1,2

(s+ 1)(s+ 2)
+ · · · .

To see this observe that for <s > 1

Gm(s) =
∫ 1

0
pm(x)xs−2 dx.

The behaviour of Gm for large s depends upon the behaviour of pm near x = 1. But

Gm(s) =
∫ 1

0
pm(1− x)(1− x)s−2 dx =

1

m

∫ 1

0
xpm−1(−x)(1− x)s−2 dx

=
1

m

∫ 1

0

m−1∑
0

am−1,j x
j+1(1− x)s−2 dx.

The sequence of coefficients am−1,j is rather regular: they are all positive and the

sequence is logarithmically concave because they are the coefficients of a polynomial

x 7→ pm−1(−x) whose zeros lie on the negative real axis. For small j the coefficient

am,j is roughly (logm)j/j!. In particular am−1,1 is the harmonic number hm−1 =

1 + 1/2 + 1/3 + · · ·+ 1/(m− 1).

On the face of it the formula

ms(s− 1)Gm(s) = am−1,0 +
2am−1,1
s+ 1

+
6am−1,2

(s+ 1)(s+ 2)
+ · · ·

does not look as though it can tell us much about where Gm is non-zero. Certainly

if s is large relative to logm then the sum is non-zero because it is dominated by the

first term. But our interest is in finding zero-free regions that expand with m, rather

than contracting: we want to understand what happens for s smaller than say logm.

However a standard identity often known as Euler’s continued fraction enables us
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to convert the “asymptotic” sum into a continued fraction for the reciprocal of Gm

(in which we drop the subcript m− 1 from the coefficients for clarity)

1

ms(s− 1)Gm(s)
− 1

=
− 2a1

2a1 + a0(s+ 1)−
3a0a2(s+ 1)

3a2 + a1(s+ 2)−
4a1a3(s+ 2)

4a3 + a2(s+ 3)
. . .

There is a beautiful theorem of Worpitzky, see for example [H] p.506, which

shows that a continued fraction cannot “blow up” (cannot have zero denominator)

if the denominators of the fraction are fairly large compared to the numerators. The

hypothesis is that the product of two successive denominators should have absolute

value at least 4 times as large as that of the numerator in between.

The point of this section is to observe that the fraction above representing Gm

has a structure which is well-adapted to Worpitzky’s Theorem. The hypothesis in

this case requires that for each k

|((k + 1)ak + ak−1(s+ k))((k + 2)ak+1 + ak(s+ k + 1))| ≥ 4 |(k + 2)ak−1ak+1(s+ k)| .

Set vk = (k+1)ak
(k+s)ak−1

for each k. Then the hypothesis is

∣∣∣∣∣(vk + 1)

(
1 +

1

vk+1

)∣∣∣∣∣ ≥ 4.

The logarithmic concavity of the sequence (ak) shows that the sequence of ratios

ak/ak−1 is decreasing. If s is real and (say) in (0, 1) then (vk) is also decreasing and

hence

(vk + 1)

(
1 +

1

vk+1

)
≥ (vk+1 + 1)

(
1 +

1

vk+1

)
= 2 + vk+1 +

1

vk+1

≥ 4.

Clearly in order to move off the real line one needs to understand how the strict

logarithmic concavity of the sequence (ak/ak−1) is enough to compensate for the

effect of the complex number s. The tricky point occurs where the sequence ak

attains its maximum and vk is therefore close to 1. For larger values of m this
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maximum occurs at values of k close to logm. At this point the ratio (k+1)
(k+s)

should

have less effect when m is large. So one hopes that the provable zero-free region

should expand with m.

In fact we can prove the following:

Proposition 1 If m is a natural number and for each k we set ak = am−1,k and

vk = (k+1)ak
(k+s)ak−1

then we have

∣∣∣∣∣(vk + 1)

(
1 +

1

vk+1

)∣∣∣∣∣ ≥ 4

for 1 ≤ k ≤ m− 2 as long as s = σ + it satisfies 0 < σ < 1 and |t| < 1/2
√

logm.

Newton’s inequalities tell us that because pm−1(−x) =
∑m−1

0 ajx
j has all its zeros

on the negative real axis, the sequence

aj(
m−1
j

)
is logarithmically concave. This shows that the sequence(

j

m− j
aj
aj−1

)
j

is decreasing and hence so is the sequence(
j
aj
aj−1

)
j

.

Since a0 = 1 and a1 = hm−1 we can deduce that for each j

aj
aj−1

≤ hm−1
j

.

We will need an approximate reverse inequality which we prove as a lemma.

Lemma 2 With the notation above

aj
aj−1

≥ hm−1 − 1

j

as long as 1 ≤ j ≤ hm−1/2.
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Proof The number aj−1 is the sum of all products of j − 1 distinct numbers in

the set of reciprocals 1/r for 1 ≤ r ≤ m − 1. If we multiply this by the sum

hm−1 =
∑m−1

1 1/r we obtain all possible products of j distinct factors, each one

repeated j times, together with some products involving j − 2 distinct factors and

a squared factor.

Therefore

hm−1aj−1 ≤ jaj + aj−2
m−1∑
1

1

r2
≤ jaj + 2aj−2.

If we write wj for the ratio aj+1

aj
we have

hm−1
j
≤ wj−1 +

2

wj−2
.

This inequality and a trivial induction show that

wj−1 ≥
hm−1 − 1

j

as long as 1 ≤ j ≤ hm−1/2 as required.

Proof (of Proposition 1) By the remarks above

(k + 1)
ak+1

ak
≤ k

ak
ak−1

.

Now 1 + vk = 1 + (k+1)ak
(k+s)ak−1

and it easy to check that the absolute value of

1 +
(k + 1)

(k + s)
w

increases with w > 0 as long as s lies in the critical strip. Hence in proving the

inequality we want, we may replace ak
ak−1

by the smaller number (k+1)ak+1

kak
or the still

smaller number (k+2)ak+1

(k+1)ak
.

So we then want to prove that∣∣∣∣∣
(

1 +
(k + 2)ak+1

(k + s)ak

)(
1 +

(k + s+ 1)ak
(k + 2)ak+1

)∣∣∣∣∣ ≥ 4.

If we write wk for the ratio ak+1

ak
(as before) this inequality becomes∣∣∣∣∣1 +

(k + s+ 1)

(k + s)
+
k + 2

k + s
wk +

k + s+ 1

k + 2

1

wk

∣∣∣∣∣ ≥ 4.
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The expression inside the absolute value is

2 +
1

(k + s)
+
k + 2

k + s
wk +

k + s+ 1

k + 2

1

wk
.

Each of the terms in this sum has positive real part as long as s is in the critical

strip so it suffices to show that for each k

<
(
k + 2

k + s
wk +

k + s+ 1

k + 2

1

wk

)
≥ 2. (1)

To handle the delicate range of k observe that

<k + s+ 1

k + 2
=
k + 1 + σ

k + 2

and it easy to check that if t2 ≤ k then

<k + 2

k + s
≥ k + 2

k + 1 + σ
.

In this case, if we set θ to be the positive real number k+2
k+1+σ

, we have

<
(
k + 2

k + s
wk +

k + s+ 1

k + 2

1

wk

)
≥ θwk +

1

θwk
≥ 2.

So it only remains to check (the trivial case) that (1) is true for values of k

smaller than 1/4 logm and |t| < 1/2
√

logm. By Lemma 2

wk ≥
hm − 1

k + 1

and this implies that

<k + 2

k + s
wk ≥ 2.

2 A continued fraction for ζ

In the case of Fm the approximation picks up the trivial zeros of ζ at −2,−4, . . . as

far as 1−m. Equivalently the function Fm has poles at 1, 0, −1, −3 and so on but

not at the even negative integers. As a result we can express Fm as a sum

Fm(s) =
b0

s− 1
+

b1
(s− 1)s

+
b2

(s− 1)s(s+ 1)
+

b3
(s− 1)s(s+ 1)(s+ 3)

+ · · ·
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where after the first two terms we only use factors s+ 2j − 1 to increase the degree

of the denominator. It follows from remarks in [B] that b0 = 1/(m + 1) and hence

that we can rewrite the sum as

(m+ 1)sFm(s) = cm,0 +
cm,1
s− 1

+
2cm,2

(s− 1)(s+ 1)
+ · · ·

where cm,0 = 1.

From the definition of Fm,

Fm(s) =
m∑
0

am,jBj

s+ j − 1
,

we get that the residue of sFm(s) at 1− j is am,j(1− j)Bj and hence that

(m+ 1)sFm(s)− 1 = (m+ 1)
m∑
0

am,j(1− j)Bj

s+ j − 1
.

The sum only involves even values of j so we may write

(m+ 1)sFm(s)− 1 = (m+ 1)
∑

j≤m/2

am,2j(1− 2j)B2j

s+ 2j − 1

=
(m+ 1)

2

∫ 1

0

∑
j≤m/2

am,2j(1− 2j)B2jx
jx(s−1)/2−1 dx

=
(m+ 1)

2

∫ 1

0

∑
j≤m/2

am,2j(1− 2j)B2j(1− x)j(1− x)(s−1)/2−1 dx.

For k > 0 let

cm,k = (m+ 1)(−1)k−1
∑

j≤m/2
am,2j(1− 2j)B2j

(
j

k − 1

)
. (2)

Then

(m+ 1)sFm(s)− 1 =
1

2

∫ 1

0

∑
k≤m/2

cm,k+1x
k(1− x)(s−1)/2−1 dx

=
cm,1
s− 1

+
2cm,2

(s− 1)(s+ 1)
+ · · ·+ 2j−1cm,j(j − 1)!

(s− 1) . . . (s+ 2j − 3)
+ · · · .

Numerical evidence suggests that the coefficients cm,j for Fm have similar prop-

erties to the am,j: for example cm,1 = 2(m + 1)/(m + 2)hm+1, the next coefficient
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cm,2 grows like (logm)2 and so on. However it is not clear from the expression (2)

even that the coefficients are all positive. This will be demonstrated below.

This series for Fm(s) can be converted into a continued fraction for 1/Fm much

like the one for 1/Gm:

1

(m+ 1)sFm(s)
− 1

=
− c1

c1 + c0(s− 1)−
2c0c2(s− 1)

2c2 + c1(s+ 1)−
4c1c3(s+ 1)

4c3 + c2(s+ 3)
. . .

It is tempting to wonder whether the Worpitzky argument by itself gives non-

trivial zero-free regions for ζ but my feeling is that it will not: that we will need a

more subtle way to handle the expression for 1/Fm than we needed for 1/Gm. It

does appear to be the case that the ratio ck/ck−1 is decreasing. If this is true it

would indicate that this representation for Fm lies “at the edge” of what we need to

prove zero-free regions. The stronger statement used above for the ak clearly cannot

hold and numerically one can find values of m for which it does not: for which the

sequence kck/ck−1 is not decreasing.

The expression for cm,k given in (2) is not easy to understand directly: the

alternation of sign in the Bernoulli numbers creates a subtle cancellation between

the terms. However it is possible to prove that the coefficients are all positive. To

begin with we shall find a generating function.

Lemma 3 For each m and k larger than 1 set

cm,k = (m+ 1)(−1)k−1
∑

j≤m/2
am,2j(1− 2j)B2j

(
j

k − 1

)
.

Then for |z|, |y| < 1 and using principal values for the square root and logarithm,

1 +
1

m+ 1

∑
k≥1,m≥1

cm,kz
k−1ym = (log(1− y))2

∂

∂y

√
1− z

(1− y)
√
1−z − 1

.

Once this lemma is established we can prove positivity using a standard continued

fraction. The series for (log(1− y))2 has only non-negative coefficients so it suffices
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to check that the coefficients are positive in the expansion of

∂

∂y

√
1− z

(1− y)
√
1−z − 1

.

It is known how to expand (1 − y)x as a continued fraction (see for example [H]

p.535).

(1− y)t − 1

t

=
2y

2− y + ty −
(1− t2)y2

3(2− y)−
(4− t2)y2

5(2− y)
. . .

From this it follows that

2
√

1− z
(1− y)

√
1−z − 1

= − 2
y

+ 1−
√

1− z +
zy

3(2− y)−
(3 + z)y2

5(2− y)−
(8 + z)y2

7(2− y)
. . .

When this expression is differentiated with respect to y the first term gives 2/y2

which has a positive coefficient and the next term disappears. So it suffices to check

that if the continued fraction is expanded as a power series in y the coefficients are

polynomials in z with positive coefficients. If we want to check the coefficient of ym

we only need to use the first m/2 levels of the continued fraction. Now start at the

bottom of this finite continued fraction and work back up inductively. At each stage

you have a fraction of the form

(k2 − 1 + z)y2

(2k + 1)(2− y)− b2y2 − b3y3 − · · ·

where each bj is a polynomial in z with positive coefficients. When this expression

is expanded as a power series in y the coefficients are again polynomials in z with

positive coefficients.
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Now for the proof of Lemma 3.

Proof For y and z sufficiently small
√

1− z
(1− y)

√
1−z − 1

=
∑
j≥0

Bj(
√

1− z)j
(log(1− y))j−1

j!
,

its derivative with respect to y is

∑
j≥0

(1− j)Bj(
√

1− z)j
1

1− y
(log(1− y))j−2

j!

and the series is absolutely convergent. Therefore

(log(1− y))2
∂

∂y

√
1− z

(1− y)
√
1−z − 1

=
∑
j≥0

(1− j)Bj(
√

1− z)j
1

1− y
(log(1− y))j

j!
.

Since only the terms for which j is even contribute to the sum we can introduce a

negative sign to get

∑
j≥0

(1− j)Bj(
√

1− z)j
1

1− y
(− log(1− y))j

j!
. (3)

It is a standard property of Stirling numbers that for each j and for |y| < 1

(− log(1− y))j+1

(j + 1)!
=
∑
m≥0

am,j
ym+1

m+ 1

and hence that∑
m≥0

am,jy
m =

d

dy

(− log(1− y))j+1

(j + 1)!
=

1

1− y
(− log(1− y))j

j!
.

So the expression in (3) is equal to∑
j≥0

∑
m≥0

am,jy
m(1− j)Bj(

√
1− z)j.

Now replace j by 2j using the fact that only even numbered terms occur to get∑
j≥0

∑
m≥0

am,2jy
m(1− 2j)B2j(1− z)j.

If m = 0 then am,j is non-zero only if j = 0 so the expression is

1 +
∑
j≥0

∑
m≥1

am,2jy
m(1− 2j)B2j(1− z)j.
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Since we know that the series converges even if we replace the Bernoulli numbers

by their absolute values we know that this series is absolutely convergent so we may

interchange the order of summation to get

1 +
∑
m≥1

ym
∑

0≤j≤m/2
am,2j(1− 2j)B2j(1− z)j

= 1 +
∑
m≥1

ym
∑

0≤j≤m/2

j+1∑
k=1

(−1)k−1am,2j(1− 2j)B2j

(
j

k − 1

)
zk−1

= 1 +
1

m+ 1

∑
m≥1

ym
∑
k≥1

cm,kz
k−1.

Once one has seen the Worpitzky argument and the generating function for the

coefficients cm,k one is tempted to replace the functions Fm with an analogous family

of approximations indexed by the variable y rather than by the power m of y. To

be precise we choose a large positive number r and then for <s > 1

sr1−sζ(s)Γ(s) =
1

4

∫ ∞
0

r2

sinh2(rx/2)
xs dx.

Now approximate the function by truncating the integral at x = 1 and then substi-

tute x =
√

1− z to get

1

8

∫ 1

0

r2(1− z)

sinh2(r
√

1− z/2)
(1− z)(s−1)/2−1 dz.

Now for each fixed r we expand the function

r2(1− z)

sinh2(r
√

1− z/2)

as a power series in z to obtain coefficients that replace the cm,k. Very limited

numerical experiments suggest that this coefficient sequence has the “right shape”

for each r.

The resulting approximations to ζ don’t have the appealingly simple matrix

representations of the Fm discussed in the first article in this series but they appear

to have simpler coefficients in the “asymptotic” picture discussed in this article.

My guess is that ultimately this simplicity is an illusion, but perhaps not. What is
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easy to see is that these coefficients form a logarithmically concave sequence. The

Hadamard product formula for sinh shows us that

r2(1− z)

sinh2(r
√

1− z/2)
=

1

(1 + r2(1− z)/(4π2))2
1

(1 + r2(1− z)/(16π2))2
. . . .

It is easily checked by hand that each factor in this product has a logarithmically

concave coefficient sequence. By the discrete form of the Brunn-Minkowski inequal-

ity the product does as well.
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