
ERGODIC RAMSEY THEORY – NOTES

JOEL MOREIRA

These notes are being written for the TCC module on Ergodic Ramsey Theory, which runs in the Fall
of 2021. Ergodic Ramsey Theory is a relatively young subject of mathematics whose purpose is to apply
techniques, methods and ideas from ergodic theory, and more the general theory of dynamical systems, to
problems that arise in Ramsey theory, combinatorics, and number theory. The main interface between the
dynamical and the combinatorial realms is provided by the Correspondence Principle of Furstenberg, first
introduced in [9] to give a new ergodic theoretic proof of Szemerédi’s theorem on arithmetic progressions.

The module will start by introducing some of the problems from Ramsey theory that we will consider, as
well as the preliminary results from Ergodic theory, and then, after introducing the Furstenberg Correspon-
dence Principle we will go over the ergodic theoretic proof of Szemerédi’s theorem. The last half (or third)
of the course focuses on more recent developments in ergodic Ramsey theory (still to be decided).

We will not follow any single textbook from beginning to end, but both Furstenberg’s book [10] and
Einsiedler-Ward’s book [7] share the same spirit of introducing ergodic theory both as a theory on its own
and as a tool to approach problems in combinatorics and number theory. Bergelson’s survey [1] with the
same title as these notes obviously shares a great deal of content. A more advanced text on this subject
is the recent book of Host and Kra [17], which goes into much more depth. For an introductory text to
general ergodic theory, Walters [27] is an excellent source, which can be complemented with Glasner’s [12] or
Cornfeld-Fomin-Sinai’s [4]. For an introductory text to general Ramsey Theory, the book [14] by Graham,
Rothschild and Spencer of that title is still one of the best sources.

1. Ramsey Theory

Ramsey theory is a branch of combinatorics which, roughly speaking, explores structures that persist
when partitioned. Instead of trying to give a more precise description, we illustrate this principle with a few
examples of results from Ramsey theory.

Theorem 1.1 (Schur, [24]). Given a finite coloring of N, one can always find x, y ∈ N with x, y, x + y all
having the same colour.

To be clear, a finite coloring of N is a function f : N→ F , where F is a finite set (whose elements are the
“colours”). Two elements x, y of N have the same color if f(x) = f(y).

In fact, it is not necessary to color all of N before one finds a monochromatic (i.e. with a single color)
triple of the form {x, y, x+ y}. Here’s an alternative formulation of Schur’s theorem.

Theorem 1.2 (Schur, again). For every r ∈ N there exists N ∈ N such that whenever the set {1, . . . , N} is
colored with r colors there is a monochromatic triple of the form {x, y, x+ y} ⊂ {1, . . . , N}.

The difference between Theorems 1.1 and 1.2 is that in the latter, N is chosen depending only on the
number of colors r. To estimate the smallest N in terms of r is a difficult and interesting problem, but the
purely qualitative Theorem 1.2 as formulated turns out to be equivalent to the apparently weaker Theorem 1.1
(and not in the uninteresting sense that any two true statements are tautological equivalent).

Exercise 1.3. Prove that Theorems 1.1 and 1.2 are equivalent. [Hint: One implication is easy. For the
other, suppose you have counterexamples to Theorem 1.2 for every N , then you can use them to find a
counterexample to Theorem 1.1.]

The most common way to solve the previous exercise is to use, explicitly or implicitly, the so-called
compactness principle , which in this case is simply the statement that the set of all colorings of N
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into r colors is a compact set. The compactness principle allows one to formulate many Ramsey theoretic
statements in an infinitary form, such as Theorem 1.1. This is the form that ergodic theory can handle,
but it is useful to keep in mind that the statements are equivalent to their finitistic forms.

The next theorem was considered by Khinchine as one of “Three Pearls in Number Theory” [19].

Theorem 1.4 (Van der Waerden, [26]). In any finite coloring of N there exist arbitrarily long monochromatic
arithmetic progressions.

In other words, for any k ∈ N there are x, y ∈ N such that the arithmetic progression {x, x + y, x +
2y, . . . , x+ ky} is monochromatic.

There is a natural finitistic form of van der Waerden’s theorem.

Exercise 1.5. Show that Theorem 1.4 is equivalent to the following statement:
“For any r, k ∈ N there exists N such that for any coloring of the set {1, . . . , N} with r colors there exists

a monochromatic arithmetic progression of the form {x, x+ y, x+ 2y, . . . , x+ ky} ⊂ {1, . . . , N}.”

There is yet another equivalent formulation of van der Warden’s theorem with a more geometric flavour.

Exercise 1.6. Show that Theorem 1.4 is equivalent to the following statement:
“For any finite coloring of N and for any finite set F ⊂ N there exists a monochromatic affine image of

F , i.e. there exist a, b ∈ N such that the set aF + b := {ax+ b : x ∈ F} is monochromatic.”

The next result was conjectured by Erdős and Turán as an attempt to better understand the true nature
of van der Waerden’s theorem. After some initial progress it was finally settled by Szemerédi in a remarkably
involved combinatorial proof. In order to state it we need the notion of (upper) density.

Definition 1.7 (Upper density). Given a set A ⊂ N its upper density, denoted d̄(A) is the quantity

d̄(A) = lim sup
N→∞

1

N

∣∣A ∩ {1, . . . , N}∣∣.
Replacing lim sup with lim inf we obtain the analogous notion of lower density.

Here and elsewhere in these notes, when X is a finite set we denote by |X| its cardinality.

Exercise 1.8. Show that upper density is subadditive and shift invariant, i.e. if A,B ⊂ N and n ∈ N then
d̄(A ∪B) ≤ d̄(A) + d̄(B), and d̄(A− n) = d̄(A), where A− n := {x ∈ N : x+ n ∈ A}.

Theorem 1.9 (Szemerédi, [25]). If A ⊂ N has positive upper density, then it contains arbitrarily long
arithmetic progressions.

Note that Szemerédi’s theorem implies van der Waerden’s theorem, since for any finite coloring of N one
can use Exercise 1.8 to deduce that at least one of the colors has positive density.

Here is the finitistic form of Szemerédi’s theorem.

Exercise 1.10. Show that Theorem 1.9 is equivalent to the following statement:
“For any δ > 0 and k ∈ N there exists N such that any set A ⊂ {1, . . . , N} with |A| > δN contains an

arithmetic progression of the form {x, x+ y, x+ 2y, . . . , x+ ky}.”

Exercise 1.11. Let k ∈ N. Show that there exists δ < 1 such that any set A ⊂ N with d̄(A) > δ contains an
arithmetic progression of the form {x, x+ y, x+ 2y, . . . , x+ ky}.

More than twenty years before Szemerédi’s theorem was first proved, Roth obtained the special case
corresponding to arithmetic progressions of length 3.

Theorem 1.12 (Roth, [22]). Any set A ⊂ N with d̄(A) > 0 contains a 3-term arithmetic progression.

Roth’s proof of Theorem 1.12 made use of Fourier Analysis, and would later inspire Gowers to obtain
a full proof of Szemerédi’s theorem [13] by developing what is now called “Higher order Fourier Analysis”.
Another Ramsey theoretic result that can be obtained using Fourier Analysis is the following.

Theorem 1.13 (Sárközy, [23]). If A ⊂ N has d̄(A) > 0, then there exist x, y ∈ A whose difference is a
perfect square.
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Theorem 1.13 is connected with the study of sets of differences of large sets. In this context, we think of
a set A ⊂ N with positive upper density as a large set, and are interested in understand the structure of the
set of differences A−A := {x− y : x, y ∈ A}. A related concept is that of intersective sets:

Definition 1.14. A set R ⊂ Z is a called intersective if for every A ⊂ N with d̄(A) > 0, the intersection
(A−A) ∩R is non-empty.

Using this terminology, Theorem 1.13 states that the set of perfect squares is an intersective set.

Exercise 1.15. Show that the following are intersective sets.

• Any set with lower density 1.
• The set kN of all multiples of k, for an arbitrary k ∈ N.
• (∗) Any set of differences I − I for any infinite set I (not necessarily with positive upper density).

Exercise 1.16. Show that the following are not intersective sets.

• The odd numbers.
• The set N \ (kN) of numbers not divisible by k, for an arbitrary k ∈ N.

Sárközy’s theorem can be extended to more general polynomials than p(x) = x2. The exact extent of this
generalization was only fully understood after work of Furstenberg [9, 10] and of Kamae and Mendes-France
[18].

Theorem 1.17. Let p ∈ Z[x] be a polynomial with integer coefficients and no constant term. Then the set
R := {p(n) : n ∈ N} is intersective if and only if it contains a multiple of any k ∈ N (in other words, if p
has a root modulo k for every k).

Notice that an easy sufficient condition on a polynomial to have a root modulo k for every k, is to satisfy
p(0) = 0.

One can interpret Sárközy’s theorem as stating that any set A ⊂ N with positive upper density contains a
2-term arithmetic progression whose common difference is a perfect square. From this angle it makes sense
to ask about longer arithmetic progressions. The following powerful theorem of Bergelson and Leibman gives
an affirmative answer.

Theorem 1.18 (Polynomial Szemeréredi theorem, [2]). Let p1, . . . , pk ∈ Z[x] satisfy pi(0) = 0. Then any
set A ⊂ N with d̄(A) > 0 contains a “polynomial progression” of the form{

x, x+ p1(y), x+ p2(y), . . . , x+ pk(y)
}
.

Observe that by taking pi(y) = iy one recovers Szemerédi’s theorem from Theorem 1.18.

2. Ergodic theory background

In this section we collect some of the basic definitions and facts about ergodic theory that we will need
later on.

Definition 2.1 (Measure preserving transformation). Given two probability spaces (X,A, µ) and (Y,B, ν),
we say that a map1 T : X → Y preserves the measure or is a measure preserving transformation if
for every B ∈ B, the set T−1B := {x ∈ X : Tx ∈ B} is in A and satisfies µ(T−1B) = ν(B).

A map between probability spaces induces a linear operator between the corresponding Lp spaces.

Exercise 2.2. Let (X,A, µ) and (Y,B, ν) be probability spaces and let T : X → Y be a measurable map.

• Show that T preserves the measure if and only if for every f ∈ L2(Y ), the function f ◦ T belongs to
L2(X) and satisfies ∫

X

f ◦ T dµ =

∫
Y

f dν. (2.1)

• If both µ and ν are Radon measures, show that T preserves the measure if and only if (2.1) holds
for every f ∈ C(Y ). [Hint: C(Y ) is dense in L2(Y ).]

1To be completely precise, T may be defined only on a full measure subset of X.
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The basic object in ergodic theory is a measure preserving system (m.p.s. for short), which we now
define.

Definition 2.3 (Measure preserving system). A measure preserving system is a quadruple (X,B, µ, T ) where
(X,B, µ) is a probability space and T : X → X is a measure preserving transformation.

Example 2.4 (Circle rotation). Let X = [0, 1), endowed with the Borel σ-algebra B and the Lebesgue
measure µ. Given α ∈ R we consider the map T = Tα : X → X given by Tx = x+ α mod 1. The fact that
T preserves the measure µ follows from the basic properties of Lebesgue measure.

Alternatively, we can identify the space X with the compact group T = R/Z in the obvious way. The
Lebesgue measure on [0, 1) gets identified with the Haar measure on T, and T becomes the map Tx = x+ α̃
(where α̃ = α+ Z ∈ T). This map clearly preserves the Haar measure.

The reason to call this system a circle rotation is that the group T is isometrically isomorphic to the circle
S1 ⊂ C, viewed as a group under multiplication. The map T under this identification becomes the rotation
T : z 7→ θz, where θ = e2πiα ∈ S1.

The above example can be extended to “rotations” on any compact group X, endowed with the Borel
σ-algebra B and Haar measure µ. Taking any α ∈ X, the map T : x 7→ x + α preserves µ and hence
(X,B, µ, T ) is a measure preserving system, called a group rotation or a Kronecker system .

Example 2.5 (Doubling map). Again take (X,B, µ) to be the unit interval X = [0, 1] equipped with its Borel
σ-algebra and Lebesgue measure. Let T : X → X be the doubling map Tx = 2x mod 1.

At first sight it may seem that the doubling map doubles the measure, but in fact it preserves the measure!
For instance, given an interval [a, b] ⊂ [0, 1], the pre-image T−1[a, b] is the union of two intervals, each half
the length of the original interval:

T−1
(
[a, b]

)
=

[
a

2
,
b

2

]
∪
[
a+ 1

2
,
b+ 1

2

]
.

Exercise 2.6. Show that the doubling map does indeed preserve the Lebesgue measure. [Hint: use Exer-
cise 2.2]

Here is the first theorem of ergodic theory.

Theorem 2.7 (Poicaré recurrence theorem). Let (X,B, µ, T ) be a measure preserving system and let A ∈ B
with µ(A) > 0. Then for some n ∈ N we have

µ(A ∩ T−nA) > 0. (2.2)

Proof. The sets A, T−1A, T−2A, . . . all have the same (positive) measure, and all live in X which has measure
1. Therefore we must have µ(T−iA ∩ T−jA) > 0 for some i > j. Finally, letting n = i− j, observe that

µ(A ∩ T−nA) = µ
(
T−j(A ∩ T−nA)

)
= µ(T−iA ∩ T−jA) > 0.

�

While Poicaré’s recurrence theorem is a simple result, it has a lot of potential for extensions, which in
turn reveal a lot about the structure of measure preserving systems. For instance, one may ask how small
can we choose n? How large is the set of n for which (2.2) holds? How large can we make the measure of
the intersection be?

In order to address some of these questions, we make the following definition.

Definition 2.8. A set R of natural numbers is called a set of recurrence if for every measure preserving
system (X,B, µ, T ) and every A ∈ B with µ(A) > 0 there exists n ∈ R such that µ(A ∩ T−nA) > 0.

With this notion we can reformulate Poicaré’s recurrence theorem as stating that N is a set of recurrence.

Exercise 2.9. Show that the set 2N of even numbers is a set of recurrence but the set 2N−1 of odd numbers
is not.

Here is a more sophisticated result, due to Furstenberg, which will be proved later in the course.
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Theorem 2.10. The set Q := {m2 : m ∈ N} of perfect squares is a set of recurrence. In fact, for every
m.p.s. (X,B, µ, T ), every A ∈ B and for every ε > 0 there exists a perfect square n = m2 ∈ N such that

µ(A ∩ T−nA) > µ(A)2 − ε

It turns out that the notion of sets of recurrence coincides with the notion of intersective sets.

Proposition 2.11. A set R ⊂ N is a set of recurrence if and only if it is intersective (see Definition 1.14).

Proposition 2.11 provides the first connection we’ve encountered between combinatorics and Ramsey
theory; to prove it we will need the Furstenberg Correspondence Principle.

Exercise 2.12. (∗) Show that if R ⊂ N is a set of recurrence and is decomposed as R = A∪B then either A
or B is a set of recurrence. [Hint: Proceed by contradiction and take the product system of the two presumed
counter-examples.]

2.1. Ergodicity. The word ergodic arises from Boltzman’s “ergodic hypothesis” in termodynamics, which
describes a system where, over long periods of time, the time spent by a system in some region of the phase
space of microstates with the same energy is proportional to the volume of this region2. In the language of
measure preserving systems, the ergodic hypothesis would imply that the proportion of time that the orbit
of a point (i.e. the sequence x, Tx, T 2x, . . . ) is in a set A, tends to µ(A). This is in fact the conclusion of
the ergodic theorem, which will be discussed below.

However, there is an obvious obstruction to the ergodic hypothesis: suppose (Xi,Ai, µi, Ti) is a measure
preserving system for each i = 1, 2 with X1 and X2 disjoint. Now let Y = X1 ∪X2, let B be the σ-algebra
generated by A1 ∪ A2, let ν = 1

2µ1 + 1
2µ2 and let S : Y → Y be the map that maps x ∈ Xi to Tix, for

i = 1, 2. Then (Y,B, ν, S) is a measure preserving system, but a point x ∈ X1 (or, more precisely, its orbit)
will never visit X2, even though µ(X2) = 1/2 > 0. A system is ergodic when it avoids this behavior.

Definition 2.13. A measure preserving system (X,B, µ, T ) is ergodic if every set A ∈ B satisfying T−1A =
A is trivial in the sense that either µ(A) = 0 or µ(A) = 1.

Proposition 2.14. A measure preserving system (X,B, µ, T ) is ergodic if and only if every f ∈ L2 which
is invariant in the sense that f ◦ T = f a.e. is constant a.e.

Proof. For every A ∈ B the indicator function 1A is in L2, and hence we obtain the “only if” implication.
For the converse implication, suppose the system is ergodic and f ∈ L2 is invariant. Then for every t ∈ R,

the set At := {x ∈ X : f(x) > t} is invariant and hence has either measure 0 or 1. Let r = inf{t : µ(At) = 0}.
Then µ(Ar) = 0 because Ar =

⋃
n≥1Ar+1/n. On the other hand µ(At) = 1 for every t < r and hence

µ({x : f(x) ≥ r}) = 1. We conclude that f = r a.e. �

The ergodic theorems assert, roughly speaking, that ergodic systems satisfy the ergodic hypothesis. Given
a measure preserving system (X,B, µ, T ), the set I ⊂ L2(X) consisting of (almost everywhere) T -invariant
functions, i.e. I := {f ∈ L2(X) : f ◦ T = f} is a closed subspace. Therefore we can consider the orthogonal
projection PI : L2(X) → I defined so that PIf is the element of I which is closest to f . It is not hard to
show that PI is a linear operator, and that it satisfies 〈f − PIf, g〉 = 0 for every g ∈ I. Here and in these
notes, the inner product in L2 is defined by

〈f, g〉 =

∫
X

f(x)g(x) dµ(x).

Theorem 2.15 (Birkhoff’s pointwise ergodic theorem, L2 version). Let PI : L2(X)→ I denote the orthog-
onal projection onto the subspace of T -invariant functions. Then for every f ∈ L2

lim
N→∞

1

N

N∑
n=1

f ◦ Tn = PIf a.e.. (2.3)

If the system is ergodic, then I consists only of the constant functions and PIf =
∫
X
f dµ a.e. Therefore

for ergodic systems we have the following corollary.

2https://en.wikipedia.org/wiki/Ergodic_hypothesis
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Corollary 2.16. Let (X,B, µ, T ) be an ergodic measure preserving system. Then for every A ∈ B and
almost every x ∈ X,

lim
N→∞

1

N

∣∣∣{n ∈ {1, . . . , N} : Tnx ∈ A
}∣∣∣ = µ(A).

Proof. Apply Theorem 2.15 to the indicator function 1A of A and observe that, for each x ∈ X,

N∑
n=1

(1A ◦ Tn)(x) =
∣∣∣{n ∈ {1, . . . , N} : Tnx ∈ A

}∣∣∣.
�

A different version of the ergodic theorem was obtained by von Neumann, usually called the mean ergodic
theorem because it deals with convergence in L2 (or more generally in Lp) instead of almost everywhere
convergence. This version has the advantage that it holds even if one changes the averaging scheme from
{1, . . . , N} to any sequence of intervals {aN , aN + 1, . . . , aN + N}. Moreover, the simpler proof of von
Neumann’s theorem can be easily modified to apply to measure preserving actions of any amenable group.

Theorem 2.17 (von Neumann’s mean ergodic theorem, L2 version). Let PI : L2(X) → I denote the
orthogonal projection onto the subspace of T -invariant functions. Then for every f ∈ L2

lim
N−M→∞

1

N −M

N∑
n=M

f ◦ Tn = PIf in L2(X). (2.4)

Remark 2.18.

lim
N−M→∞

1

N −M

N∑
n=M

hn = c

means that for every ε > 0 there exists some K such that if M,N ∈ N satisfy N − M > K, then∣∣∣∣∣ 1

N −M

N∑
n=M

hn − c

∣∣∣∣∣ < ε. This mode of convergence is often used in ergodic theory and is called a uniform

Cesàro limit or a uniform Cesàro average, as opposed to the kind of averages used in the pointwise
ergodic theorem, called simply Cesàro averages.

Exercise 2.19. Show that

lim
N−M→∞

1

N −M

N∑
n=M

hn = c

is equivalent to

∀ (IN )N∈N lim
N→∞

1

|IN |
∑
n∈IN

hn = c

where (IN )N∈N is a sequence of intervals IN = {aN + 1, aN + 2, . . . , aN + bN} whose lengths bN tend to
infinity.

Given a measure preserving system (X,B, µ, T ), the Koopman operator ΦT : L2(X) → L2(X) is the
linear operator defined by the equation ΦT f := f ◦ T . Since T is measure preserving, it follows that ΦT is
an isometry, i.e., 〈ΦT f,ΦT g〉 = 〈f, g〉. Therefore Theorem 2.17 is a corollary of the following.

Theorem 2.20 (von Neumann’s mean ergodic theorem, Hilbert space version). Let H be a Hilbert space, let
Φ : H → H be an isometry and let I ⊂ H be the subspace of invariant vectors, i.e. I = {f ∈ H : Φf = f}.
Let P : H → I be the orthogonal projection onto I. Then for every f ∈ H,

lim
N−M→∞

1

N −M

N∑
n=M

Φnf = Pf in norm (2.5)
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Proof. If f ∈ I then (2.5) holds trivially (with both sides equal to f).
On the other hand, if f = g − Φg for some g ∈ H, then for any h ∈ I we have

〈f, h〉 = 〈g, h〉 − 〈Φg, h〉 = 〈g, h〉 − 〈g,Φh〉 = 0

hence f is orthogonal to I and so Pf = 0. Moreover we have that
∑N
n=M Φnf = ΦMg − ΦN+1g, which has

norm at most 2‖g‖, and so the limit in the left hand side of (2.5) is also 0.
Call J the subspace of the vectors of the form g − Φg. We claim that H = I ⊕ J and this concludes the

proof. To prove the claim, letting f ⊥ J , we have:

‖f − Φf‖ = ‖f‖2 + ‖Φf‖2 − 2Re〈f,Φf〉
= 2‖f‖2 − 2Re〈f,Φf〉 − 2Re〈f, f − Φf〉 = 2‖f‖2 − 2Re〈f, f〉 = 0

so f ∈ I and hence I = J⊥ and this finishes the proof. �

Corollary 2.21. A measure preserving system (X,B, µ, T ) is ergodic if and only if for every A,B ∈ B,

lim
N−M→∞

1

N −M

N∑
n=M

µ(T−nA ∩B) = µ(A)µ(B). (2.6)

Proof. If the system is not ergodic, then there exists A ∈ B with µ(A) ∈ (0, 1) which is invariant. Therefore,
taking B = X \A, we see that T−nA ∩B = ∅ for every n, contradicting (2.6).

Let f = 1A and g = 1B . Observe that 1T−nA = f◦Tn = ΦnT f . Therefore µ(T−nA∩B) =
∫
X

ΦnT 1A·1B dµ =

〈ΦnT 1A, 1B〉. Since strong (or norm) convergence in L2 implies weak convergence, it follows from(2.4) that

lim
N−M→∞

1

N −M

N∑
n=M

µ(T−nA ∩B) = 〈PIf, g〉.

Finally, in view of ergodicity, we have that PIf is the constant
∫
X
f dµ = µ(A), and (2.6) follows from the

fact that
∫
X
µ(A)g dµ = µ(A)µ(B). �

Setting A = B in Corollary 2.21 we see that, in ergodic system, one can improve Poincaré’s recurrence
theorem by finding n ∈ N such that µ(T−nA ∩ A) is arbitrarily close to µ2(A). One can in fact obtain a
stronger version of this fact, which also applies to non-ergodic systems.

Definition 2.22. A set S ⊂ N is called syndetic if it has bounded gaps. More precisely, S is syndetic if
there exists L ∈ N such that every interval {n, n+ 1, . . . , n+L− 1} of length L contains some element of S.

Exercise 2.23. Let (an) be a sequence of non-negative real numbers and let a ∈ R. Show that if

lim
N−M→∞

1

N −M

N∑
n=M

an = a,

then for every ε > 0 the set

{n ∈ N : an ≥ a− ε}
is syndetic.

Theorem 2.24 (Khintchine’s recurrence theorem). Let (X,B, µ, T ) be a measure preserving system, let
A ∈ B and let ε > 0. Then there exists n ∈ N such that µ(A ∩ T−nA) > µ2(A)− ε, and moreover the set{

n ∈ N : µ(A ∩ T−nA) > µ2(A)− ε
}

is syndetic.

Proof. Applying Theorem 2.17 to the indicator function 1A of A we have

lim
N−M→∞

1

N −M

N∑
n=M

µ(T−nA ∩A) =

∫
X

PI1A · 1A dµ.
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Since PI is an orthogonal projection it follows that
∫
X
PI1A · 1A dµ = ‖PI1A‖2. We now use the Cauchy-

Schwarz inequality to get

‖PI1A‖2 ≥
(∫

X

PI1A dµ

)2

= µ(A)2.

�

3. Furstenberg’s Correspondence Principle

The connection between Ramsey theory and ergodic theory hinges on the Furstenberg Correspondence
Principle which we will soon formulate. Recall from Exercise 1.8 that the upper density satisfies d̄(A) =
d̄(A − 1) for any set A ⊂ N. Denote by T the successor map T : N → N, T : x 7→ x + 1. Then A − 1
can be written as T−1A. While d̄ is not a probability measure (it is not even finitely additive), the tuple
(N,P(N), d̄, T ) looks a lot like a measure preserving system (by P(N) we denote the collection of all subsets
of N).

Furstenberg Correspondence Principle.
For many “arithmetic purposes”, the tuple (N,P(N), d̄, T ) behaves like a measure preserving system.

This is, of course a very vague statement, which is why it is a “principle” and not a “theorem”. There are
several incarnations of this principle as precise statements, but it is good to keep in mind the overarching
principle, which can be adapted for different purposes.

Exercise 3.1. Show that there are sets A,B ⊂ N with d̄(A) = d̄(B) = 1 but A ∩B = ∅.
It is natural to wonder if the problem lies with the definition of upper density itself, and in particular

with the lim sup. For instance, if one restricts attention to sets with natural density , defined as the limit
d(A) := limN→∞

1
N |A ∩ {1, . . . , N}| only for those sets A for which it exists, could it have better properties

than upper density? While it is true (and easy to check) that Unfortunately, doing so leads to problems of
a different kind:

Exercise 3.2. Show that there are sets A,B ⊂ N both having natural density but such that A ∩B does not.

The first instance of the Correspondence Principle was used by Furstenberg to give an ergodic theoretic
proof of Szemerédi’s theorem (Theorem 1.9), which states that if A ⊂ N has d̄(A) > 0, then A contains an
arithmetic progression of length k for any prescribed k ∈ N. Note that

∃x, n ∈ N : {x, x+ n, . . . , x+ kn} ⊂ A ⇐⇒ ∃n ∈ N : A ∩ (A− n) ∩ · · · ∩ (A− kn) 6= ∅.
Using the shift T , we can write this as ∃n ∈ N : A ∩ T−nA ∩ · · · ∩ T−knA 6= ∅. If we subscribe to the
Correspondence Principle, then Szemerédi’s theorem becomes the statement that in a measure preserving
system, whenever A has positive measure and k ∈ N, there exists n ∈ N such that A∩T−nA∩· · ·∩T−knA 6= ∅.
Since sets of measure 0 in a measure space might as well be empty, we have shown that Szemerédi’s theorem
is morally equivalent to the following.

Theorem 3.3 (Furstenberg’s multiple recurrence theorem, [9]). Let (X,B, µ, T ) be a measure preserving
system, let A ∈ B have µ(A) > 0 and let k ∈ N. Then there exists n ∈ N such that

µ
(
A ∩ T−nA ∩ · · · ∩ T−knA

)
> 0.

It turns out that Theorem 3.3 is indeed equivalent to Szemerédi’s theorem, which will be proved using a
concrete instance of the Furstenberg Correspondence Principle. Note that for k = 1, Theorem 3.3 reduces to
Poincaré’s Recurrence theorem (Theorem 2.7), which has a fairly simple proof. On the other hand, the case
k = 1 of Szemerédi’s theorem states that the even more trivial fact that any set with positive upper density
contains a 2-term arithmetic progression.

The proof of Theorem 3.3, which will occupy a few lectures, not only yields a proof of Szemerédi’s theorem,
but it reveals some deep structural results about arbitrary measure preserving systems.

Here is the version of the correspondence principle, formulated in [9], that we will use.

Theorem 3.4 (Correspondence Principle). Let E ⊂ N. Then there exist a measure preserving system
(X,B, µ, T ) and a set A ∈ B with µ(A) = d̄(E) such that for any n1, . . . , nk ∈ N,

µ
(
A ∩ T−n1A ∩ · · · ∩ T−nkA

)
≤ d̄
(
E ∩ (E − n1) ∩ · · · ∩ (E − nk)

)
. (3.1)
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Proof. It turns out that X,B, T and A will not depend on E and only µ does. Take X = {0, 1}N0 , with the
product topology (where {0, 1} has the discrete topology) and the Borel σ-algebra B. Let T : X → X be
the left shift map T : (xn)∞n=0 = (xn+1)∞n=0 and let A be the cylinder set at 0, described as A = {(xn) ∈ X :
x0 = 1}.

Then let x ∈ X be the indicator function of E, so that xn = 1 ⇐⇒ n ∈ E. For each N ∈ N, let

µN = 1
N

∑N
n=1 δTnx be the empirical measure (here, as usual, we denote by δy the Dirac measure (a.k.a

the point mass) at y). Find a sequence (Nk)k∈N such that d̄(E) = limk→∞
1
Nk
|E ∩ {1, . . . , Nk}|. Since X is

compact, so is the space of probability measures one X under the weak∗ topology3. Therefore, we may pass
to a subsequence of (Nk) (which to simplify notation will still be denoted by (Nk)) so that the limit

µ = lim
k→∞

µNk

exists. It is not hard to show that µ is T -invariant (see Exercise 3.5) so that (X,B, µ, T ) is indeed a measure
preserving system. Note that

δTnx(A) = 1 ⇐⇒ Tnx ∈ A ⇐⇒ xn = 1 ⇐⇒ n ∈ E,
so µN (A) = 1

N |E ∩ {1, . . . , N}| and hence µ(A) = d̄(E). Finally, for any n1, . . . , nk ∈ N we have δTnx

(
A ∩

T−n1A ∩ · · · ∩ T−nkA
)

= 1 ⇐⇒ n ∈ E ∩ (E − n1) ∩ · · · ∩ (E − nk), and hence

µ
(
A ∩ T−n1A ∩ · · · ∩ T−nkA

)
= lim

k→∞

1

Nk

∣∣E ∩ (E − n1) ∩ · · · ∩ (E − nk) ∩ {1, . . . , Nk}
∣∣

≤ d̄
(
E ∩ (E − n1) ∩ · · · ∩ (E − nk)

)
�

Exercise 3.5. Show that the measure µ constructed in the proof of the Furstenberg Correspondence Principle
is T -invariant.

3.1. Applications of the Correspondence Principle. The first application, as mentioned in the previous
subsection, is to reduce Szemerédi’s theorem to the multiple recurrence theorem, which, while a deep result,
is purely about ergodic theory. Indeed, given E ⊂ N with d̄(E) > 0, applying the correspondence principle
in the form of Theorem 3.4 yields a measure preserving system (X,B, µ, T ) and a set A ∈ B with µ(A) > 0
and satisfying (3.1). Then, using Theorem 3.3, one can find for any k ∈ N a number n ∈ N such that
µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0, which in view of (3.1) implies that d̄

(
E ∩ (E − n) ∩ · · · ∩ (E − kn)

)
> 0.

Now any x ∈ E ∩ (E − n) ∩ · · · ∩ (E − kn) gives rise to an arithmetic progression {x, x + n, · · · , x + kn}
contained in E.

As also mentioned above, it turns out that the converse direction is also true, i.e., taking Szemerédi’s
theorem as a blackbox, one can easily prove Theorem 3.3 (see Exercise 3.6).

The next application of the correspondence principle is a proof of Proposition 2.11:

Proof of Proposition 2.11. Suppose first that R is a set of recurrence and let E ⊂ N with d̄(E) > 0. We need
to find n ∈ R∩ (E −E). Applying Theorem 3.4 we get a m.p.s. (X,B, µ, T ) and a set A ∈ B with µ(A) > 0
satisfying (3.1). Since R is a set of recurrence, there exists n ∈ R with µ(A ∩ T−nA) > 0, which in view of
(3.1) implies that d̄(E ∩ (E − n)) > 0. In particular E ∩ (E − n) is non-empty, and if x belongs to it, then
x, x+ n ∈ E, whence n = (x+ n)− x ∈ (E − E) ∩R. We conclude that R is an intersective set.

Next suppose that R is intersective. Let (X,B, µ, T ) be a m.p.s. and let A ∈ B with µ(A) > 0. For each
x ∈ X let Ex = {n ∈ N : Tnx ∈ A}. The upper density of Ex is

d̄(Ex) = lim sup
N→∞

1

N

∣∣{n ∈ {1, . . . , N} : Tnx ∈ A
}∣∣ = lim sup

N→∞

1

N

N∑
n=1

1A(Tnx).

Using Fatou’s lemma, we can now estimate the average upper density of Ex:∫
X

d̄(Ex) dµ =

∫
X

lim sup
N→∞

1

N

N∑
n=1

1T−nA dµ ≥ lim sup
N→∞

1

N

N∑
n=1

∫
X

1T−nA dµ = µ(A)

3This follows from combining the Riesz representation theorem for measures with the Banach-Alaoglu theorem and the
trivial fact that the constant function 1 has compact support.
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Therefore the set B := {x ∈ X : d̄(Ex) > µ(A)/2} has positive measure, and for each x ∈ B we can use the
fact that R is intersective to find ax, bx ∈ Ex with ax− bx ∈ R. Since there only countably many choices for
the pairs (ax, bx), there exists a pair (a, b) ∈ N2 and a positive measure subset C ⊂ B such that for every
x ∈ C we have {a, b} ⊂ Ex and n := a − b ∈ R. Therefore C ⊂ T−aA ∩ T−bA = T−b(T−nA ∩ A) which
implies that µ(T−nA ∩A) > 0, and hence that R is a set of recurrence. �

The method used for the second half of the proof can be adapted to show that Szemerédi’s theorem implies
Furstenberg’s Multiple Recurrence theorem.

Exercise 3.6. Adapting the proof of Proposition 2.11, show that Theorem 1.9 implies Theorem 3.3.

Exercise 3.7. Show that, in the proof of Proposition 2.11, the function x 7→ d̄(Ex) is measurable and hence
we can in fact consider its integral.

Exercise 3.8. Show that, in the proof of Proposition 2.11, for µ-a.e. x ∈ X the set Ex has a natural density,
i.e., show that the limit limN→∞

1
N |Ex ∩ {1, . . . , N}| exists.

Recall Khintchine’s theorem (Theorem 2.24). Applying the correspondence principle we obtain the fol-
lowing combinatorial corollary.

Corollary 3.9. Let E ⊂ N have d̄(E) > 0. Then the set E − E is syndetic.
In fact, given sets E1, E2, . . . , Ek ⊂ N with d̄(Ei) > 0 for all i, the intersection (E1−E1)∩· · ·∩ (Ek−Ek)

is syndetic.

Proof. We prove only the second statement, which naturally implies the first one. Let E1, . . . , Ek ⊂ N have all
positive upper density. Apply Theorem 3.4 to each of them to get measure preserving systems (Xi,Bi, µi, Ti)
and sets Ai ∈ Bi for each i = 1, . . . , k satisfying µi(Ai) = d̄(Ei) > 0. Then let X =

∏k
i=1Xi, B =

⊗k
i=1 Bi,

µ =
⊗k

i=1 µi and T : X → X be the map T (x1, . . . , xk) = (T1x1, . . . , Tkxk). Let A =
∏k
i=1Ai ⊂ X and note

that µ(A) = µ1(A1)× · · · × µk(Ak).
In view of Theorem 2.24, the set R := {n ∈ N : µ(A ∩ T−nA) > 0} is syndetic. Noting that A ∩ T−nA =∏k
i=1(Ai ∩ T−ni Ai) it follows that whenever n ∈ R, for each i = 1, . . . , k we have µi(Ai ∩ T−ni Ai) > 0. Using

(3.1) it follows that d̄(Ei ∩ (Ei − n)) > 0 and in particular that n ∈ Ei − Ei for each i. We conclude that
R ⊂ (E1 − E1) ∩ · · · ∩ (Ek − Ek) and hence that this intersection is syndetic. �

As an application of this circle of ideas, here is a proof of Schur’s theorem (Theorem 1.1) essentially first
discovered by Bergelson.

Proof of Theorem 1.1. Let N = C1 ∪ · · · ∪ Cr be a finite partition (i.e. coloring) of N. After reordering the
Ci’s if needed we can find s ∈ {1, . . . , r} such that d̄(Ci) > 0 for every i = 1, . . . , s and d̄(Ci) = 0 for each
i > s. It follows that the (possibly empty) intersection E :=

⋃
i>s Ci has 0 density and in particular is not

a syndetic set.
Using Corollary 3.9 it follows that the intersection (C1−C1)∩· · ·∩ (Cs−Cs) is syndetic, and hence is not

contained in E. Therefore there exists x ∈ (C1 − C1) ∩ · · · ∩ (Cs − Cs) ∩ (N \E). Say x ∈ Cj ; we then have
that j ≤ s, so x ∈ Cj−Cj as well. Let z, y ∈ Cj be such that z−y = x. It follows that {x, y, x+y} ⊂ Cj . �

4. Polynomial Recurrence

In this section we prove a polynomial recurrence theorem, which in view of the Correspondence Principle
implies Sàrközy’s theorem (Theorem 2.10). To prove it we introduce an important tool in Ergodic Ramsey
Theory – the van der Corput trick.

Another idea that is briefly explored in this section is that of a dichotomy between “structure” and
“randomness”, albeit in a very embryonic form. In this context, structure is captured by periodic functions,
and randomness (or “mixing”) is captured by the notion of total ergodicity. This kind of dichotomy will
become more clear (and useful) in the following sections.
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4.1. The van der Corput trick. If the Correspondence Principle is the soul of Ergodic Ramsey Theory,
its beating heart is the so-called van der Corput trick. There are many variations of this technique (the
interested reader may read the expository article [3]), catered for specific applications throughout Ergodic
Ramsey Theory.

The original lemma due to van der Corput [5] is concerned with uniform distribution in the unit interval.

Definition 4.1. A sequence (xn)∞n=1 taking values in [0, 1] is said to be uniformly distributed or equidis-
tributed if for every interval (a, b) ⊂ [0, 1],

lim
N→∞

1

N

∣∣∣{n ∈ [1, N ] : xn ∈ (a, b)
}∣∣∣ = b− a. (4.1)

Due to the fact that there are uncountably many intervals (a, b) inside [0, 1], it is not clear that uniformly
distributed sequences even exist. However, we have the following criterion by Weil [28] (for a proof, see [20,
Theorems 1.1.1 and 1.2.1]).

Lemma 4.2 (Weyl criterion). Let (xn)∞n=1 be a sequence taking values in [0, 1]. The following are equivalent.

(1) (xn)∞n=1 is uniformly distributed.

(2) The sequence of measures µN = 1
N

∑N
n=1 δxn

converges in the weak∗ topology to the Lebesgue measure.
(3) For every continuous function f ∈ C[0, 1],

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(t) dt.

(4)

∀ h ∈ N lim
N→∞

1

N

N∑
n=1

e2πihxn = 0. (4.2)

Example 4.3. Let α ∈ R \Q. Then the sequence xn = nα mod 1 is uniformly distributed. Indeed, for every
h,N ∈ N we have

1

N

N∑
n=1

e2πihxn =
1

N

N∑
n=1

(
e2πihα

)n
=

1

N
· e

2πihα(N+1) − e2πihα

e2πihα − 1

and the last expression converges to 0 as N →∞.

Exercise 4.4. Show that the sequence xn =
√
n mod 1 is uniformly distributed.

Exercise 4.5. Show that the sequence xn = log n mod 1 is not uniformly distributed.

Here is the original version of the van der Corput trick.

Lemma 4.6. Let (xn)∞n=1 be a sequence taking values in R. If for every m ∈ N the sequence n 7→ xn+m −
xn mod 1 is uniformly distributed, then also the sequence n 7→ xn mod 1 is uniformly distributed.

We will prove a more general result below. As a corollary of Lemma 4.6 we obtain Weyl’s equidistribution
theorem.

Corollary 4.7. Let f ∈ R[t] be a polynomial with real coefficients. If at least one of the coefficients of f ,
other than the constant term, is irrational, then f(n) mod 1 is uniformly distributed.

Proof. We proceed by induction on the degree d = d(f) of the largest degree term of f with an irrational
coefficient. If d = 1, then the sequence f(n) mod 1 is the sum of a periodic sequence (say of period p) and
the sequence n 7→ nα mod 1 where α is the irrational coefficient of degree 1. Since pα is still irrational,
one can adapt the argument in Example 4.3 to show that f(n) mod 1 is indeed uniformly distributed when
d = 1.

Next suppose that d > 1. For each m ∈ N, the sequence gm : n 7→ f(n+m)− f(n) is itself a polynomial
with d(gm) = d(f) − 1 by induction, gm mod 1 is uniformly distributed, and in view of Lemma 4.6, so is
f(n) mod 1. �

The most useful versions of the van der Corput trick for Ergodic Ramsey Theory deal with sequences of
vectors in a Hilbert space; here is a simple formulation that will be useful later.
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Lemma 4.8. Let H be a Hilbert space and let (xn)∞n=1 be a bounded sequence taking values in H. If for
every d ∈ N,

lim
N→∞

1

N

N∑
n=1

〈xn+d, xn〉 = 0 (4.3)

then

lim
N→∞

1

N

N∑
n=1

xn = 0.

There is also a version for uniform Cesàro averages, which can be proved in the same way (see Exercise 4.9
below).

Proof of Lemma 4.8. For any ε > 0 and any D ∈ N, if N ∈ N is large enough we have∥∥∥∥∥ 1

N

N∑
n=1

xn −
1

D

D∑
d=1

1

N

N∑
n=1

xn+d

∥∥∥∥∥ < ε

2

Hence it suffices to show that, if D is large enough,

lim sup
N→∞

∥∥∥∥∥ 1

D

D∑
d=1

1

N

N∑
n=1

xn+d

∥∥∥∥∥ < ε

2

Using the Cauchy-Schwarz inequality we have

lim sup
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

1

D

D∑
d=1

xn+d

∥∥∥∥∥
2

≤ lim sup
N→∞

1

N

N∑
n=1

∥∥∥∥∥ 1

D

D∑
d=1

xn+d

∥∥∥∥∥
2

= lim sup
N→∞

1

N

N∑
n=1

1

D2

D∑
d1,d2=1

〈xn+d1 , xn+d2〉

≤ 1

D2

D∑
d1,d2=1

lim sup
N→∞

1

N

N∑
n=1

〈xn+d1 , xn+d2〉 (4.4)

Note that, for d1 6= d2, it follows from (4.3) that 1
N

∑N
n=1〈xn+d1 , xn+d2〉 → 0 as N →∞. We conclude that

the quantity in (4.4) is bounded by D
D2 = 1

D which is arbitrarily small for large enough D. �

Exercise 4.9. Adapt the proof of Lemma 4.8 to the following version for uniform Cesàro averages (see
Remark 2.18): Let H be a Hilbert space and let (xn)∞n=1 be a bounded sequence taking values in H. If for
every d ∈ N,

lim
N−M→∞

1

N −M

N∑
n=M

〈xn+d, xn〉 = 0

then

lim
N−M→∞

1

N −M

N∑
n=M

xn = 0.

Exercise 4.10. (∗)
Let p ∈ R[x] have at least one irrational coefficient (other than the constant term) and let U ⊂ [0, 1] be

open and non-empty. Is it true that the set {n ∈ N : p(n) mod 1 ∈ U} is syndetic? [Hint: Use Exercise 4.9
to obtain versions of Lemma 4.6 and Corollary 4.7 for uniform Cesàro averages and then use a similar
argument as for Exercise 2.23.]
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4.2. Totally ergodicity.

Definition 4.11. A measure preserving system (X,B, µ, T ) is totally ergodic if for every n ∈ N, the
measure preserving system (X,B, µ, Tn) is ergodic.

A convenient notation we will often use from now on is the following: given a m.p.s. (X,B, µ, T ) and a
function f ∈ L2(X), we denote by Tf the composition f ◦T (another way to think about this is, as an abuse
of language, to denote by T the associated Koopman operator).

Example 4.12. Recall the circle rotation (X,B, µ, T ) described in Example 2.4, where X = [0, 1], B is the
Borel σ-algebra, µ is the Lebesgue measure and T : x 7→ x + α mod 1. This system is totally ergodic if and
only if α is irrational. Indeed, if α is rational, say α = p/q, then qα is an integer and hence T q is the
identity map on [0, 1], which is trivially not ergodic.

On the other hand, if α is irrational, then the system is ergodic. To see this we use the ergodic theorem.
Then we need to show that for every f ∈ L2 the average

lim
N→∞

1

N

N∑
n=1

Tnf

is a constant function. But this is easy to check for functions t 7→ e(nt) with n ∈ Z, and finite linear
combinations of functions of this kind form a dense subset of L2.

Finally, for every n ∈ N, the measure preserving system (X,B, µ, Tn) is the circle rotation by nα; since
nα is also irrational when α is, the system (X,B, µ, T ) is totally ergodic in this case.

When a system (X,B, µ, T ) is totally ergodic, we obtain from the ergodic theorem the following corollary.

Corollary 4.13. Let (X,B, µ, T ) be a measure preserving system. Then it is totally ergodic if and only if
for every f ∈ L2(X) and every q, r ∈ N,

lim
N→∞

1

N

N∑
n=1

T qn+rf =

∫
X

f dµ. in L2(X) (4.5)

Proof. If the system is not totally ergodic, then there exists q ∈ N and a non-constant f ∈ L2(X) such that
T qf = f . Thus (4.5) implies that the system is totally ergodic.

To prove the converse direction, let (X,B, µ, T ) be totally ergodic and let f ∈ L2(X) and q, r ∈ N be
arbitrary. Applying the ergodic theorem (Theorem 2.17) to the (ergodic) system (X,B, µ, T q) we conclude
that

lim
N→∞

1

N

N∑
n=1

T qn+rf = lim
N→∞

1

N

N∑
n=1

(T q)n(T rf) =

∫
X

T rf dµ =

∫
X

f dµ.

�

Remark 4.14. A measure preserving system (X,B, µ, T ) is called invertible if T is invertible a.e. and the
inverse is measurable and measure preserving. In this situation we can allow q and r in Corollary 4.13 to
be negative, but if the system is not invertible, then the expression Tnf does not make sense for a negative
value of n.

Nevertheless, Corollary 4.13 still makes sense when r < 0, even if the system is not invertible. Indeed, in
this case the expression qn+ r is positive for all but finitely many values of n, and since we take an average
over N we can just ignore those finitely many values.

One could interpret the expression T qn+r appearing in (4.5) as T p(n) where p is a linear polynomial. The
following theorem reveals the power of the van der Corput trick, which allows one to upgrade Corollary 4.13
to general polynomials.

Theorem 4.15. Let (X,B, µ, T ) be a totally ergodic system and let p ∈ Z[x] be such that either the system
is invertible or the polynomial has a positive leading coefficient. Then for every f ∈ L2(X),

lim
N→∞

1

N

N∑
n=1

T p(n)f =

∫
X

f dµ. in L2(X) (4.6)
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Proof. We proceed by induction on the degree of p. If p is linear, then the result follows from Corollary 4.13,
so assume that p has degree at least 2. Eq. (4.6) holds for f if and only if it holds for f − c where c is a
constant; therefore, after subtracting

∫
X
f dµ from f we can assume that

∫
X
f dµ = 0. Letting xn = T p(n)f ,

we need to show that limN→∞
1
N

∑N
n=1 xn = 0, and to this end we will invoke the van der Corput lemma

(Lemma 4.8). Fixing d ∈ N we can compute

〈xn+d, xn〉 =

∫
X

T p(n+d)f · T p(n)f dµ =

∫
X

T p(n+d)−p(n)f · f dµ =
〈
T p(n+d)−p(n)f, f

〉
.

Since n 7→ p(n+ d)− p(n) is a polynomial of degree smaller than the degree of p, we can use the induction
hypothesis (together with the fact that convergence in L2(X) implies convergence in the weak topology) to
conclude

lim
N→∞

1

N

N∑
n=1

〈xn+d, xn〉 =

〈
lim
N→∞

1

N

N∑
n=1

T p(n+d)−p(n)f, f

〉
= 0.

This establishes the hypothesis (4.3) of the van der Corput lemma, so we conclude that lim
N→∞

1

N

N∑
n=1

xn = 0,

as desired. �

Remark 4.16. Both Corollary 4.13 and Theorem 4.15 have versions for uniform Cesàro averages, which
can be proved in the exact same way. The choice to present the regular Cesàro versions was made with the
hope that the main ideas became more transparent.

4.3. Total ergodicity and finite factors. This subsection is not necessary to the proof of Sárközy’s
theorem, but it leads to some important ideas that will appear in later sections.

Here is another example of an ergodic system that is not totally ergodic.

Example 4.17. Let X = {0, 1}, B the discrete σ-algebra, µ the normalized counting measure and T : x 7→
x+1 mod 2. In other words (X,B, µ, T ) is a transposition on 2 points. Then this system is ergodic, since the
only sets with measure in (0, 1) are the singletons {0} and {1}, and neither of them is invariant. However,
the system is not totally ergodic, since T 2 is the identity map and leaves both singletons (which have positive
measure) invariant.

While Example 4.17 seems rather trivial, it turns out that finite systems are in some sense the only
obstruction to total ergodicity. To better capture this, we need the notion of factor maps.

Definition 4.18 (Factor map). Let (X,A, µ, T ) and (Y,B, ν, S) be m.p.s. and let φ : X → Y . Then φ is a
factor map if it is surjective, preserves the measure (i.e. µ(φ−1B) = ν(B) for every B ∈ B) and intertwines
T and S, in the sense that S ◦ φ = φ ◦ T .

More generally, one can allow φ to be a surjective map between full measure sets X0 ∈ A and Y0 ∈ B such
that T−1X0 = X0 and S−1Y0 = Y0, and the relation S ◦ φ = φ ◦ T only needs to hold in X0.

We say that the system (Y,B, ν, S) is a factor of (X,A, µ, T ) if there is a factor map φ : X → Y . We
will also say that, in this case, (X,A, µ, T ) is an extension of (Y,B, ν, S).

Theorem 4.19. Let (X,A, µ, T ) be a measure preserving system. Then it is totally ergodic if and only if it
does not allow for any non-trivial finite factor.

Proof. Let (Y,B, ν, S) be a non-trivial finite system and suppose that there is a factor map π : X → Y . Let
y ∈ Y be such that ν({y}) ∈ (0, 1) and let A = π−1({y}). Then µ(A) = ν({y}) ∈ (0, 1). Let k = |Y |!.
Then Sk acts trivially on Y , and in particular S−k{y} = {y}. Therefore T−kA = A and we conclude that
(X,A, µ, T k) is not ergodic.

To prove the converse direction, suppose that (X,A, µ, T ) is not totally ergodic. Let n ∈ N be such that
Tn is not ergodic and let A ∈ A be such that µ(A) ∈ (0, 1) and T−nA = A. It follows that the σ-algebra
B generated by the sets A, T−1A, . . . , T−(n−1)A is invariant under T , finite and non-trivial. Let Y be the
(finite) set of atoms of B, and let π : X → Y be the containment map (i.e. π(x) is the atom of B that
contains x; more explicitly π(x) =

⋂
B∈B
x∈B

B). It is easy to check that π is indeed a factor map. �
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Exercise 4.20. Finish the proof of Theorem 4.19 by explicitly describing the measure preserving system
structure of Y and showing that π is indeed a factor map.

Exercise 4.21. Let (X,A, µ, T ) be a measure preserving system and let (Y,B, ν, S) be a factor. Prove that:

• If (X,A, µ, T ) is ergodic, then so is (Y,B, ν, S).
• If (X,A, µ, T ) is totally ergodic, then so is (Y,B, ν, S).

4.4. Proof of Sárközy’s theorem. Let (X,B, µ, T ) be a measure preserving system. Consider the following
subspaces of L2(X):

Hrat :=
{
f ∈ L2(X) : T kf = f for some k ∈ N

}
; Hte :=

{
f ∈ L2(X) : ∀ k ∈ N, lim

N→∞

1

N

N∑
n=1

T knf = 0

}
Exercise 4.22. Show that if f, g ∈ Hrat are bounded, then their product f · g is also in Hrat. Can you find
an example showing that the same is not tru for Hte?

Exercise 4.23. (∗)
Show that the collection {A ∈ B : 1A ∈ Hrat} is a σ-algebra.

Observe that in a totally ergodic system the space Hrat consists only of constant functions, while the
space Hte contains every function with 0 integral. The following proposition generalizes this observation.

Proposition 4.24. For any measure preserving system (X,B, µ, T ), the spaces Hrat and Hte are orthogonal
and L2(X) = Hrat ⊕Hte.

Proof. Let f ∈ L2(X) be such that T kf = f for some k ∈ N and let g ∈ Hte. Then 〈f, g〉 = 〈T kf, T kg〉 =
〈f, T kg〉. Iterating this observation we deduce that 〈f, g〉 = 〈f, T kng〉 for every n ∈ N. Averaging over n we
then deduce

〈f, g〉 = lim
N→∞

1

N

N∑
n=1

〈f, T kng〉 =

〈
f, lim
N→∞

1

N

N∑
n=1

T kng

〉
= 0,

showing that Hrat and Hte are orthogonal.
Now suppose that f ∈ L2(X) is orthogonal to Hrat, we need to show that f ∈ Hte. But for every

k ∈ N, the space Hrat contains the invariant subspace Ik for the system (X,B, µ, T k). It follows that f is

orthogonal to Ik for every k, and in view of the mean ergodic theorem, limN→∞
1
N

∑N
n=1 T

knf = 0, so that
indeed f ∈ Hte. �

We are now ready to prove Sárközy’s theorem (Theorem 1.13). Using the correspondence principle, or
more precisely, using Proposition 2.11, our task is reduced to establishing polynomial recurrence, formulated
in Theorem 2.10. The proof we provided for the Poincaré recurrence theorem (Theorem 2.7) does not
extend far beyond the scope of Theorem 2.7. However, we saw a different proof of Poincaré’s recurrence
when proving the stronger Khintchine’s recurrence (Theorem 2.24) using the ergodic theorem. Our proof
of Theorem 2.10 follows this second strategy, replacing the ergodic theorem with the “polynomial ergodic
theorem” for totally ergodic systems that we obtained in Eq. (4.6).

We will in fact establish a stronger version of Theorem 2.10.

Definition 4.25. A polynomial p ∈ Z[x] is called divisible or intersective if for every k ∈ N there exists
n ∈ N such that p(n) is a multiple of k.

If p(0) = 0 or, more generally, p has an integer root, then it is divisible. However there are polynomials,
such as p(x) = (x2 − 3)(x2 − 5)(x2 − 15) which have no integer root but are divisible. It is easy to see that
if p is not divisible, then there exists a finite system where recurrence does not occur at times of the form
p(n). In other words, if p is not divisible, then the set {p(n) : n ∈ N} is not a set of recurrence. The converse
of this observation is the content of the following theorem, which significantly extends Theorem 2.10.

Theorem 4.26. Let (X,B, µ, T ) be a measure preserving system, let A ∈ B, let ε > 0 and let p ∈ Z[x] be a
divisible polynomial with a positive leading coefficient. Then there exists n ∈ N such that µ(A ∩ T−p(n)A) >
µ2(A)− ε.
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Proof. Decompose 1A = f + g with f ∈ Hrat and g ∈ Hte. Since Hrat contains the constant functions, using
the Cauchy-Schwarz inequality we have 〈1A, f〉 = ‖f‖2 ≥ 〈f, 1〉2 = µ(A)2. Find h ∈ Hrat such that T kh = h
for some k ∈ N, and such that ‖f − h‖ < ε/2. In particular it follows that 〈1A, h〉 > µ(A)2 − ε/2.

Using divisibility of p, find a ∈ N such that p(a) ≡ 0 mod k and consider the polynomial q(n) = p(a+kn).
Then T q(n)h = h for all n ∈ N. As in the proof of Theorem 4.15, an application of the van der Corput trick
implies that

lim
N→∞

1

N

N∑
n=1

T q(n)g = 0.

Finally, we have

lim
N→∞

1

N

N∑
n=1

µ(A ∩ T−q(n)A) = lim
N→∞

1

N

N∑
n=1

〈
1A, h+ T q(n)(f − h) + T q(n)g

〉
=

〈
1A, h+ lim

N→∞

1

N

N∑
n=1

T q(n)(f − h) + T q(n)g

〉
≥ 〈1A, h〉 − ε/2 ≥ µ(A)2 − ε.

�

Exercise 4.27. Adapt the proof of Theorem 4.26 to obtain that, under the same conditions, if additionally
µ(A) > 0, then

lim
N→∞

1

N

N∑
n=1

µ(A ∩ T−p(n)A) > 0.

Exercise 4.28. (∗) Using Exercise 4.9 in the proof of Theorem 4.26, show that for any set E ⊂ N with
d̄(E) > 0, the set {n ∈ N : n2 ∈ E − E} is syndetic.

5. Proof of Roth’s Theorem

In this section we prove Roth’s theorem (Theorem 1.12). In view of the Furstenberg correspondence
principle (Theorem 3.4) it suffices to prove the following triple recurrence theorem.

Theorem 5.1 (Dynamical Roth theorem). Let (X,B, µ, T ) be a measure preserving system and let A ∈ B
with µ(A) > 0. Then there exists n ∈ N such that µ(A ∩ T−nA ∩ T−2nA) > 0.

There are a few steps in the proof of Theorem 5.1. First we make some simplifying assumptions, then we
deal with the special case of weak mixing systems. Finally, drawing upon the Jacobs-de Leeuw-Glicksberg
Decomposition, we prove the general case.

5.1. Simplifying assumptions in multiple recurrence. Recall from Remark 4.14 the notion of invertible
system. In the proof of the correspondence principle (Theorem 3.4) that we presented, the system constructed
is not in general invertible; however it is possible to make the system invertible by suitably modifying the
proof.

Exercise 5.2. Show that in Theorem 3.4 one can obtain an invertible system. In other words, show that
for any E ⊂ N there exist an invertible measure preserving system (X,B, µ, T ) and a set A ∈ B with
µ(A) = d̄(E) such that for any n1, . . . , nk ∈ N,

µ
(
A ∩ T−n1A ∩ · · · ∩ T−nkA

)
≤ d̄
(
E ∩ (E − n1) ∩ · · · ∩ (E − nk)

)
.

[Hint: Think of E as a subset of Z, and replace everywhere in the proof N with Z.]

Another way in which the conclusion of Theorem 3.4 can be improved is by noting that in the system
(X,B, µ, T ) constructed in the proof, X is a compact metric space, B is the Borel σ-algebra on X and T
is continuous. Putting these observations together we conclude that Roth’s theorem Theorem 1.12 follows
from an apparently weaker version of Theorem 5.1 where the system is invertible, X is a compact metric
space, B is the Borel σ-algebra and T is continuous. However, since Theorem 1.12 also implies Theorem 5.1
(cf. Exercise 3.6) we have that Theorem 5.1 is in fact equivalent to this apparently weaker version.
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The next simplification is to further assume that the system is ergodic. This is possible by using the
so-called ergodic decomposition theorem.

Theorem 5.3 (Ergodic Decomposition). Let X be a compact metric space, let B be the Borel σ-algebra on
X and let T : X → X be continuous. Let µ be a T -invariant Borel probability measure. Then there exists a
probability space (Y,D, ν) and, for each y ∈ Y , a T -invariant probability measure µy on (X,B) satisfying

(0) The map y 7→ µy is measurable, i.e. every integral below makes sense.
(1) For ν-a.e. y ∈ Y the measure µy is ergodic (i.e. the system (X,B, µy, T ) is ergodic).
(2) µ =

∫
Y
µy dν(y) (i.e. ∀f ∈ C(X),

∫
X
f dµ =

∫
Y

∫
X
f dµy dν(y)).

The proof of Theorem 5.3 will be omitted but it can be found in many standard texts on ergodic theory,
eg: [7, Theorem 4.8]. Here are some examples that illustrate this theorem.

Example 5.4. Let X = {1, 2, 3} be given the discrete topology and discrete σ-algebra B and let µ be the
uniform measure (more precisely, µ({1}) = µ({2}) = µ({3}) = 1/3). Let T (1) = 2, T (2) = 1 and T (3) = 3.
The set A = {1, 2} is invariant under T and 0 < µ(A) < 1, hence the system (X,B, µ, T ) is not ergodic.

However, if we restrict µ to A and renormalize it, we obtain a probability measure which makes the system
ergodic. More precisely, let ν({1}) = ν({2}) = 1/2 and ν({3}) = 0. Then ν is and ergodic measure, in other
words, the system (X,B, ν, T ) is ergodic.

Also, if ν3 is the point mass at 3 (so that ν3({1}) = ν3({2}) = 0 and ν3({3}) = 1), then the system
(X,B, ν3, T ) is also ergodic (one can also think of ν3 as the normalized restriction of µ to the invariant set
{3}).

Finally, observe that we can write µ as the convex combination µ = 2
3ν + 1

3ν3 of the ergodic measures ν

and ν3. If we let ν1 = ν2 = ν, then we can write informally µ =
∫
X
νydµ(y).

Example 5.5. Let X = T2 with the usual topology and let µ be the Lebesgue measure. Let T (x, y) = (x+y, y).
Any set of the form T×B, where B ⊂ T is a Borel set, is invariant under T and hence the measure preserving
system (X,µ, T ) is not ergodic.

Let λ denote the Lebesgue/Haar measure on T. For each y ∈ T, let µy = λ⊗δy (we are using the standard
notation δy for a Dirac point mass, and ⊗ for the product of two measures). It is not hard to see that µy
is T -invariant. Moreover, µy is ergodic exactly when y is irrational (this can be proved with some Fourier
analysis).

Since the set of irrational y have full measure on T, the ergodic decomposition of µ can be described by
µ =

∫
T µy dλ(y).

Exercise 5.6. Using Theorem 5.3 and the simplifications made at the beginning of this subsection, show
that in Theorem 5.1 we can assume that the system is ergodic (in other words, show that if we Theorem 5.1
holds for ergodic systems then it holds for any measure preserving system).

5.2. Mixing and weak-mixing. As we saw in Corollary 2.21, a measure preserving system is ergodic if and
only if any two sets became asymptotically independent on average. For certain systems, this asymptotic
independence occurs even without averaging, and we call this property mixing .

Definition 5.7. A measure preserving system (X B,µ, T ) is mixing or strong-mixing if for every A,B ∈
B,

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B).

Proposition 5.8. Let (X,B, µ, T ) be a measure preserving system. Then the following are equivalent.

• The system is mixing.
• For every f, g ∈ L2(X), limN→∞

∫
X
Tnf · g dµ =

∫
X
f dµ

∫
X
g dµ.

• For every f ∈ L2(X) with
∫
X
f dµ = 0, the orbit Tnf converges to 0 in the weak topology.

Proof. The equivalence between the first two follows from the fact that the set of finite linear combinations
of indicator functions is dense in L2. The equivalence between the last two is immediate, after replacing f
with f̃ := f −

∫
X
f dµ and noticing that

∫
X
f̃ dµ = 0. �

It should be clear that every mixing system is ergodic, but the opposite is not true. There is also a notion
of higher order mixing.
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Definition 5.9. A measure preserving system (X B,µ, T ) is mixing of order k if for every A1, . . . , Ak ∈ B
and every sequences

(
n
(1)
i

)∞
i=1

, . . . ,
(
n
(k)
i

)∞
i=1

with limi→∞ n
(r)
i − n

(s)
i =∞ for every 1 ≤ r, s ≤ k

lim
i→∞

µ
(
T−n

(1)
i A1 ∩ T−n

(2)
i A2 ∩ · · · ∩ T−n

(k)
i Ak

)
= µ(A1)µ(A2) · · ·µ(Ak).

Notice that mixing of order 2 is the same a strong-mixing. It is clear that k-mixing implies k− 1-mixing;
it is in fact a major open problem in ergodic theory whether the converse holds, even for k = 3.

A weaker notion of mixing is weak-mixing .

Definition 5.10. Let X = (X,B, µ, T ) be a measure preserving system and let X ×X be the self product
system. The system X is weak-mixing or weakly mixing if and only if X×X is ergodic.

The following theorem states several equivalent properties to weak-mixing.

Theorem 5.11. Let X = (X,B, µ, T ) be a measure preserving system. Then the following are equivalent

(1) X is weak mixing.
(2) For every ergodic m.p.s. Y, the product X×Y is ergodic.

(3) For any two sets A,B ∈ B we have lim
N→∞

1

N

N∑
n=1

∣∣µ(A ∩ T−nB)− µ(A)µ(B)
∣∣ = 0

(4) For any f, g ∈ L2 we have lim
N→∞

1

N

N∑
n=1

∣∣∣∣∫
X

Tnf · g dµ−
∫
X

f dµ

∫
X

g dµ

∣∣∣∣ = 0

(5) For any A,B ∈ B there exists a subset E ⊂ N with upper density d̄(E) = 0 such that

lim
n→∞
n/∈E

µ(A ∩ T−nB) = µ(A)µ(B).

Condition (3) explains why it is called weak mixing, and makes it clear that every mixing system is weak
mixing, and that every weak mixing system is ergodic. Not every weak-mixing system is strong-mixing, but
examples are not easy to come by. On the other hand, it is easy to show, using directly the definition, that
irrational circle rotations are ergodic but not weakly mixing.

Condition (2) implies that if X is weak mixing, then X×X×X×X is ergodic, and hence X×X is weak
mixing. Therefore any self product X×X is weak mixing if and only if it is ergodic.

Proof of Theorem 5.11. The proof was not given in class, but we provide it here for completeness.

(1)⇒(4) Replacing f with f−
∫
X
f dµ we can assume that

∫
X
f dµ = 0. Using the Cauchy-Schwartz inequality

we have

lim sup
N→∞

(
1

N

N∑
n=1

∣∣∣∣∫
X

Tnf · g dµ
∣∣∣∣
)2

≤ lim sup
N→∞

1

N

N∑
n=1

∣∣∣∣∫
X

Tnf · g dµ
∣∣∣∣2 .

Using the hypothesis that X×X is ergodic, and applying the von Neumann’s Ergodic Theorem
(Theorem 2.17) to the functions f ⊗ f ∈ L2(X ×X) and g ⊗ g ∈ L2(X ×X) we obtain

lim
N→∞

1

N

N∑
n=1

∫
X×X

(f ⊗ f) ◦ (T × T )n · g ⊗ g d(µ⊗ µ) =

∫
X×X

f ⊗ f d(µ⊗ µ)

∫
X×X

g ⊗ g d(µ⊗ µ).

Observe that
∫
X×X f ⊗ f d(µ⊗ µ) =

∣∣∫
X
f dµ

∣∣2 = 0, so the previous equation can be rewritten as

lim
N→∞

1

N

N∑
n=1

∣∣∣∣∫
X

Tnf · g dµ
∣∣∣∣2 = 0,

finishing the proof.
(4)⇒(3) This is immediate by letting f = 1A and g = 1B .
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(3)⇒(5) Fix m ∈ N and set Am := {n ∈ N : |µ(A ∩ T−nB)− µ(A)µ(B)| > 1/m}. Observe that

1

N

N∑
n=1

|µ(A ∩ T−nB)− µ(A)µ(B)| ≥ 1

m

|Am ∩ [1, N ]|
N

Taking the limit as N →∞ we conclude that d̄(Am) = 0 for all m ∈ N. For each m ∈ N let Nm ∈ N
be such that for all N > Nm we have |Am ∩ [1, N ]| ≤ N/m and make

E =

∞⋃
m=1

(Am ∩ [Nm + 1, Nm+1])

Now observe that Ak ⊂ Ak+1 for all k ∈ N, hence for each N ∈ N, choosing m such that N ∈
[Nm + 1, Nm+1] we have E ∩ [1, N ] ⊂ Am ∩ [1, N ] and hence |E ∩ [1, N ]| ≤ N/m. Taking N → ∞
(note that also m→∞ because all Am have 0 density) we conclude that d̄(E) = 0.

Finally, for each m ∈ N, let N > Nm, then if N /∈ E we also have N /∈ Am and so |µ(A∩T−nB)−
µ(A)µ(B)| < 1/m concluding the proof.

In the case when B is separable, let {Bn}∞n=1 be a countable dense family. For eachm = (m1,m2) ∈
N2 let Em ⊂ N be such that d̄(Em) = 0 and lim

n→∞
µ(T−nBm1

∩Bm2
)→ µ(Bm1

)µ(Bm2
) for n /∈ Em.

As above we construct a set E of 0 density such that for all m ∈ N2 there exists N = N(m) ∈ N
such that Em \ [1, N ] ⊂ E.

It is not hard to check that this set E satisfies the conditions, we omit the details.

(5)⇒(3) Assuming (5), for every ε the set
{
n ∈ N :

∣∣µ(A ∩ T−nB)− µ(A)µ(B)
∣∣ > ε

}
has density 0. On the

other hand
∣∣µ(A ∩ T−nB)− µ(A)µ(B)

∣∣ ≤ 1 for every n ∈ N, and hence

lim sup
N→∞

1

N

N∑
n=1

∣∣µ(A ∩ T−nB)− µ(A)µ(B)
∣∣ ≤ ε.

Since ε is arbitrary we conclude that (3) holds.
(3)⇒(4) Condition (3) is the special case of (4) when f and g are indicator functions. It is not hard to see

that if (4) holds for pairs (f1, g) and (f2, g), then it holds for the pair (af1 + bf2, g). Since every
L2 function is approximated by finite linear combinations of indicator functions, we deduce that (4)
holds whenever g is an indicator function. But similarly, if (4) holds for (f, g1) and (f, g2), it holds
for (f, ag1 + bg2), and hence the same argument shows that it must hold for any f, g ∈ L2.

(4)⇒(2) Let Y = (Y,A, S, ν). In order to show that X × Y is ergodic, we will show that for any f, g ∈
L2(X × Y ),

lim
N→∞

1

N

N∑
n=1

∫
X×Y

(T × S)nf · g d(µ⊗ ν) =

∫
X×Y

f d(µ⊗ ν)

∫
X×Y

g d(µ⊗ ν). (5.1)

Since finite linear combinations of tensor functions of the form (f1 ⊗ f2)(x, y) = f1(x)f2(y) form a
dense subset of L2(X × Y ), it suffices to establish (5.1) when both f and g are tensor functions.
Let f(x, y) = f1(x)f2(y) ∈ L2(X × Y ) and g(x, y) = g1(x)g2(y) ∈ L2(X × Y ) be arbitrary tensor
functions. Then (5.1) can be written as

lim
N→∞

1

N

N∑
n=1

∫
X

Tnf1 · g1 dµ
∫
Y

Snf2 · g2 dν =

∫
X

f1 dµ

∫
Y

f2 dν

∫
X

g1 dµ

∫
Y

g2 dν. (5.2)

Since (5.2) is linear in f2 we can, splitting f2 =
∫
Y
f2 dν+

(
f2 −

∫
Y
f2 dν

)
, separate the proof of (5.2)

in two cases: when f2 is a constant and when
∫
Y
f2 dν = 0. For the first case, since Y is ergodic, it

follows that f2 is a constant, and hence the left hand side of (5.2) is∫
Y

f2 dν

∫
Y

g2 dν lim
N→∞

1

N

N∑
n=1

∫
X

Tnf1 · g1 dµ.

But now, using (4), it is clear that (5.2) holds in this case.
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Next we establish (5.2) in the case that
∫
Y
f2 dν = 0. Applying Cauchy-Schwarz with f2, g2 and

using (4) we get

∣∣∣∣∣ 1

N

N∑
n=1

∫
X

Tnf1 · g1 dµ
∫
Y

Snf2 · g2 dν

∣∣∣∣∣ ≤ 1

N

N∑
n=1

∣∣∣∣∫
X

Tnf1 · g1 dµ
∫
Y

Snf2 · g2 dν
∣∣∣∣

≤ ‖f2‖.‖g2‖
1

N

N∑
n=1

∣∣∣∣∫
X

Tnf1 · g1 dµ
∣∣∣∣

Using (4) we conclude that this quantity converges to 0 as N →∞, establishing (5.2).
(2)⇒(1) It suffices to show that if (2) holds, then X is ergodic. To see this assume that X is not ergodic and

let A ∈ B be an invariant set such that 0 < µ(A) < 1. Let Y = (Y, S) be the (ergodic) one point
system. Then A× Y is invariant for T × S and so X×Y wouldn’t also be ergodic.

�

Remark 5.12. Conditions (3) and (4) can be formulated using uniform Cesàro averages, and the proof
presented holds in that case as well. Therefore we obtain two other equivalent properties to weak mixing.

Exercise 5.13. Show that the doubling map x 7→ 2x mod 1 on [0, 1) with respect to the Lebesgue measure is
a weak-mixing system.

We already saw that every weak mixing system is ergodic. It turns out that it must in fact be totally
ergodic.

Theorem 5.14. Let k ∈ N. A system (X,B, µ, T ) is weak mixing if and only if the system (X,B, µ, T k) is
weak mixing.

Proof. First suppose that (X,B, µ, T ) is weak mixing. To show that (X,B, µ, T k) is weak mixing we will use
Condition (5) from Theorem 5.11. Let A,B ∈ B and let E ⊂ N be the set with 0 density satisfying

lim
n→∞
n/∈E

µ(A ∩ T−nB) = µ(A)µ(B).

Let Ẽ := {m ∈ N : mk ∈ E}. It is clear that d̄(Ẽ) = 0 and that

lim
m→∞
m/∈Ẽ

µ
(
A ∩

(
T k
)−m

B
)

= lim
m→∞
m/∈Ẽ

µ
(
A ∩ T−mkB

)
= µ(A)µ(B).

To prove the converse, suppose that (X,B, µ, T k) is weak mixing. To show that (X,B, µ, T ) is weak
mixing we will use Condition (1) from Theorem 5.11. Indeed, if (X,B, µ, T )× (X,B, µ, T ) were not ergodic,
there would exist a T × T invariant set A ⊂ X ×X with (µ⊗ µ)(A) ∈ (0, 1). But A would also be invariant
under T k × T k = (T × T )k, and hence (X,B, µ, T k)× (X,B, µ, T k) would not be ergodic, contradicting the
assumption. �

As we will see later, weak mixing systems enjoy very good multiple recurrence properties. For the purposes
of proving Roth’s theorem however, one can isolate the exact property needed for individual functions.

Definition 5.15. Let (X,B, µ, T ) be a m.p.s. and let f ∈ L2(X). We say that f is a weak-mixing function
if for every g ∈ L2,

lim
n→∞

1

n

n∑
k=1

∣∣〈T kf, g〉∣∣ = 0.

The set of all weak-mixing functions is denoted by Hwm.

Notice that, in view of Theorem 5.11, a system is weak-mixing if and only if every function f with 0
integral is a weak-mixing function.

Exercise 5.16. Show that Hwm is a closed T -invariant subspace of L2.
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The following theorem is the first in the class of “multiple ergodic theorems” – extensions of the ergodic
theorem involving products of functions composed with different powers of T . We will make use of the

convenient notation UC- lim
n

an to denote limN−M→∞
1

N−M
∑N
n=M an.

Lemma 5.17. Let X = (X,B, µ, T ) be an ergodic measure preserving system and let f, g ∈ L∞(X). If either
f or g (or both) is weak mixing, then

UC- lim
n

Tnf · T 2ng = 0 in norm.

To prove Lemma 5.17 we need a version of the van der Corput trick slightly stronger than Lemma 4.8.

Lemma 5.18. Let H be a Hilbert space and let (xn)∞n=1 be a bounded sequence taking values in H. If

lim
D→∞

1

D

D∑
d=1

UC- lim
n

〈xn+d, xn〉 = 0 (5.3)

then

UC- lim
n

xn = 0.

Remark 5.19. As before, this version of the van der Corput trick also holds with regular Cesàro averages,
as opposed to the uniform Cesàro averages used in Lemma 5.18.

Exercise 5.20. (∗) Let (X B,µ, T ) be a measure preserving system and let f ∈ L2 be such that

lim
n→∞

1

n

n∑
k=1

∣∣〈T kf, f〉∣∣ = 0.

Prove that f is weak mixing. [Hint: Using Lemma 5.18 with un = 〈Tnf, g〉Tnf .]

Proof of Lemma 5.17. With the goal of using Lemma 5.18, let un = Tnf · T 2ng. We have

〈un+h, un〉 =

∫
X

Tn+hf · T 2n+2hg · Tnf · T 2ng dµ =

∫
X

(
Thf · f

)
· Tn

(
T 2hg · g

)
dµ.

Using ergodicity and Theorem 2.17, taking a uniform Cesàro average in n we get

UC- lim
n

〈un+h, un〉 =

∫
X

Thf · f dµ
∫
X

T 2hg · g dµ.

Since both sequences h 7→
∫
X
Thf ·f dµ and h 7→

∫
X
T 2hg ·g dµ are bounded (by Cauchy-Schwarz inequality)

and the one associated with a weak mixing function is smaller than ε in a set of full density (for each ε > 0)
it follows that

lim sup
M→∞

1

M

M∑
h=1

∣∣UC- lim
n

〈un+h, un〉
∣∣ < ε

for every ε > 0. This of course means that the limit is 0 and the conclusion follows from Lemma 5.18. �

5.3. Finishing the proof. The complementary notion to weak mixing functions is that of compact func-
tions:

Definition 5.21. Let (X,B, µ, T ) be a m.p.s. and let f ∈ L2(X). We say that f is a compact or almost

periodic function if the orbit closure {Tnf : n ∈ N} ⊂ L2 is compact as a subset of L2 with the strong
topology.

The set of all compact functions is denoted by Hc.

Exercise 5.22. Show that in the system (X,B, µ, T ) where X = [0, 1), µ is the Lebesgue measure and
T : x 7→ x+ α mod 1 for some irrational α, every f ∈ L2 is compact.

Exercise 5.23. Show that if f is compact, then for every ε > 0 the set {n ∈ N : ‖Tnf − f‖ < ε} is syndetic.

The Jacobs-de Leeuw-Glicksberg decomposition allows us to decompose a L2 function from an arbitrary
system into the sum of a compact function and a weak mixing function.
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Theorem 5.24 (Jacobs-de Leeuw-Glicksberg). In any measure preserving system (X,B, µ, T ), the sets Hc

and Hwm are closed invariant subspaces of L2(X), are orthogonal and L2(X) = Hc ⊕Hwm.

The proof of Theorem 5.24 is omitted but can be found in several places (eg. [8, Chapter 16] is dedicated
to the decomposition in far greater generality).

Exercise 5.25. (∗) Show directly from the definition that Hc is a closed T -invariant subspace of L2.

Exercise 5.26. Let X = T2 have the Borel σ-algebra and the Haar measure and let T : (x, y) 7→ (x+α, y+x)
for some fixed irrational α.

(1) Show that every function of the form f(x, y) = e2πinx with n ∈ Z is compact.
(2) Show that every function of the form f(x, y) = e2πi(nx+my), with (n,m) ∈ Z2 and m 6= 0, is weak

mixing.
(3) Show that the conclusion of Theorem 5.24 holds in this system (without using the theorem) by ex-

plicitly describing Hc and Hwm.

It turns out that more is true about Hc.

Lemma 5.27. Let f, g ∈ L∞(X) ∩Hc. Then fg ∈ Hc.

The proof of this lemma is left as an exercise. Iterating this lemma, it follows that the space L∞(X)∩Hc

is closed under composition with polynomials, and hence, in view of the Stone-Weierstrass theorem, under
composition with continuous functions. In particular, if f ∈ L∞(X)∩Hc is real valued, then for any constant
c ∈ R both min(f, c) and max(f, c) are in Hc.

Corollary 5.28. Let (X,B, µ, T ) be a m.p.s. and suppose f ∈ L2(X) is real valued and satisfies f(x) ∈ [0, 1]
for all x ∈ X. Let f = fc + fwm be the decomposition of f arising from Theorem 5.24. Then fc(x) ∈ [0, 1]
for (almost) all x ∈ X.

Proof. Let g = min(fc, 1). By the discussion above, g ∈ Hc. Since f takes values in [0, 1] it follows that
‖f − g‖ ≤ ‖f − fc‖. Since, according to Theorem 5.24, fc is the orthogonal projection of f onto Hc, we
conclude that fc = g and hence fc(x) ≤ 1 for almost all x ∈ X. A similar argument shows that fc(x) ≥ 0
for almost all x ∈ X. �

We are now ready to prove Theorem 5.1 when the system is ergodic. In fact, we shall prove the following
stronger statement.

Theorem 5.29. Let X = (X,B, µ, T ) be ergodic and let A ∈ B have µ(A) > 0. Then

UC- lim
n

µ(A ∩ T−nA ∩ T−2nA) > 0. (5.4)

Proof. Use Theorem 5.24 to decompose 1A = fc + fw into fc ∈ Hc and fw ∈ Hw. In view of Corollary 5.28,
fc takes values in [0, 1]. Moreover, since 1 ∈ Hc and hence 1 ⊥ fw, we deduce that

∫
X
fc dµ = 〈fc, 1〉 =

〈1A, 1〉 = µ(A) > 0. Therefore fc is not a.e. 0 and so we can use Exercise 5.23 with ε =
∫
X
f3c dµ/2 (say)

to find a syndetic set S ⊂ N such that for any n ∈ S, ‖Tnfc − fc‖ < ε. Since T preserves the measure, it
follows that for n ∈ S we also have ‖T 2nfc − fc‖ < 2ε and hence, using Jensen’s inequality,∫

X

fc · Tnfc · T 2nfc dµ >

∫
X

f3c dµ− ε > 0.

Using Exercise 2.23 we deduce that

UC- lim
n

∫
X

fc · Tnfc · T 2nfc dµ > 0.

Next, using Lemma 5.27 it follows that Tnfc · T 2nfc ∈ Hc and therefore it is orthogonal to Hwm. In
particular, for every n ∈ N,

(
Tnfc · T 2nfc

)
⊥ fw and hence

UC- lim
n

∫
X

1A · Tnfc · T 2nfc dµ > 0. (5.5)

Next we use Lemma 5.17 3 times to deduce that

UC- lim
n

∫
X

1A · Tnfw · T 2nfc dµ = 0. (5.6)
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UC- lim
n

∫
X

1A · Tnfc · T 2nfw dµ = 0. (5.7)

UC- lim
n

∫
X

1A · Tnfw · T 2nfw dµ = 0. (5.8)

Finally, adding (5.5), (5.6), (5.7) and (5.8) we obtain (5.4). �

6. Proof of Szemerédi’s theorem

In this section we sketch the proof of Szemerédi’s theorem and formulate the main steps. Recall that
we already showed how the combinatorial statement Theorem 1.9 is equivalent to the multiple recurrence
theorem Theorem 3.3. As was the case with other multiple recurrence theorems, we actually prove a stronger
statement involving averages.

Theorem 6.1. Let (X,B, µ, T ) be an ergodic system and let A ∈ B with µ(A) > 0. Then for every k ∈ N,

lim inf
N−M→∞

1

N −M

N∑
n=M

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0. (6.1)

It turns out that the liminf in (6.1) is an actual limit, but this was not proved until 2005 [16], almost
30 years after Theorem 6.1 was first established. Observe that in Theorem 6.1 we assume that the system
is ergodic; but as was explained in the previous section this is just for convenience and one can still obtain
Theorem 3.3.

6.1. Kronecker factor. Let X be a compact metrizable abelian group, with the Borel σ-algebra and Haar
measure and let α ∈ X. Then the map T : X → X given by Tx = x + α is a measure preserving
transformation. This transformation is ergodic precisely when α generates a dense subgroup of X. Systems
of this form are called Kronecker systems.

Theorem 6.2. An ergodic system (X,B, µ, T ) is (isomorphic4 to) a Kronecker system if and only if every
f ∈ L2 is compact (in the sense of Definition 5.21).

Recall that a measure preserving system Y = (Y,B, ν, S) is a factor of another system X = (X,A, µ, T ) if
there exists a measurable map φ : X → Y pushing µ to ν (i.e. satisfying µ(φ−1B) = ν(B) for every B ∈ B)
and intertwining T and S, in the sense that S ◦φ = φ◦T . In this situation one can embed L2(Y ) into L2(X)
by taking f ∈ L2(Y ) to f ◦ π ∈ L2(X); noting that this map is an isometric operator. We will then assume
simply that L2(Y ) ⊂ L2(X). Let Hc denote the set of all compact functions in L2(X). If Y is a Kronecker
system, then every function in L2(Y ) is compact, and hence L2(Y ) ⊂ Hc. Conversely, if Y is a factor of X
with L2(Y ) ⊂ Hc, then Y is a Kronecker system.

It turns out that every ergodic measure preserving system X = (X,A, µ, T ) has a factor Y = (Y,B, ν, S)
such that L2(Y ) = Hc; such factor is called the Kronecker factor of X.

Theorem 6.3 (Kronecker factor). Let X = (X,B, µ, T ) be an ergodic system and let Hc denote the space of
all compact functions in L2(X). Then there exists a factor map π : X→ Y such that

• Y is a Kronecker system.
• L2(Y ) = Hc.
• Y is the maximal Kronecker factor of X in the sense that if Z is a Kronecker system and there is a

factor map φ : X→ Z, then there exists a factor map ψ : Y → Z such that φ = ψ ◦ π.
• Y is unique up to isomorphism, and can be described as Y = (X,D, µ, T ), where D = {D ∈ B : 1D ∈
Hc}.

It is possible that the Kronecker factor of a system is trivial (i.e., isomorphic to the identity transforma-
tion). This occurs precisely when Hc consists only of constant functions, which in view of Theorem 5.24 is
equivalent to the system being weak mixing.

4Two systems X and Y are isomorphic if there exists a bijective factor map π : X→ Y whose inverse is also a factor map.
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Remark 6.4. In view of Theorem 6.3, one can re-interpret the Jacobs-de Leeuw-Glicksberg in terms of
conditional expectations. Indeed, given f ∈ L2(X) and writing f = fc + fwm with fc ∈ Hc and fwm ∈ Hwm,
we know that fc is the orthogonal projection of f onto the space Hc, which now we know is the same space
as the space L2(X,D, µ) (where D is the σ-algebra described in the last item of Theorem 6.3) of L2 functions
that are measurable with respect to D. It follows that fc = E[f | D]. This is often denoted by E[f | Y], and
we can then re-formulate Theorem 5.24 as stating that for any ergodic system X with Kronecker factor Y
and any f ∈ L2(X), the difference f − E[f | Y] is a weak mixing function.

6.2. Special cases of multiple recurrence. We start by proving Theorem 6.1 when the system is weak
mixing.

Theorem 6.5. Let X = (X,B, µ, T ) be a weak mixing system, let k ∈ N and let f1, . . . , fk ∈ L∞(X). Then

UC- lim
n

k∏
i=1

Tnifi =

k∏
i=1

∫
X

fi dµ in L2(X). (6.2)

Replacing each fi with 1A, a direct corollary of Theorem 6.5 is that Theorem 6.1 holds whenever the
system is weak mixing.

The main idea in the proof of Theorem 6.5 is to use the van der Corput trick.

Proof of Theorem 6.5. We proceed by induction on k. The case k = 1 follows from the mean ergodic theorem
(Theorem 2.17). Assume now that k > 1 and the result has been established for k − 1. Splitting fk as the
sum of a constant and function with 0 integral, we reduce the proof to those two cases. If fk is a constant,
then (6.2) follows immediately by induction.

Assume next that
∫
X
fk dµ = 0. Since the right hand side of (6.2) is 0, we will use the van der Corput

trick. Let un :=
∏k
i=1 T

nifi. We have

〈un+h, un〉 =

∫
X

k∏
i=1

T (n+h)ifi · Tnifi dµ =

∫
X

k∏
i=1

Tni
(
Thifi · fi

)
dµ =

∫
X

Thf1 · f1
k∏
i=2

Tn(i−1)
(
Thifi · fi

)
dµ,

where the last equality follows from the fact that Tn preserves the measure. After using induction hypothesis
on the k − 1 functions

{
Thf2 · f2, . . . , Th(k−1)fk · fk

}
and taking averages we get

UC- lim
n

〈un+h, un〉 = UC- lim
n

∫
X

Thf1 · f1
k∏
i=2

Tn(i−1)
(
Thifi · fi

)
dµ

=

k∏
i=1

∫
X

Thifi · fi dµ.

Finally, taking an average on h and using Theorem 5.14 and condition (4) from Theorem 5.11 we obtain∣∣∣∣C- lim
h

UC- lim
n

〈un+h, un〉
∣∣∣∣ =

∣∣∣∣∣C- lim
h

k∏
i=1

∫
X

Thifi · fi dµ

∣∣∣∣∣ ≤
k−1∏
i=1

‖fi‖2 · C- lim
h

∣∣〈Thkfk, fk〉∣∣ = 0

�

On the other end of the spectrum, we have Kronecker systems.

Theorem 6.6. Let X be a Kronecker system, let k ∈ N and let f ∈ L∞(X). Then for every ε > 0, the set{
n ∈ N :

∫
X

k∏
i=0

Tnif dµ >

∫
X

fk+1 dµ− ε

}
is syndetic.

To see why Theorem 6.6 implies that Theorem 6.1 holds for Kronecker systems, apply Theorem 6.6 to
the indicator function 1A of a set A ∈ B with µ(A) > 0 and let S be the syndetic set of n for which
µ(A ∩ T−nA ∩ · · · ∩ T−knA) > µ(A)/2. Let L ∈ N be bound on the gaps of S (so that every interval of
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length L contains an element of S). Then for N −M large enough we have |[M,N ]∩S| ≥ (N −M −L)/L >
(N −M)/(2L) and hence

UC- lim
n

µ(A ∩ · · · ∩ T−knA) ≥ lim
N−M→∞

1

N −M
∑

n∈S∩[M,N ]

µ(A ∩ · · · ∩ T−knA) ≥ µ(A)

4L
> 0.

Proof of Theorem 6.6. Let X, k, f and ε > 0 be as in the statement of the theorem. By re-scaling we
may assume that ‖f‖∞ ≤ 1. Since f is a compact function, it follows from Exercise 5.23 that the set
S :=

{
n ∈ N : ‖Tnf − f‖ < ε/k2

}
is syndetic. Observe that for each n ∈ S and i ∈ {0, 1, . . . , k} we have

‖T inf − f‖ ≤ ‖T inf − T (i−1)nf‖+ ‖T (i−1)nf − T (i−2)nf‖+ · · ·+ ‖Tnf − f‖ = i‖Tnf − f‖ ≤ ε

k
.

Using the Cauchy-Schwarz inequality repeatedly we conclude that for every n ∈ S∫
X

k∏
i=0

Tnif dµ =

∫
X

f ·
k∏
i=1

Tnif dµ ≥
∫
X

f2 ·
k∏
i=2

Tnif dµ− ε

k

≥
∫
X

f3 ·
k∏
i=3

Tnif dµ− 2ε

k
≥ · · · ≥

∫
X

fk+1 dµ− ε.

�

We have now shown that either a system X is weak mixing, and hence Theorem 6.1 holds, or it is not
weak mixing, and hence it has a non-trivial Kronecker factor, where Theorem 6.1 holds. In either case, we
have proved that any ergodic system has a non-trivial factor where Theorem 6.1 holds. The basic idea of
the proof of Theorem 6.1 for general systems is to keep finding larger factors where the conclusion holds,
ultimately covering all of X. To make the necessary definitions we will take advantage of a useful theorem
of Rokhlin.

6.3. Rokhlin’s skew-product lemma. Two probability spaces (X,B, µ) and (Y,D, ν) are isomorphic if
the (trivial) measure preserving systems (X,B, µ, Id) and (Y,D, ν, Id) are isomorphic. It is a known result
that if µ is a Borel measure on a compact metric space with no point masses, then (X,B, µ) is isomorphic
to [0, 1] with the Borel σ-algebra and the Lebesgue measure. In particular any two such probability spaces
are isomorphic! It follows in particular that, when understood as probability spaces with the (appropriate)
Lebesgue measure, [0, 1] is isomorphic to [0, 1]2. The following lemma improves upon these ideas and provides
a useful way to understand factors.

Lemma 6.7. Let X = (X,B, µ, T ) be an ergodic measure preserving system and let Y = (Y, C, ν, S) be a
factor, with factor map π : X → Y . Then there exists a probability space (Z,D, λ) and a measurable map
ρ : Y → Aut(Z) (called a co-cycle) taking values in the set of measure preserving transformations of (Z,D, λ)
such that X is isomorphic to (Y × Z, C ⊗ D, ν ⊗ λ,R), where R(y, z) =

(
Sy, ρ(y)(z)

)
(in other words, X is

a skew-product over Y).

Example 6.8. Take X = [0, 1]2 with the (Borel) Lebesgue measure and let T : (y, x) 7→ (y + α, x + y) for
some fixed irrational α. Let Y = [0, 1], also endowed with the (Borel) Lebesgue measure and let S : y 7→ y+α.
Then the projection π : X → Y onto the first coordinate is a factor map of measure preserving systems.

In this case we can take Z = [0, 1] and ρ(y) to be the rotation on Z by y (in other words ρ(y) : z 7→
z + y mod 1).

6.4. Relative weak mixing and compactness. Recall that a m.p.s. X is weak mixing if and only if the
product X×X is ergodic. The following definition extends this concept to a relative notion.

Definition 6.9. Let X = (X,B, µ, T ) and Y = (Y, C, ν, S) be ergodic systems and let π : X→ Y be a factor
map. Let (Z,D, λ) and ρ be given by Lemma 6.7. The relative product of X with itself over Y is the
system

X×Y X := (Y × Z × Z, C ⊗ D ⊗D, ν ⊗ λ⊗ λ, T ×Y T ),

where T ×Y T : (y, z1, z2) 7→ (Sy, ρ(y)z1, ρ(y)z2).
We say that X is weak mixing relative to (or a weak mixing extension of) Y is the relative product

X×Y X is ergodic.
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Exercise 6.10. Show that a system is weak mixing if and only if it is relative weak mixing with respect to
the trivial factor (i.e. the factor to the one-point system).

Next recall that a system is a Kronecker system if and only if every L2 function is compact, i.e., for any
f ∈ L2 the orbit {Tnf : n ∈ N} is pre-compact. For a subset of a Hilbert space, pre-compact is equivalent to
totally bounded, so f is compact if and only if for any ε > 0 there are finitely many functions g1, . . . , gr ∈ L2

such that {Tnf : n ∈ N} ⊂
⋃r
i=1B(gi, ε). This inclusion can be written as

∀n ∈ N min
1≤i≤r

‖Tnf − gi‖L2(µ) < ε.

We can now relativize the notion of a compact (or Kronecker) factor.

Definition 6.11. Let X = (X,B, µ, T ) and Y = (Y, C, ν, S) be ergodic systems and let π : X → Y be a
factor map. Let (Z,D, λ) be given by Lemma 6.7 and consider the measures µy = δy ⊗ λ for each y ∈ Y .

A function f ∈ L2(X) is compact relative to Y if for every ε > 0 there are finitely many functions
g1, . . . , gr ∈ L2(X) such that

∀n ∈ N min
1≤i≤r

‖Tnf − gi‖L2(µy) < ε for ν-a.e. y.

The system X is compact relative to (or a compact extension of) Y if there is a dense set of relatively
compact functions in L2(X).

Exercise 6.12. Show that an ergodic system is a Kronecker system if and only if it is compact relative to
the trivial (one point) factor.

Exercise 6.13. Show that the system X = (X,B, µ, T ) given by X = [0, 1]2, B = Borel, µ = Lebesgue and
T : (x, y) 7→ (x+α, y+x), where α is irrational, is a compact extension of the rotation by α (i.e. the system
Y = (Y,D, ν, S) where Y = [0, 1], D = Borel, ν = Lebesgue and S : x 7→ x+ α).

Note that in Definition 6.11 we do not require that every function f ∈ L2(X) be compact relative to Y
but only that a dense subset of L2 has this property. The next exercise helps explain why.

The notation bxc for a real number x, denotes the largest integer n such that n ≤ x.

Exercise 6.14. Let X be as in the previous exercise. Show that the function f(x, y) = e(yb1/xc) is not
conditionally compact with respect to Y.

It is often helpful to think of “compact” as a generalization of “finite”. The next exercise explains in
which sense the notion of “relatively compact” generalizes the notion of “relatively finite”.

Exercise 6.15. Let X and Y be ergodic systems and let π : X→ Y be a factor map. Let (Z,D, λ) be given
by Lemma 6.7 and suppose that Z is finite. Show that X is a compact extension of Y.

6.5. Sketch of the proof.

Definition 6.16 (Sz systems). An ergodic system (X,B, µ, T ) is called Sz (for Szemerédi) if it satisfies the
conclusion of the Theorem 6.1

We already saw that every ergodic system has a non-trivial factor that is Sz (either the whole system if
it is weak mixing, or its non-trivial Kronecker factor otherwise). The idea of the proof of Theorem 6.1 is
that any proper factor which is Sz is contained in a strictly larger factor which is also Sz. There are 3 main
components. The first states that the Sz property can be lifted by weak mixing extensions.

Theorem 6.17. If an ergodic system X is a weak mixing extension of a system Y and Y is Sz, then so is
X.

The proof of Theorem 6.17 is very similar to the proof of Theorem 6.5 which dealt with the “absolute”
case. In particular it combines a similar induction with the van der Corput trick.

Similarly, the next results states that the Sz property can be lifted by compact extensions.

Theorem 6.18. If an ergodic system X is a compact extension of a system Y and Y is Sz, then so is X.
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The proof of Theorem 6.18 draws on the ideas from the proof of Theorem 6.6 which dealt with the
“absolute” case, but is more complicated and requires additional insights. One useful (but not entirely
necessary) tool is the van der Waerden theorem, in the finitistic form described in Exercise 1.5.

The third major step is a relative version of the Jacobs-de Leeuw-Glicksberg decomposition. Recall that
a consequence of this decomposition is that whenever a system X is not weak mixing, it has a non-trivial
factor Y which is a Kronecker system.

Theorem 6.19. If a non-trivial extension π : X → Y of ergodic systems is not relatively weak mixing,
then there exists an intermediate relatively compact extension, i.e., there exists a system Z and factor maps
π1 : X→ Z and π2 : Z→ Y such that π = π2 ◦ π1, π2 is non-trivial and Z is a compact extension of Y.

We are now ready to finish the proof of Theorem 6.1. The idea is to consider a maximal factor of X which
is a Sz system. Here maximal means with respect to the natural partial order on all factors of X given by
Y ≺ Z if Y is a factor of Z.5 An equivalent description of this partial order is obtained by corresponding
each factor to a subset of L2(X) (as explained after Theorem 6.2); then Y ≺ Z if and only if L2(Y ) ⊂ L2(Z).

To consider a maximal Sz factor of X one can use Zorn’s lemma (or, alternatively, a transfinite induction).
To be able to apply this lemma, one needs to show that the Sz property is “closed”, in the following sense.

Lemma 6.20. Let X be an ergodic system and suppose that there is a totally ordered family of factors Yα

such that
⋃
α L

2(Yα) is dense in L2(X). If every Yα is Sz, then so is X.

Lemma 6.20 implies that Zorn’s lemma can be applied and hence that X has a maximal Sz factor, say Y.
If X is a non-trivial extension of Y there are two cases. In the first case, X is a weak mixing extension of Y
and hence by Theorem 6.17 X is Sz. In the second case, X is not a weak mixing extension of Y, and hence
by Theorem 6.19 there is a non-trivial extension Z of Y which is a compact extension of Y and a factor of
X. By Theorem 6.18, Z is Sz, but this contradicts the fact that Y was the maximal factor of X that was Sz.

Therefore, X must be Sz itself and this finishes the proof.

7. Extensions of Szemerédi’s theorem

Shortly after Furstenberg published his ergodic theoretic proof of Szemerédi’s theorem, in joint work with
Katznelson they established a multidimensional version. For many years, the only known proofs of this
multidimensional Szemerédi theorem (Theorem 7.1 below) involved ergodic theory.

Let d ∈ N. Given a set A ⊂ Nd, its upper density is defined by

d̄(A) = lim sup
N→∞

1

Nd

∣∣A ∩ {1, . . . , N}d∣∣.
Theorem 7.1 (Furstenberg-Katznelson [11]). If A ⊂ N has d̄(A) > 0, then for every finite set F ⊂ Nd there
exists n ∈ N and x ∈ Nd such that

A ⊃ x+ nF := {x+ nv : v ∈ F}.

For instance, if d = 2 and F = {0, 1, . . . , k}2, it follows from Theorem 7.1 that any subset of N2 with
positive upper density contains a square k × k grid.

Exercise 7.2. Show that, using only Szemerédi’s theorem, one can deduce that any subset of N2 with positive
upper density contains a rectangular k × k grid, i.e. a set of the form{

(x1, x2) + (in, jm) : 1 ≤ i, j ≤ k
}

for some x1, x2, n,m ∈ N.

Here’s the multiple recurrence theorem they established.

Theorem 7.3. Let (X,B, µ) be a probability space and let T1, . . . , Td : X → X be commuting measure
preserving transformations. Then for any A ⊂ B with µ(A) > 0 there exists n ∈ N such that

µ
(
A ∩ T−n1 A ∩ · · · ∩ T−nd A

)
> 0.

5To more precise we also need the factor maps between X, Y and Z to be compatible.
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Exercise 7.4. Show that Theorem 7.3 implies that, under the same conditions, for every k ∈ N there exists
n ∈ N such that

µ

A ∩ d⋂
i=1

k⋂
j=1

T−jni A

 > 0.

To show that Theorem 7.3 implies Theorem 7.1, one needs a suitable extension of the Correspondence
Principle.

Proposition 7.5. Let d ∈ N and E ⊂ Nd. Then there exists a probability space (X,B, µ), commuting
measure preserving transformations T1, . . . , Td on X and a set A ∈ B such that µ(A) = d̄(E) and for any
n1, . . . , nk ∈ Nd, say ni = (ni,1, . . . , ni,d), we have

d̄
(
E ∩ (E − n1) ∩ · · · ∩ (E − nk)

)
≥ µ

(
A ∩

k⋂
i=1

T
−ni,1

1 T
−ni,2

2 · · ·T−ni,d

d A

)
Exercise 7.6. Adapt the proof of Theorem 3.4 to give a proof of Proposition 7.5. [Hint: Take X = {0, 1}Nd

0 ,
let Ti be the shift in the i-th direction and let A = {x ∈ X : x(0,...,0) = 1}.]

Exercise 7.7. Show that Theorem 7.1 follows from combining Theorem 7.3 with Proposition 7.5.

The proof of Theorem 7.3 follows the same basic structure as the proof of Theorem 3.3. In particular, it
uses the idea of exhausting the system (X,B, µ, T1, . . . , Td) by weak mixing and compact extensions; although
in this situation one also needs to consider more general behaviour.

Later Bergelson and Leibman proved the polynomial version of Szemerédi’s theorem, Theorem 1.18. In
fact they proved a multidimensional version as well. The polynomial Szemerédi theorem is deduced (using
the Correspondence Principle) from the following polynomial multiple recurrence result:

Theorem 7.8. Let (X,B, µ, T ) be an invertible measure preserving system and let p1, . . . , pk ∈ Z[x] satisfy
pi(0) = 0. Then for any A ∈ B with µ(A) > 0 there exists n ∈ N such that

µ
(
A ∩ T−p1(n)A ∩ · · · ∩ T−pk(n)A

)
> 0.

The proof of Theorem 7.8 follows the strategy implemented by Furstenberg, and in particular uses directly
Theorem 6.19 and analogues of Theorems 6.17 and 6.18. To lift the polynomial recurrence property over
weak-mixing extensions one can use the van der Corput trick and a similar argument to the linear case.
However, in order to lift the polynomial recurrence property over compact extensions, one requires a suitable
version of the van der Warden theorem (Theorem 1.4).

Theorem 7.9. Let p1, . . . , pk ∈ Z[x] satisfy pi(0) = 0. For any finite partition N = C1 ∪ · · · ∪Cr of N there
exists x, n ∈ N and C ∈ {C1, · · · , Cr} such that

{x, x+ p1(n), · · · , x+ pk(n)} ⊂ C.

It is clear the Theorem 7.9 is a corollary of Theorem 1.18; however it is required to prove Theorem 1.18,
so one needs to be able to prove Theorem 7.9 directly.

8. Coloring theorems and Topological Dynamics

It turns out that to prove coloring results such as van der Waerden’s theorem, ergodic theory isn’t as
suitable as another branch of dynamics, called topological dynamics.

Definition 8.1. A topological dynamical system (or simply system) is a pair (X,T ) where X is a
compact metric space and T : X → X is continuous.

Given a system (X,T ), any closed set Y ⊂ X satisfying TY ⊂ Y gives rise to a subsystem (Y, T ).

Definition 8.2. A system (X,T ) is minimal if there is no proper subsystem.

An application of Zorn’s lemma shows that any topological dynamical system has a minimal subsystem.

Exercise 8.3. Show that a system (X,T ) is minimal if and only if every point x ∈ X has a dense orbit (the
orbit of a point x ∈ X is the set {Tnx : n ∈ N}).
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Exercise 8.4. Show that if a system (X,T ) is minimal then T : X → X is surjective.

Proposition 8.5. If (X,T ) is minimal and A ⊂ X is open and non-empty, then there exists n ∈ N such
that A ∩ T−nA 6= ∅.

Proof. The set B := X \
⋃
n∈N T

−nA is closed and TB ⊂ B. Since A 6= ∅, B 6= X, and hence by minimality
B = ∅. It follows that

⋃
n∈N T

−nA = X and hence some T−nA must have non-empty intersection with
A. �

The connection between coloring theorems and topological dynamics is given by the following instance of
the correspondence principle.

Proposition 8.6. Let N = C1∪· · ·∪Cr be an arbitrary finite coloring of N. There exists a minimal topological
dynamical system (X,T ) and a cover X = A1 ∪ · · · ∪ Ar by open sets such that for any n1, . . . , nk ∈ N and
any i ∈ {1, . . . , r},

Ai ∩ T−n1Ai ∩ · · · ∩ T−nkAi 6= ∅ ⇒ Ci ∩ (Ci − n1) ∩ · · · ∩ (Ci − nk) 6= ∅

Proof. Let X0 = {1, . . . , r}N0 , let T : X0 → X0 be the left shift and let χ ∈ X0 be the function χ =
∑
i1Ci

.
Let X1 = Tnχ : n ∈ N be the orbit closure of χ, notice that (X1, T ) is a subsystem of (X0, T ), and let
X ⊂ X1 be a minimal subsystem.

Let Ai := {x ∈ X : x0 = i}. If y ∈ Ai ∩ T−n1Ai ∩ · · · ∩ T−nkAi for some i and n1, . . . , nk, then
y0 = yn1

= · · · = ynk
= i. Since y ∈ X ⊂ X1, there exists a point Tnχ in the orbit of χ such that

(Tnχ)m = ym for every m ≤ nk. In particular (Tnχ)nj
= i for every j = 0, . . . , k (where for convenience we

define n0 = 0) which means that χn+nj = i for every j and hence that n ∈ Ci∩(Ci−n1)∩· · ·∩(Ci−nk). �

In view of Proposition 8.6, van der Warden’s theorem follows from the following multiple recurrence
theorem.

Theorem 8.7. Let (X,T ) be a minimal system and X = C1 ∪ · · · ∪ Cr a finite open cover of X. Then for
every k ∈ N there exists n ∈ N and i ∈ {1, . . . , r} such that

Ci ∩ T−nCi ∩ · · · ∩ T−knCi 6= ∅.

Exercise 8.8. Using Proposition 8.6, show that Theorems 1.4 and 8.7 are equivalent.
[Hint: To show that Theorem 1.4 implies Theorem 8.7, take any point x in X and construct a coloring of

N by looking at the orbit of x.]

We assume minimality in the statement of Theorem 8.7 because it makes the proof easier (similar to how
we assume ergodicity in the proof of Theorem 6.1). However it can be shown directly that this assumption
can be discarded.

Exercise 8.9. Show that in Theorem 8.7, the assumption that (X,T ) is minimal is not needed.

It turns out that Theorem 8.7 is equivalent to a version closer to Theorem 3.3.

Lemma 8.10. Suppose Theorem 8.7 holds for some k ∈ N. Then for any minimal system (X,T ) and any
open A ⊂ X, if A 6= ∅ then there exists n ∈ N such that A ∩ T−nA ∩ · · · ∩ T−knA 6= ∅.

Proof. As we’ve seen above, X =
⋃
i∈N T

−iA. By compactness it follows that X =
⋃N
i=1 T

−iA for some

N ∈ N. Using Theorem 8.7 we find i ≤ N and n ∈ N such that ∅ 6= T−iA ∩ T−nT−iA ∩ · · · ∩ T−knT−iA =
T−i

(
A ∩ T−nA ∩ · · · ∩ T−knA

)
, which implies that A ∩ T−nA ∩ · · · ∩ T−knA 6= ∅. �

Proof of Theorem 8.7. The proof goes by induction over k. The case k = 1 follows immediately from
Proposition 8.5.

Next, suppose k > 1 and the result has been established for any smaller value of k. Some Ci must be
non-empty; suppose WLOG C1 6= ∅. Then apply the induction hypothesis and Lemma 8.10 to find n1 ∈ N
such that B1 := C1 ∩ T−n1C1 ∩ · · · ∩ T−(k−1)n1C1 6= ∅.

We now consider two cases. In the first case T−n1B1∩C1 6= ∅. But then C1∩T−n1C1∩· · ·∩T−kn1C1 6= ∅
and we are done.

The second case is when T−n1B1∩C1 = ∅. In this case, T−n1B1 must have a non-empty intersection with
some other Ci; WLOG suppose D2 := T−n1B1 ∩C2 6= ∅. We can now invoke again the induction hypothesis
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and Lemma 8.10 to find n2 ∈ N such that B2 := D2 ∩ T−n2D2 ∩ · · · ∩ T−(k−1)n2D2 6= ∅. We consider three
new subcases.

In the first case T−n2B2 ∩ C2 6= ∅. But then (since D2 ⊂ C2), C2 ∩ T−n2C2 ∩ · · · ∩ T−kn2C2 6= ∅ and we
are done.

In the second case, T−n2B2 ∩ C1 6= ∅. But then (since D2 ⊂ T−n1B1 ⊂ T−in1C1 for each i ∈ {1, . . . , k}),
C1 ∩ T−(n1+n2)C1 ∩ · · · ∩ T−k(n1+n2)C1 6= ∅ and we are done.

In the third case T−n2B2 must have a non-empty intersection with some other Ci; WLOG suppose
D3 := T−n2B2 ∩ C3 6= ∅.

We can continue in this manner, but since we start with a finite open cover, after r steps we do not have
a final case and the proof will finish. �

Using a similar strategy, we can establish directly the following coloristic corollary of Sárközy’s theorem.

Theorem 8.11. If N = C1 ∪ · · · ∪Cr there exists C ∈ {C1, . . . , Cr} and n, x ∈ N such that {x, x+n2} ⊂ C.

The dynamical version of Theorem 8.11 is the following.

Theorem 8.12. Let (X,T ) be a minimal system and suppose X = C1 ∪ · · · ∪ Cr is an open cover. Then

there exists C ∈ {C1, . . . , Cr} and n ∈ N such that T−n
2

C ∩ C 6= ∅.

Similarly to Lemma 8.10, one can write an equivalent formulation of Theorem 8.11 using a single open
set.

Theorem 8.13. Let (X,T ) be a minimal system and let A ⊂ X be open and non-empty. Then for some

n ∈ N, A ∩ T−n2

A 6= ∅.

Exercise 8.14. Prove that the following are all equivalent statements:

(1) Theorem 8.11.
(2) Theorem 8.12.
(3) Theorem 8.13.
(4) Theorem 8.12 without the minimality assumption.

8.1. Piecewise syndetic sets. We’ve encountered above the notion of syndetic sets: subsets of N with
bounded gaps. The dual notion to syndetic sets is that of thick sets.

Definition 8.15. A set T ⊂ N is thick if it contains arbitrarily long intervals, i.e.,

∀N ∈ N ∃mN ∈ N s.t. {mN ,mN + 1, . . . ,mN +N} ⊂ T.

Exercise 8.16. (1) Show that a set T ⊂ N is thick if and only if its complement N \ T is not syndetic.
(2) Show that a set S ⊂ N is syndetic if and only if its complement N \ S is not thick.
(3) Show that a set T ⊂ N is thick if and only if for any syndetic set S ⊂ N, the intersection S ∩ T 6= ∅.
(4) Show that a set S ⊂ N is syndetic if and only if for any thick set T ⊂ N, the intersection S ∩ T 6= ∅.

Definition 8.17. A set A ⊂ N is piecewise syndetic if A = S ∩ T for a syndetic set S ⊂ N and a thick
set T ⊂ N.

Note that all three notions of syndetic, thick and piecewise syndetic are upwards closed, i.e. if A possesses
one of those properties and B ⊃ A, then B also possesses the same property.

The relation between piecewise syndetic sets and partition Ramsey theory is made apparent by the
following lemma.

Lemma 8.18 (Brown’s lemma). Let A be piecewise syndetic, and suppose that A = A1 ∪ · · · ∪Ar. Then at
least one of the Ai is piecewise syndetic.

Proof. By an inductive argument it suffices to prove the lemma when r = 2. Suppose A = S ∩ T = A1 ∪A2

where S is syndetic and T is thick. Let S̃ = S \A2. If S̃ is syndetic, then A1 = S̃ ∩ T is piecewise syndetic.

If S̃ is not syndetic, then its complement T̃ := N\ S̃ is thick, and hence A2 = T̃ ∩S is piecewise syndetic. �

Since N is piecewise syndetic, for any coloring of N one of the colors is piecewise syndetic. Therefore, if
one seeks to show that any finite coloring of N contains a certain monochromatic pattern, it suffices to show
that every piecewise syndetic set contains it.
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8.2. Minimal systems and (piecewise) syndetic sets. Let (X,T ) be a topological dynamical system,
let U ⊂ X be open and let x ∈ X. We denote by V (x, U) := {n ∈ N : Tnx ∈ U} the set of visit times of x
to U . The connection between minimal systems and syndetic sets is given in the following lemma.

Lemma 8.19. A system (X,T ) is minimal if and only if for every non-empty open set U ⊂ X and every
x ∈ X, the set V (x, U) is syndetic.

Proof. If for every non-empty open set U ⊂ X and every x ∈ X, the set V (x, U) is syndetic, then in
particular V (x, U) 6= ∅ and it follows that every point has a dense orbit. In view of Exercise 8.3, (X,T ) is
minimal.

Conversely suppose that (X,T ) is minimal and let U ⊂ X be open and non-empty, and let x ∈ X. Then
Y := X \

⋃∞
i=0 T

−iU is a closed and T -invariant subset of X which is not all of X since U ∩ Y = ∅. By
minimality it follows that Y = ∅ and hence X =

⋃∞
i=0 T

−iU . By compactness there exists r ∈ N such
that X =

⋃r
i=0 T

−iU . Given any n ∈ N, the point Tnx ∈ X must belong to one of the T−iU and hence
Tn+ix ∈ U . In other words, for every n ∈ N there exists i ∈ {0, . . . , r} such that n + i ∈ V (x, U), and this
implies that V (x, U) is syndetic. �

A topological dynamical system (X,T ) is called transitive if there exists at least one point with a dense
orbit. In a transitive system, we can replace sets of visits with the closely related sets of return times (sets
of visits V (x, U) where x ∈ U).

Exercise 8.20. Show that a transitive system (X,T ) is minimal if and only if for every for every non-empty
open set U ⊂ X and every x ∈ U , the set V (x, U) is syndetic.

There is a version of Lemma 8.19 that applies to non-minimal systems. Recall that every system (X,T )
has a minimal subsystem.

Lemma 8.21. Let (X,T ) be a transitive system, suppose x ∈ X has a dense orbit, let Y ⊂ X be a minimal
subsystem and let U ⊂ X be an open set such that U ∩ Y 6= ∅. Then V (x, U) is piecewise syndetic.

Proof. Let y ∈ Y and let S = V (y, U). By Lemma 8.19, S is syndetic, so there exists r ∈ N such that
S − {1, . . . , r} = N.

For each N ∈ N let mN ∈ N be such that TmNx is so close to y that for each n ∈ {0, 1 . . . , N}, whenever
Tny ∈ T−nU , also Tn(TmNx) ∈ T−nU . Therefore V (x, U) ⊃ mN +

(
S ∩ {0, . . . , N}

)
for every N ∈ N. We

claim that the union A :=
⋃
N∈NmN +

(
S ∩ {0, . . . , N}

)
is piecewise syndetic, and this will finish the proof.

Indeed, the union T =
⋃
N∈NmN + {0, . . . , N} is thick, and letting S̃ := (N \ T ) ∪ A we clearly have

A = S̃ ∩ T , so it suffices to prove that S̃ is syndetic. Take any x ∈ N. If x /∈ T , then x ∈ S̃. Otherwise,
x ∈ mN + {0, . . . , N} for some N ∈ N, so that x = mN + n for some n ∈ {0, . . . , N}. We can then find

i ∈ {1, . . . , r} such that n+ i ∈ S, and hence x+ i = mN + n+ i ∈ S̃. We conclude that S̃ is syndetic and
hence A is piecewise syndetic. �

8.3. Partition regular patterns. We will use Lemma 8.21 to derive a strengthening of the van der Waerden
theorem (Theorem 1.4). In fact, we will develop a more general framework: call a pattern on N a collection
P of finite subsets of N. Elements of a pattern P may be called configurations. The pattern is shift
invariant if for every C ∈ P and n ∈ N also C + n ∈ P. We say that the pattern P is monochromatic if
for every finite coloring of N there exists C ∈ P which is monochromatic.

Example 8.22. Let R ⊂ N and let P := {{x, x + r} : x ∈ N, r ∈ R}. Then P is a shift invariant pattern.
If R is the set of perfect squares, then P is monochromatic, in view of Theorem 8.11.

Theorem 8.23. Let P be a shift invariant pattern. Then the following are equivalent:

(1) P is monochromatic.
(2) For every minimal system (X,T ) and every non-empty open U ⊂ X, there is a configuration C ∈ P

such that
⋂
n∈C T

−nU 6= ∅.
(3) For every topological system (X,T ) and every finite open cover X = C1 ∪ · · · ∪ Cr, there is a

configuration C ∈ P and i ∈ {1, . . . , r} such that
⋂
n∈C T

−nCi 6= ∅.
(4) For every r ∈ N there exists N ∈ N such that for any coloring of the interval [1, N ] with r colors

there exists C ∈ P contained in [1, N ] which is monochromatic.
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(5) For every syndetic set S ⊂ N there exists C ∈ P such that C ⊂ S.
(6) For every piecewise syndetic set A ⊂ N there exists C ∈ P such that C ⊂ A.
(7) For every piecewise syndetic set A ⊂ N there exists C ∈ P such that the set{

n ∈ N : C + n ⊂ A
}

is piecewise syndetic.

Proof. The implication (3)⇒(1) follows at once from Proposition 8.6. To see why (1)⇒(2), take a minimal
system (X,T ), an open set ∅ 6= U ⊂ X and let x ∈ X be arbitrary. As we saw before, finitely many pre-
images of U cover X (by minimality and compactness) so we can color n ∈ N according to which pre-image
of U contains the point Tnx. Applying (1) to this coloring it follows that (2) holds. The implication (2)⇒(3)
follows immediately from the fact that every system has a minimal subsystem.

It is clear that (4) implies (1); the converse implication follows from the “compactness principle” discussed
in Section 1.

To prove that (1)⇒(5), notice that any syndetic set S induces a coloring of N by covering it with finitely
many shifts; since P is shift invariant, if S − i contains a configuration in P, then so does S. Conversely, if
(5) holds, then in view of Lemma 8.19 so does (2).

Using Lemma 8.18 we deduce that (6)⇒(1). It is trivial that (7)⇒(6) so to finish the proof it will suffice
to show that (2)⇒(7). Let A = S ∩T for a syndetic S and a thick T . For each N ∈ N let mN ∈ N such that
{mN , . . . ,mN +N} ⊂ T .

Consider the left shift T : {0, 1}N0 → {0, 1}N0 and let X ⊂ {0, 1}N0 be the orbit closure of the point 1A.
Passing to a subsequence of (mN ) if needed, we can assume that the limit y = limN→∞ TmN 1A exists. Then
y ∈ X and hence the orbit closure X1 of y is a subsystem of X. It can be proved that the point (0, 0, . . . )
does not belong to X1 (cf. Exercises 8.24 and 8.25 below). Therefore the clopen set U := {x ∈ X : x0 = 1}
has non-empty intersection with any subsystem of X1, and in particular U has non-empty intersection with
a minimal subsystem Y of (X,T ).

Using part (2) on the open subset U ∩ Y of Y we find a configuration C ∈ P such that W :=
⋂
i∈C T

−iU
satisfies W ∩ Y 6= ∅. We can now apply Lemma 8.21 to deduce that B := {n ∈ N : Tn1A ∈W} is piecewise
syndetic. For every n ∈ B and i ∈ C we have Tn1A ∈ T−iU , so Tn+i1A ∈ U so n+ i ∈ A. We conclude that
n+ C ⊂ A and this finishes the proof. �

Exercise 8.24. Show that the point y constructed at the end of the proof of Theorem 8.23 is the indicator
function of a syndetic set.

Exercise 8.25. Show that if y ∈ {0, 1}N0 is the indicator function of a syndetic set then (0, 0, . . . ) does not
belong to the orbit closure of y under the shift.

Combining Theorem 8.23 with van der Waerden’s theorem we obtain the following strengthening.

Corollary 8.26. Let A ⊂ N be piecewise syndetic and let k ∈ N. Then there exists n ∈ N such that the
intersection A ∩ (A− n) ∩ · · · ∩ (A− kn) is piecewise syndetic.

Proof. Theorem 1.4 can be reformulated as stating that P := {{x, x+n, . . . , x+kn} : x, n ∈ N} is monochro-
matic. In view of condition (7) in Theorem 8.23, there exists x, n ∈ N such that the set B := {m ∈ N :
m+{x, x+n, . . . , x+kn} ⊂ A} is piecewise syndetic. The desired conclusion now follows from the observation
that A ∩ (A− n) ∩ · · · ∩ (A− kn) ⊃ B + x. �

8.4. Monochromatic sums and products. In this subsection we use the facts established above to prove
the following theorem.

Theorem 8.27. If N = C1 ∪ · · · ∪ Cr, there exists x, y ∈ N and t ∈ {1, . . . , r} such that{
x, x+ y, xy

}
⊂ Ct. (8.1)

Proof. We will construct inductively four sequences:

• an increasing sequence (yi)i≥1 of natural numbers,
• two sequences (Bi)i≥0 and (Di)i≥1 of piecewise syndetic subsets of N,
• a sequence (ti)i≥0 of colors in {1, . . . , r},
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such that Bi ⊂ Cti for every i ≥ 0.
Initiate by choosing t0 ∈ {1, . . . , r} such that Ct0 is piecewise syndetic, and let B0 := Ct0 . Assume now

that i ≥ 1 and that we have already defined (tj)
i−1
j=0, (yj)

i−1
j=1, (Bj)

i−1
j=0 and (Dj)

i−1
j=1. We apply Corollary 8.26

to find yi ∈ N such that

Di := Bi−1 ∩
i⋂

j=1

(
Bi−1 − y2j · · · y2i−1yi

)
(8.2)

is piecewise syndetic (with the convention that for i = j, the (empty) product y2j · · · y2i−1 equals 1). Observe
that yiDi is also piecewise syndetic, and therefore Lemma 8.18 provides some ti ∈ {1, . . . , r} such that
Bi := yiDi ∩ Cti is piecewise syndetic. This finishes the construction of the sequences.

Note that Bi ⊂ yiDi ⊂ yiBi−1; iterating this fact we obtain

∀ 0 ≤ j < i, Bi ⊂ yj+1yj+2 · · · yiBj . (8.3)

Since the sequence (ti) takes only finitely many values, there exist (infinitely many) j < i such that ti = tj .
Let x̃ ∈ Bi, let y := yj+1 · · · yi, and let x := x̃/y. We claim that {x, x + y, xy} ⊂ Cti , which will complete
the proof. Indeed xy = x̃ ∈ Bi ⊂ Cti and from (8.3) we have xy ∈ Bi ⊂ yBj so x ∈ Bj ⊂ Ctj = Cti . Finally
we have

y(x+ y) = x̃+ y2 ∈ Bi + y2 ⊂ yiDi + y2

using (8.2) ⊂ yi
(
Bi−1 − y2j+1 · · · y2i−1yi

)
+ y2

using (8.3) ⊂ yi
(
yj+1 · · · yi−1Bj − y2j+1 · · · y2i−1yi

)
+ y2

= yBj − y2 + y2 = yBj ,

which implies that x+ y ∈ Bj ⊂ Ctj = Cti . �

9. Infinite Ramsey Theory

So far we have discussed only finite configurations that appear monochromatically whenever one partitions
N, or in every set with positive upper density. In this section, we mention some infinite configurations that
have similar properties.

We start by recalling Ramsey’s theorem. Given a set X and m ∈ N, denote by
(
X
m

)
:= {A ⊂ X : |A| = m}

the collection of all subsets of X with exactly m elements. Recall that a complete graph is a pair (V,
(
V
2

)
)

for a set V .

Theorem 9.1 (Ramsey’s theorem for graphs). For any r, k ∈ N there exists n ∈ N such that whenever V is a

set with |V | = n and we finitely color the edges of the complete graph with vertices V , i.e.
(
V
2

)
= C1∪· · ·∪Cr,

there exists a color Ci and a set S ⊂ V with |S| = k such that
(
S
2

)
⊂ Ci.

There is an infinite version of Ramsey’s theorem, which is the version we will be interested in. For
convenience, we use N to stand for the countably infinite set of vertices, but naturally any other set of the
same cardinality could play the same role.

Theorem 9.2 (Infinite Ramsey’s theorem for graphs). Whenever
(N
2

)
= C1 ∪ · · · ∪ Cr, there exists a color

Ci and an infinite subset S ⊂ N such that
(
S
2

)
⊂ Ci.

As is often the case, the infinite version has a shorter formulation, and it implies the finitistic formulation.

Exercise 9.3. Show that Theorem 9.2 implies Theorem 9.1.

However, unlike in many other Ramsey theoretic examples, the finite and infinite versions are not equiv-
alent. This is made precise by the Paris-Harrington Theorem.

As a corollary of Theorem 9.2 we obtain the following arithmetic corollary. For a set I ⊂ N we denote by
I ⊕ I the restricted sumset {x+ y : x, y ∈ I;x 6= y}.

Corollary 9.4. For any finite coloring of N there exists an infinite set I ⊂ N such that I ⊕ I is monochro-
matic.
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Proof. Suppose N = C1 ∪ · · · ∪ Cr. Let C̃i :=
{
{a, b} ∈

(N
2

)
: a+ b ∈ Ci

}
. Observe that

(N
2

)
= C̃1 ∪ · · · ∪ C̃r,

so we can apply Theorem 9.2 to find an infinite set I ⊂ N such that
(
I
2

)
is contained in a single C̃i. But this

means that I ⊕ I ⊂ Ci. �

Exercise 9.5. Find a 3-coloring of N without a monochromatic set of the form I + I = {x + y : x, y ∈ I}.
[Hint: Color N with longer and longer intervals of alternating colors to avoid any pair {x, 2x}. By using the
third color one can avoid pairs {x+ y, 2x} when y � x.]

Ramsey’s theorem has a version for hypergraphs:

Theorem 9.6 (Infinite Ramsey’s theorem for hypergraphs). Let m ∈ N. Whenever
(N
m

)
= C1 ∪ · · · ∪ Cr,

there exists a color Ci and an infinite subset S ⊂ N such that
(
S
m

)
⊂ Ci.

Similarly, we can extend Corollary 9.7.

Corollary 9.7. Let m ∈ N. For any finite coloring of N there exists an infinite set I ⊂ N such that
I⊕m := {x1 + · · ·+ xm : x1, . . . , xm ∈ I, x1 < · · · < xm} is monochromatic.

I turns out that a much more spectacular result than Corollary 9.7 holds. To state we need the concept
of an IP-set

Definition 9.8. A set A ⊂ N is an IP-set if there exists an infinite set I ⊂ N such that

A =

{∑
n∈F

n : F ⊂ I; 0 < |F | <∞

}
.

Note that an equivalent characterization of IP-sets are sets of the form
⋃∞
m=1 I

⊗m.

Theorem 9.9 (Hindman). For any finite coloring of N there is a monochromatic IP-set.

Exercise 9.10. Show that Theorem 9.9 is equivalent to the statement that any finite coloring of an IP-set
yields a monochromatic IP-set. [Hint: N is the IP-set generated by the set I = {2n : n ∈ N}.]

We will present a very simple proof of Theorem 9.9 based on the existence of idempotent ultrafilters on
N.

Definition 9.11. An idempotent ultrafilter is a collection p of subsets of N satisfying

(1) ∅ /∈ p and N ∈ p,
(2) If A ∈ p and B ⊃ A, then B ∈ p,
(3) If A,B ∈ p then A ∩B ∈ p.
(4) If A ∈ p and A = A1 ∪ · · · ∪Ar then one of the Ai is in p.
(5) A ∈ p if and only if {n ∈ N : A− n ∈ p} ∈ p.

A collection satisfying conditions (1)-(3) is called a filter . Given a set A ⊂ N, the collection p := {B ⊂
N : A ⊂ B} is a filter. A collection satisfying conditions (1)-(4) is called an ultrafilter . Ultrafilters are
maximal filters (for the inclusion relation); therefore Zorn’s lemma implies that any filter is contained in an
ultrafilter. Given n ∈ N, the collection pn := {A ⊂ N : n ∈ A} is an ultrafilter. Ultrafilters of that form are
called principal . The existence of non-principal ultrafilters requires at least some weak form of the axiom
of choice.

Proposition 9.12. There exist idempotent ultrafilters. In fact, for any IP-set A ⊂ N there exists an
idempotent ultrafilter p such that A ∈ p.

The proof of Proposition 9.12 requires some background on ultrafilters and is beyond the scope of this
lecture. We will take it for granted and use it to give a quick proof of Hindman’s theorem.

Proof of Theorem 9.9. Using Proposition 9.12, let p be an idempotent ultrafilter. Given a finite coloring of N
there is a color, call it C which belongs to p. Now let A1 = C and choose x1 ∈ A1 such that A1−x1 ∈ p; such
x1 exists because the set A1∩{x ∈ N : A1−x ∈ p} is in p and hence non-empty. Let A2 := A1∩(A1−x1) and
note that A2 ∈ p. We now proceed recursively for each n = 2, 3, . . . , finding xn ∈ An such that An − xn ∈ p
(which exists because An ∩ {x ∈ N : An − x ∈ p}) and letting An+1 = An ∩ (An − xn) ∈ p.
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We claim that for any nonempty F ⊂ N, the sum
∑
i∈F xi ∈ A which finishes the proof. To prove

the claim, let n = maxF and F̃ = F \ {n} and note that xn ∈ An ⊂ A −
∑
i∈F̃ xi, so that

∑
i∈F xi =

xn +
∑
i∈F̃ xi ∈ A �

Exercise 9.13. Let k ∈ N and let A be an IP-set. Show that A contains a multiple of k.

Observe that, in view of Exercise 9.13, the most obvious density analogue of Hindman’s theorem is false,
i.e. there are sets with positive upper density which do not contain an IP-set. However, these so-called local
obstructions can be easily avoided if one is allowed to shift to the following question of Erdős:

Question 9.14. Is is true that whenever A ⊂ N has positive upper density, there exists t ∈ N such that
A− t contains an IP-set?

It turns out that even this density version of Hindman’s theorem is false, and the answer to Question 9.14
is negative.

Exercise 9.15. Show that for every ε > 0 there exists a set A ⊂ N with upper density d̄(A) > 1 − ε and
such that for any t ∈ N there exists k = k(t) such that A− t has no multiples of k.

In view of the negative answer to Question 9.14 (obtained by combining Exercises 9.13 and 9.15) Erdős
made the following conjecture, which is still open.

Conjecture 9.16. If A ⊂ N has d̄(A) > 0, there exists an infinite set B ⊂ N and a shift t ∈ N such that
A− t ⊃ B ⊕B.

Exercise 9.17. Find a set A ⊂ N with d̄(A) > 0 and such that for any t and any infinite set B ⊂ N, A− t
does not contain B +B, and hence a restricted sum B ⊕B is required in Conjecture 9.16.

Exercise 9.18. Show that if Conjecture 9.16 holds, then one can always take t ∈ {0, 1}.

Erdős made another related conjecture.

Conjecture 9.19. If A ⊂ N has d̄(A) > 0, then there are infinite sets B,C ⊂ N such that A ⊃ B + C.

Exercise 9.20. Show that Conjecture 9.16 implies Conjecture 9.19.

Conjecture 9.19 has been recently established in [21] using ergodic theory. The full proof is beyond the
scope of this notes, but we will look at one special case that was established earlier in [6].

One could try to use Furstenberg’s correspondence principle in the form of Theorem 3.4. Note that

∃B,C ⊂ N : |B|, |C| =∞, B + C ⊂ A ⇐⇒ ∃B ⊂ N : |B| =∞,

∣∣∣∣∣⋂
b∈B

A− b

∣∣∣∣∣ =∞.

Unfortunately Theorem 3.4 as stated does not allow one to take infinite intersections of the form
⋂
b∈B A−b.

This issue could actually be addressed; however the problem is that in a probability space (and hence in
a measure preserving system) infinite sets of measure zero are negligible, so in order to obtain from the
Correspondence Principle a conclusion of the form

∣∣⋂
b∈B A− b

∣∣ = ∞ one would need to show that the

corresponding set
⋂
b∈B T

−bA has positive measure. However, this is not always the case.

Exercise 9.21. Consider the doubling map (i.e. the transformation x 7→ 2x mod 1 on [0, 1) with the Lebesgue
measure) and let A = [0, 1/2). Show that for any infinite set B ⊂ N, the intersection

⋂
T−bA has zero

measure.

Exercise 9.22. (∗) Consider the doubling map (i.e. the transformation x 7→ 2x mod 1 on [0, 1) with the
Lebesgue measure) and let A ⊂ [0, 1) be any Borel set. Show that for any infinite set B ⊂ N, the intersection⋂
T−bA has zero measure.

As these exercises illustrate, we can not, in general, use the Correspondence Principle in the form presented
in Theorem 3.4 (although it turns out that one can still use a different version of the more general Corre-
spondence Principle encapsulated in the beginning of Section 3). However, as mentioned above, Theorem 3.4
suffices to prove a special case of Conjecture 9.19.
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Definition 9.23. A set E ⊂ N is weak-mixing if there exists a measure preserving system (X,B, µ, T )
and a set A ∈ B satisfying the conclusion of Theorem 3.4 (i.e. µ(A) = d̄(E) and (3.1) holds), such that the
function 1A − µ(A) is a weak-mixing function (cf. Definition 5.15).

Note that a weak-mixing function in a m.p.s. must have 0 integral, which is why we consider the function
1A − µ(A) instead of 1A in this definition. In this sense the Jacobs-de Leeuw-Glicksberg decomposition (cf.
Theorem 5.24) of 1A is given by the sum of a weak mixing function and a constant function.

The following special case of Theorem 3.4 was first obtained in [6].

Theorem 9.24. Let A ⊂ N with d̄(A) > 0. If A is weak mixing, then there exist infinite sets B,C ⊂ N such
that A ⊃ B + C.

The relevance of the weak mixing property is captured by the following property.

Exercise 9.25. Let (X,B, µ, T ) be a m.p.s. and let A ∈ B be such that µ(A) > 0 and the function 1A−µ(A)
is weak mixing. Show that for any B ∈ B with µ(B) > 0, the set

R := {n ∈ N : µ(A ∩ T−nB) > 0}

has full natural density, i.e. d(R) = 1 (which is stronger than just d̄(R) = 1).

Proof of Theorem 9.24. Let A ⊂ N have d̄(A) > 0 and be weak mixing. Let (X,B, µ, T ) be a m.p.s. and let
D ∈ B be such that µ(D) = d̄(A), (3.1) holds and the function 1D−µ(D) is weak mixing. Using Exercise 9.25
it follows that for any set E ∈ B with µ(E) > 0 we have

d
(
{n ∈ N : µ(T−nD ∩ E) > 0}

)
= 1. (9.1)

We will construct recursively two increasing sequences (bn)n∈N and (cn)n∈N such that for any n ∈ N we have

bn ∈
n−1⋂
i=1

(A− ci), cn ∈
n⋂
i=1

(A− bi), µ

(
n⋂
i=1

T−ciD

)
> 0, µ

(
n⋂
i=1

T−biD

)
> 0. (9.2)

The first two properties in (9.2) imply that the sets B := {bn : n ∈ N} and C := {cn : n ∈ N} satisfy
B + C ⊂ A which is the desired conclusion.

Let b1 ∈ N be arbitrary and let c1 ∈ A−b1 be arbitrary. Note that (9.2) holds for n = 1. Next suppose that
m > 1 and b1, . . . , bm−1 and c1, . . . , cm−1 have been chosen satisfying (9.2) for every n < m. Using Eq. (9.1)

with E =
⋂m−1
i=1 T−biD (which from (9.2) has positive measure) it follows that R := {b ∈ N : µ(T−bD∩E) >

0} has full density. In view of the correspondence property (3.1), and then again the induction hypothesis
(9.2),

d̄

(
m−1⋂
i=1

(A− ci)

)
≥ µ

(
m−1⋂
i=1

T−ciD

)
> 0

Therefore the intersection R∩
⋂m−1
i=1 (A−ci) has positive upper density, and in particular it is infinite. Choose

bm > bm−1 in that intersection. With this choice of bm, both the first and last property in (9.2) hold for

n = m. Next use Eq. (9.1) with E =
⋂m−1
i=1 T−ciD and again the correspondence principle and the induction

hypothesis to conclude that the intersection

m⋂
i=1

(A− bi) ∩

{
c ∈ N : µ

(
T−cD ∩

m−1⋂
i=1

T−ciD

)
> 0

}
has positive upper density. Choosing cm > cm−1 in this intersection, both the second and third properties
in (9.2) are satisfied for n = m. This finishes the construction of the sequences (bn) and (cn) and hence the
proof. �

It turns out that the proof of Theorem 9.24 can be simplified to yield a stronger result.

Exercise 9.26. Show that any weak-mixing set A ⊂ N with positive upper density contains B ⊗B for some
infinite set B ⊂ N.
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At this point, it would seem natural to prove Conjecture 9.19 by using the Jacobs-de Leeuw-Glicksberg
decomposition together with Theorem 9.24 and an analysis of Kronecker systems. However, a delicate
subtlety related to the fact that the Jacobs-de Leeuw-Glicksberg decomposition produces measurable but
not necessarily continuous components prevents this approach from working directly.

The interested reader may find the full proof in the original manuscript [21], or in a more streamlined
ergodic rendition discovered by Host in [15]. Both proofs make use (in a way or another) of methods
from Ergodic Ramsey Theory, including a Correspondence Principle, and the Jacobs-de Leeuw-Glicksberg
decomposition.
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