
DISTRIBUTION IN HOMOLOGY CLASSES AND DISCRETE

FRACTAL DIMENSION

JAMES EVERITT AND RICHARD SHARP

Abstract. In this note we examine the proportion of periodic orbits of
Anosov flows that lie in an infinite zero density subset of the first homology
group. We show that on a logarithmic scale we get convergence to a discrete
fractal dimension.

1. introduction

There has been a considerable body of research on how closed geodesics on
compact negatively curved manifolds and, more generally, periodic orbits of
Anosov flows are distributed in homology classes, for example [1], [3], [11], [12],
[13], [14], [19], [21], [24]. To state these results more precisely, let φt : M →
M be a transitive Anosov flow such that the winding cycle associated to the
measure of maximal entropy vanishes. This class of flows includes geodesic
flows over compact negatively curved manifolds. The basic counting result is
that the number of of period orbits of length at most T and lying in a homology
class α ∈ H1(M,Z) is asymptotic to (constant) × ehT /T 1+k/2, where h is the
topological entropy of the flow and k ≥ 0 is the first Betti number of M .
Furthermore, the distribution is Gaussian and the constant above is related to
the variance [14], [17], [25].

It is also interesting to ask about the distribution of periodic orbits lying in
a set A ⊂ H1(M,Z). If A is finite, the behaviour follows from that for single
homology classes, so we suppose that A is infinite. This, of course, implies
that H1(M,Z) is infinite, i.e. k ≥ 1. Petridis and Risager [18] (for compact
hyperbolic surfaces) and Collier and Sharp [6] (for Anosov flows for which the
measure of maximal entropy has vanishing winding cycle) independently showed
if A has positive density then the proportion of periodic orbits of length at
most T lying in A converges to the density of A (with respect to an appropriate
norm), as T → ∞. To state this and our new results more precisely, let P
denote the set of prime periodic orbits for φ and, for γ ∈ P, let `(γ) denote
the least period of γ and [γ] ∈ H1(M,Z) denote the homology class of γ. It is
convenient to ignore any torsion in H1(M,Z), so we can think of H1(M,Z) as
a lattice in H1(M,R) ∼= Rk. Write PT = {γ ∈P : `(γ) ≤ T}, PT (α) = {γ ∈
PT : [γ] = α} and PT (A) =

⋃
α∈A PT (α). Fixing a norm ‖ · ‖ on H1(M,R),

write NA(r) = #{α ∈ A : ‖α‖ ≤ r} and N(r) = NH1(M,Z)(r). We say that
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A ⊂ H1(M,Z) has density d‖·‖(A) (with respect to ‖ · ‖) if

lim
r→∞

NA(r)

N(r)
= d‖·‖(A).

Proposition 1.1 (Collier and Sharp [6], Petridis and Risager [18]). Let φt :
M → M be a transitive Anosov flow for which the winding cycle associated to
the measure of maximal entropy vanishes. Then there exists a norm ‖ · ‖ on
H1(M,R) such that if A ⊂ H1(M,Z) has density d‖·‖(A) then

lim
T→∞

#PT (A)

#PT
= d‖·‖(A).

The norm (defined in Section 2 below) is a Euclidean norm determined by
the second derivative of a pressure function.

Now suppose A has density zero. It is interesting to ask whether we can
obtain more precise information about the behaviour of

D(T,A) :=
#PT (A)

#PT

as T → ∞. If we write ρA(r) = NA(r)/N(r), then the naive conjecture is
that D(T,A) is of order ρA(

√
t), as T → ∞, and this is consistent with case

A = {α}. It is too optimistic to hope that a precise asymptotic relation holds
for general A. Nevertheless, one might hope for information on the logarithmic
scale if we use some notion of discrete fractal dimension. We say that A has
discrete mass dimension δ if

lim
r→∞

logNA(r)

log r
= δ

or, equivalently, that if

(1.1) NA(r) = rδκA(r)

then limr→∞ log κA(r)/ log r = 0. (Note that this is independent of the choice
of norm ‖ · ‖.) For a discussion of discrete fractal dimensions, see [4].

Example 1.2. Suppose A ⊂ Z is given by A = {±m2 : m ∈ N} then the
discrete mass dimension of A is 1/2. More interesting examples appear in
percolation theory (see, for example, [10]).

Our main result is the following.

Theorem 1.3. Let φt : M → M be a transitive Anosov flow for which the
winding cycle associated to the measure of maximal entropy vanishes. If A ⊂
H1(M,Z) has discrete mass dimension δ then

lim
T→∞

log D(T,A)

log T
=
δ − k

2
.

Let Σ be a compact orientable surface of genus g ≥ 2 with a Riemann-
ian metric g of negative curvature and let T 1Σ denote the unit tangent bun-
dle. Then the natural projection p : T 1Σ → Σ induces a homomorphism
p∗ : H1(T 1Σ,Z) → H1(Σ,Z) ∼= Z2g whose kernel is the torsion subgroup, and
induces a bijection between the prime periodic orbits of the geodesic flow and
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primitive closed geodesics on Σ such that `(γ) = lengthg(p(γ)) and p∗([γ]) =
[p(γ)]. If, for A ⊂ H1(Σ,Z), we define DΣ(T,A) to be the proportion of closed
primitive geodesics on Σ with g-length at most T and with homology class in
A, then we have the following corollary.

Corollary 1.4. Let Σ be a compact orientable surface of genus g ≥ 2 with a
Riemannian metric of negative curvature. If A ⊂ H1(Σ,Z) has discrete mass
dimension δ then

lim
T→∞

log DΣ(T,A)

log T
=
δ − 2g

2
.

2. Anosov flows

Let M be a compact Riemannian manifold and φt : M →M be a transitive
Anosov flow [2], [8]. We suppose that M has first Betti number k ≥ 1 and
ignore any torsion in H1(M,Z). Using the notation of the introduction, we say
that φ is homologically full if the map P → H1(M,Z) : γ 7→ [γ] is a surjection.
This automatically implies that the flow is weak-mixing (since an Anosov flow
fails to be weak-mixing only when it is a constant suspension of an Anosov
diffeomorphism [20], in which case it can have no null homologous periodic
orbits) and hence that

#PT ∼
ehT

hT
,

as T → ∞, where h > 0 is the topological entropy of φ [15], [16]. There is a
unique measure of maximal entropy µ for which the measure-theoretic entropy
hµ(φ) = h [5]. (See [8] for the notions of topological and measure-theoretic
entropy for φ.)

Let Mφ denote the set of φ-invariant Borel probability measures on M . For
a continuous function f : M → R, we define its pressure P (f) by

P (f) = sup

{
hν(φ) +

∫
fdν : ν ∈Mφ

}
.

Given ν ∈Mφ, we can define the associated winding cycle Φν ∈ H1(M,R) by

〈Φν , [ω]〉 =

∫
ω(Z) dν,

where [ω] is the cohomology class of the closed 1-form ω, Z is the vector gener-
ating φ and 〈·, ·〉 is the duality pairing (Schwartzman [23], Verjovsky and Vila
Freyer [26]). Write Bφ = {Φν : ν ∈ Mφ}; this is a compact and convex sub-
set of H1(M,R). The assumption that φ is homologically full is equivalent to
0 ∈ int(Bφ) and implies that there are fully supported measures ν for which
Φν = 0. We will impose the more stringent condition that Φµ = 0, where µ is
the measure of maximal entropy for φ. This class includes geodesic flows overs
over compact negatively manifolds with negative sectional curvature. (In the
case considered in Corollary 1.4, Bφ may be identified with the unit-ball for
the Federer–Gromov stable norm on H1(Σ,R) [7], [9].)

Still assuming that Φµ = 0, there is an analytic pressure function p : H1(M,R)→
R, defined by p([ω]) = P (ω(Z)) [12], [24]. This is a strictly convex function with
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positive definite Hessian; it has a unique minimum at 0. For ξ ∈ H1(M,R), we
define σξ > 0 by

σ2k
ξ = det∇2p(ξ)

and set σ = σ0. There is also an analytic entropy function h : int(Bφ) → R
defined by h(ρ) = sup{hν(φ) : Φν = ρ} such that p and −h are Legendre con-
jugates (via the pairing 〈·, ·〉) [22]. More precisely, −∇h : int(Bφ)→ H1(M,R)
and ∇p : H1(M,R)→ int(Bφ) are inverses and

h(ρ) = p((∇p)−1(ρ))− 〈(∇p)−1(ρ), ρ〉.
We write ξ(ρ) = (∇p)−1(ρ). Then −∇2h(ρ) = (∇2p(ξ(ρ)))−1. In particu-
lar, ξ(0) = 0, H := −∇2h(0) = (∇2p(0))−1 is positive definite and detH =
(det∇2p(0))−1 = σ−2k. We use H to define a norm ‖ · ‖ on H1(M,R) by

‖ρ‖ = 〈ρ,Hρ〉.
We note that

N(r) := {α ∈ H1(M,Z) : ‖α‖ ≤ r} ∼ vkσ
krk,

where vk = πk/2/Γ(k/2 + 1), the volume of the standard unit-ball in Rk. For
small ρ, Taylor’s theorem gives us the expansion

(2.1) h(ρ) = h− ‖ρ‖2/2 +O(‖ρ‖3).

We now consider the periodic orbits of φt. As above, we ignore the torsion in
H1(M,Z) and treat it as a lattice in H1(M,R). We fix a fundamental domain
F and, for ρ ∈ H1(M,R), we define bρc ∈ H1(M,Z) by ρ− bρc ∈ F .

Proposition 2.1 (Theorem 3.5 of [3]). Let φt : M → M be a homologically
full transitive Anosov flow. If ρ ∈ int(Bφ) and α ∈ H1(M,Z) then

#{γ ∈PT : [γ] = α+ bρT c} ∼ c(ρ)e〈ξ(ρ),Tρ−bTρc−α〉 e
h(ρ)T

T 1+k/2
,

as T → ∞, uniformly for ρ in any compact subset of Bφ, where c(ρ) =

1/((2π)k/2σkξ(ρ)h(ρ)).

Remark 2.2. The statement of Theorem 3.5 in [3] is for the more general class
of hyperbolic flows and the hypotheses there are a condition called Assumption
A (see page 18 of [3]) and that Bφ contains zero in its interior. For transitive
Anosov flows, it was proved in [24] that both of these are implied by the flow
being homologically full. Counting results for a linearly varying homology class
were originally proved by Lalley in the more restricted setting of geodesic flows
over compact negatively curved surfaces [14].

If Φµ = 0, we can set ρ = 0 and recover the asymptotic

#PT (α) ∼ 1

(2π)k/2σkh

ehT

T 1+k/2
,

originally proved by Katsuda and Sunada [12]. Furthermore, for all sufficiently
small ∆ > 0, we have

(2.2) lim
T→∞

sup
‖α|≤∆T

∣∣∣∣∣T 1+k/2#PT (α)

c(α/T )eh(α/T )T
− 1

∣∣∣∣∣ = 0.
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3. Proof of Theorem 1.3

3.1. Upper bound. In this section we show that (δ − k)/2 gives an upper
bound for the limit in Theorem 1.3. The main idea is to use Proposition 2.1
and the Taylor expansion of h(ρ) to replace D(T,A) with a sum of Gaussian
terms over elements of A with norm bounded by η

√
T log T , for η > 0 chosen

sufficiently large that the resulting error decays faster than T (δ−k)/2.
We begin with the trivial observation that

D(T,A)− e−hThT#PT (A) = o(D(T,A)),

so that it is sufficient to consider e−hThT#PT (A). We can make the following
approximation.

Lemma 3.1. For any η > 0,∑
α∈A

‖α‖≤η
√
T log T

(
hT#PT (α)

ehT
− e−‖α‖

2/2T

(2π)k/2σkT k/2

)

= o
(
T (δ−k)/2(log T )δ/2κA(η

√
T log T )

)
,

where κA is defined by equation (1.1).

Proof. Let η > 0. Clearly (2.2) still holds if we take the supremum over
‖α‖ ≤ η

√
T log T . Over this set, we have c(α/T ) = c(0) + O(‖α‖/T ) =

c(0) +O(
√

log T/
√
T ) and

h
(α
T

)
T = ht− ‖α‖

2

2T
+O

(
‖α‖3

T 2

)
= hT − ‖α‖

2

2T
+O

(
(log T )3/2

√
T

)
.

Substituting these in, we obtain an estimate

sup
‖α‖≤η

√
T log T

∣∣∣∣∣hT#PT (α)

ehT
− e−‖α‖

2/2T eq(α,T )

(2π)k/2σkT k/2

∣∣∣∣∣ = o(T−k/2),

where |q(α, T )| ≤ c′(log T )3/2T−1/2, for some c′ > 0. A simple calculation then

shows that we may remove the q(α, T ) terms, while keeping the o(T−k/2) error
term. To complete the proof, we note that summing over ‖α‖ ≤ η

√
T log T

involves NA(η
√
T log T ) = O(T δ/2(log T )δ/2κA(η

√
T log T )) summands. �

Next we estimate the Gaussian part from the previous lemma.

Lemma 3.2.∑
α∈A

‖α‖≤η
√
T log T

e−‖α‖
2/2T

(2π)k/2σkT k/2
= O(T (δ−k)/2(log T )δ/2κA(η

√
T log T )).

Proof. The result follows from the elementary estimate∑
α∈A

‖α‖≤η
√
T log T

e−‖α‖
2/2T

(2π)k/2σkT k/2
= O

(
NA(η

√
T log T )

T k/2

)
.

�
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The contribution from ‖α‖ > η
√
T log T is estimated as follows.

Lemma 3.3. ∑
α∈A

‖α‖>η
√
T log T

hT#PT (α)

ehT
= O(T−η

2/2(log T )3k/2−2).

Proof. Applying Proposition 2.1, we see that, for x ∈ Rk and C(∆) a cube of
(small) side length ∆ based at 0,

hTe−hT#

{
γ ∈PT :

[γ]√
T log T

∈ x+ C(∆)

}
∼ he−hT c(x

√
(log T )/T )

eh(x
√

(log T )/T )T

T k/2
(∆
√
T log T )k

∼ ∆k(log T )k/2e−(‖x‖2 log T )/2

(2π)k/2σk
.

Thus we can estimate the sum in the statement by (log T )k/2Iη(T ), where Iη(T )
is the integral

Iη(T ) :=
1

(2π)k/2σk

∫
B(η)

e−‖x‖
2 log T/2 dx,

where B(η) = {x ∈ Rk : ‖x‖ > η}. Substituting u = x
√

log T and passing to
coordinates (r, θ) with r > 0 and ‖θ‖ = 1, we obtain

Iη(T ) =
Area({θ : ‖θ‖ = 1}

(2π)k/2σk

∫ ∞
η
√
T
e−r

2/2rk−1 dr = O(T−η
2/2(log T )k−2),

where we have used standard asymptotics for the complementary error function
erfc(z). �

To complete the proof of the upper bound, choose η >
√
k − δ. Then com-

bining Lemmas 3.1, 3.2 and 3.3 and noting that

lim
T→∞

log κA(η
√
T log T )

log T
= lim

T→∞

log κA(η
√
T log T )

log(η
√
T log T )

log(η
√
T log T )

log T
= 0

shows that

(3.1) lim sup
T→∞

log D(T,A)

log T
≤ δ − k

2
.

3.2. Lower bound. Since we seek a lower bound, we only need to consider∑
α∈A
‖α‖≤

√
T

hT#PT (α)

ehT
.

The following result is almost identical to Lemma 3.1 and we do not repeat the
proof.
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Lemma 3.4.∑
α∈A
‖α‖≤

√
T

(
hT#PT (α)

ehT
− e−‖α‖

2/2T

(2π)k/2σkT k/2

)
= o

(
T (δ−k)/2κA(

√
T )
)
.

Since we have the bound∑
α∈A
‖α‖≤

√
T

e−‖α‖
2/2T

(2π)k/2σkT k/2
≥ e−2

(2π)k/2σkT k/2
NA(
√
T ) =

e−2

(2π)k/2σk
T (δ−k)/2κA(

√
T ),

we conclude that

lim inf
T→∞

log D(T,A)

log T
≥ δ − k

2
.
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