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ABSTRACT 
 
Aims: Most blood flow models are applicable at arterial level but are not designed to reach down to 
the capillary scale or to represent the deformation of red blood cells (RBC). However, molecular 
models are too fine to represent the observable scales of a multi-constituent fluid. The aim of this 
study is to develop and evaluate a method between these two limits capable of simulating capillary 
blood rheology, and improving our understanding of the role of the microcirculation in 
cardiovascular disease.  
 
Methods and results: We use a multi-particle collision dynamics method with Andersen 
thermostat (MPC-AT) to simulate microcirculatory flow through regular and constricted cylindrical 
capillaries, with erythrocytes modelled as a net of springs on flattened hexagonal prisms. The model 
is implemented as a C++ serial library accessed through a Python interface. This model results in 
spontaneous formation of aggregates of RBCs, allows for axisymmetric red cell positioning related 
to the Fahraeus effect, and permits RBCs to undergo shape transitions as their velocity increases 
from 3.0x10-4 m/s to 9.3x10-3 m/s. In the model, RBCs have a higher velocity than plasma. 
Introducing a local capillary stenosis within the model results in RBC aggregation and a reduction 
of their velocity (unconstricted vs. stenosis: 4.71x10-4 m/s [IQR, (4.52-4.92)x10-4] vs. 1.38x10-4 m/s 
[IQR, (1.25-1.70)x10-4]; Wilcoxon signed rank test P=0.012, n=8). 
 
Conclusions. This multi-particle method demonstrates that only a limited level of detail is needed 
for a simulation to acquire basic features of the microcirculation, and represents a promising tool for 
accurate modelling of capillary flow. 
 
 
Keywords: capillaries, stenosis, risk factors, blood cells, computers. 
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INTRODUCTION 
High blood pressure is a major risk factor for premature cardiovascular death worldwide. Major 
complications of hypertension include heart failure, acute coronary syndromes, strokes, and other 
serious vascular diseases. An increase in blood pressure is associated with changes in microvessels 
(capillaries1, arterioles2 and venules), which make them more resistant to blood flow3. Impairment 
of the microcirculation may also contribute to the development of hypertension4,5,6. The presence of 
reduced capillary density (rarefaction) in normotensive individuals with a genetic predisposition to 
high blood pressure suggests these problems in the microcirculation could play a role in the onset of 
hypertension, with Levy et al.7 suggesting a “vicious cycle”, in which abnormalities in the capillary 
microcirculation may initiate, maintain and amplify hypertension. 
 
Capillary rarefaction has been observed in patients with borderline hypertension5, moderate to 
severe established essential hypertension8,9 , and secondary hypertension10. This reduction in 
capillary density may be structural (anatomic absence of capillaries), functional (due to non-
perfusion, i.e. blood not being present) or both11, and patients with moderate to severe hypertension 
have been observed to have both functional and structural capillary rarefaction5,9. Younger 
individuals with mild elevation of blood pressure are more likely to show functional, but not 
structural capillary rarefaction9, which is consistent with the theory of Prewitt et al.12 that 
hypertension-induced vasoconstriction may lead initially to reversible functional rarefaction of 
capillaries, later followed by irreversible structural rarefaction. Indeed, capillary rarefaction persists 
after high blood pressure has been controlled with different types of antihypertensive drugs13. 
 
Functional rarefaction is associated with endothelial dysfunction, which is both a feature of 
hypertension,  and a biomarker of risk of cardiovascular events14. Absence of flow induces the 
death of endothelial cells15: this might be a link between functional and structural rarefaction. 
Contributing factors include the aggregation of platelets and margination of white blood cells that 
occur due to the reduced flow, and activation of cell adhesion molecules, which leads to the 
activation of apoptotic pathways16, implicated in structural rarefaction in experimental 
hypertension15. 
 
These concepts highlight the importance of studying capillary flow in the context of hypertension, 
both with regard to potential biomarker development and to gain insight into capillaries as a new 
treatment target. Key questions include: discerning how the dynamics of flow affects the structure 
of the capillary, quantifying the resistance that capillaries introduce in the systemic circulation and 
identifying the nature and impact of established and new cardiovascular risk factors in determining 
blood micro-rheology. These variables could include macromolecules in plasma, red blood cell 
mechanical properties such as deformability and stiffness, vessel diameter, tortuosity and other 
aspects of structure, and the response of the vessel wall to physical, biochemical and cellular 
stimuli. 
 
Our aim is to develop a simplified but still robust mathematical model within which the complex 
interactions of different elements affecting blood flow in capillaries can be simulated. As a test of 
concept, in this paper we use a simulation method known as multi-particle collision dynamics and a 
simplified model for the red blood cell membrane to study blood flow in capillaries. The first goal 
is to construct a model of red blood cell flow in a standardised linear cylindrical capillary, then to 
assess the effects of a local capillary stenosis, to mimic the impact of white cell margination to 
reduce the diameter of the capillary lumen. To the knowledge of the authors, this is the first time 
that these methods have been applied to understanding the flow of RBCs through normal and 
stenosed capillaries. 
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METHODS 
We use a multi-particle collision (MPC) dynamics method to model the microrheology of blood 
plasma, coupled with a simplified model for the membranes of red blood cells (RBCs). 
 
The MPC methods are a family of particle-based mesoscopic techniques17 for simulating fluids in 
the intermediate or mesoscale. These MPC methods can be understood as a modification of direct 
simulation Monte Carlo (DSMC), a well-established, stochastic, particle-based approach for solving 
the non-linear Boltzmann equation. 
 
Modelling key system components. 
In this work we use the multi-particle collision dynamics method with Andersen thermostat (MPC- 
AT), as introduced by Allahyarov and Gommper18 under the name of “random velocity method”. 
Key components of the system (the solvent, cells in suspension and the boundaries) are modelled 
using ensembles of “effective particles” (point particles that act merely as momentum carriers), 
separated into categories. While the particles within each category have different roles and are 
subject to different interactions, all the particles stream and collide with their neighbours within a 
collision cell in the same manner, irrespective of their category. The plasma is represented by N 
point particles of mass m whose positions xi and velocities vi are continuous variables, with each 
effective particle representing a collection of real molecules. A coarse grid is used to divide the 
system into equal cubic collision cells Cj (j=1,...,Ncells). The method we use, like all MPC 
algorithms, consists of two steps: a free streaming step and a multi-particle collision step. During 
the streaming step, all particles (plasma, RBC membrane and cytosol particles) are allowed to move 
independently according to Newton’s law for a time Δt, according to equations (1) and (2) in 
Whitmer and Luitjen’s paper19. The MPC method we use allows the simulations to be done directly 
in the canonical ensemble by employing an Andersen thermostat (MPC-AT)18. The Andersen 
thermostat couples the dynamics of the particles with a heat bath by choosing post collision 
velocities from a probability distribution at the desired temperature. In this way, the equivalent 
temperature distribution is well-defined and velocities do not need to be rescaled, in contrast with 
other models like Stochastic Rotation Dynamics (MPC-SR). The model explicitly includes a 
temperature-like parameter (effective temperature) that is used to represent macroscopic velocity 
fluctuations. During the collision step, a random resetting about local mean velocities is performed, 
drawing the components of the new relative velocities from a Maxwell-Boltzmann distribution20,21 
of zero mean and variance kBT/m. The velocity of particle i found in cell j transforms according to 
equation (6) in Gompper et al.’s paper22.  
 
With this division of the system into lattice cells, the collision environment of a given particle 
depends on the value of any superimposed constant velocity field. This is unphysical, as Galilean 
invariance would break down. To restore Galilean invariance, a random shift of the grid is 
performed prior to the collision step23, by a uniformly distributed random vector with components 
in the interval [-a/2,a/2]. 
 
Representing red blood cells in the model. 
We represent the cytoskeleton of the erythrocytes by a mesh of point particles heavier than plasma 
particles. These particles are placed on the surface of a flattened hexagonal prism, with particles on 
the bases forming a triangular mesh and those on the sides a rectangular mesh. This prism is a first 
approximation to the biconcave disc shape of human RBCs. All the particles are connected by linear 
springs, which are introduced in their unstretched state at the start of the simulation. We represent 
the cytosol of the RBC by another set of particles, placed in the interior volume of the RBC, of 
mass comparable to the plasma particles. 
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Simulating effects of capillary stenosis. 
We perform simulations on regular cylindrical capillaries, and cylindrical capillaries with parabolic 
stenosis, that represent, for example, platelet aggregation and white blood cell margination.  
 
 
Representing plasma particles in the model. 
Plasma particles are “bounced-back” (i.e. their velocity is reversed19) from the vessel boundary. We 
use periodic boundary conditions in the direction of the flow. To introduce an interaction with the 
RBCs, we coat the geometrical wall representing the capillary with a layer of particles of the same 
type as the RBC membrane, over some wall thickness. Their placement within that volume layer is 
given by a uniformly distributed random vector. These particles participate in the MPC algorithm 
with velocities that are drawn from a random normal distribution with zero mean velocity and the 
same temperature as the system, computed using a Box-Muller transform24. Their velocities are 
reset to zero after each collision step. These wall particles are set to exert a repulsive force on the 
particles forming the RBC membrane. 
 
Testing RBC shape transitions in the model. 
In order to check whether our model is capable of reproducing human RBC shape deformations, we 
perform simulations based on a single RBC in a cylindrical capillary, and increase the velocity of 
the flow over time by incrementing the external force that is applied to all mobile particles to 
generate the flow (creating an effect comparable to a pressure gradient force). 
 
Testing for the Fåhræus effect. 
In microvessels, the haematocrit (volume concentration of RBCs in the blood) is lower than in 
larger vessels (Fåhræus effect25). Fåhræus argued theoretically that this happens because the mean 
velocity of the RBCs in the capillaries is higher than the mean plasma velocity. To test whether our 
model is able to account for this, we record the mean velocity of the plasma at two different points 
x1=30µm and  x2=70µm along our model capillary, and compare that with the velocity of the centre 
of mass of eight different RBCs flowing through a cylindrical capillary. This is equivalent to eight 
independent experiments for one RBC. 
 
Statistics.  
Data are shown as medians with interquartile range (IQR). Results were compared using non-
parametric tests, with P=0.05 taken as the threshold for statistical significance. In most analyses, we 
used a sample size of n=8, which is a small subset of the large number of data points our numerical 
simulations generate. The total number of data points we have (across RBCs, experiments and time) 
is 1716480. However, most of these are not statistically independent as the simulation time-steps 
are small compared to the characteristics timescales of the flow. A better way to sample that will 
provide useful statistical errors is to choose times spaced by the time it takes for one lap to be 
completed. Eight of these times from each of the three simulations where chosen, giving a sample 
size of 24  velocity data points for RBCs for analysis at a particular position.   
 
 
 
 
RESULTS 
Shapes of single red blood cells. 
Our tests of a single RBC in a cylindrical capillary show that it tends to position itself perpendicular 
to the flow (figure 1). As it picks up velocity, its shape changes quickly from its unstressed form to 
an axisymmetric parachute shape. If the velocity is increased further, the shape then changes to 
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being torpedo-like. The RBCs undergo great deformations (figure 2, left) and often occupy most of 
the capillary lumen (figure 2, right). 
 
 
Effects of capillary stenosis on aggregation and velocity of red blood cells. 
Clustering of the RBCs in our simulations with cylindrical capillaries is shown in figure 3. 
Deformation and clustering of the RBCs become more evident in the presence of a geometrical 
stenosis (figure 4). The RBCs slow down and aggregate nearing the stenosis (velocity before 
stenosis: 3.98x10-4 m/s [IQR, (3.36-4.60)x10-4 m/s]; within the stenosis: 1.38x10-4 m/s [IQR, (1.25-
1.70)x10-4 m/s]; Wilcoxon signed rank test P= 0.012, n=8, figures 5, 6 and 7), and speed up, then 
tend to separate as they leave the constriction. This reversible nature of the red cell aggregate is 
shown in figure 4. We observe that this clustering happens faster as the haematocrit increases 
(tested with 2 to 12 RBCs), when the pressure gradient force is higher, and with the degree of 
stenosis. 
 
Relative velocity of red blood cells and plasma in capillaries. 
We compare the velocity of the plasma at two different points x1=30µm and  x2=70µm (start and 
end of the stenosed region respectively) with the velocity of the centre of mass of eight RBCs 
(equivalent to eight independent experiments with one RBC) flowing through a cylindrical 
capillary. The results from our simulations show that RBC velocity (4.88x10-4  m/s [IQR, (4.75-
5.03)x10-4  m/s], is significantly greater than plasma velocity 3.63x10-4  m/s [IQR, (3.31-3.85)x10-4  

m/s]; Wilcoxon signed ranks P=0.012, n=8). 
 
 
DISCUSSION 
We have developed and tested a simplified MPC-AT model of capillary flow, where the only 
vesicles are RBCs, with membranes modeled by elastic meshes. Despite these simplifications, the 
model is capable of reproducing the basic features of capillary blood flow. This includes the 
generation of a “peloton” effect in the RBCs (rouleaux formation) and shape transitions at low and 
moderate velocities as the RBCs position themselves perpendicular to the direction of flow and 
develop a parachute-like shape as velocity increases. The Fåhræus effect25 is reproduced by the 
model, with the RBC velocity greater than the background plasma velocity. We have also quantified 
the effects of a local capillary stenosis to cause aggregation of red cells and transient reduction in 
their velocity. 
 
Fåhræus effect. 
Fåhræus's explanation of the decrease in average concentration of RBCs in smaller vessels is based 
on the hypothesis that the RBCs are transported in the axial stream, which is faster than the 
marginal stream, where the plasma is relegated to flow25. Due to this, the RBCs spend less time in 
the capillary than the plasma26 and the haematocrit in the capillaries can be reduced to a value of 
10-20%27. Our MPC-AT approach captures evidence for this mechanism: we observe that the 
velocity of RBCs is greater than that for plasma, and provide quantitative data not published before. 
We also observe that the RBCs tend to travel close to the axis of the cylinder. This has been also 
observed in more complex MPC models28. Our results using a simpler RBC membrane model 
confirm this, suggesting that the origin of this effect is more related to microvascular 
hydrodynamics than to distinctive features of RBC membranes. 
 
Aggregation of red blood cells. 
Human erythrocytes aggregate, especially when the blood flow becomes sluggish29 (through 
stenosed capillaries, for example) forming rouleaux (reversible aggregates in the shape of stacked 
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coins), or other shapes. Our results, using MPC-AT confirm observations by previous numerical 
studies using MPC-SR in cylindrical capillaries27, and fluid particle models29. 
The observation of rouleaux formation with capillary stenosis is an important qualitative finding. 
This “peloton” effect is important because it produces a large increase in blood viscosity30, and the 
formation and disaggregation of RBC clusters is an important mechanism controlling resistance to 
flow in the capillaries29. Clustering of the RBCs is generated in our simulations even though 
attractive forces or stickiness factors are not included in the model. RBC aggregation forces are not 
well understood: Baskurt and Meiselman31 state that the two available theories explaining the 
formation of rouleaux, namely the bridging model and the depletion model, are mutually exclusive. 
Our results indicate that a RBC aggregate can be formed from the rheology alone, and that this 
requires neither an interaction between RBCs nor a detailed description of the membrane. 
 
Effects of capillary stenosis on aggregation and velocity of red blood cells. 
Multi-particle collision dynamics methods (Stochastic Rotation Dynamics, MPC-SR) have been 
used before to study the rheology of RBCs in cylindrical capillaries27, and also to study the flow of 
plasma through a constricted capillary32. Boryczko, Dzwinel and Yuen29 have used a fluid-particle 
model to study movement of RBCs through a stenosed cylinder. However, to the knowledge of the 
authors, this is the first time that a MPC-AT method has been applied to the flow of RBCs through 
a stenosed cylinder, a clinically relevant abnormal capillary geometry. 
The accumulation of RBCs in the region of the stenosis in our simulations can be understood as a 
local increase in blood viscosity enhanced by the stenosed area. This reproduces unpublished 
experimental video data in vivo obtained by one of the authors (DS), and might contribute both to 
functional and structural rarefaction. 
 
Shapes of single red blood cells. 
Human RBCs undergo shape transitions when the velocity of the flow is increased or they pass 
through constrictions. They maintain their biconcave discoidal shape in slow capillary flows, 
experiencing a rotation which aligns their plane perpendicular to the direction of flow. Their 
discoidal shape is elongated in the flow direction. The shapes and orientation of the RBCs oscillate 
around this stable elongated shape. On increasing the velocity of the flow, the red blood cell shape 
becomes parachute-like, while a non-axisymmetric slipper-like shape often forms near the transition 
velocity (at which the RBC shape changes from biconcave to parachute-like). This has been 
observed in measurements in vivo33, and has been simulated using more complete models which 
include both the RBC cytoskeleton and the lipid bilayer as an impermeable mesh over a biconcave 
disc, with additional modelling to keep the area and volume of the RBCs approximately constant 
throughout the simulation34,35,28. 
 
Our cross-sectional images of RBCs in movement match the above experimental observations33, 
and the behaviour of the RBCs in our model at moderate velocities matches the above experimental 
and numerical observations, without the need to pre-specify this behaviour. 
 
At higher flow velocity, comparable to that observed in large arteries, RBCs in our model become 
overly deformed, and exhibit oscillations along their longitudinal dimension and parallel to the 
direction of flow. No slipper-like shapes are observed. This break-down of our model was expected, 
since we imposed no condition to keep area or volume constant. This therefore establishes a 
limiting flow velocity for which a more detailed model for the RBC membrane, like those described 
in the work cited above27,28, would be needed. 
 
Simulation method. 
Acquiring a full understanding of blood microflow involves three major challenges: discerning how 
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the dynamics of the flow affects the structure of the vessel; quantifying the resistance that 
capillaries introduce in the general circulation; and identifying which variables dominate the 
determination of blood micro-rheology. These variables could include macromolecules in plasma, 
red blood cell mechanical properties such as deformability and stiffness, vessel diameter, tortuosity 
and structure, and the response of the vessel wall to physical and biochemical stimuli. Determining 
these interactions cannot easily be done by direct in vivo investigations alone, as medical data lacks 
fine spatial and temporal resolution. Therefore, it would be valuable to have robust simulations to 
help us gain insight into the complex interactions of the multiple elements that affect blood flow in 
capillaries in health, and in pre-clinical and clinical disease. 
 
Traditional mathematical models for capillary flow are either based on lubrication theories36,37  or 
continuum fluid dynamics methods38. However, it is the rheology of the red blood cells (RBCs) and 
their interaction with soluble factors and the capillary endothelial cells that fundamentally 
determines the properties of the blood in microvessels. These methods cannot resolve complex RBC 
deformations to the necessary level of accuracy, nor account for the important effects of molecular-
level details (e.g. thermal fluctuations) on capillary dynamics38. A macroscopic continuum 
description based on the Navier-Stokes equations (NSE) is not sufficient to resolve the rheology, as 
NSE treat blood as a homogeneous fluid, not taking into account RBC shape changes that could 
greatly affect rheology at the capillary level. A microscopic molecular dynamics (MD) description 
is also not suitable, because the large number of degrees of freedom and the many fine time-steps 
required make the study of the mesoscopic timescale behaviour currently impractical (one 
microsecond simulation of a fairly small system would with current methods take several months to 
complete39). An intermediate approach between the molecular and the traditional fluid descriptions 
is therefore necessary, which can account for the short time and length-scales present in capillary 
blood flow. Approaches that have been developed for microfluidics in general include Dissipative 
Particle Dynamics (DPD), Lattice Boltzmann (LB), Direct Simulation Monte Carlo (DSMC), 
Smoothed Particle Hydrodynamics (SPH) and Multi Particle Collision Dynamics (MPC)22. The 
common factor in all these methods is that, in order to attain high computational efficiency, they 
retain only essential features of the microscopic physics which are of interest for a specific 
application. All these approaches are essentially alternative ways of solving the equations 
describing fluid motion, as they are constructed using the same conservation laws and constitutive 
relations used to derive the NSE. 
 
Among these intermediate scale (mesoscopic) techniques, particle-based methods have the 
additional advantage that coupling the degrees of freedom of solute molecules with the solvent is 
easily implemented. This has previously been exploited to study the dynamics of polymers and 
vesicles in slow flows34,40,41,27,22,42. We have opted for a MPC method, because it is an efficient 
particle-based algorithm which does not require small time-steps to attain accuracy (unlike MD and 
DPD), while at the same time providing a simple algorithm that can represent both the 
hydrodynamics and statistical and thermodynamic fluctuations. Also, the velocities of the particles 
are continuous in MPC, which results in unconditional numerical stability, unlike LB22. 
 
The efficiency of this MPC approach comes from considering particle interactions only at discrete 
time intervals, when they are modelled by a multi-particle collision rule22. MPC is a more efficient 
version of DSMC because the binary collisions are replaced with collisions between groups of 
particles belonging to a particular collision cell. Although by construction our method is 
fundamentally a description of a compressible fluid, approximate incompressibility can be 
imposed43,44. This is desirable because blood plasma is mainly water, which is incompressible. 
 
This MPC method permits derivation of analytical (exact) expressions for transport coefficients 
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(e.g. viscosity, self-diffusion constant). It also allows coupling with flexible membranes and it has 
the capability of representing a variety of non-Newtonian factors such as adhesion, both between 
protein and cells and between cells. These capabilities of the model are particularly important for 
representing the effects of stenosis of capillaries, typically due to margination of cells (i.e. platelets 
and white cells)45, in response to the molecular and cellular interactions between white blood cells, 
platelets and capillary endothelial cells46. 
 
Our simulations are very sensitive to small changes in the temperature parameter (effective 
temperature), which differs from the real physiological temperature by several orders of magnitude. 
Likewise, the plasma viscosity parameter is three orders of magnitude smaller than experimental 
values. These discrepancies have been observed previously47. All other parameters in our 
simulations match experimental values. 
 
Determining the values of the parameters of a mesoscopic model to make a quantitative comparison 
with experimental data is not a straightforward task, as the model contains microscopic parameters 
that are not measurable in the macroscopic system and likewise macroscopic quantities do not 
appear explicitly in the model. Further work will be needed to elucidate the relationship between the 
effective temperature and the true temperature of the system. 
 
 
 
CONCLUSIONS 
MPC-AT is a highly efficient algorithm with the potential for allowing the introduction of a higher 
level of detail in the interactions between the cell membranes and vessel walls than previously 
available, without compromising the computational efficiency of the simulations. These 
characteristics make MPC-AT a useful tool for the study of the microcirculation in health and 
disease. Increasing the level of detail in our model will improve our ability to obtain physiologically 
comparable quantitative results. Since the interactions are controlled by elastic potentials between 
points on the skeletal meshes of the cells and capillary walls, adding further potentials (i.e. 
interactions) could be used to derive forces that would define the interactions between cellular 
structures and relevant solutes in the plasma. This level of detail would allow the use of numerous 
clinically relevant structural and functional parameters (e.g. membrane elasticity and viscosity), that 
could eventually be used to model observations taken from individual clinical subjects. Study of 
diseases affecting the properties of the RBC membrane and RBC morphology, including 
hyperlipidaemia, diabetes and sickle cell disease, could potentially be further modelled by adjusting 
interaction parameters for cellular skeletons. 
 
The model we use explicitly includes a temperature-like parameter that is used to represent 
macroscopic velocity fluctuations. Control of the effective temperature would for example allow us 
to model the influence of vascular and blood adhesion factors in sickle cell disease. 
 
Of particular interest will be the identification from the model of capillary abnormalities as potential 
biomarkers for early detection of increased risk of cardiovascular disease. A biomarker based on the 
microcirculation could for example be helpful in predicting risk of hypertension at an early stage, 
before the onset of established hypertension, and before the development of target organ damage. 
Our MPC model also has the potential to complement clinical biomarkers in helping to evaluate 
new treatments targeting the microcirculation7, for example aimed at preventing and reversing 
capillary rarefaction. 
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FIGURE LEGENDS 
 
Figure 1  a-f. How the shape of a RBC changes as its velocity increases (initial velocity 3.0 x 10-4 
m/s). RBCs randomly oriented and centred along the axis of a cylindrical capillary of length 50µm. 
Strong accelerations (3-40 m/s2) are applied to all particles. From left to right and top to bottom, the 
RBC goes three times through a capillary of length 50µm under an acceleration of 3 m/s2. The RBC 
first positions itself perpendicular to the flow, then adopts an axisymmetric parachute-like shape, 
whilst its centre of mass velocity increases from 3.0 x 10-4 m/s to 9.32 x 10-4 m/s, with consistent 
behaviour over all the numerical experiments performed (10). 
 
Figure 2.  
Top row: a) and b) Transmission electron microscope images of a red blood cell travelling through 
a capillary within mammalian pancreatic tissues, images #80308 and #80309 at 
http://remf.dartmouth.edu/images/mammalianPancreasTEM/. Bottom row, left: c) Cross sectional 
image at x=100µm. This is the ninth RBC out of 15, captured in movement at t=0.0395 s. The grid 
shown is a subdivision of the collision grid, used to increase the resolution of the cross-sectional 
image. Squares that are black, red and blue contain only plasma, membrane and cytosol particles 
respectively. A lighter colour means there is a minority of particles of another type present. Green 
squares are occupied by particles of the three types. One square contains at least one cytoplasmic 
particle which has escaped (no boundary conditions have been imposed on the membrane in this 
example). Bottom row, right d): Cross sectional image at x=150µm. This is the twelfth RBC out of 
15, captured at t=0.2835 s. 
 
Figure 3.  
a) – i) Clustering of RBCs, or rouleaux formation, in a cylindrical capillary of length 100µm with 
time increasing from left to right and from top to bottom. The velocity of the RBCs increases as 
they cluster (4.46 x10-4  m/s [IQR, (4.12-4.74)x10-4  m/s] to 5.44 x10-4  m/s [IQR, (5.03-5.67)x10-4  

m/s] ; Wilcoxon signed ranks P= 0.028, n=6). 
 
Figure 4.  
Simulation of 5 RBCs in a capillary of length 80µm with a biochemically inactive stenosed region 
at xc=60µm, with time increasing from left to right and from top to bottom. 
 
Figure 5.  
Component of the velocity in the x-axis (x-velocity) of the centre of mass of RBC #3 as a function 
of its x-position a stenosed capillary (length 100µm, stenosis starting at x=30µm, maximum at 
50µm and ending at x=70µm). Similar plots were obtained for the other seven RBCs in the 
simulation. The RBCs slowed down when approaching the stenosis (area between the discontinuous 
lines) and while within the stenosis, and sped up after exiting it: velocity pre-stenosis 5.33 x10-4  m/s 
[IQR, (3.41-7.78)x10-4  m/s],  in stenosis 1.77x10-4  m/s [IQR, (1.40-2.03)x10-4  m/s], post-stenosis 
8.17x10-4 m/s [IQR, (6.84-8.80)x10-4  m/s]; Friedman test P=0.001, n=9. The time gaps omitted (i.e. 
the empty space between frames) correspond to the time intervals that the RBCs takes to cross the 
periodic boundary at x=100µm. In other words, these four plots are equivalent to consecutive parts 
of a unique plot representing a capillary of length 400µm with choking points at x= 50, 150, 250 
and 350µm. 
 
Figure 6.  
Averages of the x-velocity vs. x-position plots over the eight RBCs, for the 2nd and 3rd lap through 
the capillary, i.e. averages of the frames on the second/third column in figure 5. SEM error bars are 
displayed. 
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Figure 7.  
Comparison of the x component of the velocity of RBCs in a) a cylindrical capillary of length 
100µm and diameter 10µm (left), and b) in a stenosed capillary (right).  The stenosed example 
presents the same geometry, with a stenosis starting at 30µm and ending at 70µm, with maximum 
constriction placed at 50µm. Three simulations were run long enough for the eight RBCs of 
diameter 8µm to complete between 2 and 2.5 laps through a modelled capillary.  Bars represent the 
median x-velocities, with 95% confidence interval bars. Friedman tests were run in each case, with 
no statistical difference found in the cylindrical case (P=0.417, n=8), and a significant difference in 
the constricted vessel (P=0.0003). Pair-wise post hoc Wilcoxon signed ranks tests with a Bonferroni 
adjustment were run, showing a significant reduction in x-velocity within compared to before entry 
to the stenosis (P=0.012) and a significant increase in x-velocity for red cells after the stenosis, 
compared to the velocity both before entry to (P=0.012) and within the stenosis (P=0.012, n=8). 
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