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Abstract

VERSION 27.09.2007 Motivated by the Bose gas we introduce cer-
tain combinatorial structures. We analyse the asymptotic behaviour of
empirical shape measures and of empirical path measures of N Brownian
motions with large deviations techniques. The rate functions are given as
variational problems which we analyse. A symmetrised system of Brown-
ian motions, that is, for any i, the terminal location of the i-th motion is
affixed to the initial point of the σ(i)-th motion, where σ is a uniformly
distributed random permutation of 1, . . . , N , is highly correlated and has
to be formulated such that standard techniques can be applied. We review
a novel spatial and a novel cycle structure approach for the symmetrised
distributions of the empirical path measures. The cycle structure leads to
a proof of a phase transition in the mean path measure.

1 Introduction

We study different aspects of combinatorial asymptotic large-N behaviour of
distributions on the group SN of permutations of N elements and their cycles
structures distributed on the set PN of integer partitions of N . We combine this
analysis with large deviations principles for certain empirical path measures of
Brownian motions. We review two different approaches to analyse the large-N
asymptotic of the mean path measure under symmetrised distributions. One is
spatial structure of the symmetrisation and the other one is the cycle structure
for concatenations of Brownian bridges to Brownian bridges whose time horizons
equal the cycle lengths.

The main focus is to derive variational problems whose analyses will provide
deeper insight into the probabilistic asymptotic behaviour for large systems of
Brownian motions. This combination of combinatorial studies, large deviations
techniques and variational analysis is novel and has its roots in the mathematical
analysis of large systems of Bosons, and it is hence related to and carries forward
the article Adams and König (2007a) in these proceedings. In Section 1.1 we
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review main features of studying systems of Bosons and in Section 1.2 we intro-
duce probabilistic models and outline how these raise interesting combinatorial
structures for permutations and integer partitions.

1.1 Motivation

The state of a large system of N identical quantum particles (subsystems) is
described by the many-body wave function. Two many-body wave functions
which result from each other by a permutation of the indices distinguishing the
particles must describe the same state. Such a permutation can change the state
vector (wave function) only by a numerical factor, and these factors must give
a 1−dimensional representation of the permutation group SN of N elements.
Hence, there are only two possible choices, −1 and +1. That is, wave functions
are antisymmetric or symmetric under permutations. Due to Pauli’s exclusion
principle, systems of Fermions are described by antisymmetric wave functions.
If the wave functions are symmetric, i.e., they are elements in the image of the
projection P+

N : L2(RdN )→ L2
+(RdN ) of the N -particle Hilbert space L2(RdN ),

P+
N (Ψ)(x) =

1
N !

∑
σ∈SN

Ψ(xσ(1), . . . , xσ(N)),

one calls the quantum particles Bosons. The Bosons are well-known because
they show a phenomenon known as Bose-Einstein condensation. It was pre-
dicted by Einstein (1925) on the basis of ideas of the Indian physicist Bose
(1924) concerning the statistical description of the quanta of light: In a system
of particles described by symmetric many-body wave functions and whose total
number is conserved, there should be a temperature below which a finite frac-
tion of all the particles “condense” into the same one-particle state. Einstein’s
original prediction was for a non-interacting gas of particles. The predicted
phase transition is associated with the condensation of atoms in the state of
lowest energy and is the consequence of quantum statistical effects.

For a long time these predictions were considered as a curiosity of non-
interacting gases and its statistics, called Bose statistics, and had no practical
impact. But the ideal gas systems show that the above symmetrisation generates
correlations among the non-interacting particles. We review the mathematics
concerned with this symmetrisation and its relation to combinatorial studies
of integer partitions and corresponding limit theorems. Our main objective is
to derive variational formulae via large deviations principles for symmetrised
systems of Brownian motions. We briefly motivate this ansatz in the following.
N quantum particles are described by the N -particle Hamilton operator

HN =
N∑
i=1

(
−∆i +W (xi)

)
+

∑
1≤i<j≤N

v(|xi − xj |), x1, . . . , xN ∈ Rd,

where the i-th Laplace operator, ∆i, represents the kinetic energy of the i-
th particle, and W : Rd → [0,∞] is the trap potential, and where the pair

2



potential v : R+ → R expresses the potential energy of two interacting particles.
We do not specify here the assumptions on the trap potential W and on the
pair potential v but refer to standard choices in Ruelle (1969) and Lieb et al.
(2005). The ground state at zero temperature is the minimiser of the energy
and is, due to the symmetry properties of the Hamilton operator, a symmetric
N -particle wave function. The study of systems of Bosons at zero temperature
is reviewed in the article Adams and König (2007a), more can be found in
Lieb et al. (2005). Recent good references including experimental aspects are
Pitaevskii and Stringari (2003) and Griffin et al. (1995).

To describe systems of Bosons at thermodynamic equilibrium with inverse
temperature β > 0 one has to analyse the traces of the Boltzmann factor e−βHN ,
like the free energy, or the pressure, where the trace is restricted to the sub-
space L+(RdN ) of symmetric N -particle wave functions. The trace class oper-
ator e−βHN is called the canonical ensemble for which the number of particles
and the inverse temperature is fixed, see Khinchin (1960) and Thirring (1980)
as standard references. The so-called quantum canonical partition function
Z(sym)

N (β) is the trace of this operator, i.e.,

Z(sym)

N (β) = Tr L2
+(RdN )

(
e−βHN

)
= Tr L2(RdN )

(
P+
N e−βHN

)
.

However, these traces are very difficult to calculate because the spectral analysis
of the Hamilton operator HN with interaction is not known. We will discuss
therefore only non-interacting Bosons in this article.

The genuine task of quantum statistical mechanics is to prove and analyse
the thermodynamic limit − limΛ↑Rd,N→∞ 1/β|Λ| logZ(sym)

N (β), which is the free
energy, such that N/|Λ| → ρ ∈ (0,∞), see Ruelle (1969) for a general introduc-
tion to the concept of thermodynmic limit. The quantum statistical mechanics
of this ideal Bose gas is well understood (see for example Huang (1987)). One
can calculate the specific free energy in the thermodynamic limit as a function
of the inverse temperature and the density. The Bose-Einstein condensation
transition can be identified here as a singularity in the specific free energy for
certain parameter values. The pressure of the ideal Bose gas at finite tem-
perature can be calculated in the so-called grandcanonical ensemble, where the
particle number is a Poissonian random variable. However, since Einstein’s work
1925 there has been no rigorous mathematical proof for interacting Bosons in
the thermodynamic limit for finite density and positive temperature. The only
exception is the proof of Bose-Einstein condensation on a lattice with hard-core
exclusion and half filling, see Lieb et al. (2005). The main difficulties are the
role of the symmetrisation, the role of the interaction and an appropriate defini-
tion/criterium of what Bose-Einstein is precisely. There have been three lines of
rigorous mathematical attacks. One started with Landau (1941) and its descrip-
tion of superfluidity, which is considered as a Bose-Einstein condensation since
London (1938), in terms of the spectrum of elementary excitations of the fluid.
In 1947 Bogoliubov developed the first microscopic theory of interacting Bose
gases, based on appromximations of the Hamilton operator and the concept of
Bose-Einstein condensation. This initiated several theoretical studies; a recent
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account on the state of the art can be found in Adams and Bru (2004a,b) and
on its contribution to superfluidity theory in Adams and Bru (2004c).

A second line is devoted to the study of dilute interacting systems, compare
the article Adams and König (2007a) for an overview on this. For these systems
the first experimental realisation of Bose-Einstein condensation was derived in
1995. This was followed by rigorous studies in a series of papers by Lieb et al,
see Lieb et al. (2005) for more information.

The third line of attack focuses on probabilistic representations of traces
and interacting Brownian motions. This started with Adams et al. (2006a)
and Adams et al. (2006b) for dilute systems and in Adams and König (2007b),
Adams and Dorlas (2007) and Adams (2007) for symmetrised systems. In Sec-
tion 1.2 below we outline this approach. This approach has two challenging
task, one is to deal with the interaction of the Brownian motions and the other
one is to resolve the correlations due to the symmetrisation. The symmetrisa-
tion correlations are the main subject of this article, and we will outline several
aspects of combinatorial and stochastic analysis related with these.

In order to understand Bose-Einstein condensation as a quantum phase tran-
sition one needs to study correlation functions. In quantum statistical mechan-
ics correlations can be expressed as reduced traces of the Boltzmann factor (see
Thirring (1980) or Bratteli and Robinson (1997)). The reduced one-particle
density matrix defines an integral kernel for the corresponding operator. Pen-
rose (1951) and Onsager and Penrose (1956) introduced the concept of the
non-diagonal long-range order of the one-particle reduced density matrix (the
integral kernel) and defined this as a criterion for Bose-Einstein condensation.

Let us make some remarks on related literature. Scaling limits for shape
measures of integer partitions in PN under uniform distribution are obtained in
Vershik (1996). Large deviations from this limit behaviour are in Dembo et al.
(2000), where large deviations principles for scaled shape measures for parti-
tions as well as for strict partitions under uniform distributions are derived.
Motivated by the statistics of combinatorial partitions, illustrated by Vershik
in Vershik (1996), Benfatto et al. (2005) derived limit theorems for statistics
of combinatorial partitions for the case of a mean field Bose gas in the grand-
canonical ensemble. Here, in contrast to the canonical ensemble, only the mean
of the particle number is fixed. Benfatto et al. (2005) are using Fourier analysis
of the corresponding traces to derive a complete description of the statistics of
short and long cycles. For a perturbed mean-field model the density of long
cycles for a perturbed mean-field model is analysed in Dorlas et al. (2005).

1.2 Systems of Bosons and Probabilistic models

Feynman 1953 introduced the functional integration methods for traces, see
de Witt and Storaeds (1970) and Bratteli and Robinson (1997) for details.
Since the 1960s, interacting Brownian motions are generally used for proba-
bilistic representations for these traces. The parameter β, which is interpreted
as the inverse temperature of the system, is then the length of the time interval
of the Brownian motions. Difficulties arise for systems of Bosons due to the
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symmetrisation (see Bratteli and Robinson (1997)) and the interaction.
Let Ω := {ω : [0,∞)→ Rd : ω continuous} be the set of continuous functions

[0,∞)→ Rd. The elements in Ω are called trajectories or paths and we denote
by Ωk = {ω : [0, kβ] → Rd : ω continuous}, k ∈ N, the set of paths for time
horizon [0, kβ]. We write Ωβ for Ω1. We equip Ω (respectively Ωk) with the
topology of uniform convergence and with the corresponding Borel σ-field B
(respectively Bk). We consider N Brownian motions, B(1), . . . , B(N), with time
horizon [0, β] as N random variables taking values in Ωβ . For the reader’s
convenience, we repeat the definition of a Brownian bridge measure; see the
Appendix in Sznitman (1998). We decided to work with Brownian motions
having generator ∆ instead of 1

2∆. We write Px for the probability measure
under which B = B(1) starts from x ∈ Rd. The canonical (non-normalised)
Brownian bridge measure on the time interval [0, β] with initial site x ∈ Rd
and terminal site y ∈ Rd is defined as µβx,y(A) = Px(B ∈ A;Bβ ∈ dy)/dy
for A ⊂ Ωβ measurable. Hence, the Brownian bridge measure for a Brownian
bridge confined to a subset ΛN ⊂ Rd is defined by

µβ,Nx,y (A) =
Px(B ∈ A;Bβ ∈ dy,B[0,β] ⊂ ΛN )

dy
A ⊂ Ωβ measurable. (1)

If the motions are not confined to stay in ΛN we have

µβx,y(Ωβ) =
Px(Bβ ∈ dy)

dy
= (4πβ)−d/2e−

1
4β |x−y|

2
.

The Feynman-Kac formula gives an expression for the traces of Boltzmann
factor. For that we define the following interaction Hamiltonian

GN,β =
∑

1≤i<j≤N

∫ β

0

v(|B(i)
t −B

(j)
t |)dt

for the N Brownian motions B(1), . . . , B(N) with time horizon [0, β].
For Dirichlet boundary conditions for the Hamilton operator (Laplace oper-

ator), i.e., the particles are enclosed in the box ΛN , we have

Tr (e−βHN ) =
∫

ΛN

dx1 · · ·
∫

ΛN

dxN
N⊗
i=1

µβ,Nxi,xi

(
e−GN,β

)
.

This trace describes so-called Boltzmann particles, which means classical parti-
cles for which no special statistics is required. The symmetrised trace is

Tr L2
+(RdN )(e

−βHN ) =
1
N !

∑
σ∈SN

∫
ΛN

dx1 · · ·
∫

ΛN

dxN
N⊗
i=1

µβ,Nxi,xσ(i)

(
e−GN,β

)
. (2)

The trace formula (2) is the starting point for the remaining sections, it
defines transformed path measures for N Brownian motions. As mentioned
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above there are two aspects to deal with, the interaction and the symmetrisation.
The interaction for dilute systems is handled in Adams and König (2007a) of
these proceedings and the symmetrisation is studied here. In what follows we
therefore do not handle interacting motions but focus on the symmetrisation.
This symmetrisation is the origin for the Bose-Einstein condensation and has to
be understood deeply. In Section 2 the cycle structure of the permutations raises
interesting asymptotic combinatorial questions, and we derive our first large
deviations principles for the discrete shape measures under various distributions.
We give an overview of the combinatorial research on permutations and integer
partitions. In Section 3 we combine the asymptotic combinatorics with certain
path empirical measures of the Brownian motions. The objective there is to
gain deeper insight in a probabilistic symmetrised model which can provide
information on the corresponding systems of Bosons. For the first time we derive
a phase transition for mean path measure for a model with no interaction. The
proof of this transition requires complete information on the cycle structure,
i.e., we will use our insights from Section 2. We contrast the cycle structure to
a spatial structure, which we analyse in Section 3.1. This spatial approach is
new, see Adams and König (2007b) and Adams and Dorlas (2007), and it gives
an indirect proof for the Bose-Einstein condensation. In future, the spatial
and the cycle method have to be combined to describe the transition behaviour
also with interactions. This combination will enable one to prove Bose-Einstein
condensation with the off-diagonal long range order behaviour criterion.

2 Large deviations for Cycle counts

The cycle structure of permutations allows to replace in (2) the sum over per-
mutations by a sum over integer partitions. This in turn defines probability
distributions on permutations and on integer partitions. We introduce some
basic facts on integer partitions.

For any integer N , a partition λ of N is the collection of integers n1 ≥
n2 ≥ · · · ≥ nk ≥ 1, k ∈ {1, . . . , N}, such that

∑k
i=1 ni = N . We denote the

set of all partitions of N by PN . Any partition λ ∈ PN is determined by
the sequence {rk}Nk=1 of positive integers rk such that

∑N
k=1 krk = N , where

we write rk(λ) = rk. We call the number rk an occupation number or cycle
count of the partition, and we denote the whole tuple of the cycle counts by
RN = (r1, . . . , rN ) The multiplicity ]λ of a partition is the number of cycles,
i.e., ]λ =

∑N
k=1 rk. A cycle of length k is a chain of permutations, such as 1

goes to 2, 2 goes to 3, 3 goes to 4, etc. until k − 1 goes to k and finally k goes
to 1. A permutation with exactly rk cycles of length k is said to be of type
{rk}Nk=1. Hence, each partition λ ∈ PN corresponds to a conjugacy class A(λ)
of permutations, i.e., those of the same type, with exactly

]A(λ) =
N !∏N

k=1 rk!krk

elements.
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If a permutation is chosen uniformly and at random from the N ! possible
permutations in SN , then the counts rk of cycles of length k are dependent
random variables. The joint distribution of the cycle counts is given by

P(RN = r) = 1l{
N∑
k=1

krk = N}
N∏
k=1

(1
k

)rk 1
rk!

(3)

with r = (r1, . . . , rN ) ∈ ZN+ . The uniform distribution in (3) is called the Ewens
Sampling formula with parameter Θ = 1. The Ewens Sampling formula (Ewens
(1972)) reads

P(RN = r) =
N !

Θ(Θ + 1) · · · (Θ +N − 1)
1l{

N∑
k=1

krk = N}
N∏
k=1

(Θ
k

)rk 1
rk!

with r = (r1, . . . , rN ) ∈ ZN+ . This sampling formula was analysed intensively by
Kingman (1975), Kingman (1978b) and Kingman (1978a), see also Watterson
(1976) for a diffusion model of the allele frequencies. There exist an extensive
literature on questions related with this sampling formula and random discrete
partitions. See the recent monographs Pitman (2002) and Arratia et al. (2003)
for an overview and further references. These studies go back to Goncharov
(1944), who studied the asymptotic behaviour of the distribution of cycle counts
for the uniform (Ewens sampling with Θ = 1) distribution. For permutations of
single points of point process clouds in Rd or graphs we refer to Kolchin (1986),
see further the Section 3.1 below.

We focus on large deviations of different distributions of the the following
functional of integer partitions, the so-called discrete empirical shape measure,
or empirical cycle count distribution, defined as

QN : PN →M1(N), λ 7→ QλN (·) =
1
N

N∑
k=·

rk(λ), (4)

where M1(N) is the set of probability measures on N. We will write QλN = QN
in the following. The name shape measure has its roots in the two conjugate
representations of integer partitions, the so-called Ferrer diagram and the Young
Tableau. Define Q̂N (k) = QN (k) − QN (k + 1) for any k ∈ N. Then the
occupation numbers are given by rk = NQ̂N (k), k = 1, . . . , N , which define
uniquely the integer partition λ. In a Ferrer diagram the partition {rk}Nk=1 is
represented by rk rows of k horizontal blocks. They are placed in a diagram in
descending order with the longest or largest k at the top. It can also be viewed as
a block diagram in the (NQN (1), . . . , NQN (N)) space. Here NQN (k) blocks are
put vertically in the k-th column. The total number of rows is the multiplicity
]λ of the partition and the area (the total number of blocks) of this diagram is
N . A Young tableau is similar but, here, NQN (k) blocks are put horizontally
in the k-th row. One can obtain a Young tableau from a Ferrer diagram by
first turning the diagram upside down and then by rotating it through 90◦
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clockwise. The notion “shape” comes now from the study of the asymptotic
shapes of this diagrams/tableaux as N →∞ under suitable continuous scaling,
see Vershik (1996) and for a recent overview Pitman (2002). Large deviations
from the expected shape of the diagrams are studied in Dembo et al. (2000) for
the uniform distribution.

We do not scale the discrete shape measure because we need in the limit the
whole discrete cycle count distribution for our large deviations results in Sec-
tion 3. That is we are interested in the large N -behaviour of the discrete shape
measures QN under different distributions of the integer partitions. Beside the
uniform distribution in (3) and general Ewens sampling distribution our main
interest is in the following distribution.

ν(Bose)

N (λ) =
1

Z(Bose)

N (β)

N∏
k=1

((%−1N
)rk

rk!krk

)( 1
4πβk

)d/2rk
λ ∈ PN (5)

with normalisation

Z(Bose)

N (β) =
∑
λ∈PN

N∏
k=1

((%−1N
)rk

rk!krk

)( 1
4πβk

)d/2rk
for given d ∈ N and β, % > 0. This distribution is motivated from the non-
interacting Bose gas enclosed in ΛN ⊂ Rd with particle density % = |ΛN |/N .
We outline this in the following. Going back to trace formula (2) note that the
conjugacy classes A(λ) of permutations are the ones where the trace operation
is constant because it is a cyclic operation. For each partition λ ∈ PN we can
regroup the product of the Brownian bridge measures µβ,Nx,y in such a way that
we concatenate rk times k Brownian bridges to obtain rk Brownian bridges of
time horizon [0, kβ]. This is possible because we integrate out the intermediate
spatial points. Hence we get for the canonical partition function of the non-
interacting Bose gas

Z(sym)

N (β) =
∑
λ∈PN

N∏
k=1

( 1
rk!krk

) N⊗
k=1

( ∫
ΛN

dxµkβ,Nx,x

)⊗rk(Ω⊗Nβ ). (6)

The difference with (5) is that there we are using the free Brownian bridge
measure, i.e., the motions are not confined to stay in ΛN . However, both ex-
pression are close and coincide in the limit ΛN ↑ Rd as N →∞, because of the
estimation

(4πβk)−d/2(1− e−dN/4β) ≤ µkβ,Nx,x (Ωk) ≤ (4πβk)−d/2,

which compares the measure with Dirichlet boundary condition for the box ΛN
with the free Brownian bridge measure. It is technically easier here to work on
a torus and with periodic boundary conditions for the Laplacian.
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To formulate the rate functions we need some notations. Let

M = {Q ∈ [0, 1]N :
∑
l∈N

Q(l) ≤ 1, Q(l) ≥ Q(l + 1) ∀l ∈ N}

be the set of monotonously non-increasing sub-probability functions on N. For
Q ∈M define Q̂(k) = Q(k)−Q(k + 1) for any k ∈ N. For d ≥ 1 let

Q̂∗(k) =
1

ρ(4πβ)d/2k1+d/2
, k ∈ N, (7)

be given, and define the functional

S(Bose)(Q) =
∞∑
k=1

Q̂(k)
(

log
Q̂(k)

Q̂∗(k)
− 1
)

Q ∈M. (8)

The corresponding functional for the uniform distribution ν(u)

N is given as

S(u)(Q) =
∞∑
k=1

Q̂(k)
(

log Q̂(k)k − 1
)

Q ∈M.

The uniform distribution is defined through (3), i.e.,

ν(u)

N (λ) =
1
ZN

N∏
k=1

(1
k

)rk 1
rk!

λ ∈ PN ,

with normalisation ZN =
∑
λ∈PN

∏N
k=1

(
1
k

)rk
1
rk! .

The main results follow in the next theorem.

Theorem 2.1 (Adams (2008b).) (a) Under the uniform measure ν(u)

N the
empirical discrete shape measures QN satisfy a large deviations principle
on M with speed N and rate function

I(u)(Q) = S(u)(Q)− χ with χ = inf
Q∈M

S(u)(Q). (9)

(b) Let % ∈ (0,∞) and ΛN ⊂ Rd with ΛN ↑ Rd and N/|ΛN | → % as N →∞.
Under the measure ν(Bose)

N the empirical discrete shape measures QN satisfy
a large deviations principle on M with speed N and rate function

I(Bose)(Q) = S(Bose)(Q)−χ(β, %) with χ(β, %) = inf
Q∈M

S(Bose)(Q). (10)

Remark 2.2 (Free energy, Adams (2007).) The variational formula (10)
gives the specific free energy f(β, ρ) := limN→∞−1/β|ΛN | logZ(sym)

N (β) for in-
verse temperature β and density ρ of the non-interacting Bose gas, i.e.,

f(β, ρ) =
ρ

β
inf
Q∈M

{ ∞∑
k=1

Q̂(k) log
( Q̂(k)

Q̂∗(k)
− 1
)}
.
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We analyse the variational formulae for χ and χ(β, ρ), and we derive an
expression for the specific free energy f as a function of β and ρ. Define a
dimension dependent critical density

ρc =

{
1

(4πβ)d/2
ζ
(
d
2

)
, for d ≥ 3

+∞ , for d = 1, 2
, (11)

where ζ is the Riemann zeta function,

ζ
(d

2

)
=
∞∑
k=1

k−
d
2 .

Furthermore, denote by gs(α) the so-called Bose functions (see (20) in Ap-
pendix 4)

gs(α) =
∞∑
k=1

k−se−αk for all α > 0 and all s > 0.

For any ρ < ρc we denote by α = α(β, ρ) the unique root of

ρ =
1

(4πβ)d/2

∞∑
k=1

k−d/2e−αk. (12)

The essential difference in d ≥ 3 and d = 1, 2 lies in the fact that in the latter
two cases the corresponding Bose functions, g1(α) respectively g 1

2
(α), diverge

as α → 0 (see Appendix 4 and Gram (1925)). For d = 1, 2 there is a unique
α for any density ρ < ∞. For d ≥ 3 there is such an unique α given only for
densities ρ < ρc. Hence, this is the mathematical origin of the so-called Bose-
condensation, where for d ≥ 3 and ρ > ρc particles condense in the zero mode
state.

Theorem 2.3 (Analysis for χ, Adams (2008b)). The functional S(u) is
convex and there is a unique minimiser Q∗ for χ = infQ∈M S(u)(Q), and it is
defined through

Q̂∗(k) =
e−αk

k
k ∈ N and α = log 2.

The analysis for the Bose distribution gives the proof of the Bose-Einstein
condensation for non-interacting Bose gas depending on the parameters d, ρ and
β.

Theorem 2.4 (Analysis for χ(β, %), Adams (2007)). For any ρ < ∞ in
dimensions d = 1, 2, and % < %c in dimensions d ≥ 3, there is a unique min-
imiser Q ∈ M of the variational formula for χ(β, %) in (10) having probability
mass one with

Q̂(k) =
e−αk

ρ(4πβ)d/2k1+ d
2

for k ∈ N,
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whereas for dimensions d ≥ 3 and densities % > %c, there is no minimiser
for the variational problem (10) with probability mass one, but the infimum is
attained for any minimising sequence (Qn)n∈N of Qn ∈ M such that Qn → Q∗

as n→∞.
The specific free energy for d ≥ 3 is given by

f(β, %) =


− 1

(4πβ)d/2β
g d+2

2
(α)− 1

β %α , for % < %c

− 1
(4πβ)d/2β

ζ
(
d+2

2

)
, for % > %c,

and for d = 1, 2 by

f(β, %) = − 1
(4πβ)d/2β

g d+2
2

(α)− %α

β
,

where α is the unique root of (12).

3 Large deviations for empirical path measures

In this section we present our large deviations results for the empirical path
measures for N Brownian motions B(1), . . . , B(N) in Rd with time horizon [0, β].
The empirical path measures

LN =
1
N

N∑
i=1

δB(i)

are random elements in the set M1(Ωβ) of probability measures on the set
Ωβ of continuous paths [0, β] → Rd. We analyse the large-N behaviour of the
distributions of LN under different symmetrised measures in Section 3.1 and
Section 3.2 respectively. In both cases we derive large deviations principles
whose rate functions are given as variational problems. In Section 3.2 the anal-
ysis for the variational problem for the cycle structure gives the proof of a phase
transition in the empirical path measure.

3.1 Spatial structure

We analyse the large-N asymptotic of the empirical path measure LN under
the following symmetrised probability measure

P(sym)

m,N =
1
N !

∑
σ∈SN

∫
Rd
· · ·
∫

Rd
m(dx1) · · ·m(dxN )

N⊗
i=1

Pβxi,xσ(i)
, (13)

where m ∈ M1(Rd) is a probability measure and where Pβx,y is the Brownian
bridge probability measure

P βx,y = µβx,y/µ
β
x,y(Ωβ) =

µβx,y
(4πβ)d/2

,
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i.e., a probability measure on Ωβ . The expectation with respect to the mea-
sure P βx,y is denoted by Eβx,y. We can conceive P(sym)

m,N as a two-step random
mechanism: First we pick uniformly a random permutation σ, then we pick N
Brownian motions with initial distribution m, and the i-th motion is conditioned
to terminate at the initial point of the σ(i)-th motion, for any i.

The main idea in resolving the combinatorics of the measure (13) is to rewrite
it as a sum over pair frequenciesNQ(x, y), x, y ∈ Rd. HereQ is a pair probability
measure with equal marginals, and NQ(x, y) is the number of Brownian motions
which are sent from location x to location y due to the symmetrisation. We
shall count the number of permutations which are admissible for a given pair
probability measure Q. Furthermore for Brownian motions we need to work
with open sets of positive Lebesgue measure instead of single points. But this is
a technical point and it is analysed in detail in Adams and König (2007b), where
one needs an additional assumption on the probability measure m ∈ M1(Rd).
We will neglect these details and refer to Adams and Dorlas (2007), where
symmetrised systems of random walks on graphs are analysed and applied to
certain mean-field type interacting systems.

The core idea, performed in Adams and König (2007b), Adams and Dorlas
(2007) and Adams (2008a), is that the rewriting gives a sum over pair probability
measures with two terms, one part is counting permutations for a given pair
probability measure, and for any given pair probability measure the other part is
a probability measure for N Brownian motions. This probability measure is now
a product of not necessarily identically distributed Brownian bridge probability
measures. Hence, we resolved the correlations due to the symmetrisation in a
two level large deviations setting (see for example Dawson and Gärtner (1994)).
Our rate functions consist of two parts, one deals with the combinatorics and is
therefore a function of a pair probability measure and the initial measure m, the
other part governs the large deviations for the empirical path measures under
the corresponding probability measure.

The motivation for this novel approach is threefold. First, it is an appealing
method from the mathematical point of view and originated from combinatorial
methods for microcanonical ensembles in Adams (2001). Second, Bose-Einstein
condensation in Onsager and Penrose (1956) is defined as an off-diagonal long
range behaviour of the one-particle reduced density matrix, which measures the
correlation between two spatial points. Third, we are informed by Schrödinger
(1931) who considered the question of how any two spatial points are connected
by random paths. The crucial observation is that this aspect of the problem
can be described by pair measures. Schrödinger (1931) raised the question of
the most probable behaviour of a large system of diffusing particles in thermal
equilibrium. Föllmer (1988) gave a mathematical formulation of these ideas
in terms of large deviations. He applied Sanov’s theorem to obtain a large
deviations principle for LN when B(1), B(2), . . . are i.i.d. Brownian motions with
initial distribution m and no condition at time β. The rate function is the
relative entropy with respect to

∫
Rd m(dx) Px ◦B−1, where the motions start in

x under Px. Then Schrödinger’s question amounts to identifying the minimiser
of that rate function under given fixed independent initial and final distributions.

12



It turns out that the unique minimiser is of the form
∫

Rd
∫

Rd dxdy f(x)g(y) Pβx,y◦
B−1, i.e. a Brownian bridge with independent initial and final distributions.
The probability densities f and g are characterised by a pair of dual variational
equations, which originally appeared in Schrödinger (1931) for the special case
that both the initial and the final measures are Lebesgue measure.

We introduce now the rate functions for our method. With

H(Q|P ) =
∫

Rd×Rd
Q(dx) log

Q(dx)
P (dx)

we denote the relative entropy of the pair probability measure Q ∈M1(Rd×Rd)
with respect to P ∈ M1(Rd × Rd). Let M(s)

1 (Rd × Rd) be the set of shift-
invariant probability measures Q on Rd × Rd, i.e., measures whose first and
second marginals coincide and are both denoted by Q. Note that Q 7→ H(Q|Q⊗
m) is strictly convex.

Define the functional I(sym)
m onM1(Ωβ) by the following variational problem

I(sym)
m (µ) = inf

Q∈M(s)
1 (Rd×Rd)

{
H(Q|Q⊗m) + I(Q)(µ)

}
,

where

I(Q)(µ) = sup
Φ∈Cb(Ωβ)

{
〈Φ, µ〉 −

∫
Rd

∫
Rd
Q(dx, dy) log Eβx,y

(
eΦ(B)

)}
(14)

for µ ∈ M1(Ωβ) and 〈Φ, µ〉 =
∫

Ωβ
Φ(ω)µ(dω). Here Cb(Ωβ) is the space of

bounded continuous functions on Ωβ . Hence, I(Q) is a Legendre-Fenchel trans-
form, but not the one of a logarithmic moment generating function of any
random variable. In particular, I(Q), and therefore also I(sym)

m , are nonnegative,
and I(Q) is convex as a supremum of linear functions. There seems to be no way
to represent I(Q)(µ) as the relative entropy of µ with respect to any measure.

Let us explore briefly the variational problem connected with the rate func-
tion I(sym)

m . By πs : Ωβ → Rd we denote the projection πs(ω) = ωs. The marginal
measure of µ ∈ M1(Ωβ) is denoted by µs = µ ◦ π−1

s ∈ M1(Rd); analogously
we write µ0,β = µ ◦ (π0, πβ)−1 ∈ M1(Rd × Rd) for the joint distribution of the
initial and the terminal point of a random process with distribution µ. It is
easy to see that Q = µ0,β if I(Q)(µ) < ∞. Indeed, in (14) relax the supremum
over all Φ ∈ Cb(Ωβ) to all functions of the form ω 7→ f(ω0, ωβ) with f ∈ Cb(Rd).
This gives that

∞ > I(Q)(µ) ≥ sup
f∈Cb(Rd)

(〈
µ0,β , f

〉
−
〈
Q, log Eβπ0,πβ

(
ef(B0,Bβ)

))
= sup
f∈Cb(Rd)

〈
µ0,β − q, f

〉
,

and this implies that µ0,β = Q. In particular, the infimum in the variational
problem for I(sym)

m is uniquely attained at this Q, i.e.,

I(sym)
m (µ) =

H(µ0,β |µ0 ⊗m
)

+ sup
Φ∈Cb(C)

〈
µ,Φ− log Eβπ0,πβ

(
eΦ(B)

)〉
if µ0 = µβ ,

+∞ otherwise.
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In particular, I(sym)
m is convex.

Our main large deviations result reads as follows.

Theorem 3.1 (Large deviations for LN) Fix β ∈ (0,∞) and m ∈M1(Rd).
Then, as N → ∞, under the symmetrised measure P(sym)

m,N , the empirical path
measures LN satisfy a large deviations principle on M1(Ωβ) with speed N and
rate function I(sym)

m .

Simplifying the large deviations principle says that, as N →∞,

P(sym)

m,N

(
LN = µ

)
≈ e−NI

(sym)
m (µ), µ ∈M1(Ωβ).

Proof. If m has compact support the proof is in Adams and König (2007b).
Arbitrary initial distributions are handled in Adams (2008a). A corresponding
result for symmetrised systems of random walks on graphs with applications to
mean-field models is given in Adams and Dorlas (2007). �

There are also analogous results for the mean

YN =
1
N

N∑
i=1

µ(i)

β ,

of the N occupation measures,

µ(i)

β (dx) =
1
β

∫ β

0

δBs(dx) ds, i = 1, . . . , N.

We will present below these results for the very special case that m is the
Lebesgue measure of finite set in Rd. The general version can be found in
Adams and König (2007b) and Adams and Dorlas (2007).

Let us comment briefly on the shape of the rate functions above. The sym-
metrised measure P(sym)

m,N arises from a two-step probability mechanism. This
is reflected in the representation of the rate function I(sym)

m : in a peculiar way
the entropy term H(Q|Q ⊗m) describes the large deviations of the uniformly
distributed random permutation σ, together with the integration over m⊗N .
The measure Q governs a particular distribution of N independent, but not
identically distributed, Brownian bridges. Under this distribution, LN satisfies
a large deviations principle with rate function I(Q), which also can be guessed
from the Gärtner-Ellis theorem (Dembo and Zeitouni, 1998, Th. 4.5.20).

Let us contrast this to the case of i.i.d. Brownian bridges B(1), . . . , B(N)

with starting distribution m, i.e., we replace P(sym)

m,N by (
∫
m(dx) Pβx,x)⊗N . Here

the empirical path measure LN satisfies a large deviations principle with rate
function

Im(µ) = sup
Φ∈Cb(Ωβ)

{
〈Φ, µ〉 − log

∫
Rd
m(dx) Eβx,x

(
eΦ(B)

)}
,

as follows from an application of Cramér’s theorem (Dembo and Zeitouni, 1998,
Theorem 6.1.3). Note that Im(µ) is the relative entropy of µ with respect
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to
∫
m(dx) Pβx,x ◦ B−1. Although there is apparently no reason to expect

a direct comparison between the distributions of LN under P(sym)

m,N and under
(
∫
m(dx) Pβx,x)⊗N , the rate functions admit a simple relation: it is easy to see

that I(Q) ≥ Im for the measure Q(dx, dy) = m(dx)δx(dy) ∈ M(s)
1 (Rd × Rd),

since

−
∫

Rd

∫
Rd
Q(dx, dy) log Eβx,y

(
eΦ(B)

)
≥ − log

∫
Rd
m(dx) Eβx,x

(
eΦ(B)

)
.

In particular, I(sym)
m ≥ Im.

An interesting question is what happens if we replace in the definition of
the symmetrised probability measure P(sym)

m,N the Brownian bridge probability
measure Pβx,y by g(x, y)Pβx,y, when g : Rd × Rd → R is a continuous function?
The motivation to multiply the Brownian bridge probability measure by the
spatial function g is to model (see Adams (2008a)) the spatial correlations for
permutations of finitely many points of graphs or finitely many points of point
process clouds in Rd. Compare Fichtner (1991), who studied permutations of
random point configurations in Rd and introduced the spatial weight e−c|x−y|

2

for permutations that sent the spatial point x to the spatial point y. We shall
discuss no further details at this stage but formulate our general result.

Proposition 3.2 (Adams and König (2007b)) Let g : Rd → Rd → R be
continuous and define P(sym)

m,N with Pβx,y replaced by g(x, y)Pβx,y. Then the follow-
ing holds.

(a) Theorem 3.1 remains true under the replacement . The corresponding rate
function is µ 7→ I(sym)

m (µ)− 〈µ0,β , log g〉.

(b)

lim
N→∞

1
N

log
( 1
N !

∑
σ∈SN

∫
(Rd)N

N∏
i=1

m(dxi)
N∏
i=1

g(xi, xσ(i))
)

= − inf
Q∈M(s)

1 (Rd×Rd)

{
H(Q|Q⊗m)− 〈Q, log g〉

}
.

(15)

(c) The unique minimiser of the rate function µ 7→ I(sym)
m (µ)− 〈µ0,β , log g〉 is

given by

µ∗ =
∫

Rd

∫
Rd
Q∗(dx, dy) Pβx,y ◦B−1, (16)

where Q∗ ∈M(s)
1 is the unique minimiser of the formula on the right hand

side of (15).

(d) Law of large numbers: Under the measure gP(sym)

m,N , normalised to a prob-
ability measure, the sequence (LN )N∈N converges in distribution to the
measure µ∗ defined in (16).

Setting g ≡ 1 we derive the easily the following law of large numbers for our
previous case.
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Corollary 3.3 Under the measure P(sym)

m,N , normalised to a probability measure,
the sequence (LN )N∈N converges in distribution to the measure µ∗ given by

µ∗ =
∫

Rd

∫
Rd
m⊗m(dx, dy) Pβx,y ◦B−1.

That is, in spite of strong correlations for fixed N under P(sym)

m,N , the initial and
terminal locations B(1)

0 and B(1)

β of the first motion become independent in the
limit N → ∞. One can prove this also in an elementary way, and also the
fact that, for any k ∈ N and for all i1 < i2 < · · · < ik, the Brownian motions
B(i1), . . . , B(ik) under P(sym)

m,N become independent in the limit N →∞.
We finish the section with the following special case as promised above. We

replace the initial distribution m ∈ M1(Rd) by the Lesbesgue measure of a set
Λ ⊂ Rd having finite Lesbesgue measure. That is we study the non-normalised
measure

µ(sym)

Λ,N =
1
N !

∑
σ∈SN

∫
Λ

· · ·
∫

Λ

dx1 · · · dxN
N⊗
i=1

µβxi,xσ(i)
. (17)

Apart from questions motivated from physics, this measure is also mathemati-
cally interesting. According to an analogous result of Theorem 3.1 for the mean
of occupation measures, the distribution of the mean of the normalised occupa-
tion measures YN , under (Z(sym)

Λ,N )−1µ(sym)

Λ,N , satisfies a large deviations principle.
Here Z(sym)

Λ,N is the normalisation for the the measure (17). That is, we have

lim
N→∞

1
N

log
(
µ(sym)

Λ,N ◦ Y
−1
N (·)

)
= − inf

p∈ ·
J (sym)

Λ (p),

in the weak sense on subsets of M1(Rd), where we introduced

J (sym)

Λ (p) = inf
Q∈M(s)

1 (Rd×Rd)

{
H(Q|Q⊗ LebΛ) + J (Q)(p)

}
− inf
p∈M1(Rd)

{
J̃ (sym)

Λ (p)
}

with J̃ (sym)

Λ (p) = inf
Q∈M(s)

1 (Rd×Rd)

{
H(Q|Q⊗ LebΛ) + J (Q)(p)

}
and

J (Q)(p) = sup
f∈Cb(Rd)

{
β〈f, p〉 −

∫
Rd

∫
Rd
Q(dx, dy) log

Ex
(
e

R β
0 f(Bs) ds;Bβ ∈ dy

)
dy

}
.

The main goal is to express J (sym)

Λ in much easier and more familiar terms.
It turns out that J (sym)

Λ (p) is identical to the energy of the square root of the
density of p, in the jargon of large deviations theory also sometimes called the
Donsker-Varadhan rate function, IΛ : M1(Rd)→ [0,∞] defined by

IΛ(p) =

{∥∥∇√ dp
dx

∥∥2

2
, if p has a density with square root in H1

0 (Λ◦),

∞ otherwise.
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Theorem 3.4 (Adams and König (2007b)) Let Λ ⊂ Rd be a
bounded closed box. Then β−1J (sym)

Λ (p) = IΛ(p) − infp∈M1(Rd) IΛ(p) for any
p ∈M1(Rd).

In the theory and applications of large deviations, IΛ plays an important
role as the rate function for the normalised occupation measure of one Brownian
motion (or, one Brownian bridge) in Λ, in the limit as time to tends infinity
(see Gärtner (1977) and Donsker and Varadhan (1983)). It is remarkable that
this function turns out also to govern the large deviations for the mean of the
normalised occupation measures under the symmetrised measure µ(sym)

Λ,N , in the
limit of a large number of motions. Let us give an informal discussion and
interpretation of this fact.

The measure µ(sym)

Λ,N in (17) admits a representation which goes back to Feyn-
man (1953) and which we want to briefly discuss. Every permutation σ ∈ SN

can be written as a concatenation of cycles. Given a cycle (i, σ(i), σ2(i), . . . , σk−1(i))
with σk(i) = i and precisely k distinct indices, the contribution coming from
this cycle is independent of all the other indices. Furthermore, by the fact
that µβxi,xσ(i)

is the conditional distribution given that the motion ends in
xσ(i), this contribution (also executing the k integrals over xσl(i) ∈ Λ for
l = k − 1, k − 2, . . . , 0) turns the corresponding k Brownian bridges of length β
into one Brownian bridge of length kβ, starting and ending in the same point
xi ∈ Λ and visiting Λ at the times β, 2β, . . . , (k − 1)β. Hence,

µ(sym)

Λ,N =
1
N !

∑
σ∈SN

⊗
k∈N

(∫
Λ

dyk µk,β,Λyk,yk

)⊗fk(σ)

,

where fk(σ) denotes the number of cycles in σ of length precisely equal to k,
and µk,β,Λx,y is the Brownian bridge measure µkβx,y as in (1), restricted to the
event

⋂k
l=1{Blβ ∈ Λ}. (See (de Witt and Storaeds, 1970, Lemma 2.1) for

related combinatorial considerations.) If fN (σ) = 1 (i.e., if σ is a cycle), then
we are considering just one Brownian bridge B of length Nβ, with uniform
initial measure on Λ, on the event

⋂N
l=1{Blβ ∈ Λ}. Furthermore, YN is equal

to the normalised occupation measure of this motion. For such a σ, the limit
N → ∞ turns into a limit for diverging time, and the corresponding large-
deviation principle of Donsker and Varadhan formally applies. This reasoning
applies for permutations σ having only cycles whose lengths are growing with
N unboundedly. Presumably, the contribution from those permutations whose
bounded cycles sum up to something of order N is strictly smaller. A thorough
investigation of the large deviation properties of the cycle structure and the
distribution of the cycle lengths is contained in Adams (2007) and in Section 3.2
below for the case of boxes Λ = ΛN having volume of order N . There, a phase
transition in β for the mean path is obtained. This phase transition is absent
in the present case; the fixed box Λ forces all cycle lengths to grow unbounded
with N .
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3.2 Cycle structure

We analyse the large-N behaviour of a system of N Brownian motions with
time horizon [0, β] in Rd confined in subsets ΛN ⊂ Rd, i.e., the behaviour of the
system under the symmetrised measure

P(sym)

N = Z(sym)

N (β)−1 1
N !

∑
σ∈SN

∫
ΛN

dx1 · · ·
∫

ΛN

dxN
N⊗
i=1

µβ,Nxi,xσ(i)
, (18)

and Z(sym)

N (β) is the normalisation

Z(sym)

N (β) =
1
N !

∑
σ∈SN

∫
ΛN

dx1 · · ·
∫

ΛN

dxN
N⊗
i=1

µβ,Nxi,xσ(i)
(ΩNβ ).

The measure in (18) is different from the measure (13) in the previous section.
Here, we want to exploit our results for the discrete empirical shape measure
and the formula (6). The core idea in formula (6) is to concatenate Brownian
bridges to obtain Brownian bridges with larger time horizons. Therefore we
study in this section large deviations of the empirical path measures for paths
with unbounded time horizon. That allows us to put the Brownian bridges of
time horizon [0, kβ] onto the path of unbounded time horizon. We conceive
the empirical path measure as a random element in M1(Ω), hence, we need a
convenient extension of any continuous path [0, β] → Rd to a continuous path
[0,∞)→ Rd in the definition of the empirical path measure. For any x ∈ Rd we
denote by P x the Brownian probability measure on Ω, i.e., the canonical Wiener
measure with deterministic start in x ∈ Rd (Chung and Zhao (1995)). In the
following we write alternatively ωt or ω(t) for any point of a path ω. Given a
path ω ∈ Ωβ with time horizon [0, β] define

P (β)
ω = δω ⊗β Pωβ(β) ∈M1(Ω,B),

where the product ⊗β is defined for the ”splice“ of two paths, i.e., for ω ∈ Ωβ
and ω̃ ∈ Ω define ω ∈ Ω by ω(t) = ω(t ∧ β), t ∈ [0,∞), and ω ⊗β ω̃ ∈ Ω such
that ω ⊗β ω̃ = ω if ω̃(0) 6= ω(β) and

ω ⊗β ω̃(t) =
{

ω(t) for t ∈ [0, β]
ω̃(t− β) for t ∈ (β,∞) (19)

if ω̃(0) = ω(β). The mapping ω ∈ Ωβ 7→ P (β)
ω ∈ M1(Ω,B) is measurable, and

the family {P (β)
ω : ω ∈ Ωβ} satisfies the Markov property, see (Deuschel and

Stroock, 2001, Lemma 4.4.21). Hence, the empirical path measure

L̂N : ΩNβ →M1(Ω), ω 7→ L̂N (ω) =
1
N

N∑
i=1

δω(i) ⊗β Pω
(i)
β ,

is Ω⊗Nβ measurable. Here ω = (ω(1), . . . , ω(N)) ∈ ΩNβ . Our main result concerns
a large deviations principle for the distributions of L̂N under the symmetrised
measure P(sym)

N . Recall that P(sym)

N is a probability measure on Ω⊗Nβ .
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The rate function is given by

I(sym)(µ) = inf
Q∈M

{
S(Bose)(Q) + I(Q)(µ)

}
− χ(β, %) µ ∈M1(Ω),

where

I(Q)(µ) = sup
F∈Cb(Ω)

{
〈F, µ〉 −

∑
k∈N

Q̂(k) log Ekβ0,0

(
eF (B)

)}
µ ∈M1(Ω),

and where the function χ(β, %) := infQ∈M{S(Bose)(Q)} is given as the nega-
tive logarithmic limit of the partition function Z(sym)

N (β), see Theorem 2.4, and
where Cb(Ω) is the space of continuous bounded functions of the paths in Ω.
Ekβ0,0 denotes the expectation with respect to the Brownian bridge probability
measure Pkβ0,0 extended to a probability measure in M1(Ω). Here, I(Q) is a
Fenchel-Legendre transform, but not the one of a logarithmic moment gener-
ating function of any random variable. In particular, I(Q), and therefore also
I(sym), are nonnegative, and I(Q) is convex as a supremum of linear functions.
There seems to be no way to represent I(Q)(µ) as the relative entropy of µ with
respect to any measure.

Theorem 3.5 (Large deviations for L̂N, Adams (2007)) Let % ∈ (0,∞)
and ΛN ⊂ Rd centred boxes with ΛN ↑ Rd and N/|ΛN | → % as N →∞.

Under the symmetrised measure P(sym)

N the empirical path measures (L̂N )N∈N
satisfy a large deviations principle on M1(Ω) with speed N and rate function
I(sym).

Remark 3.6 To be more precise we have a large deviations principle for L̂N un-
der the symmetrised distribution such that the initial distribution is subtracted,
i.e., all motions are considered to start at the origin. This is a technical detail,
and we refer to Adams (2008a) and Adams et al. (2008), where our analysis is
combined with marked point processes in Rd. However, as we focus here solely
on the non-interacting case, we can relax the abstraction and let the motions
start at the origin.

We give a brief informal interpretation of the shape of the rate functions in
I(sym) and I(Q), Q ∈ M. As remarked earlier, the symmetrised measure P(sym)

N

arises from a two-step probability mechanism. This is reflected in the represen-
tation of the rate function I(sym): in a peculiar way, the term S(Q) − χ(β, %)
describes the large deviations of the discrete empirical shape measure for integer
partitions. The discrete empirical shape measures QN governs a particular dis-
tribution of N independent, but not identically distributed, Brownian bridges.
Under this distribution, L̂N satisfies a large deviations principle with rate func-
tion I(Q), which can also be guessed from the Gärtner-Ellis theorem (Dembo
and Zeitouni, 1998, Th. 4.5.20). The presence of a two-step mechanism makes
it impossible to apply this theorem directly to P(sym)

N .

19



Let us contrast this to the case of i.i.d. Brownian bridges B(1), . . . , B(N),
starting in the origin, i.e., we replace P(sym)

N by (Pβ0,0)⊗N . Here the empirical
path measure L̂N satisfies a large deviations principle with rate function

I(µ) = sup
F∈Cb(Ω)

{
〈F, µ〉 − log Eβ0,0

(
eF (B)

)}
,

as follows from an application of Cramér’s theorem (Dembo and Zeitouni, 1998,
Theorem 6.1.3). Note that I(µ) is the relative entropy of µ with respect to
Pβ0,0 ◦B−1. Although there is apparently no reason to expect a direct compari-
son between the distributions of LN under P(sym)

N and under (Pβ0,0)⊗N , the rate
functions admit a simple relation: it is easy to see that I(Q) ≥ I for the measure
Q ∈M with Q̂(k) = δ1, since

−
∞∑
k=1

Q̂(k) log Ekβ0,0

(
eF (B)

)
≥ − log Eβ0,0

(
eF (B)

)
.

In particular, I(sym) ≥ I.

Remark 3.7 The techniques of the proof of Theorem 3.5 apply also to a proof
of a large deviations principle under the symmetrised measure P(sym)

N for the
empirical path measure L̃N = 1/N

∑N
i=1 δB(i) , which is a random element in

M1(Ωβ). The rate function is

Ĩ(sym)(µ) =

inf
Q∈M

{
S(Bose)(Q)− sup

F∈Cb(Ωβ)

{
〈F, µ〉 −

∞∑
k=1

Q̂(k) log Ekβ0,0

(
e

Pk−1
l=0 F (B[lβ,(l+1)β])

)}}
.

Similar results hold for the mean YN of the occupation measures. However, these
rate functions seem not to give enough information to derive the phase transition
as in Theorem 3.8, and to obtain a probabilistic interpretation of Bose-Einstein
condensation.

Our large deviations result is accompanied by an analysis of the variational
formula for the rate function I(sym), i.e., the analysis for zeros of the rate func-
tion. This gives the proof of the phase transition for empirical path measures
depending on the dimension and the density parameter in Theorem 3.8.

The result of Theorem 2.4 in Section 3.2 is an essential ingredient which
leads to the analysis of the rate function I(sym). Let

Ak = {ω ⊗kβ ξ : ω ∈ Ωk, ω(0) = ω(kβ), ξ ∈ Ω} ⊂ Ω, k ∈ N,

be the set of paths in Ω which result from the splice (19) of Brownian bridges
paths of time horizon [0, kβ] with any path ξ ∈ Ω.

Theorem 3.8 (Analysis of the rate function I(sym)) Adams (2007).
Under the assumptions of Theorem 3.5 the following holds:
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(i) d = 1, 2. A unique minimiser µ∗ ∈ M1(Ω) of the rate function µ 7→
I(sym)(µ) exists with

∑
k∈N kµ

∗(Ak) = 1.

(ii) d ≥ 3 and % < %c. A unique minimiser µ∗ ∈ M1(Ω) of the rate function
µ 7→ I(sym)(µ) is given with

∑
k∈N kµ

∗(Ak) = 1.

For % > %c there is no unique minimiser be given, but there exist minimis-
ing sequences (µn)n≥1, µn ∈M1(Ω), with

∑∞
n=1 kµn(Ak) = 1 for any n ∈

N such that µn → µ0 ∈M1(Ω) weakly as n→∞ with
∑∞
n=1 kµ

0(Ak) < 1.

Let us draw an easy corollary from this theorem.

Corollary 3.9 (Law of large numbers, Adams (2007).) Under the assump-
tions of Theorem 3.8 the following holds.

(i) For d = 1, 2, and any density % < ∞, there is a law of large numbers.
Under the probability measure P(sym)

N , the sequence (L̂N )N∈N converges in
distribution to the measure µ∗ ∈M1(Ω).

(ii) For d ≥ 3 and % < %c there is a law of large numbers. Under the probabil-
ity measure P(sym)

N , the sequence (L̂N )N∈N converges in distribution to the
measure µ∗ ∈M1(Ω).

The main conclusion of the large deviations principle in Theorem 3.5 and
Theorem 3.8 is the following phase transition for the mean empirical path mea-
sure, which gives a path measure interpretation of Bose-Einstein condensation
(BEC).
Path measures and their interpretation as Bose-Einstein condensation

Let N Brownian motions with time horizon [0, β] confined in centred sets
ΛN ⊂ Rd given such that ΛN ↑ Rd and N/|ΛN | → % ∈ (0,∞) as N →∞. Then
the following holds:

(i) For β > 0 there is a %c = %c(β, d) such that:

no BEC: Case % < %c for d ≥ 3, % > 0 for d = 1, 2:

L̂N → µ∗ ∈M1(Ω) under P(sym)

N as N →∞ with
∑∞
k=1 kµ

∗(Ak) = 1

BEC: Case % < %c and d ≥ 3:

L̂N → µ0 ∈M1(Ω) under P(sym)

N as N →∞ with
∑∞
k=1 kµ

0(Ak) < 1.

(ii) For % ∈ (0,∞) there exists a

βc =

{
1

4π

(
%

ζ(d/2)

)2/d

, for d ≥ 3
+∞ , for d = 1, 2

,

such that:

no BEC: Case β < βc for d ≥ 3 and β > 0 for d = 1, 2:

L̂N → µ∗ ∈M1(Ω) under P(sym)

N as N →∞ with
∑∞
k=1 kµ

∗(Ak) = 1

BEC: Case β > βc and d ≥ 3:

L̂N → µ0 ∈M1(Ω) under P(sym)

N as N →∞ with
∑∞
k=1 kµ

0(Ak) < 1.
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If d = 1, 2, or % < %c for d ≥ 3, the mean empirical path measure has support
on those paths in which one can insert, starting from time origin, a concatenation
of any finite number of Brownian motions with time horizon [0, β], i.e., for any
k ∈ N one can find in paths ωk ∈ Ak exactly k Brownian motions concatenated
to a Brownian bridge with horizon [0, kβ]. This follows from the concatenation
of the Brownian motions due to the cycle structure of the permutations and
due to the Lebesgue integration of any initial position in the definition of the
symmetrised measure P(sym)

N . If the density % is high enough for d ≥ 3, i.e.,
% > %c (or equivalently, if the inverse temperature is sufficiently large for given
density, i.e., β > βc, for d ≥ 3), the mean path measure has positive weight for
paths with an infinite time horizon, that is, concatenation of any finite number
of Brownian motions with time horizon [0, β], i.e., any finite cycle path in Ak, is
not sufficient, because there is an excess density (% − %c) of Brownian motions
with time horizon [0, β]. These motions concatenate to infinite long cycle, that
is, these cycles grow with the system size in the thermodynamic limit. The
fraction of these motions is

1− %c
%

= 1−
(βc
β

)d/2
.

4 Appendix: Bose functions

These functions are defined by

gs(α) =
1

Γ(s)

∫ ∞
0

ts−1

et+α − 1
dt =

∞∑
k=1

k−se−αk for all α > 0 and all s > 0,

(20)
and also α = 0 and s > 1. In the latter case,

gs(0) =
∞∑
k=1

k−s = ζ(s),

which is the zeta function of Riemann. The behaviour of the Bose functions
about α = 0 is given by

gs(α) =

 Γ(1− s)αs−1 +
∑∞
k=0 ζ(s− k) (−α)k

k! , s 6= 1, 2, . . .

(−α)s−1

(s−1)!

[
log 1

α +
∑s−1
m=1

1
m

]
+
∑

k=0
k 6=s−1

ζ(s− k) (−α)k

k! , s = 1, 2, . . .
.

At α = 0, gs(α) diverges for s ≤ 1; indeed for all s there is some kind of
singularity at α = 0, such as a branch point. For further details see Gram
(1925).
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Föllmer, H. (1988). Random fields and diffusion processes, Volume 1362 of
Lecture Notes in Math. Springer Berlin. Ecole d’Eté de Saint Flour XV-
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