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INTRODUCTION AND CRAMÉR’S THEOREM 1

1 Introduction and Cramér’s theorem

1.1 Introduction

Example 1.1 (Coin-tossing) Let (Xi)i∈N be an i.i.d. sequence with P(X1 = 0) = P(X1 =
1) = 1

2
and denote ŜN := X1 + · · ·+XN . Then, for all x > 1

2
,

lim
N→∞

1

N
logP(ŜN ≥ xN ) = −I(x) , (1.1)

where

I(x) =

{
log 2 + x logx+ (1− x) log(1− x) ; for x ∈ [0, 1] ,
+∞ ; for x /∈ [0, 1] .

(1.2)

We shall prove (1.1). For x > 1 we have {ŜN ≥ xN} = ∅, and thus both sides are −∞.
For x ∈ (1

2
, 1] we write

P(ŜN ≥ xN ) = 2−N
∑
k≥xN

(
N

k

)
,

which yields the estimate

2−NQN (x) ≤ P(ŜN ≥ xN ) ≤ (N + 1)2−NQN (x) ,

where

QN (x) = max
k≥xN

(
N

k

)
.

The maximum is attained at k = dxNe, the smallest integer ≥ xN . Stirling’s formula
N ! = NNe−N

√
2πN (1 +O(1/N )) now allows us to infer that

lim
N→∞

1

N
logQN (x) = −x logx+ (1− x) log(1− x) .

Now our upper and lower bounds merge on an exponential scale as N → ∞, and we arrive
at our statement. Our results actually deals with large deviations in the upward direction
because E[X1] = 1

2
and x > 1

2
. It is clear from the symmetry of the function I , namely

I(1−x) = I(x) for x ∈ [0, 1], that the same holds for P(ŜN ≤ xN ) with x < 1
2
. We observe

for later that, when the law is symmetric above the mean, we only need to prove one of the
tails, either upper or lower bound tail. The function x 7→ I(x) is called the rate function .
Note that the rate function is infinite outside of [0, 1], finite and strictly convex inside [0, 1],
and has a unique zero at x = 1

2
. The zero corresponds to the Strong Law of Large Numbers

(SLLN). Indeed, (1.1) implies that∑
N∈N

P
(
| 1
N
ŜN −

1

2
| < δ

)
<∞ , for all δ > 0 ,

and so the SLLN follows via the Borel-Cantelli lemma. By computation we see that

I ′(
1

2
) = 0 and I ′′(

1

2
) = 4 =

1

σ2
,

where σ2 = Var(X) = E[X2]− E[X]2 = 1
4
. ♣
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Theorem 1.2 (Cramér’s theorem) Let (Xi)i∈N be a sequence of i.i.d. real-valued random
variables with law P ∈M1(R) satisfying

M (λ) := E[eλX1 ] <∞ for all λ ∈ R , (1.3)

and let ŜN be their partial sum andm ∈ R their mean, and denote Λ(λ) = logM (λ), λ ∈ R,
the logarithmic moment generating function . Then, for any x > m, we have

lim
N→∞

1

N
logP(ŜN ≥ Nx) = −I(x) , (1.4)

where
I(x) = Λ∗(x) := sup

λ∈R
{λx− Λ(Λ)} . (1.5)

Proof.
Upper bound: We use Chebyshev’s inequality, but in an optimised form. Recall that
for any non-negative, increasing function Ψ we have the following version of that
inequality,

P(ŜN ≥ Nx) ≤ P(Ψ(ŜN ) ≥ Ψ(Nx)) ≤ 1

Ψ(Nx)
E[Ψ(ŜN )] .

We choose Ψ(x) = eλx with λ ≥ 0 and optimise over λ ≥ 0 later. This yields, writing
SN := 1

N
ŜN for the empirical mean,

lim sup
N→∞

1

N
logP(SN ≥ x) ≤ −λx+ lim sup

N→∞

1

N
logE[exp(λŜN )] ≤ −λx+ Λ(λ) .

We optimise over λ ≥ 0 to get the best upper bound,

lim sup
N→∞

1

N
logP(SN ≥ x) ≤ − sup

λ≥0

{λx− Λ(λ)} .

We show that we can optimise over all λ ∈ R on the right hand side. For this we
show that λx − Λ(λ) is negative for λ < 0. For λ = 0, the expression in the curly
brackets vanishes. For λ < 0 and x > m it holds that

λx− Λ(λ) ≤ λm− Λ(λ) ≤ Λ∗(m) = 0 , (1.6)

which immediately implies our statement. To see (1.6), use Jensen’s inequality A.11
to get Λ(λ) ≥ λm for all λ, and thus λm−Λ(λ) ≤ 0 for all λ ∈ R, and so we know that
Λ∗(m) ≤ 0. On the other hand we know that Λ∗ ≥ 0 due to the fact the expression in
the curly brackets vanishes for λ = 0, and thus we get Λ∗(m) = 0. We conclude with

lim sup
N→∞

1

N
logP(SN ≥ x) ≤ − sup

λ∈R
{λx− Λ(λ)} . (1.7)

Lower bound: We employ a change of measure method or so-called tilting method .
The idea is to change the law such that the event in question has probability approx-
imately of one, that is, the event is a large number event under the new measure.
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Recall that P ∈ M1(R) is the law of X1, and define a new law Q ∈ M1(R) via a
Radon-Nikodym density, i.e.,

Q(dx) = e−Λ(λ)+λxP (dx) . (1.8)

Assume that for all ε > 0 there exists a λ > 0 such that

Q(x+ ε > SN ≥ x)→ 1 as N →∞ , (1.9)

where Q = Q⊗N is just the product measure. We justify our assumption (1.9) later.
Under this assumption we obtain the lower bound as follows, using that

P(x+ ε > SN ≥ x) = EQ[eNΛ(λ)−λŜN1l{x+ ε > SN ≥ x}] ,

lim inf
N→∞

1

N
logP(SN ≥ x) ≥ lim inf

N→∞

1

N
logP(x+ ε > SN ≥ x) ≥ Λ(λ)− λ(x+ ε)

+ lim inf
N→∞

1

N
log Q(x+ ε > SN ≥ x) = Λ(λ)− λx− λε

≥ −Λ∗(x+ ε) .

(1.10)

We conclude with the lower bound by using the lower semicontinuity of Λ∗ and taking
the limit ε ↓ 0.

To prove our assumption (1.9) above it suffices to show that λ > 0 can be chosen
such that

Λ′(λ) = e−Λ(λ)E[xeλX] = EQ[X] .

To obtain (1.9) we need to have that

Λ′(λ) = EQ[X] = x+
ε

2
. (1.11)

We know that Λ′(0) = m and Λ′(∞) = ess supX =: M , which follows with Exer-
cise 1.3. Recall that ess supX is the smallest number α such that P(X > α) = 0.
If m < x < M , by the Intermediate Value Theorem, we can find for the given
x ∈ (m,M ) and for all ε > 0 a λ > 0 with Λ′(λ) = x + ε

2
. To complete our ar-

gument note that, in case M < ∞, for x > M both sides of the statement in the
theorem are −∞ because P(SN ≥ x > M ) = 0 and E[eλX] = E[eλX1l{X ≤ M}]
implies that

sup
λ∈R
{λx− Λ(λ)} ≥ sup

λ∈R
{λx− λM}

and λ(x−M )→ −∞ as λ→∞.
If x = M we have

P(ŜN ≥ NM ) = P(X = M ) ,

and thus the right hand side is logP(X = M ), and for the left hand side we get the
same by considering E[eλM1l{X = M}].

2
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Exercise 1.3 (The essential supremum and Λ′) LetX be a R-valued random variable such
that

M (λ) = E[eλX] <∞ for all λ ∈ R ,
and Λ(λ) = logM (λ). Show that

Λ′(λ)→ ess supX as λ→∞ .

KK

Solution. TA class in Week 2. ©

1.2 Framework of large deviation theory

Proposition 1.4 (Laplace principle) Fix a sequence an →∞ as n→∞ and a finite num-
ber N of nonnegative sequences b(1)

n , . . . , b
(N )
n . Then

lim
n→∞

1

an
log
( N∑
i=1

b(i)
n

)
= max

1≤i≤N
{lim sup

n→∞

1

an
log b(i)

n } . (1.12)

Proof. For every fixed N ∈ N we have

0 ≤ log
N∑
i=1

b(i)
n − max

1≤i≤N
log b(i)

n ≤ logN .

Dividing by an and taking the lim supn→∞ shows that

lim
n→∞

1

an
log
( N∑
i=1

b(i)
n

)
= lim sup

n→∞

1

an
max

1≤i≤N
log b(i)

n = max
1≤i≤N

{lim sup
n→∞

1

an
log b(i)

n } .

2

Corollary 1.5 We write A and Å for the closure and the interior respectively, of a Borel
A ⊂ R. Under the assumptions of Theorem 1.2 above, for every Borel set A ⊂ R, it holds
that

lim sup
N→∞

1

N
logP(SN ∈ A) ≤ − inf

x∈A
{Λ∗(x)} ,

lim inf
N→∞

1

N
logP(SN ∈ A) ≥ − inf

x∈Å
{Λ∗(x)} .

(1.13)

Proof. TA class Week 2.
2

The bounds in Corollarly 1.5 motivate the upcoming definition large deviation
principle. The large deviation principle (LDP) charaterises the limiting behaviour, as
N → ∞, of a sequence of probability measures (µN )N∈N on (E,F) in terms of a
rate function. Here, we assume that (E, d) is a Polish space, i.e., a complete metric
space, and that F is a σ-algebra. Frequently we will choose the Borel σ-algebra on
E, denoted BE by default and only keep the general F for our definitions.
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Notation 1.6 In the following standard notation is used throughout the lecture; for any set
A ⊂ E, A denotes the closure of A, Å the interior of A, and Ac the complement of A. The
infimum of a function over an empty set is interpreted as∞.

Definition 1.7 (Rate function) A rate function I is a lower semicontinuous mapping
I : E → [0,∞], that is, for all α ∈ [0,∞), the level set LI(α) = {x ∈ E : I(x) ≤ α}
is closed. A good rate function is a rate function function for which all the level sets LI(α)
are compact subsets ofE. The (effective) domain of I , denotedDI = {x ∈ E : I(x) <∞},
is the set of points in E of finite rate.

Definition 1.8 (Large deviation principle (LDP)) Suppose (µN )N∈N is a sequence of
probability measures µN ∈ M1(E,F). The sequence (µN )N∈N satisfies the large devia-
tion principle (LDP) with speed or rate N and rate function I if, for all A ∈ F ,

− inf
x∈Å
{I(x)} ≤ lim inf

N→∞

1

N
logµN (A) ≤ lim sup

N→∞

1

N
logµN (A) ≤ − inf

y∈A
{I(x)} . (1.14)

The right- and left-hand side of (1.14) are referred to as the upper and lower bounds, re-
spectively. A set A ∈ F is called I continuity set if

inf
x∈Å
{I(x)} = inf

x∈A
{I(x)} =: IA . (1.15)

Remark 1.9 (a) Note that in (1.14) the σ-algebra F is not necessarily the Borel σ-algebra
B(E). In principle there can be a separation between the sets on which probability may
be assigned and the values of the bounds. So (1.14) makes sense even if some open sets
are not measurable. However, for the remaining lecture we shall always assume that
B(E) ⊂ F .

(b) Why do the lower and upper bound differ in (1.14)? Suppose that we are dealing with
non-atomic measures, i.e., µN ({x}) = 0 for every x ∈ E. So if we want the lower
bound in (1.14) to hold with the infimum over A instead of Å, we would conclude that
I(x) = ∞ for every x ∈ E and thus I ≡ ∞, contradicting the upper bound in (1.14)
because µN (E) = 1 for all N ∈ N.

(c) For I continuity sets A it holds that

lim
N→∞

1

N
logµN (A) = −IA . (1.16)

(d) Since µN (E) = 1 for all N ∈ N, it is necessary that infx∈E{I(x)} = 0 for the upper
bound to hold. When I is a good rate function there exists at least one point x ∈ E for
which I(x) = 0.

(e) Suppose that I is a rate function. Then (1.14) is equivalent to the following two bounds:
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(i) Upper bound: For every α ∈ (0,∞) and every measurable set M with M ⊂
LI(α)c,

lim sup
N→∞

1

N
logµN (M ) ≤ −α . (1.17)

(ii) Lower bound: For any x ∈ D(I) and any measurable M with x ∈ M̊ ,

lim inf
N→∞

1

N
logµN (M ) ≥ −I(x) . (1.18)

�

1.3 General Cramér Theorem in R

In this section we explore some generalisation of Theorem 1.2, and in particular our
assumption 1.3.

Definition 1.10 (a) The logarithmic moment generating function for µ ∈ M1(R) is the
mapping

Λµ : R→ (−∞,∞] , λ 7→ Λµ(λ) = log
(∫

R
eλx µ(dx)

)
.

We write Λ(λ) = logE[eλX] when µ known and clear from the context being the law
of X . The domain is DΛ = {λ ∈ R : Λ(λ) <∞}.

(b) The Legendre-Fenchel transform of Λµ is denoted Λ∗µ and is defined as

Λ∗µ(x) = sup
λ∈R
{λx− Λµ (λ)} , x ∈ R . (1.19)

We drop the index µ when the underlying probability measure is clear from the context.
The domain is DΛ∗ = {x ∈ R : Λ∗(x) <∞}.

We consider the following setting. Let (Xi)i∈N be i.i.d. R-valued random variables
with law µ ∈ M1(R). We write M1(R) for M1(R,BR). The following lemma states
all the properties of Λ∗ and Λ that are needed to prove Theorem 1.12 which is our
general version of Cramér’s theorem in R.

Lemma 1.11 (Properties of Λ and Λ∗) (a) Λ is a convex function and Λ∗ is a convex rate
function.

(b) (i) If DΛ = {0}, then Λ∗ ≡ 0.

(ii) If Λ(λ) < ∞ for some λ > 0, then m = E[X1] =
∫
R xµ(dx) < ∞, and for all

x ≥ m,
Λ∗(x) = sup

λ≥0

{λx− Λ(λ)} (1.20)

is a non-decreasing function.
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(iii) If Λ(λ) <∞ for some λ < 0, then m > −∞, and for all x ≤ m,

Λ∗(x) = sup
λ≤0

{λx− Λ(λ)} (1.21)

is a non-increasing function.

(iv) When m ∈ R, Λ∗(m) = 0, and always,

inf
x∈R
{Λ∗(x)} = 0 . (1.22)

(c) Λ is differentiable in D̊Λ with

Λ′(λ) =
1

M (λ)
E[X1eλX1 ]

and Λ′(λ) = y ⇒ Λ∗(y) = λy − Λ(λ) .
(1.23)

Proof.
(a) By Hölder’s inequality, for any α ∈ [0, 1],

Λ(αλ1 + (1− α)λ2) = logE[(eλ1X1)
α
(eλ2X1)

1−α
] ≤ log

(
E[eλ1X1 ]

αE[eλ2X1 ]
1−α
)

= αΛ(λ1) + (1− α)Λ(λ2) ,

implying convexity for Λ. Likewise, for any α ∈ [0, 1],

αΛ∗(x1) + (1− α)Λ∗(x2) = sup
λ∈R
{αλx1 − αΛ(λ)}+ sup

λ∈R
{(1− α)λx2 − (1− α)Λ(λ)}

≥ sup
λ∈R
{(αx1 + (1− α)x2)λ− αΛ(λ)} = Λ∗(αx1 + (1− α)x2) ,

and we see that Λ∗ is convex. Furthermore, Λ(0) = 0, and so Λ∗(x) ≥ 0x− Λ(0) = 0.
Suppose that xN → x as N →∞. Then, the lower semicontinuity of Λ∗ follows since

lim inf
N→∞

Λ∗(xN ) ≥ lim inf
N→∞

(λxN − Λ(λ)) = λx− Λ(λ) .

Hence, Λ∗ is a convex rate function.

(b) (i) Clearly, D(Λ) = {0} implies Λ∗(x) = Λ(0) = 0 for all x ∈ R.

(ii) For all λ ∈ R, by Jensen’s inequality,

Λ(λ) = logE[eλX1] ≥ E[log eλX1] = λm , (1.24)

and thus, if Λ(λ) < ∞ for some λ > 0, we get that m < ∞. If m = −∞, then
Λ(λ) = ∞ for λ negative, and (1.20) trivially holds. In case m ∈ R, we obtain with
(1.24) that λm− Λ(λ) ≤ 0 for all λ ∈ R, and thus Λ∗(m) = 0. Note that for x ≥ m and
λ < 0,

λx− Λ(λ) ≤ λm− Λ(λ) ≤ Λ∗(m) = 0 ,
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and therefore (1.20) follows. The monotonicity of Λ∗ on [m,∞) (nondecreasing) fol-
lows from (1.20), since for every λ ≥ 0, the function λx−Λ(λ) is nondecreasing as a
function of x.
(iii) The complementary case that Λ(λ) < ∞ for some negative λ < 0 follows by
considering the logarithmic moment generating function of −X1. We are finally left
to show that infx∈R Λ∗(x) = 0. This is immediate from our reasoning above, as for
D(Λ) = {0} we have Λ∗ ≡ 0 and for m ∈ R we have Λ∗(m) = 0.
(iv) We shall now consider the case m = −∞ while Λ(λ) < ∞ for some positive
λ > 0. Then, by Chebychev’s inequality and (1.20),

logP(X1 ≥ x) = logµ([x,∞)) ≤ log
(

e−λx E[eλX1]
)
≤ − sup

λ≥0

{λx− Λ(λ)} = −Λ∗(x) .

Hence
lim

x→−∞
Λ∗(x) ≤ lim

x→−∞
(− logµ([x,∞))) = 0 ,

and infx∈R Λ∗(x) = 0 follows. The only case left to discuss is that of m = ∞ while
Λ(λ) <∞ for some negative λ < 0. This is again settled by considering the logarith-
mic moment generating functions of −X1.
(c) The identity (1.23) follows by interchanging the order of differentiation and inte-
gration which we justify by the dominated convergence theorem as follows. The
function

fε(x) = (e(η+ε)x − eηx)/ε

converges point-wise to the function a 7→ xeηx as ε→ 0, and, for δ > 0 small enough,

|fε(x)| ≤ eηx(eδ|x| − 1)/δ =: h(x) , ε ∈ (−δ, δ) ,

and E[|h(X1)|] < ∞. Let Λ′(η) = y and define g(λ) := λy − Λ(λ). Note that g is
concave and g′(η) = 0, and thus it follows that g(η) = supλ∈R g(λ) = Λ∗(y).

2

Theorem 1.12 (Cramér’s theorem in R - general version) Let (Xi)i∈N be i.i.d. R-valued
with law µ ∈ M1(R) and denote µN = µ⊗N ◦ S−1

N , where SN is the empirical mean. Then
the sequence (µN )N∈N satisfies the LDP with the convex rate function Λ∗, that is,

lim sup
N→∞

1

N
logµN (A) ≤ − inf

x∈A
{Λ∗(x)} , for any closed set A ⊂ R ;

lim inf
N→∞

1

N
logµN (G) ≥ − inf

x∈G
{Λ∗(x)} , for any open set G ⊂ R .

(1.25)

Proof of Theorem 1.12. Proof of the upper bound in (1.25): Let ∅ 6= F ⊂ R closed.
The upper bound certainly trivially holds when IF := infx∈F Λ∗(x) = 0. Thus assume
that IF > 0. By part (b) of Lemma 1.11 it follows that m exists (possibly as extended
real number). For all x and λ ≥ 0, an application of the (exponential with function
eλx, λ ≥ 0) Chebychev inequality yields

µN ([x,∞)) = P(SN ≥ x) ≤ E[eN (SN−x)] = e−Nλx
m∏
i=1

E[eλXi] = e−N (λx−Λ(λ)) .
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Now, if the mean m <∞, then by (1.20) in Lemma 1.11, for every x > m, we obtain
an upper by optimising over all λ ∈ R, i.e.,

µN ([x,∞)) ≤ e−NΛ∗(x) for every x > m . (1.26)

This follows from the proof of (1.20). Equivalently, if m > −∞ and x < m, we can
use an estimate via the exponential Chebychev inequality for λ > 0,

P(− SN ≥ −x) ≤ E[ exp (−N(λ(−SN )− Λ̃(λ)))] ,

where Λ̃ is the logarithmic moment generating function for −X1. Note that Λ̃(−λ) =
Λ(λ). Hence,

P(− SN ≥ −x) ≤ exp (−N sup
λ≤0

{λx− Λ(λ)}) = exp (−NΛ∗(x)) ,

as for λ > 0, due to x < m we have

λx− Λ(λ) ≤ λm− Λ(λ) ≤ Λ∗(m) = 0 ,

and thus optimising for positive λ is not changing the supremum over λ ≤ 0 as long
as x < m. Therefore,

µN ((−∞, x]) ≤ e−NΛ∗(x) , for every x < m . (1.27)

After this preparation, we handle the three cases (i) m ∈ R, (ii) m = −∞ and (iii)
m = +∞ separately.

(i) Suppose m ∈ R. Then, as seen in Lemma 1.11, Λ∗(m) = 0, and as IF > 0, the
mean m must be contained in the open set F c. Denote (x−, x+) the union of all open
intervals in F c containing m. Clearly, x− < x+ and either x− ∈ R or x+ ∈ R since
F is nonempty. If x− ∈ R, then x− ∈ F , and consequently Λ∗(x−) ≥ IF . Likewise,
Λ∗(x+) ≥ IF whenever x+ ∈ R. Now we apply (1.26) for x = x+ and (1.27) for x = x−
such that the union of events bounds ensures that

µN (F ) ≤ µN ((−∞, x−]) + µN ([x+,∞)) ≤ 2e−NIF ,

and the upper bound in (1.25) follows as N →∞.

(ii) Suppose now m = −∞. As Λ∗ is nondecreasing, it follows from infx∈R Λ∗(x) = 0
that limx→−∞ Λ∗(x) = 0, and hence x∗ = inf{x ∈ R : x ∈ F} is finite for otherwise
IF = 0. As F is closed, x∗ ∈ F , and thus Λ∗(x∗) ≥ IF . Noting that F ⊂ [x∗,∞)
and using (1.26) for x = x∗, we obtain the large deviations upper bound in (1.25) of
Theorem 1.12. The third case (iii) m = +∞ follows analogously to the second case.

Proof of the lower bound in (1.25) of Theorem 1.12: The key idea is to prove that for
every δ > 0 and every probability measure µ ∈M1(R),

lim inf
N→∞

1

N
logµN ((−δ, δ)) ≥ inf

λ∈R
{Λ(λ)} = −Λ∗(0) , (1.28)
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where µN is the law of SN under µ⊗N . The proof of (1.28) will keep us busy below, it
is actually the major part of the work. Suppose now that (1.28) holds. We can then
quickly see that the lower bound in (1.25) holds. First recall that we write Λ for the
logarithmic moment generating function for a real-valued random variable X, if we
consider the random variable Y = X − x, x ∈ R, we write ΛY for the logarithmic
moment generating function. It is easy to see that ΛY (λ) = Λ(λ) − λx, and hence
with Λ∗Y (y) = Λ∗(y + x) for all y ∈ R, it follows from (1.28) that for every x ∈ R and
every δ > 0,

lim inf
N→∞

µN ((x− δ, x+ δ)) ≥ −Λ∗(x) . (1.29)

For any open set G ⊂ R, any element x ∈ G, and any δ > 0 small enough one has
(x− δ, x+ δ) ⊂ G. Thus we obtain

lim inf
N→∞

1

N
logµN (G) ≥ lim inf

N→∞

1

N
logµN ((x− δ, x+ δ)) ≥ −Λ∗(x) ,

and we can optimise the right hand site of (1.29) over all x ∈ G to obtain the large
deviation lower bound in (1.25).

Proof of (1.28): We split the proof into three parts according to the support of the
measure µ ∈ R.

1.) Suppose µ((−∞, 0)) > 0, µ(0,∞)) > 0, and that supp(µ) ⊂ R is a bounded
subset. These assumptions ensure that Λ(λ) → ∞ when |λ| → ∞ and that Λ is
finite everywhere, i.e., D(Λ) = R. Then, according to part (c) of Lemma 1.11, Λ is a
continuous, differentiable function, and hence there exists η ∈ R such that

Λ(η) = inf
λ∈R
{Λ(λ)} and Λ′(η) = 0 .

We define now a new probability measure µ̃ ∈ M1(R) by tilting the measure µ, that
is, we define the Radon-Nikodym density to be

dµ̃
dµ

(x) = eηx−Λ(η) , (1.30)

and quickly check that this indeed defines a probability measure by computing writ-
ing

M (η) := eΛ(η) = E[eηX1 ] ,∫
R
µ̃(dx) =

1

M (η)

∫
R

eηx dx = 1 .

We now denote µ̃N the law of SN under µ̃⊗N , and we observe that for every ε > 0
we obtain the estimate

µN ((−ε, ε)) =

∫
{x∈RN : |

∑N
i=1 xi|<Nε}

µ(dx1) · · ·µ(dxN )

≥ e−Nε|η|
∫
{x∈RN : |

∑N
i=1 xi|<Nε}

exp
(
η

N∑
i=1

xi

)
µ(dx1) · · ·µ(dxN )

= e−Nε|η| eNΛ(λ) µ̃N ((−ε, ε)) .
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By (1.23) and our choice of η,

Eµ̃[X1] =
1

M (η)

∫
R
xeηx µ(dx) = Λ′(η) = 0 .

Thus the expectation is zero under the new measure µ̃, and hence, by the law of
large numbers,

lim
N→∞

µ̃((−ε, ε)) = 1 . (1.31)

Our estimate above now gives, for every 0 < ε < δ,

lim inf
N→∞

1

N
logµN ((−δ, δ)) ≥ lim inf

n→∞

1

N
logµN ((−ε, ε)) ≥ Λ(η)− ε|η| ,

and (1.28) follows by taking the limit ε→ 0 and using

Λ(η) ≥ − sup
λ∈R
{−Λ(λ)} = −Λ∗(0) .

2.) Suppose that supp(µ) is unbounded, while both µ((−∞, 0)) > 0 and µ((0,∞)) >
0. Fix a cutoff parameter M > 0 large enough so that µ([−M, 0)) > 0 as well as
µ((0,M ]) > 0, and define

ΛM (λ) := log
∫ M

−M
eλx µ(dx) .

Denote ν the law of X1 conditioned on the event {|X1| ≤ M}, and let νN the law of
SN conditioned on {|Xi| ≤M ; i = 1, . . . , N}. Then for every δ > 0 and for all N ∈ N,

µN ((−δ, δ)) ≥ ν((−δ, δ))µ([−M,M ])N .

It is easy to see that (1.28) holds for νN . The logarithmic moment generating function
for ν is

Λν(λ) = log
(E[eλX11l{|X1| ≤M}]

µ([−M,M ])

)
= ΛM (λ)− logµ([−M,M ]) ,

Thus

lim inf
N→∞

1

N
logµN ((−δ, δ)) ≤ logµ([−M,M ]) + lim inf

N→∞

1

N
log νN ((−δ, δ)) ≥ inf

λ∈R
{ΛM (λ)} .

Let IM := − infλ∈R{ΛM (λ)} and I∗ = lim supM→∞ IM . Then

lim inf
N→∞

1

N
logµN ((−δ, δ)) ≥ −I∗ , (1.32)

and we shall show that infλ∈R{Λ(λ)} ≤ −I∗ to conclude with (1.28). Note that ΛM

and thus −IM is denote decreasing in M , and

−IM ≤ ΛM (0) ≤ Λ(0) ,
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which shows that −I∗ ≤ 0. We see now that −I∗ > −∞ as −IM is finite for suffi-
ciently large M . Thus the level sets LΛM (−I∗) are non-empty, compact sets and are
nested with respect to M , and henceforth there is a point λ0 in their intersection. By
Lebesgue’s monotone convergence theorem,

Λ(λ0) = lim
M→∞

ΛM (λ0) ≤ −I∗ ,

and thus our bound (1.32) yields (1.28).

3.) Suppose now that either µ((−∞, 0)) = 0 or µ((0,∞)) = 0, then Λ is a monotone
function with infλ∈R{Λ(λ)} = logµ({0}). Hence, in this case, (1.28) follows from

µN ((−δ, δ)) ≥ µN ({0}) = µ({0})N .

2

Remark 1.13 (a) The pivotal step in proving the large deviation upper bound is to optimise
over exponential Chebychev inequalities for λ ≥ 0 with functions eλx, λ ≥ 0. Then one
extends the optimisation over all λ ∈ R to obtain the Legendre-Fenchel transform.

(b) The crucial step in the proof of the lower bound was an exponential change of measure,
sometimes also called tilting of the measure.

�

We can strengthen our results concerning the goodness of the rate function.

Lemma 1.14 In the setting of Theorem 1.12 we have the following results. If 0 ∈ D̊Λ then
Λ∗ is a good rate function. Moreover, if DΛ = R, then

lim
|x|→∞

Λ∗(x)
|x|

=∞ . (1.33)

Proof. There are λ− < 0 and λ+ > 0, λ−, λ+ ∈ DΛ since 0 ∈ D̊Λ. Since for any
λ ∈ R,

Λ∗(x)
|x|

≥ λsign(x)− Λ(λ)
|x|

,

it follows that
lim inf
|x|→∞

Λ∗(x)
|x|

≥ min{λ+,−λ−} > 0 .

We get Λ∗(x) → ∞ as |x| → ∞, and its levels sets are closed and bounded, hence
compact. Thus Λ∗ is a good rate function. Note that (1.33) follows for DΛ = R by
considering −λ− = λ+ →∞. 2

Exercise 1.15 Prove by an application of Fatou’s lemma that Λ is lower semicontinuous.
K
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Exercise 1.16 Compute Λ∗ for the following distrbutions:

(a) X ∼ Poi(λ), Poisson distribution with parameter λ > 0.

(b) X ∼ Ber(p), p ∈ [0, 1], Bernoulli distributed with success probability p.

(c) X ∼ Exp(λ), exponentially distributed with parameter λ > 0.

(d) X ∼ N(µ, σ2).

KK

Exercise 1.17 Prove that Λ is C∞ in the interior D̊Λ and that Λ∗ is strictly convex, and C∞
in the interior of the set F := {Λ′(λ) : λ ∈ D̊Λ}

KKK

We want to obtain the Cramér Theorem in Rd. Some of the techniques for the R -
version are not available in Rd. Suppose that (Xi)i∈N is a sequence of independent,
identically distributed random vectors in Rd with law µ ∈ M1(Rd). We extend the
definition of the Legendre-Fenchel transform in Definition 1.10 to the vector valued
case in Rd,

Λ∗(x) = sup
λ∈Rd
{〈x, λ〉 − Λ(λ)} , x ∈ Rd , (1.34)

with 〈·, ·〉 being the Euclidean inner product.

Theorem 1.18 (Cramér Theorem in Rd) Let (Xi)i∈N be a sequence of independent, identi-
cally distributed Rd-valued random variables with law µ ∈ M1(Rd) and denote µN the law
of the empirical mean SN under µ⊗N . Assume that D(Λ) = Rd. Then (µN )N∈N satisfies the
LDP on Rd with rate N and good rate function Λ∗.

2 Methods of types and Sanov’s theorem

In this section we consider only a finite sample space E and write |E| for the number
of elements ofE. Before we prove the first large deviation principle we briefly discuss
the role of the entropy as a measure of uncertainty. As it is well-known, it was
Ludwig Boltzmann who first gave a probabilistic interpretation of the thermodynamic
entropy. He coined the formula S = kB logW which is engraved on his tombstone
in Vienna: the entropy S of an observed state is nothing else than the logarithmic
probability for its occurrence, up to some scalar factor kB (the Boltzmann constant
kB = 1.3806 × 10−23m2kgs−2K−1) which is physically significant but can be ignored
from a mathematical point of view. The set E represents in Boltzmann’s picture the
possible energy levels for a system of particles, and µ ∈ M1(E) corresponds to a
specific histogram of energies describing some macro state of the system. Assume
for a moment that each µ(x), x ∈ E, is a multiple of 1

N
, i.e., µ is a histogram forN trials

or, equivalently, a macro state for a system of N particles. On the microscopic level,
the system is then described by a sequence ω ∈ EN , the micro state , associating
to each particle its energy level. Boltzmann’s idea is now the following:
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The entropy of a macro state µ corresponds to the degree of uncertainty about
the actual micro stateω when only µ is known, and can thus be measured by

log|TN (µ)| ,

the logarithmic number of micro states leading to µ.

Recall, for a given micro state ω ∈ EN , that

LωN :=
1

N

N∑
i=1

δωi

is the associated macro state describing how the particles are distributed over the
energy levels, and

TN (ν) := {ω ∈ EN : LωN = ν} (2.1)

is the set of all ω ∈ EN of type µ.

Definition 2.1 Denote LN the set of all possible types of sequences of length N in E, i.e.,

LN := {ν ∈M1(E) : ν = LωN for some ω ∈ EN} .

The type class TN (ν) of ν ∈M1(E) ∩ LN is the set TN (ν) := {ω ∈ EN : LωN = ν}.

Note that a type class consists of all permutations of a given vector in this set. We
are using throughout the following convention,

0 log 0
M
= 0 and 0 log(0/0) M

= 0 .

Proposition 2.2 (Entropy as degree of ignorance) Let µN , µ ∈M1(E) be probability mea-
sures such that µN → µ as N →∞ and Nµ(x) ∈ N0 for all x ∈ E. Then,

lim
N→∞

1

N
log|TN (µN )| = −

∑
x∈E

µ(x) logµ(x) . (2.2)

Proof. This can be achieved easily with Stirling’s formula and the weak conver-
gence of the sequence of probability measures. Detailed error analysis and proof in
[CK81]. 2

Definition 2.3 (Shannon Entropy) Suppose E is finite and µ ∈ M1(E). The (Shannon)
entropy of µ is defined as

H(µ) := −
∑
x∈E

µ(x) logµ(x) .
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Definition 2.4 (Relative entropy) Suppose E is finite and µ, ν ∈ M1(E). For µ ∈
M1(E) denote

Eµ := {x ∈ E : µ(x) > 0}

its support. The relative entropy of ν with respect to µ is

H(ν|µ) :=

{∑
x∈E ν(x) log ν(x)

µ(x) if Eν ⊂ Eµ ,

+∞ otherwise .
(2.3)

Exercise 2.5 (Properties of relative entropy) Show that H(·|µ) is (i) nonnegative and con-
vex, (ii) H(·|µ) is finite on {ν ∈M1(E) : Eν ⊂ Eµ}, (iii) H(·|µ) is a good rate function.

KK

Suppose (Xi)i∈N is an E-valued sequence, then the empirical measure is the ran-
dom variable

LN =
1

N

N∑
i=1

δXi

taking values inM1(E). We sometimes write LXN for the vector X = (X1, . . . , XN ).
As E is finite, we endowM1(E) with the metric inherited from the embedding into
R|E| given by the mapping µ 7→ (µ(x))x∈E. The probability simplex

SimE := {ν = (ν(x))x∈E ∈ [0, 1]|E| :
∑
x∈E

ν(x) = 1} ⊂ R|E|

can be identified with M1(E). We endow the probability simplex with the total
variation distance

d(µ, ν) :=
1

2

∑
x∈E

|µ(x)− ν(x)| , (2.4)

which turns (M1(E), d) into a Polish space.

Exercise 2.6 Show that, according to the SLLN, Theorem C.4,

d(LN , µ) −→
N→∞

0 a.s. .

KK

2.1 The empirical measure LDP - Sanov’s theorem

In this section we illustrate how combinatorial or counting arguments can help pro-
viding large deviation principles. For this section assume that E is a finite sample
space with #E = |E| elements. We endow E with the power set as σ-algebra.
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Theorem 2.7 (Sanov’s theorem for finite spaces) Let (Xi)i∈N be an independent, identi-
cally distributed sequence of E-valued random variables with law µ ∈ M1(E). Denote
µN the distribution of LN under µ⊗N , i.e.,

µN = µ⊗N ◦ L−1
N .

Then the sequence (µN )N∈N satisfies the LDP onM1(E) with rate N and rate function

Iµ(ν) = H(ν|µ) .

For the proof we shall need the following two lemmas.

Lemma 2.8 If x = (x1, . . . , xN ) ∈ TN (ν), ν ∈ LN , then

P((X1, . . . , XN ) = x) = exp (−N(H(ν) + H(ν|µ))) . (2.5)

Proof.
H(ν) + H(ν|µ) = −

∑
y∈E

ν(y) logµ(y) .

Then, using independence, for x = (x1, . . . , xN ) ∈ TN (ν) ⊂ EN ,

P((X1, . . . , XN ) = x) =
N∏
i=1

µ(xi) =
∏
y∈E

µ(y)Nν(y) = exp (N
∑
y∈E

ν(y) logµ(y)) .

2

Lemma 2.9 (a) |LN | ≤ (N + 1)|E|.

(b) There exist polynomials p1, p2 with positive coefficients such that for every ν ∈ LN ,

1

p1(N )
eNH(ν) ≤ |TN (ν)| ≤ p2(N ) eNH(ν) .

Proof. (a) For any y ∈ E, the number LωN (y) belongs to the set {0, 1
N
, . . . , N−1

N
, 1}

(frequency of y in ω ∈ EN ), whose cardinality is (N + 1).
(b) TN (ν) is in bijection to the number of ways one can arrange the objects from
a collection containing the object x ∈ E exactly Nν(x) times. Hence |TN (ν)| is
multinomial,

|TN (ν)| = N !∏
y∈E (Nν(y))!

.

Stirling’s formula tell us that for suitable constants c1, c2 > 0 we have for all N ∈ N,

N log
N

e
≤ logN ! ≤ N log

N

e
+ c1 logN + c2 .

Now,

log|TN (ν)| ≤ logN !−
∑
y∈E

log (Nν(y))! ≤ N log
N

e
−
∑
y∈E

Nν(y) log
Nν(y)

e
+ c1 logN + c2

= NH(ν) + c1 logN + c2 ,
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which yields the desired upper bound with p2(N ) = c2N
c1. The proof of the lower

bound is analogous. 2

Proof of Theorem 2.7. Pick a Borel set A ⊂ M1(E). Then, using the upper bound
in Lemma 2.9,

P(LN ∈ A) =
∑

ν∈LN∩A

P(LN = ν) =
∑

ν∈LN∩A

∑
x∈TN (ν)

P(X = (X1, . . . , XN ) = x)

≤
∑

ν∈LN∩A

p2(N )eNH(ν) e−N (H(ν)+H(ν|µ))

≤ (N + 1)|E|p2(N ) e−N infν∈A∩LN H(ν|µ) .

The lower bound reads

P(LN ∈ A) =
∑

ν∈LN∩A

P(LN = ν) ≥
∑

ν∈LN∩A

1

p1(N )
eNH(ν|µ)

≥ 1

p1(N )
e−N infν∈A∩LN H(ν|µ) .

Since

lim
N→∞

1

N
log(N + 1)|E| = lim

n→∞

1

N
log p2(N ) = lim

N→∞

1

N
log

1

p1(N )
= 0 ,

we obtain
lim sup
N→∞

1

N
logP(LN ∈ A) = − lim inf

N→∞
{ inf
ν∈A∩LN

H(ν|µ)}

lim inf
N→∞

1

N
logP(LN ∈ A) = − lim sup

N→∞
{ inf
ν∈A∩LN

H(ν|µ)} .

The desired upper bound of the large deviation principle in Theorem 2.7 follows,
since A ∩ LN ⊂ A for all N . This holds for any sets A, and due to the continuity of
the rate function we obtain the upper for all sets.
For the large deviation lower bound we pick ν ∈ Å from the interior of A such that
Eν ⊂ Eµ. We then find δ > 0 small enough such that the ball

{ν ′ ∈M1(E) : d(ν ′, ν) < δ}

is contained in A. Observe that LN contains all probability measures taking values
in {0, 1

N
, . . . , 1}. Thus, for each ν ∈M1(E) there is a ν ′ ∈ LN such that for all x ∈ E:

|ν(x) − ν ′(x)| ≤ C/N for some C > 0. Thus there exists a sequence νN ∈ A ∩ LN
such that νN → ν as N →∞. Moreover, without loss of generality, we may assume
that EνN ⊂ Eµ, and hence

− lim sup
N→∞

{ inf
ν′∈A∩LN

H(ν ′|µ)} ≥ − lim
N→∞

H(νN |µ) = −H(ν|µ) .

Recall that H(ν|µ) = ∞ whenever, for some x ∈ E, ν(x) > 0 while µ(x) = 0. There-
fore, by the preceding inequality, optimising over ν ∈ Å,

− lim sup
N→∞

{ inf
ν′∈A∩LN

H(ν ′|µ)} ≥ − inf
ν∈Å

H(ν|µ) .

2
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Exercise 2.10 Prove that for every open set A ⊂M1(E),

− lim
N→∞

{ inf
ν∈A∩LN

H(ν|µ)} = lim
N→∞

1

N
logP (LN ∈ A) = − inf

ν∈A
H(ν|µ) .

K

2.2 The pair empirical measure

We now study a generalisation of the empirical measure. For this we are recording
two successive values at each instant of time of outcomes X1, X2, . . .. WE assume
that our random variables Xi are E-valued with E being a finite sample space. This
generalisation will be useful when we will drop the assumption that the sequence
(Xi)iN is i.i.d.d and consider instead Markov sequences.

Definition 2.11 Suppose (Xi)i∈N i.i.d. with Xi ∈ E and write X = (X1, . . . , XN ), N ∈ N.
The pair empirical measure is the random probability measure on E × E, defined as

L2,X
N ≡ L2

N =
1

N

N∑
i=1

δ(Xi,Xi+1) (2.6)

with the convention that XN+1 = X1 (periodic boundary conditions). We write ν =
(νx,y)x,y∈E for ν ∈M1(E × E). Denote

M̃1(E × E) :=
{
ν ∈M1(E × E) : ν (1)(·) =

∑
y∈E

ν·,y =
∑
y∈E

νy,· = ν (2)(·)
}

(2.7)

the set of probability measures on E × E with equals marginals.

We turn M̃1(E × E) into a Polish space with the total variation distance

d(µ, ν) =
1

2

∑
x,y∈E

|µx,y − νx,y| , µ, ν ∈M1(E × E) .

It follows from Birkhoff’s Ergodic Theorem that

d(L2
N , µ⊗ µ)→ 0 as N →∞ P − a.s. ,

where µ ⊗ µ is the product measure of µ ∈ M1(E), the law of the i.i.d. sequence
(Xi)i∈N.

Theorem 2.12 (Pair empirical measure) Let (Xi)i∈N be a sequence i.i.d. E-valued random
variables with law µ ∈ M1(E). Under periodic boundary conditions, XN+1 = X1, N ∈ N,
for the pair empirical measures the following holds for all ε > 0,

lim
N→∞

1

N
logP(L2

N ∈ Bc
ε(µ⊗ µ)) = − inf

ν∈Bc
ε(µ⊗µ)

{I2
µ(ν)} , (2.8)
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where
Bc
ε(µ⊗ µ) = {ν ∈ M̃1(E × E) : d(ν, µ⊗ µ) ≤ ε}

is the closed ball around µ⊗ µ with radius ε and

I2
µ(ν) =

∑
x,y∈E

νx,y log
νx,y
ν (1)
x µy

, (2.9)

where ν (1) ∈M1(E) is the first marginal of ν ∈M1(E × E).

Remark 2.13 (a) Extend the definition of relative entropy in Definition 2.4 to the sample
space E × E and observe that

I2
µ(ν) = H(ν|ν (1) ⊗ µ) , ν ∈ M̃1(E × E) . (2.10)

(b) Comparing I2
µ with the rate function Iµ in Sanov’s theorem, Theorem 2.7, we realise

that ν (1)
x µy appears in the denominator instead of µxµy as we would expect from a direct

extension of Sanov’s theorem to E × E. This discrepancy comes from the fact that
in Theorem 2.12 we are recording pairs (X1, X1), (X2, X3), (X3, X4), . . . , (XN,X1)
rather than the pairs (X1, X2), (X3, X4), (X5, X6), . . . , (XN , XN+1). We see that the
pairs in Theorem 2.12 are interlocked.

(c) Define for any x ∈ E the (conditional) probability measure νx by

νx(y) :=
νx,y
ν (1)
x

, y ∈ E . (2.11)

Then

I2
µ(ν) = Iµ(ν (1)) + H(ν|ν (1) ⊗ ν (1)) =

∑
x∈E

ν (1)
x H(νx|µ) , ν ∈ M̃1(E × E) . (2.12)

�

Proof of Theorem 2.12. The proof is very similar the one of Theorem 2.7 though
the combinatorics is more involved here. Denote

FN :=
{
f = (fx,y)x,y∈E ∈ NE×E

0 :
∑
x,y∈E

fx,y = N,
∑
y∈E

fx,y =
∑
y∈E

fy,x = fx , x ∈ E
}

(2.13)
the set of possible frequencies of pairs from N samples. Clearly,

1

N
FN =

{ 1

N
f : f ∈ FN

}
⊂ M̃1(E × E) .

We write
fx =

∑
y∈E

fx,y , x ∈ E .
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For a given f ∈ FN we know the probability

P
(
L2
N (x, y) =

fx,y
N
∀x, y ∈ E

)
= Comb

∏
x∈E

µfxx ,

where Comb is a combinatorial factor accounting for all possible arrangements of
the sample X1, . . . , XN that give rise to the frequency matrix f . We mark each
occurrence of a pair (x, y) of states x, y ∈ E in the sample X = (X1, . . . , XN ) by
drawing an arrow from x to y. We obtain an oriented graph G(f ) with vertex set E
and the arrows as its set of oriented edges. We impose periodic boundary conditions
for our sample, X1 = XN+1, and thus for every x ∈ E we have that

#{ingoing arrows to x} = #{outgoing arrows from x} .

The total number of arrows is exactly N . Thus

Comb = #(SG(f ))
E(G(f ))∏
x,y∈E fx,y!

,

where E(G(f )) denotes the number of Euler circuits on G(f ), that is, the number
of looped paths respecting the arrows and using each arrow of the graph precisely
once. The fact compensates for distinguishing between different arrows from x to y,
and #(SG(f )) counts the number of cyclic shifts of the sample X1, . . . , XN that are
distinct. We immediately see that 1 ≤ #(SG(f )) ≤ N . For an estimate of the number
of Euler circuits, see Lemma 2.14 below. With Lemma 2.14 we thus get

P
(
L2
N (x, y) =

fx,y
N
∀x, y ∈ E

)
= eO(logN )

∏
x∈E fx!∏

x,y∈E fx,y!

∏
x∈E

µfxx

uniformly for f ∈ FN . Then, as before,

QN (ε) ≤ P
(
L2
N ∈ Bc

ε(µ⊗ µ)
)
≤ |FN |QN (ε)

with
QN (ε) = max

f∈FN : 1
N
f∈Bc

ε(µ⊗µ)

{
P
(
L2
N (x, y) =

fx,y
N
∀x, y ∈ E

)}
.

We observe that |FN | = O(N |E|−1) = eO(logN ), and with Stirling’s formula,

1

N
logP

(
L2
N ∈ Bc

ε(µ⊗ µ)
)

= O
( logN

N

)
− min
f∈FN : 1

N
f∈Bc

ε(µ⊗µ)

{
I2
µ(1/Nf )

}
.

We conclude now in the same way as in our proof of Sanov’s theorem, Theorem 2.7.
2

Lemma 2.14 (Euler Circuits) In the setting of Theorem 2.12 and its proof the following
holds, ∏

x∈E : fx>0

(fx − 1)! ≤ E(G(f )) ≤
∏

x∈E : fx>0

fx! .
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Proof. Upper bound: Suppose we build an Euler circuit by picking the arrows as
we go along. Clearly, we cannot make more than fx different choices where to go
from vertex x. This gives our bound bound. Lower bound: Pick any Euler circuit C,
and for each vertex assign the colour red to the outgoing arrow that is used last in
the circuit C. If we permute after that procedure the non-coloured arrows, of which
vertex x has fx − 1, then we again get an Euler circuit C′. All Euler circuits obtained
by such permutations are distinct, i.e., C 6= C′.

2

2.3 Cramer’s theorem for finite subsets in R

We now compare Cramér’s Theorem for finite sets E with Sanov’s Theorem, Theo-
rem 2.7 for finite sets E. Suppose that (Yi)i∈N is a sequence of independent, iden-
tically distributed E-valued random variables with law µ ∈ M1(E) having support
Eµ = E.

We shall study the empirical mean SN = 1
N

∑N
i=1Xi, where Xi = f (Yi) for some

given function f : E → R. Without loss of generality, we assume further that Eµ = E
and that f (a1) < f (a2) < · · · < f (a|E|). Then SN ∈ [f (a1), f (a|E|)] =: K, and writing
Y = (Y1, . . . , YN ) we see that

SN =

|E|∑
i=1

f (ai)LYN (ai) =: 〈f, LYN〉 ,

where 〈f, ν〉 =
∑

x∈E f (x)ν(x) is the expectation of f with respect to ν ∈ M1(E).
Thus for every set A ⊂ R and every n ∈ N,

SN ∈ A⇐⇒ LYN ∈ {ν ∈M1(E) : 〈f, ν〉 ∈ A} =: Γ . (2.14)

Theorem 2.15 (Cramér’s theorem for subsets of R) For any A ⊂ R,

− inf
x∈Å
{I(x)} ≤ lim inf

N→∞

1

N
logP(SN ∈ A)

≤ lim sup
N→∞

1

N
logP(SN ∈ A) ≤ − inf

x∈A
{I(x)} ,

where
I(x) = inf

ν∈M1(E) : 〈f,ν〉=x
{H(ν|µ)} .

The rate function I is continuous on the compact set K and satisfies on K,

I(x) = sup
λ∈R
{λx− Λ(λ)} , (2.15)

where
Λ(λ) = log

∑
x∈E

eλf (x)µ(x) .
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Proof. Suppose that f : E → R is constant, i.e., f (x) = c ∈ R for all x ∈ E. Then
Xi = c, SN = c, and hence Γ = M1(E) in (2.14). Note that when x 6= c there is
no ν ∈ M1(E) with 〈f, ν〉 = c, and thus the infimum in the definition of I is over an
empty set and therefore infinity. Hence,

I(x) = inf
ν : 〈f,ν〉=x

{H(ν|µ)} =

{
0 if x = c ,

+∞ if x 6= c .

The logarithmic moment generating function for ŜN is

lim
N→∞

1

N
logE[eNλSN ] = Λ(λ) = log eλc = λc ,

and thus

sup
λ∈R
{λx− Λ(λ)} =

{
0 if x = c ,

+∞ if x 6= c .

Suppose now that f is not constant. As ν 7→ 〈f, ν〉 is continuous, we know that when
A ⊂ R is open then so is Γ ⊂ M1(E) defined in (2.14). Then the lower and upper
bounds follow from Sanov’s theorem, Theorem 2.7. Furthermore, due to (2.14),

inf
ν∈Γ̊
{H(ν|µ)} = inf

x∈Å
{ inf

ν : 〈f,ν〉=x
{H(ν|µ)}} .

Jensen’s inequality yields

Λ(λ) = log
∑
x∈E

µ(x)eλf (x) ≥
∑

x∈E∩Eν

ν(x) log
(µ(x) eλf (x)

ν(x)

)
= λ〈f, ν〉 − H(ν|µ) ,

with equality for νλ ∈M1(E) defined as

νλ(x) = µ(x)eλf (x)−Λ(λ) , x ∈ E .

Thus
λx− Λ(λ) ≤ inf

ν : 〈f,ν〉=x
{H(ν|µ)} = I(x)

with equality when x = 〈f, νλ〉. The function Λ is differentiable with

Λ′(λ) = 〈f, νλ〉 = Eνλ[f ] ,

and therefore (2.15) holds for all x ∈ {Λ′(λ) : λ ∈ R}. An easy computation shows
that

Λ′′(λ) = Eνλ[f 2]− (Eνλ[f ])2
= Varνλ(f ) > 0

as f is not a constant. Thus Λ′′(λ) > 0 for all λ ∈ R, implying that Λ is strictly convex
and that Λ′ is strictly increasing. Moreover,

f (a1) = inf
λ∈R
{Λ′(λ)} and f (a|E|) = sup

λ∈R
{Λ′(λ)} .
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Hence, (2.15) holds for all x ∈ K̊. Consider the left endpoint x = f (a1) of the compact
interval K, and let ν∗(a1) = 1 yielding 〈f, ν∗〉 = x. Then

− logµ(a1) = H(ν∗|µ) ≥ I(x) ≥ sup
λ∈R
{λx− Λ(λ)} ≥ lim

λ→−∞
(λx− Λ(λ))

= lim
λ→−∞

(
λx− log

(
µ(a1)eλf (a1)

(
1 +

∑
x 6=a1

µ(x)
µ(a1)

eλ(f (x)−f (a1)
)))

= − logµ(a1) .

The proof for the right endpoint of K is similar. The continuity of I follows from the
continuity of the relative entropy.

2

3 General Theory

3.1 Basic theory

In the following we assume that (E, d) is a Polish space. By default we denote
B = B(E) the Borel-σ-algebra of E and denote F any σ-algebra of E.

Definition 3.1 (Weak Large deviation principle) Suppose that all compact subsets of E
belong to F. A sequence (µN )N∈N of probability measures µN ∈ M1(E,F) is said to
satisfy the weak large deviation principle if the upper bound in (1.17) holds for every α and
all compact subsets of LI(α)c, and the lower bound (1.18) holds for all measurable subsets.

Definition 3.2 (Exponential tightness) Suppose that all compact subsets of E belong to
the σ-algebra F. A sequence (µN )N∈N of probability measures µN ∈ M1(E,F), is expo-
nentially tight if for every α <∞, there exists a compact set Kα ⊂ E such that

lim sup
N→∞

1

N
logµN (Kc

α) < −α .

We now show that one can lift a weak LDP to a standard LDP for exponentially
tight sequences.

Proposition 3.3 (Exponential tightness) Let (µN )N∈N be exponentially tight.

(a) If the upper bound (1.17) holds for some α <∞ and all compact subsets of the comple-
ment LI(α)c, then it holds for all measurable sets M with M ⊂ LI(α)c. If B(E) ⊂ F

and the upper bound (1.17) holds for all compact sets, then it also holds for all closed
sets.

(b) If the lower bound (1.18) holds (the lower bound in (1.14) when B(E) ⊂ F) for all
measurable sets (all open sets), then I is a good rate function.
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Proof. (a) PickM ∈ F and α <∞ such thatM ⊂ LI(α)c, and letKα be the compact
set in the definition of exponential tightness. Then M ∩Kα ∈ F and Kc

α ∈ F.

µN (M ) ≤ µN (M ∩Kα) + µN (Kc
α) . (3.1)

As M ∩Kα ⊂ LI(α)c we have that

inf
x∈M∩Kα

{I(x)} ≥ α .

Thus

lim sup
N→∞

1

N
log R.H.S. of (3.1) = lim sup

N→∞

1

N
logµN (M ∩Kα) ∧ lim sup

N→∞

1

N
logµN (Kc

α) ,

and therefore
lim sup
N→∞

1

N
logµN (M ) ≤ −α .

(b) We apply the lower bound (1.18) to the open set Kc
α, and obtain

lim inf
N→∞

1

N
logµN (Kc

α) ≥ − inf
x∈Kc

α

{I(x)} ,

and thus (noting that Kα is the compact set from the definition of exponential tight-
ness) infx∈Kc

α
{I(x)} > α. Therefore,

LI(α) ⊂ Kα

showing that the level set LI(α) is compact. Hence, the rate function I is good rate
function. 2

Proposition 3.4 (Rate functions attains infimum over compact sets) Suppose that I : E →
[0,∞] is a rate function. Then I attains its infimum over compacts sets, i.e., for all K ⊂ E
compact there exists y ∈ K such that

I(y) = inf
x∈K
{I(x)} .

Proof. Suppose I has no minimum over the compact set K ⊂ E, and define α :=
infx∈K{I(x)}. Then, for each x ∈ K, we have that α < I(x) and there is ε = ε(x) > 0
such that

α < I(x)− ε .
As I is lower semicontinuous, there is an open neighbourhood U(x) of x such that

I(x)− ε < I(y) for all y ∈ U(x) .

AsK is compact we can extract a finite cover of the set, that is, there are x1, . . . , xM ∈
K,M ∈ N, such that

K ⊂
M⋃
i=1

U(xi) .
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Define β := min1≤i≤M{I(xi) − ε(xi)}. Then β > α and β ≤ I(xk) − ε(xk) < I(y) for
all k = 1, . . . ,M , and for all y ∈ K. We thus obtain a contradiction for y ∈ K with
y ∈ U(xk) as then β ≤ infx∈K{I(x)}, and our statement follows. 2

We show in the next lemma that the LDP is preserved under suitable inclusions.
Hence, in applications, one may first prove an LDP in a space that possesses addi-
tional structure (for example, a topological vector space), and then use this lemma
to deduce the LDP in the subspace of interest.

Lemma 3.5 (LDPs for Inclusions) Let (µN )N∈N be a sequence of probability measures µN ∈
M1(E). Suppose that E ⊂ E is a measurable subset with µN (E) = 1 for all N ∈ N. We
equip E with the topology induced by E.

(a) If E ⊂ E is a closed set and if (µN )N∈N satisfies the LDP in E with rate function I ,
then (µN )N∈N satisfies the LDP in E with rate function I ′ such that I ′ ≡ I on E and
I ′ ≡ +∞ on Ec = E \ E.

(b) If (µN )N∈N satisfies the LDP in E with rate function I and DI ⊂ E, then the same
LDP holds in E. If E is closed we have that DI ⊂ E and hence the same LDP holds in
E.

Proof. Note that G∩E are open sets in E for every G ⊂ E open, likewise, F ∩E are
closed for all F ⊂ E closed. From our assumptions we have that µN (Γ) = µN (Γ ∩ E)
for any measurable set Γ ⊂ E.

(a) Consider E ⊂ E closed and extend the rate function I ′ : E→ [0,∞] , I ′ ≡ I on E,
to E by setting I ′(x) = +∞ for any x ∈ Ec. Then, for every measurable set Γ ⊂ E,

inf
x∈Γ
{I ′(x)} = inf

x∈Γ∩E
{I(x)} .

Thus we obtain the large deviation lower and upper bounds directly for the existing
ones with rate function I.

(b) Suppose the LDP holds in E. If E ⊂ E is closed, then DI ⊂ E by the LDP lower
bound for the open set Ec,

lim inf
N→∞

1

N
logµN (Ec) ≥ − inf

x∈Ec
{I(x)} ,

and by our assumption µN (E) = 1 for all N ∈ N we get Ec ⊂ Dc
I and thus our claim

DI ⊂ E. The inclusion DI ⊂ E implies that

inf
x∈Γ
{I(x)} = inf

x∈Γ∩E
{I(x)} (3.2)

holds for any measurable set Γ ⊂ E, and henceforth the LDP lower and upper
bound follow from the right hand side in (3.2). The rate function remains lower-
semicontinuous when restricted to E as all level sets are closed subsets of E.

2
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3.2 Contraction principle

This section is on transformations that preserve the LDP, although possibly, chang-
ing the rate function.

Theorem 3.6 (Contraction Principle) Let (E, d) and (Y, dY ) be metric spaces and T : E →
Y a continuous function. Suppose that I : E → [0,∞] is a good rate function and define

J(y) := inf
x∈E : y=I(x)

{I(x)} , y ∈ Y . (3.3)

(a) Then J is a good rate function on Y , where the infimum in (3.3) over the empty set is
taken as∞.

(b) If I is the rate function for a large deviation principle (LDP) associated with a se-
quence (µN )N∈N of probability measures µN ∈M1(E) on E, then J controls the LDP
on Y for the sequence (µN ◦ T−1)N∈N of probability measures µN ◦ T−1 ∈M1(Y ).

Proof. (a) By definition we have J ≥ 0. For each point y in the range T (E) ⊂ Y the
infimum on the right hand side of (3.3) is attained at some point x ∈ E. This follows
from the goodness of the rate function I as for y ∈ T (E) the set {x ∈ E : I(x) = y} is
compact and any lower semicontinuous function attains its infimum over a compact
set. Thus we obtain for the level sets of J ,

LJ (α) = {T (x) : I(x) ≤ α} = T (LI(α)) ,

where LI(α) are the level sets for I. As LI ⊂ E are compact due to the goodness of
I, so are the sets LJ ⊂ Y , and thus J is a good rate function.

(b) The definition of J in (3.3) implies that for any A ⊂ Y ,

inf
y∈A
{J(y)} = inf

x∈T−1(A)
{I(x)} . (3.4)

Since T is continuous, the set T−1(A) is open (closed) subset of E for any open
(closed) A ⊂ Y . Therefore, the LDP for µN ◦ T−1 follows as a consequence of the
LDP for µN and (3.4). Indeed, pick F ⊂ Y closed and write

lim sup
N→∞

1

N
logµN ◦ T−1(F ) = lim sup

N→∞

1

N
logµN (T−1(F )) ≤ − inf

x∈T−1(F )
{I(x)}

= − inf
y∈F

inf
x∈T−1({y})

{I(x)} = − inf
y∈F
{J(y)} .

A similar argument works for O ⊂ Y open. 2

Example 3.7 As an exercise we apply the contraction principle for our setting in Section 2.3.
We let E ⊂ R be a finite subset of the real line. We can then derive Cramér’s theorem from
Sanov’s theorem by contraction. Indeed, let

T : M1(E)→ R, ν 7→ T (ν) =
∑
y∈E

yν(y) , (3.5)
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so that T (LXN ) = 1
N
ŜN for X = (X1, . . . , XN ). Here, we let (Xi)i∈N an i.i.d. E-valued

sequence with law µ ∈ M1(E). As T is obviously continuous, we obtain a large deviation
principle for SN = 1

N
ŜN with rate function

J(y) = inf
ν∈T−1({y})

{H(ν|µ)} (3.6)

We need to show that the rate function in (3.6) coincides with the rate function of the corre-
sponding Cramér theorem, i.e., we shall show that

J(y) = sup
λ∈R

{
λy − log

(∑
x∈E

eλxµ(x)
)}

= Λ∗(y) . (3.7)

Proof of (3.7): For any λ ∈ R abbreviate Z =
∑

x∈E eλxµ(x) and let ϕ(x) = x logx. Then
we show the ≥ direction in (3.7) by employing Jensen’s inequality for the strictly convex
function ϕ(x) = x logx on [0,∞), i.e.,∑

x∈E

ν(x) log
ν(x)
µ(x)

=
∑
x∈E

ϕ
( ν(x)

1
Z

eλxµ(x)

) 1

Z
eλxµ(x)− logZ + λy

≥ − logZ + λy .

(3.8)

As in the proof of Theorem 1.2 or Section 2.3 we can use the intermediate value theorem to
find, for min(E) < y < max(E) a λ ∈ R with

y =

∑
x∈E xeλxµ(x)∑
x∈E eλxµ(x)

,

and hence the choice ν(x) = 1
Z
µ(x)eλx, x ∈ E, yields a permissible measure. Then

∑
x∈E

ν(x) log
ν(x)
µ(x)

=
∑
x∈E

ν(x) log
( 1

Z
eλx
)

= − logZ + λy ,

proving the≤ direction in (3.7). For the values y = min(E) or y = max(E) see our argument
in Section 2.3.

♣

The following theorem shows that in the presence of exponential tightness, the
contraction principle can be made to work in the reverse direction. This property is
extremely useful for strengthening large deviations results from a coarse topology to
a finer one.

Theorem 3.8 (Inverse Contraction Principle) LetE and Y be Polish spaces. Suppose that
ψ : Y → E is a continuous bijection, and that (νN )N∈N is an exponentially tight sequence
of probability measures νN ∈ M1(Y ). If (νN ◦ ψ−1)N∈N satisfies the LDP in E with rate
function I : E → [0,∞], then (νN )N∈N satisfies the LDP with the good rate function I ′ :=
I ◦ ψ.
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Proof. We first show that I ′ is a rate function. By the continuity of ψ, for any α <∞,
we see that the level set

LI′(α) = {y ∈ Y : I ′(y) ≤ α} = ψ−1(LI(α))

is closed, and thus I ′ is lower semicontinuous. Moreover, I ′ ≥ 0, and hence I ′ is
a rate function. The exponential tightness allows to prove the LDP upper bound for
compact sets K ⊂ Y . Hence

lim sup
N→∞

1

N
log νN (K) = lim sup

N→∞

1

N
log νN ◦ ψ−1(ψ(K)) ≤ − inf

x∈ψ(K)
{I(x)} = − inf

y∈K
{I ′(y)} ,

which is the upper bound for νN . We turn to the lower bound which is slightly more
involved. Fix y ∈ Y with I ′(y) = I(ψ(y)) = α < ∞, and a neighbourhood G 3 y of y.
For α <∞, there exists a compact set Kα ⊂ Y such that

lim sup
N→∞

1

N
log νN (Kc

α) < −α . (3.9)

Because ψ is a bijection, Kc
α = ψ−1 ◦ ψ(Kc

α) and ψ(Kc
α) = ψ(Kα)c. By the continuity

of ψ, the set ψ(Kα) is compact, and consequently ψ(Kα)c is an open set. We have
the large deviation lower bound for νN ◦ ψ−1,

− inf
x∈ψ(Kc

α

{I(x)} ≤ lim inf
N→∞

1

N
log νN (Kc

α) < −α .

From I(ψ(y)) = α we know that y ∈ Kα. Since ψ is continuous bijection, it is a
homeomorphism between the compact sets Kα and ψ(Kα). Therefore, the set ψ(G∩
Kα) is a neighbourhood of ψ(y). Hence, there exists a neighbourhood G′ of g(y) in
E such that

G′ ⊂ ψ(G ∩Kα) ∪ ψ(Kc
α) .

This implies, for every N ,

νN (G) + νN (Kc
α) ≥ νN ◦ ψ−1(G′) ,

and thus

max{lim inf
N→∞

1

N
log νN (G), lim sup

N→∞

1

N
log νN (Kc

α)} ≥ lim inf
N→∞

1

N
log νN ◦ ψ−1(G′)

≥ −I(ψ(y)) = −I ′(y) .

Since I ′(y)− α, it follows by combining this inequality with (3.9) that

lim inf
N→∞

1

N
νN (G) ≥ −I ′(y) .

We are done as the preceding holds for every y ∈ Y and every neighbourhood G of
y. 2

The next result is a direct consequence which holds for general topological Haus-
dorff spaces E and concerns the comparison of topologies in terms of LDPs.
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Proposition 3.9 (Different topologies) Let (µN )N∈N be an exponentially tight sequence of
probability measures onE (E some topological Hausdorff space) equipped with the topology
τ1. If (µN )N∈N satisfies an LDP with respect to a Hausdorff topology τ2 on E that is coarser
than τ1, that is, τ2 ⊂ τ1 (respectively, τ1 is finer than τ2 when τ2 ⊂ τ1), then the same LDP
holds with respect to the topology τ1.

Proof. We employ Theorem 3.8 for the embedding ψ : (E, τ1) → (E, τ2), which is
continuous because τ1 is finer than τ2. We then conclude with Theorem 3.8. Fur-
thermore, note that, since ψ is continuous, the measures µN are well-defined as
Borel measures on (E, τ2).

2

3.3 Varadhan’s Integral Lemma

Theorem 3.10 (Varadhan Lemma) Suppose that (µN )N∈N satisfies the LDP with a good
rate function I : E → [0,∞], and let H : E → R be a continuous function. Assume that
either the tail-condition

lim
M→∞

lim sup
N→∞

1

N
logEµN [eNH1l{H ≥M}] = −∞ , (3.10)

or the moment condition for γ > 1,

lim sup
N→∞

1

N
logE[eγNH ] <∞ , (3.11)

hold. Then

lim
N→∞

1

N
logEµN [eNH ] = sup

x∈E
{H(x)− I(x)} .

Remark 3.11 (a) This theorem is the natural extension of Laplace’s method of computing
parameter integrals in finite-dimensional spaces to infinite dimensional spaces.

(b) It is clear that any continuous function bounded from above satisfies the tail condition
(3.10). The moment condition (3.11) implies the tail condition (3.10) as we see using
Hölder’s inequality,∫

{H≥M}
eNH(x) µN (dx) ≤

(∫
eγNH(x) µN (dx)

)1/γ

(µN(H ≥M))
1− 1

γ

≤
(∫

eγNH(x) µN (dx)
)1/γ(

e−γMN

∫
eγNH(x) µN (dx)

)1− 1
γ

= exp ((1− γ)MN)
(∫

eγNH(x) µN (dx)
)
.

�

Proof of Theorem 3.10. The proof is an immediate consequence of the following
two lemmas and Remark 3.11. 2
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Lemma 3.12 If H : E → R is lower semicontinuous and the large deviation lower bound
holds with I : E → [0,∞], then

lim inf
N→∞

1

N
logE[eNH ] ≥ sup

x∈E
{H(x)− I(x)} .

Proof. Pick x ∈ and δ > 0. Since F is lower semicontinuous, there exists an open
neighbourhood G 3 x such that infy∈G{H(y)} ≥ H(x) − δ. By the large deviation
lower bound and the choice of G,

lim inf
N→∞

1

N
logE[eNH ] ≥ lim inf

N→∞

1

N
logE[eNH1lG] ≥ inf

y∈G
{H(y)}+ lim inf

N→∞

1

N
logµN (G)

≥ inf
y∈G
{H(y)} − inf

y∈G
{I(y)} ≥ H(x)− I(x)− δ .

The statement now follows, since δ > 0 and x ∈ E are arbitrary. 2

Lemma 3.13 If H : E → R is an upper semicontinuous for which the tail condition (3.10)
holds, and if the large deviation upper bound holds with the good rate function I : E →
[0,∞], then

lim sup
N→∞

1

N
logE[eNH ] ≤ sup

x∈E
{H(x)− I(x)} .

Proof. First consider a function H which is bounded from above, i.e.

sup
x∈E
{H(x)} ≤M <∞ .

Clearly, this function satisfies the tail condition (3.10). For α < ∞ consider the
compact level set LI(α). For x ∈ LI(α) there exists a neighbourhood Ax of x such
that

inf
y∈Ax
{I(y)} ≥ I(x)− δ and sup

y∈Ax
{H(y)} ≤ H(x) + δ ,

where the first inequality follows as I is lower semicontinuous and the second one
is due to upper semicontinuity of H. From the open cover with the neighbourhoods
Ax we can extract a finite cover of the level set LI(α) ⊂

⋃K
i=1Axi , K ∈ N. Therefore,

EµN [eNH ] ≤
K∑
i=1

EµN [eNH1lAxi ] + eNMµN((
K⋃
i=1

Axi)
c
)

≤
K∑
i=1

eN (H(xi)+δ)µN(Axi) + eNMµN((
K⋃
i=1

Axi)
c
) .

We apply now the large deviation upper bound to the sets Axi and use the fact that
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(
⋃K
i=1Axi)

c ⊂ LI(α)c and arrive at

lim sup
N→∞

1

N
logEµN [eNH ]

≤ max
{

max
1≤i≤K

{H(xi) + δ − inf
y∈Axi

{I(y)}},M − inf
y∈(⋃K

i=1 Axi)
c
{I(y)}

}
≤ max

{
max

1≤i≤K
{H(xi)− I(xi) + 2δ},M − α

}
≤ max

{
sup
x∈E
{H(x)− I(x)},M − α

}
+ 2δ .

Thus, for H bounded as above, the lemma follows by taking the limits δ → 0 and
α → ∞. To treat the general case, we use a cutoff parameter M > 0 and define
HM (x) := H(x) ∧M ≤ H(x), and use our arguments above for HM to obtain

lim sup
N→∞

1

N
logE[eNH ] ≤ lim sup

N→∞

1

N
log
(
EµN [eNH1l{H < M}] + EµN [eNH1l{H ≥M}]

)
≤ sup

x∈E
{H(x)− I(x)} ∨ lim sup

N→∞

1

N
logE[eNH1l{H ≥M}] ,

where we used the fact that on the event {H < M} we have HM = H. Now the tail
condition (3.10) completes the proof by taking the limit M →∞. 2

With Varadhan’s Lemma we can obtain new large deviation principles for families
of probability measures defined by Radon-Nikodym densities.

Theorem 3.14 (Tilted LDP via Varadhan Lemma) Let (E, d) be a Polish space. Suppose
that (µN )N∈N satisfies the LDP with a good rate function I : E → [0,∞], and letH : E → R
be a continuous function that is bounded from above. Then define

ZN (H) :=

∫
E

eNH(x) µN (dx) ,

and the probability measure µHN ∈M1(E) via the Radon-Nikodym density

dµHN
dµN

(x) =
eNH(x)

ZN (H)
, x ∈ E .

Then the sequence (µHN )N∈N satisfies the LDP on E with rate n and rate function

IH(x) = I(x)−H(x) + sup
y∈E
{H(y)− I(y)} , x ∈ E . (3.12)

Proof. From Theorem 3.10 we know that

lim
N→∞

1

N
logZN (H) = sup

y∈E
{H(y)− I(y)} .
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Then we obtain the large deviation bounds by simply repeating the above arguments
in the proof of Theorem 3.10, For example, let K ⊂ E be closed, then

lim sup
N→∞

1

N
logµHN (K) = lim sup

N→∞

1

N
log
∫
K

eNH(x) µN (dx)− lim sup
N→∞

1

N
logZN (H)

≤ sup
y∈K
{H(x)− I(x)} − sup

y∈E
{H(y)− I(y)} = − inf

y∈K
{IH(y)} ,

as IH(x) = I(x)−H(x)− infy∈E{I(y)−H(y)} and

− sup
y∈E
{H(y)− I(y)} = inf

y∈E
{I(y)−H(y)} .

The corresponding lower bound follows similarly. 2

3.4 Bryc’s Inverse Varadhan Lemma

We shall study an inverse to Varadhan’s lemma. Suppose (µN )N∈N is a sequence
of probability measures µN ∈ M1(E) over the Polish space (E, d). In what follows,
one can consider more general topological spaces but we contend ourself here with
Polish spaces. For each Borel measurable function f : E → R, define

Λf := lim
N→∞

1

N
log
∫
E

eNf (x) µN (dx) , (3.13)

provided the limit exists. In case we have a vector space structure on E, for example,
as we have in Cramér’s theorem, we consider (3.13) for linear functionals and call
the limit the limiting logarithmic moment generating function. The key result in this
section is that the LDP is a consequences of the exponential tightness and the
existence of (3.13) for every f ∈ G for some useful familiy G of functions on E. The
minimal requirement on the space E is that E is a completely regular topological
space, that is, E is Hausdorff, and for any closed set F ⊂ E and x /∈ F , there exists
a continuous function f : E → [0, 1] such that f (x) = 1 and f (y) = 0 for all y ∈ F .
Note that metric spaces and Hausdorff topological vector spaces are completely
regular.

We denote Cb(E) the space of bounded, real-valued continuous functions on E.

Theorem 3.15 (Bryc) Suppose that the sequence (µN )N∈N of probability measures µN ∈
M1(E) over the Polish space is exponentially tight and that the limit in (3.13) exists for all
f ∈ Cb(E). Then (µN )N∈N satisfies the LDP on E with rate N and good rate function

I(x) = sup
f∈Cb(E)

{f (x)− Λf} . (3.14)

Furthermore,
Λf = sup

x∈E
{f (x)− I(x)} . (3.15)

Proof of Theorem 3.15. We have that Λ0 = 0 and thus we get that I ≥ 0. The
function I is lower semicontinuous since it is a supremum of continuous functions.
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Thus (3.14) defines a rate function. To prove the large deviation principle note that,
as exponential tightness is given, it suffices to establish the upper bound for compact
sets. We start with the lower bound:

Lower bound: Fix x ∈ E. As the metric space (E, d) is completely regular, there
exists a continuous function f : E → [0, 1], such that f (x) = 1 and f (y) = 0 for all y ∈
Gc, where G 3 x is some open neighbourhood of x. Denote fm = m(f − 1),m ∈ N,
and note that fm ∈ Cb(E). Then∫

E

eNfm(x) µN (dx) ≤ e−mNµN (Gc) + µN (G) ≤ e−mN + µN (G) .

We now use the fact that fm ∈ Cb(E) and that fm(x) = 0 to obtain the following lower
bound,

max{lim inf
N→∞

1

N
logµN (G),−m} ≥ lim inf

N→∞

1

N
log
∫
E

eNfm(y) µN (dy) = Λfm

= −(fm(x)− Λfm) ≥ − sup
f∈Cb(E)

{f (x)− Λf} = −I(x) ,

and the large deviation lower bound follows by letting m→∞. The reason why this
lower bound works so easily is the fact that indicators on open sets are approximated
well enough by bounded continuous functions.

Upper bound: Fix a compact set K ⊂ E and some δ > 0, and define Iδ(x) :=

min{I(x)− δ, 1
δ
}. For any x ∈ K there exists fx ∈ Cb(E) such that

fx(x)− Λfx ≥ Iδ(x) .

As fx is continuous, there is neighbourhood Ax 3 x of x, such that

inf
y∈Ax
{fx(y)− fx(x)} ≥ −δ . (3.16)

We denote XN the E-valued random variable with law µN . We obtain an upper
bound via Chebycheff’s inequality.

µN (Ax) = E[1l{XN ∈ Ax}] ≤ P(fx(XN )− fx(x) ≥ −δ) ≤ eNδE[eN (fx(XN )−fx(x))] .

Thus

1

N
logµN (Ax) ≤ δ −

(
fx(x)− 1

N
log
∫
E

eNfx(y) µN (dy)
)
.

We now extract a finite cover,
⋃M
i=1 Axi, from the open cover

⋃
x∈K Ax ⊃ K of the

compact set K. By the union of events bound,

1

N
logµN (K) ≤ 1

N
logM + δ − min

1≤i≤M

{
fxi(xi)−

1

N
log
∫
E

eNfxi (y) µN (dy)
}
,



34 THE GÄRTNER-ELLIS THEOREM

and thus

lim sup
N→∞

1

N
logµN (K) ≤ δ − min

1≤i≤M
{fxi(xi)− Λfxi

} ≤ δ − min
1≤i≤M

{Iδ(xi)}

≤ δ − inf
x∈K
{Iδ(x)} ,

and we conclude with the desired upper bound by letting δ ↓ 0.
2

4 The Gärtner-Ellis theorem

We study various versions of the Gärtner-Ellis theorem, which has two key elements.
One is that we consider topological vector spaces, and secondly, we study now se-
quences of not necessarily identical distributed and independent random variables.
In order to showcase the main ideas we consider the case for E = Rd.

4.1 Gärtner-Ellis for Rd

Let E = Rd. The vector space structure is crucial for the following results. The set-
up is as follows. We let (XN )N∈N be a sequence of Rd-valued random variables with
law µN ∈M1(Rd). The moment generating function is

MN (λ) := E[e〈λ,XN 〉] , λ ∈ Rd , (4.1)

and we define ΛN (λ) := logMN (λ), λ ∈ Rd the logarithmic moment generating func-
tion.

We also need the following notions which we define for a general topological
Hausdorff vector space E with dual space E∗ .

The dual space E∗ of E consists of all continuous linear functionals on E. If
(XN )N∈N is a sequence of E-valued random variables XN with law µN ∈ M1(E),
the logarithmic moment generating function is defined to be

ΛµN (λ) = logEµN [e〈λ,XN 〉] = log
∫
E

eλ(x) µN (dx) , λ ∈ E∗ , (4.2)

where for x ∈ E and λ ∈ E∗, 〈λ, x〉 denotes the value of λ(x) ∈ R. Let

Λ(λ) := lim sup
N→∞

1

N
ΛµN (Nλ) , (4.3)

using the notation Λ(λ) whenever the limit exists.
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Definition 4.1 Suppose that E is a Hausdorff topological vector space with dual E∗. A
point x ∈ E is called an exposed point of f : E∗ → [0,∞] if there exists an exposing
hyperplane λ ∈ E∗ such that

〈λ, x〉 − f (x) > 〈λ, z〉 − f (z) , for all z 6= x , (4.4)

where we write again λ(x) ≡ 〈λ, x〉 for every λ ∈ E∗, x ∈ E.

In the following we consider the self-dual vector space Rd. Any λ ∈ Rd defines
the linear form λ(x) = 〈λ, x〉, x ∈ Rd, where 〈u,w〉 =

∑d
i=1 uiwi, u, w ∈ Rd, is the

Euclidean inner product.

Theorem 4.2 (Gärtner-Ellis for Rd) Suppose that (XN )N∈N is a sequence of Rd-valued
vectors XN and that µN ∈ M1(Rd) is the law of XN . Assume that the following holds:

Λ(λ) := lim
N→∞

1

N
log ΛµN (Nλ) exists as an extended real number for all λ ∈ Rd , (4.5)

and 0 ∈ D̊Λ. Then the following holds.

(a) For every closed set F ⊂ Rd,

lim sup
N→∞

1

N
logµN (F ) ≤ − inf

x∈F
{Λ∗(x)} .

(b) Let E be the set of exposed points of Λ∗ with an exposing hyperplane λ ∈ D̊Λ. Then, for
every open set G ⊂ Rd,

lim inf
N→∞

1

N
logµN (G) ≥ − inf

x∈G∩E
{Λ∗(x)} .

(c) If Λ is an essentially smooth, lower semi continuous function, then (µN )N∈N satisfies the
LDP with good rate function Λ∗.

Remark 4.3 A convex function Λ: Rd → (−∞,∞] is essentially smooth if

(a) D̊Λ 6= ∅.

(b) Λ is differentiable in D̊Λ.

(c) Λ is steep, that is, limN→∞|∇Λ(λN )| = ∞ whenever (λN )N∈N is a sequence in D̊Λ

converging to a point in the boundary ∂DΛ of DΛ.

In particular, when DΛ = Rd, then Λ is essentially smooth and the LDP holds. �

Lemma 4.4 Under the assumption (4.5) of Theorem 4.2 the following holds.
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(a) Λ is convex and Λ > −∞ everywhere.

(b) Λ∗ is a good rate, convex rate function.

Proof. (a) Clearly, λ 7→ logE[e〈XN ,λ〉] is convex and thus the limit Λ is convex.
Suppose now that Λ(λ) = −∞ for some λ. Then convexity of Λ implies that Λ(αλ) =
−∞ for all α ∈ (0, 1]. Now Λ(0) = 0 in conjunction with the convexity shows that
Λ(−αλ) = +∞ for all α ∈ (0, 1] as

0 = Λ(0) = Λ(tλ+ (1− t)(−λ)) ≤ tΛ(λ) + (1− t)Λ(−λ) , t ∈ [0, 1] .

As 0 ∈ D̊Λ we get a contradiction and thus Λ > −∞ everywhere.

(b) For all x ∈ Rd we have Λ∗(x) ≥ −Λ(0) = 0 and thus Λ∗ ≥ 0. Furthermore, Λ∗ is
convex as a supremum of linear functions. There exists δ > 0 such that B2δ(0) ⊂ D̊Λ.
Since Λ is convex, it is continuous on D̊Λ and thus

sup
λ∈B2δ(0)

{Λ(λ)} = C <∞,

and thus
Λ∗(x) ≥ sup

λ∈B2δ(0)
{〈x, λ〉 − Λ(λ)} ≥ δ|x| − C .

Thus Λ∗ has bounded level sets. The lower semicontinuity of Λ∗ implies that the level
sets are closed subset in Rd and thus all level sets are compact implying that Λ∗ is
a good rate function.

2

Proof of Theorem 4.2. (a) Upper bound:

For x ∈ Rd and δ > 0 define

Λ∗δ(x) := min{Λ∗(x)− δ, 1

δ
} .

For all x ∈ Rd there exists a vector λx ∈ Rd such that

〈x, λx〉 − Λ(λx) ≥ Λ∗δ(x) ,

and for this vector there is a neighbourhood Ax 3 x of x such that

inf
y∈Ax
{〈y − x, λx〉} ≥ −δ .

We now employ Chebycheff’s inequality again like in our proof of Bryc’s theorem
(Theorem 3.15) to obtain

µN (Ax) = P(XN ∈ Ax) ≤ P(〈XN − x, λx〉 ≥ −δ) ≤ eNδE[eN〈XN−x,λx〉]

= eNδE[eNλx]e−N〈x,λx〉 .
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Pick K ⊂ Rd compact and extract a finite open cover of neighbourhoods like above,

K ⊂
L⋃
i=1

Axi .

This way we get

1

N
logµN (K) ≤ 1

N
logL+ δ − min

1≤i≤L
{〈xi, λxi〉 −

1

N
logE[eNλxi ]} .

Henceforth

lim sup
N→∞

1

N
logµN (K) ≤ δ − min

1≤i≤L
{〈xi, λxi〉 − Λ(λxi)}

≤ δ − min
1≤i≤L

{Λ∗δ(xi)} ≤ δ − inf
y∈K
{Λ∗δ(y)} ,

and we conclude with the upper bound for the compact set K by letting δ ↓ 0. Now
we let F ⊂ Rd be a closed subset. We introduce a cutoff parameter M ∈ N such
that F ∩ [−M,M ]d is compact for any M ∈ N. Thus

lim sup
N→∞

1

N
logµN (F ) ≤ lim sup

N→∞

1

N
log
(
µN (F ∩ [−M,M ]d) + µN (Rd \ [−M,M ]d)

)
≤ max{− inf

y∈F∩[−M,M ]d
{Λ∗(y)},−KM} ,

where
−KM := lim sup

N→∞

1

N
logµN (Rd \ [−M,M ]d) .

If KM →∞ as M →∞, our claim follows because

lim
M→∞

inf
y∈F∩[−M,M ]d

{Λ∗(y)} = inf
y∈F
{Λ∗(y)} .

Here is the point where we use our assumption 0 ∈ D̊Λ. This assumption ensures
that there exists δi > 0, ηi > 0; i = 1, . . . , d, such that

Λ(−ηiei) <∞ and Λ(δiei) <∞ , i = 1, . . . , d .

We obtain the following estimates for the ith coordinates using again exponential
Chebycheff’s inequality,

P(X (i)
N ≤ −M ) ≤ e−NηiME[e−Nηiei ]

P(X (i)
N ≥M ) ≤ e−NδiME[eNδiei ] .

Hence

−KM ≤ lim sup
N→∞

1

N
logµN(∃ i : X (i)

N /∈ [−M,M ]) ≤ − min
1≤i≤d

{min{δi, ηi}}M

+ max
1≤i≤d

{max{Λ(−δiei),Λ(δiei)}} ,
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and finally we obtain KM → ∞ if M → ∞. Consequently, by the union of events
bound,

lim
M→∞

lim sup
N→∞

1

N
logµN(([−M,M ]d)c) = −∞ ,

i.e., (µN )N∈N is exponentially tight.

Lower bound (b): We need to show that for y ∈ E,

lim
δ→0

lim inf
N→∞

1

N
logµN (Bδ(y)) ≥ −Λ∗(y) . (4.6)

Fix y ∈ E and let η ∈ D̊Λ denote the exposing hyperplane for y. For N sufficiently
large we have that ΛµN (Nη) < ∞ and we can define the new measures µ̃N via the
density,

dµ̃N
dµN

(z) = exp (N〈η, z〉 − ΛµN (Nη)) . (4.7)

Then we get with some calculation for the change of measure,

1

N
logµN (Bδ(y)) =

1

N
ΛµN (Nη)− 〈η, y〉+

1

N
log
∫
Bδ(y)

eN〈η,y−z〉 µ̃N (dz)

≥ 1

N
ΛµN (Nη)− 〈η, y〉 − |η|δ +

1

N
log µ̃N (Bδ(y)) .

Therefore,

lim inf
N→∞

1

N
logµN (Bδ(y)) ≥ Λ(η)− 〈η, y〉+ lim inf

N→∞

1

N
log µ̃N (Bδ(y))

≥ −Λ∗(y) + lim inf
N→∞

1

N
log µ̃N (Bδ(y))

The obstacle comes from the missing independence and hence the weak law of
large numbers no longer applies. We shall instead utilise the large deviation upper
bound in (a). For that we analyse the logarithmic moment generating function for
µ̃N . One can easily show that

1

N
Λ̃µ̃N (Nλ) −→

N→∞
Λ̃(λ) = Λ(λ+ η)− Λ(η) ,

where the limiting moment generating function Λ̃ satisfies assumption (4.5) as clearly
Λ̃(0) = 0 and Λ̃ <∞ for |λ| small enough. Define

Λ̃∗(x) := sup
λ∈Rd
{〈λ, x〉 − Λ̃(λ)} = Λ∗(x)− 〈η, x〉+ Λ(η) .

Since (µ̃N )N∈N satisfies the assumptions (4.5), we can apply Lemma 4.4 and part
(a) above to show that (µ̃N )N∈N satisfies a large deviation upper bound with the good
rate function Λ̃∗. Thus, for the closed set Bδ(y)c,

lim sup
N→∞

1

N
log µ̃N(Bδ(y)c) ≤ − inf

x∈Bδ(y)c
{Λ̃∗(x)} = −Λ̃∗(x0)
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for some point x0 6= y. This follows from the fact that lower semicontinuous functions
attain their minimum over compact sets. We are left to show that Λ̃∗(x0) > 0 as this
implies that the probability for the complement of the open ball vanishes exponential
fast as N → ∞. At this point we use the property that y is an exposed point for Λ∗

with exposing hyperplane η. First,

Λ∗(y) ≥ 〈η, y〉 − Λ(η) ,

and thus Λ(η) ≥ 〈η, y〉 − Λ∗(y). Then

Λ̃∗(x0) = Λ∗(x0)− 〈λ, x0〉+ Λ(η) ≥ Λ∗(x0)− 〈λ, x0〉+ 〈η, y〉 − Λ∗(y) > 0 .

Thus, for every δ > 0,

lim sup
N→∞

1

N
log µ̃N(Bδ(y)c) < 0 .

This implies that µ̃N (Bδ(y)c) → 0 as N → ∞ and thus µ̃N (Bδ(y)) → 1 as N → ∞,
and in particular,

lim inf
N→∞

1

N
log µ̃N (Bδ(y)) = 0 .

(c) We need to show the lower bound without the intersection with the set E of
exposed points. This requires some deeper results in convex analysis. We need
some notation. For every non-empty convex set C ⊂ Rd, the relative interior of C,
denoted ri(C), is defined as the set

ri(C) := {y ∈ C : x ∈ C ⇒ y − ε(x− y) ∈ C for some ε > 0} . (4.8)

Then, according to [Roc70], the following holds: If Λ is an essentially smooth, lower
semicontinuous, convex function, then ri(DΛ∗) ⊂ E, where E is the set of exposed
points. To show that

inf
y∈G∩E

{Λ∗(y)} = inf
y∈G
{Λ∗(y)} ,

it suffices to show that, for an open set G ⊂ Rd,

inf
y∈G∩ri(DΛ∗ )

{Λ∗(y)} ≤ inf
y∈G
{Λ∗(y)} . (4.9)

Now (4.9) holds whenG∩ri(DΛ∗) = ∅. Otherwise, pick y ∈ G∩ri(DΛ∗) and z ∈ ri(DΛ∗).
Then, for all δ > 0 sufficiently small enough,

δz + (1− δ)y ∈ G ∩ ri(DΛ∗) ,

and thus
inf

y∈G∩ri(DΛ∗ )
{Λ∗(y)} ≤ lim

δ↓0
Λ∗(δz + (1− δ)y) ≤ Λ∗(y) .

Taking the infimum over y ∈ G∩ri(DΛ∗), we get the claim (4.9) and thus our statement
(c), i.e., the full LDP.

2
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4.2 A general upper bound - topological vector spaces

We finish our basic introduction to the theory of large deviations with considering
solely Hausdorff topological vector space E. The dual of E, denoted E∗, is the
space of all continuous linear functionals. Suppose that (XN )N∈N is a sequence of
E-valued random variables such that XN has law µN ∈M1(E).

We define the logarithmic moment generating function for µN as

ΛµN (λ) := logE[e〈λ,XN 〉] = log
∫
E

eλ(x) µN (dx) , λ ∈ E∗ , (4.10)

where for x ∈ E and λ ∈ E∗, 〈λ, x〉 = λ(x) denotes the value λ(x) ∈ R. Furthermore,
define

Λ(λ) := lim sup
N→∞

1

N
log ΛµN (Nλ) , (4.11)

and use the notation Λ(λ) when the limit exists. In our current setup, the Fenchel-
Legendre transform of a function f : E∗ → [−∞,∞] is defined as

f ∗(x) := sup
λ∈E∗
{〈λ, x〉 − f (λ)} , x ∈ E . (4.12)

In the following we denote Λ
∗

the Legendre-Fenchel transform of Λ, and Λ∗ denotes
that of Λ when the latter exists for all λ ∈ E∗.

Theorem 4.5 (A General Upper bound) Let (µN )N∈N be a sequence of probability mea-
sures. Then the following holds.

(a) Λ of (4.11) is convex on E∗ and Λ
∗

is a convex rate function.

(b) For any compact set K ⊂ E,

lim sup
N→∞

1

N
logµN (K) ≤ − inf

x∈K
{Λ∗(x)} . (4.13)

Proof. (a) Using the linearity of elements in the dual space and applying Hölder’s
inequality, one can show that the functions ΛµN (Nλ) are convex. Thus

Λ(·) := lim sup
N→∞

1

N
log ΛµN (N ·)

is also a convex function. As ΛµN (0) = 0 for all N ∈ N, we have that Λ(0) = 0 and
thus Λ

∗ ≥ 0. Note that g(λ) := 〈λ, x〉 −Λ(λ) is continuous for every λ ∈ E∗. Then the
lower semicontinuity of Λ

∗
follows from the fact that the supremum over continuous

functions is lower semicontinuous. The convexity is shown as in Lemma 1.11.

(b) The upper bound follows exactly the steps in the proof of the upper bound in
Theorem 3.15. Actually, the proof here is easier as it uses the continuous linear
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functions and the logarithmic moment generating function. Details are left for the
reader.

2

Having now a general upper bound in Theorem 4.5, we turn next to sufficient
conditions for the existence of a complementary lower bound. Recall Definition 4.1
about exposed points and exposing hyperplanes in the dual E∗. The new ingre-
dient in comparison with the Gärtner-Ellis theorem, see Theorem 4.2, is now the
assumption that the sequence of probability measures is exponentially tight.

Theorem 4.6 (Abstract Gärtner-Ellis Theorem) Let (µN )N∈N be an exponentially tight se-
quence of probability measures on the Hausdorff topological vector space E.

(a) For every closed set F ⊂ E,

lim sup
N→∞

1

N
logµN (F ) ≤ − inf

x∈F
{Λ∗(x)} .

(b) Let E be the set of exposed points of Λ∗ with an exposing hyperplane λ ∈ D̊Λ for which

Λ(λ) = lim
N→∞

1

N
ΛµN (Nλ) exists and Λ(γλ) <∞ for some γ > 1 .

Then, for every open set G ⊂ Rd,

lim inf
n→∞

1

N
logµN (G) ≥ − inf

x∈G∩E
{Λ∗(x)} .

(c) If for every open set G ⊂ E,

inf
x∈G∩E

{Λ∗(x)} = inf
x∈G
{Λ∗(x)} ,

then (µN )N∈N satisfies the LDP with good rate function Λ
∗
.

We are not proving this theorem, see [DZ98] for details. The crucial point is to
show that (c) holds, and the following statement for Banach spaces summarises
frequent approaches to proving large deviation principles. Recall the following defi-
nition from analysis and functional analysis.

Definition 4.7 A function f : E∗ → R is Gâteaux differentiable if, for every λ, θ ∈ E∗, the
function f (λ+ tθ) is differentiable with respect to t at t = 0.

Corollary 4.8 Let (µN )N∈N be an exponentially tight sequence of probability measures on a
Banach space E. Suppose that the function Λ(·) = limN→∞

1
N

log ΛµN (N ·) is finite valued,
Gâteaux differentiable, and lower semi continuous in E∗ with respect to the weak∗ topology.
Then (µN )N∈N satisfies the LDP with the good rate function Λ∗.

Proof. The crucial point is to show that (c) in Theorem 4.6 follows under the given
assumptions. This is an intricate and delicate proof using a fair amount of variational
analysis techniques, and we therefore skip the details here which can be found in
[dH00] or [DZ98].

2
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4.3 Summary: general Cramér’s theorem and general Sanov’s theorem

We study general LDPs for sequences of i.i.d. random variables. We turn to a
general Cramér Theorem first. The following assumption formalises the conditions
required for our approach the Cramér’s theorem.

Assumption 4.9

(a) E is a locally convex, Hausdorff, topological real vector space. E ⊂ E is a closed,
convex subset of E such that µ(E) = 1 and E can be made into a Polish space with
respect to the topology induced by E.

(b) The closed convex hull of each compact K ⊂ E is compact.

Theorem 4.10 (General Cramér Theorem) Let Assumption 4.9 hold. Let µN = µ⊗N ◦S−1
N

be the law of the empirical mean SN . Then (µN )N∈N satisfies a weak LDP with rate function
Λ∗. Moreover, for every open, convex subset A ⊂ E,

lim
N→∞

1

N
logµN (A) = − inf

x∈A
{Λ∗(x)} . (4.14)

Proof. The proof is quite long and uses sub-additivity property of the law µN of the
empirical mean SN . Here, µN = µ⊗N ◦ S−1

N , with µ ∈ M1(E) the law of the i.i.d.
sequence. Details are in Chapter 6 of [DZ98]. 2

The following direct corollary of Theorem 4.10 for E = E = Rd is a consid-
erable strengthening of Cramér’s theorem (Theorem 1.18 or Theorem 4.2 for i.i.d.
sequences), since it dispenses with the requirement that either DΛ = Rd or Λ be
steep.

Corollary 4.11 The sequence (µN )N∈N of the laws µN = µ⊗N ◦S−1
N of the empirical means

of Rd-valued i.i.d. random variables with law µ ∈M1(Rd) satisfies a weak LDP with convex
rate function Λ∗. Moreover, if 0 ∈ D̊Λ, then (µN )N∈N satisfies the full LDP with the good,
convex rate function Λ∗.

Proof. The weak LDP is a direct consequence of Theorem 4.10 as Assumption 4.9
holds. If 0 ∈ D̊Λ, the full LDP follows, since then the sequence (µN )N∈N is exponen-
tially tight. 2

We now turn to discuss a general version of Sanov’s theorem. Let (Yi)i∈N be
an i.i.d. sequence of E-valued random variables with law µ ∈ M1(E), where (E, d)
is a Polish space. Then the framework is as follows. The random delta measures
δYk are elements in the space of finite signed measures denotedM(E). The space
M(E) is a topological Hausdorff vector space andM1(E) is a closed convex subset
ofM(E). It turns out that the spaceM(E) is Polish, and so isM1(E). We skip all
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topological details and observe that Theorem 4.10 leads to the following statement
for the empirical measure LYN ,

LYN =
1

N

N∑
k=1

δYk , Y = (Y1, . . . , YN ) .

The relative entropy of ν ∈ M1(E) with respect to µ ∈ M1(E) is denoted H(ν|µ),
and is defined by

H(ν|µ) =

{∫
E
f (x) log f (x)µ(dx) , if f = dν

dµ exists ,
+∞ , otherwise .

(4.15)

Theorem 4.12 (General Sanov Theorem) (a) The empirical measuresLYN satisfy a weak
LDP inM1(E) with convex rate function

Λ∗(ν) = sup
f∈Cb(E)

{〈f, ν〉 − Λ(f )} , (4.16)

where for f ∈ Cb(E),

Λ(f ) = log
∫
E

ef (x) µ(dx) .

(b) The laws of LYN are exponentially tight.

(c) The rate function in (a) is

Λ∗(ν) = H(ν|µ) , ν ∈M1(E) . (4.17)

Proof. (a), (b) See [DZ98, Lemma 6.2.6]. (c) See [DZ98, Lemma 6.2.13]. 2

5 Large deviations for Markov chains

5.1 Discrete time finite stater space Markov chains

We now study large deviation principles for sequence of random variables with a
dependence structure. The focus is on Markov chains where the index gives the
discrete time and the dependence structure is given in terms of the Markov proba-
bility respectively the stochastic matrix of transition probabilities. We consider finite
state spaces E throughout this section. We consider sequences (Yi)i∈N of E-valued
random variables Yi and denote P = (p(x, y))x,y∈E the stochastic matrix associated
with the Markov chain (Yi)i∈N. The entries of the matrix P are elements in [0, 1] and
their row sums are one. We denote Pσ the Markov probability measure associated
with the transition matrix P and initial state σ ∈ E, i.e.,

Pσ(Y1 = y1, . . . , YN = yN ) = p(σ, y1)
N−1∏
i=1

p(yi, yi+1) , y1, . . . , yN ∈ E,N ∈ N . (5.1)
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We denote Eσ the expectation with respect to Pσ. A matrix B with nonnegative
entries is called irreducible, if for any pair of indices i, j there exists an m = m(i, j)
such that Bm(i, j) > 0. Irreducibility is equivalent to the condition that one may find for
each pair (i, j) of indices i, j a sequence of indices i1, . . . , im such that i1 = i, im = j
and B(ik, ik+1) > 0 for k = 1, . . . ,m− 1. We state the following important result from
linear algebra of matrices.

Theorem 5.1 (Perron-Frobenius) Let B = (B(x, y))x,y∈E be an irreducible matrix. Then
B possesses an eigenvalue %, called the Perron-Frobenius eigenvalue, such that the following
holds:

(a) % > 0 .

(b) For any eigenvalue λ of B, |λ| ≤ % .

(c) There exist left and right eigenvectors for the eigenvalue % that have strictly positive
coordinates.

(d) The left and right eigenvectors µ, θ corresponding to the eigenvalue % are unique up to
a constant multiple.

(e) For every x ∈ E and ϕ = (ϕx)x∈E such that ϕx > 0 for all x ∈ E,

lim
n→∞

1

n
log
(∑
y∈E

Bn(x, y)ϕy
)

= lim
n→∞

1

n
log
(∑
y∈E

Bn(y, x)ϕy
)

= log % . (5.2)

Proof. (a)-(d) are standard in linear algebra and details can be found in the fol-
lowing books specialised on linear algebra for stochastic processes, [Sen81, Nor04,
Str05]. To prove (e), we define

α := max
x∈E
{θx} , β := min

x∈E
{θx} > 0 , and γ := max

x∈E
{ϕx} , δ := min

x∈E
{ϕx} > 0 , (5.3)

where θ is the right eigenvector corresponding to %. Then, for all x, y ∈ E,

γ

β
Bn(x, y)θy ≥ Bn(x, y)ϕy ≥

δ

α
Bn(x, y)θy .

Therefore,

lim
n→∞

1

n
log
(∑
y∈E

Bn(x, y)ϕy
)

= lim
n→∞

1

n
log
(∑
y∈E

Bn(x, y)θy
)

= lim
n→∞

1

n
log (%nθx)

= log % ,

(5.4)

We show in the same way that

lim
n→∞

1

n

(∑
y∈E

ϕyB
n(y, x)

)
= log % .
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2

We study first additive functionals of Markov chains,

ZN :=
1

N

N∑
k=1

Xk ,

where Xk = f (Yk) for a given deterministic function f : E → Rd. For any λ ∈ Rd we
denote Pλ the matrix with entries

Pλ(x, y) = p(x, y)e〈λ,f (y)〉 , x, y ∈ E , (5.5)

and Perron-Frobenius eigenvalue %(Pλ). We see that Pλ is irreducible if and only if P
is irreducible.

Theorem 5.2 (LDP for (ZN )N∈N) Suppose that the stochastic matrix P is irreducible. Then
the empirical mean sequence (ZN )N∈N satisfies the large deviation principle on Rd with rate
N and rate function I , defined as

I(x) := sup
λ∈Rd
{〈λ, x〉 − log %(Pλ)} . (5.6)

Proof. We use the Gärtner-Ellis theorem 4.2 and observe that it suffices to show
the following:

1.)

Λ(λ) := lim
N→∞

1

N
log ΛN (Nλ) = lim

N→∞

1

N
logEσ

[
eN〈λ,ZN 〉

]
exists for every λ ∈ Rd.

2.) DΛ = Rd and Λ is differentiable in Rd.

3.) Λ(λ) = log %(Pλ).

The first statement follows easily from

ΛN (Nλ) = logEσ
[
e〈λ,

∑N
k=1Xk〉

]
= log

( ∑
y1,...,yN

Pσ(Y1 = y1, . . . , YN = yN )
N∏
k=1

e〈λ,f (Xk)〉
)

= log
( ∑
y1,...,yN

p(σ, y1)e〈λ,f (y1)〉 · · · p(yN−1, yN )e〈λ,f (yN )〉 = log
∑
yN∈E

PNλ (σ, yN ) .

P is irreducible and thus so is Pλ. Thus we apply Theorem 5.1 to Pλ and obtain
Λ(λ) = log %(Pλ). Since E is finite, %(Pλ), being an isolated root of the characteristic
equation for Pλ, is positive, finite, and differentiable with respect to λ, see [Sen81].
This gives 2.) and 3.), and we obtain that the limiting moment generating function Λ
is essentially smooth withDΛ = Rd and thus, according to Theorem 4.2, we conclude
with our statement. 2
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The empirical measure for the Markov chain (Yk)k∈N is a random probability mea-
sure (vector) LYN ∈M1(E) where Y = (Y1, . . . , YN ), and which is defined as

LYN (x) =
1

N

N∑
k=1

1lx(Yk) , x ∈ E . (5.7)

Suppose that P is irreducible and that µ is stationary distribution which is the unique
left eigenvector according to Theorem 5.1. The ergodic theorem tells us that, when P
is aperiodic and the initial state is distributed according to the stationary distribution
µ, that

LYN → µ in probability as N →∞ .

Thus we can expect some large deviation behaviour away from this convergence. As
before, we find a deterministic function and use our previous results in Theorem 5.2.

f : E → {0, 1}E ⊂ R|E| , y 7→ f (y) = (1lx(y))x∈E . (5.8)

Then

ZN =
1

N

N∑
k=1

f (Yk) =
1

N

N∑
k=1

(1lx(Yk))x∈E = (LYN (x))x∈E .

We identifyM1(E) with the probability simplex SimE ⊂ RE and thus embedM1(E) ⊂
R|E| and define for any q ∈M1(E),

I(q) := sup
λ∈RE
{〈λ, q〉 − log %(Pλ)} , (5.9)

where
Pλ(x, y) = P(x, y)eλy , x, y ∈ E . (5.10)

We get the following large deviation result for (LYN )N∈N directly from Theorem 5.2.

Theorem 5.3 (LDP for LYN - Sanov’s theorem for Markov chains) Under the same assump-
tions as in Theorem 5.2, the large deviation principle holds for the empirical measures
(LYN )N∈N with respect to the Markov chain distribution with rate N and rate function given
in (5.9).

We obtain a variational representation of the rate function in Theorem 5.3. For a
vector u ∈ RE we write u� 0 when ux > 0 for all x ∈ E.

Theorem 5.4 (Variational expression for rate function I in Theorem 5.3)

I(q) = J(q) :=

{
supu∈RE ,u�0

{∑
x∈E qx log ux

(uP)x

}
, if q ∈M1(E) ,

+∞ , if q /∈M1(E) .

Remark 5.5 If (Yk)k∈N is an i.i.d. sequence of E-valued random variables Yk, then the rows
of P are identical, i.e., p(x, y) = µx, x, y ∈ E. Then

J(q) = H(q|µ) ,

the rate function from Sanov’s theorem. �
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Proof. As before, we embedM1(E) ⊂ R|E| and note thatM1(E) is a closed subset.
ThusM1(E)c is open, and the large deviation lower bound from Theorem 5.3 yields
that

−∞ = lim inf
N→∞

1

N
logPσ(LYN ∈M1(E)c) ≥ − inf

q /∈M1(E)
{I(q)}

because LYN ∈M1(E) by definition. Thus I(q) = +∞ for q /∈M1(E).

Let q ∈M1(E) and pick u� 0 and define

λx := log
( ux

(uP)x

)
, x ∈ E .

We observe that uP � 0 as u � 0 and P is irreducible. Recall the function f from
Theorem 5.3, f (y) = (1lx(y))x∈E. Then, for every y ∈ E,

(uPλ)y =
∑
x∈E

uxPλ(x, y) =
∑
x∈E

uxP(x, y)e〈λ,f (y)〉 =
∑
x∈E

uxP(x, y)eλy = uy .

Hence uPnλ = u and according to (e) in Theorem 5.1 we have

log %(Pλ) = lim
n→∞

1

n
log
(∑
x∈E

uxPλ(x, y)
)

= lim
n→∞

1

n
log
(∑
x∈E

uy

)
= 0 ,

and thus %(Pλ) = 1. We get a lower bound for the right hand side of (5.9),

I(q) ≥
∑
x∈E

qx log
ux

(uP)x
,

and thus I(q) ≥ J(q). To show the reverse inequality, fix a vector λ ∈ RE and let
u∗ � 0 be the left eigenvector for %(Pλ). Then u∗Pλ = %(Pλ)u∗, and

〈λ, q〉+
∑
x∈E

qx log
(u∗P)x
u∗x

=
∑
x∈E

qx log
(u∗Pλ)x
u∗x

=
∑
x∈E

qx log %(Pλ) = log %(Pλ) .

Thus
〈λ, q〉 − log %(Pλ) ≤ sup

u∈RE : u�0

{∑
x∈E

log
ux

(uP)x

}
= J(q) ,

and therefore I(q) ≤ J(q).
2

5.2 Pair empirical measures for Markov chains

We now compare our large deviation principle for the empirical pair measure for
i.i.d. sequence with the case of a Markov chain. The pair empirical measure of the
Markov chain (Yk)k∈N is defined as

L2,Y
N :=

1

N

N∑
i=1

δ(Yi,Yi+1) ∈ M̃1(E × E) , Y = (Y1, . . . , YN ) , and YN+1 = Y1 . (5.11)
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We assume in the following that the stochastic transition matrix P has strictly positive
entries, i.e., p(x, y) > 0 for all x, y ∈ E. We let the Markov chain started with initial
distribution given by the stationary measure µ and use the pair empirical measure
the express the Markov chain probability as

Pµ(Y1 = y1, . . . , YN = yN ) = µy1p(y1, y2) · · · p(yN−1, yN )

=
µy1

p(yN+1, y1)
exp

( N∑
i=1

log p(yi, yi+1)
)

=
µy1

p(yN+1, y1)
exp

(
N
∑
x,y∈E

L2,Y
N (x, y) log p(x, y)

)
,

(5.12)

where we use the fact thatNL2,Y
N (x, y) is frequency of transitions x→ y of the Markov

path. On the other hand we like to compare this probability with the probability given
an i.i.d. sequence (Xk)k∈N of E-valued random variables Xk with law µ ∈ M1(E).
We have

PX(y1, . . . , yN ) := P(X1 = y1, . . . , XN = yN ) =
N∏
i=1

µyi = exp
(
N
∑
x,y∈E

L2,X
N (x, y) logµy

)
.

(5.13)
We see that the Radon-Nikodym density of (5.13) with respect to (5.12) reads as

dPµ
dPX

(y1, . . . , yN ) =
µy1

p(yN , y1)
exp (NF (L2,y

N )) , y = (y1, . . . , yN ) , (5.14)

with
F (ν) =

∑
x,y∈E

νx,y log
px,y
µy

, ν ∈ M̃1(E × E) .

Clearly, F is bounded and continuous.

Theorem 5.6 (Pair empirical measure LDP for Markov chains) Suppose that (Yk)k∈N is
a finite state space E Markov with irreducible transition matrix P = (p(x, y))x,y∈E with
strictly positive entries p(x, y) > 0 for all x, y ∈ E and unique stationary measure µ ∈
M1(E) with µx > 0 for all x ∈ E. Denote Pµ the Markov probability measure and define
µN (·) := Pµ(L2 ∈ ·). Then (µN )N∈N satisfies the large deviation principle on M̃1(E × E)
with rate N and good rate function

I2
P(ν) :=

∑
x,y∈E

νx,y log
νx,y

νxp(x, y)
, (5.15)

where νx =
∑

y∈E νx,y is the marginal for ν ∈ M̃1(E × E).

Proof. IT follows from the Radon-Nikodym density in (5.14) that, for every Borel set
A ⊂ M̃1(E × E),

1

N
logµN (A) =

( 1

N

)
+

1

N
log
∫
A

eNF (ν) νN (dν) , (5.16)
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where νN (·) := PX(L2
N ∈ ·) and where O( 1

N
) accounts for the first factor in (5.14), i.e.,

all terms µy1
p(yN ,y1) for which y1, yN are states in the event Λ2,Y

N ∈ A.

We know from Theorem 2.12 that (νN )N∈N satisfies the LDP on M̃1(E × E) with
rate N and good rate function

I2
µ(ν) =

∑
x,y∈E

νx,y log
νx,y
νxµy

, ν ∈ M̃1(E × E) .

Secondly, the integral on the right hand side of (5.16) has exactly the form of the
tilted large deviation principle in Theorem 3.14 as the function F is bounded and
continuous. Hence, (µN )N∈N satisfies the LDP with rate function

I2
P(ν) = I2, µ(ν)− F (ν) =

∑
x,y∈E

νx,y log
νx,y

νxp(x, y)
.

2

Remark 5.7 (a) Note that (5.15) says that

I2
P(ν) = H(ν|ν ⊗ P) ,

the relative entropy of ν with respect to ν ⊗ P, defined by (ν ⊗ P)x,y = νxp(x, y) for
all x, y ∈ E.

(b) If the stochastic matrix P fails to have strictly positive entries in Theorem 5.6 but
is irreducible, then Theorem 5.6 stills applies when E × E is replaced by {(x, y) ∈
E×E : p(x, y) > 0}. The proof can easily be adapted. Also note that it is not relevant
that the Markov chain starts in µ.

�

As I2
P is given as a relative entropy, it has the following straightforward properties

which we state without proof.

Lemma 5.8 (a) I2
P is finite, continuous and strictly convex on M̃1(E × E), except along

line segments {tν + (1it)ν ′ : t ∈ [0, 1]} between ν and ν ′ satisfying

νx,y
νx

=
ν ′x,y

ν ′x
, for all x, y ∈ E .

Along such line segments I2
P is affine.

(b) I2
P(ν) ≥ 0 with equality if and only if ν = µ⊗ P.

Proof. Left as an exercise. 2

Theorem 5.6 allows to deduce rate function and the LDP for the empirical mea-
sure LYN via the contraction principle in Theorem 3.6. Clearly, the mapping

M1(E × E) 3 ν 7→ ν (2) ∈M1(E) with ν (2)
y =

∑
x∈E

νx,y ,
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is continuous. We thus get the following statement for the function J in (5.4) which
equals the rate function I in (5.9) and governs the large deviation principle for the
empirical measure LYN in Theorem 5.3.

Proposition 5.9 Under the assumptions of Theorem 5.3 and Theorem 5.6, it holds that

J(ν) = inf
q∈M1(E×E) : q(2)=ν

{I2
P(q)} , ν ∈M1(E) . (5.17)

Proof. We first note that we do not need to prove (5.17) directly. The idea is to
employ the contraction principle in Theorem 3.6 and the uniqueness of the rate
function and the identification in Theorem 5.4. For any y ∈ E we

∑
x∈E

L2,Y
N (x, y) =

∑
x∈E

1

N

N∑
k=1

δ(Yk,Yk+1)(x, y) = LYN (y) .

Furthermore, for any initial state σ ∈ E of the Markov chain (Yk)k∈N, we observe
that for A ⊂ M1(E) we have that LYN ∈ A if and only if L2,Y

N ∈ {q ∈ M1(E ×
E) : q(2) ∈ A}. The right hand side of (5.17), according to the contraction principle in
Theorem 3.6, is a rate function and governs the LDP for the empirical measure LYN .
As the rate function is unique, we obtain the equality with the left hand side of (5.17)
via Theorem 5.4. 2

Another observation is that the relation in Theorem 5.4 holds for any nonnegative
irreducible matrix B = (b(x, y))x,y∈E (not necessarily stochastic matrix).

Exercise 5.10 (a) Show that the relation in Theorem 5.3 holds for any nonnegative irre-
ducible matrix B = (b(x, y))x,y∈E (not necessarily a stochastic matrix).

(b) Show that for any irreducible, nonnegative matrix B = (b(x, y))x,y∈E ,

log %(B) = sup
ν∈M1(E)

{−JB(ν)} ,

where JB is the function in Theorem 5.3 for the matrix B.
KK

Solution.

(a) Define ϕ(x) =
∑

y∈E b(x, y) for all x ∈ E. Clearly, ϕ � 0, and the matrix P
with entries p(x, y) = b(x, y)/ϕ(x) is a stochastic matrix. Now define JB as
in Theorem 5.3 for B and IB as in (5.9) for B. We denote the corresponding
functions for the stochastic matrix P by JP and IP, respectively. We compute
for q ∈M1(E),

IP(q) = sup
u�0

{∑
x∈E

qx log
ux

(uP)x

}
= sup

u�0

{∑
x∈E

qx log
ux

(
∑

y∈E uyb(y, x)ϕ−1(x)ux)

}
= sup

u�0

{∑
x∈E

qx log
uxϕ(x)
(uB)x

}
= JB(q) +

∑
x∈E

qx logϕ(x) ,
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and we get JB(q) =∞ for q /∈M1(E) from the property of IP. Likewise,

IP(q) = IB(q) +
∑
x∈E

qx logϕ(x) .

(b) Choosing λ ≡ 0, we get IB(q) ≥ − log %(B), and thus

−JB(q) ≤ log %(B) .

The reversed inequality follows from the proof of Theorem 5.3.

Exercise 5.11 Deduce by applying Exercise 5.10 (b) and (5.17) in Proposition 5.9 that for
any nonnegative irreducible matrix B,

− log %(B) = inf
q∈M1(EB)

{I2
P(q)} , (5.18)

where EB = {(x, y) ∈ E × E : b(x, y) > 0}. KK

Exercise 5.12 Show that for any nonnegative irreducible matrix B = (B(x, y))x,y∈E ,

JB(q) =

{
supu�0

{∑
x∈E qx log ux

(Bu)x
if q ∈M1(E) ,

∞ if q /∈M1(E) .

Solution. This follows from that fact that the eigenvalues for the left and right vec-
tor are equal. That is, the matrix Bλ and B̃λ have the same eigenvalues, where
Bλ(x, y) = b(x, y)eλy and B̃λ(x, y) = b(x, y)eλx for all x, y ∈ E. We then conclude with
Theorem 5.3.

5.3 Markov process with continuous time and finite state space

6 The Gibbs Conditioning principle

We consider dependency structures due to conditions and constraints. We give an
example of the one-dimensional Ising model to demonstrate that constraints lead to
functionals of physical relevance. In this section we consider finite state spaces E.
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6.1 Conditional limit theorem for i.i.d. sequences

Let (Yi)i∈N be a sequence of i.i.d. E-valued random variables with law µ ∈ M1(E)
such that µx > 0 for all x ∈ E, and define Xk = f (Yk) for some deterministic function
f : E → R. We are interested in the fundamental question of statistical mechanics.
Given some Borel set A ⊂ R and a constraint of the type SN ∈ A, SN = 1

N

∑N
k=1 Xk,

what is the conditional law3 of Y1 when N is large? We want to know the limit points
(accumulation points), as N →∞, of the conditional probability µ∗N ∈M1(E) defined
as

µ∗N (x) = P(Y1 = x|SN ∈ A) , x ∈ E . (6.1)

In the following we write f = (f (x))x∈E and thus have

SN = 〈f , LYN〉 , Y = (Y1, . . . , YN ), LYN =
1

N

N∑
k=1

δYk .

Under the conditioning SN ∈ A, the random variables Yi are no longer independent
but still identically distributed. Therefore, for every function g : E → R,

〈g, µ∗N〉 = E[g(Y1)|SN ∈ A] = E[g(Y2)|SN ∈ A] = E
[ 1

N

N∑
k=1

g(Yk)
∣∣∣SN ∈ A]

= E[〈g, LYN〉|〈f , LYN〉] .

With Γ := {ν ∈M1(E) : 〈f , ν〉 ∈ A} we write

µ∗N = E[LYN |LYN ∈ Γ] . (6.2)

With this rewriting, the following characterisation of the limit points of (µ∗N )N∈N applies
to any non-empty set Γ ⊂M1(E) for which

IΓ := inf
ν∈Γ̊
{H(ν|µ)} = inf

ν∈Γ
{H(ν|µ)} . (6.3)

Theorem 6.1 (Gibbs’s principle) For a given set Γ ⊂M1(E) satisfying (6.3), define

M = {ν ∈ Γ: H(ν|µ) = IΓ . (6.4)

(a) All the limit (accumulation) points of (µ∗N )N∈N belong to co(M), the closure of the
convex hull of M.

(b) When Γ ⊂M1(E) is a convex set of non-empty interior, the set M consists of a single
point to which µ∗N converges as N →∞.

Proof of Theorem 6.1. (a) As E is a finite set, the setM1(E) is a compact set, which
can be identified with the simplex {ν ∈ [0, 1]E :

∑
x∈E νx = 1} ⊂ [0, 1]E. Thus the
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closure Γ ⊂ M1(E) is a compact set. For every set U ⊂ M1(E) we shall estimate
the difference of the conditional expectations

E[LYN |LYN ∈ Γ]− E[LYN |LYN ∈ U ∩ Γ] = P(LYN ∈ U c|LYN ∈ Γ)
(
E[LYN |LYN ∈ U c ∩ Γ]

− E[LYN |LYN ∈ U ∩ Γ]
)
.

The condition LYN ∈ U ∩ Γ ensures that E[LYN |LYN ∈ U ∩ Γ] belongs to c(U ), while
µ∗N = E[LYN |LYN ∈ Γ]. Thus we can estimate the distance of µ∗N to the convex hull
c(U ) as follows, using d as the total variation metric as well as the distance with
respect to this metric of elements on sets of elements,

d(µ∗N , co(U )) ≤ P(LYN ∈ U c|LYN ∈ Γ)d
(
E[LYN |LYN ∈ U c ∩ Γ],E[LYN |LYN ∈ U ∩ Γ]

)
≤ P(LYN ∈ U c|LYN ∈ Γ)

(6.5)

where the last inequality follows due to the fact that d(·, ·) ≤ 1. We define a δ-
neighbour hood of the set M,

Mδ := {ν ∈M : d(ν,M) < δ}

and we show below that the following holds for all δ > 0,

lim
N→∞

P
(
LYN ∈Mδ

∣∣∣LYN ∈ Γ
)

= 1 , (6.6)

with an exponential rate of convergence. Consequently, (6.5) applied to U = Mδ

results in
d(µ∗N , co(Mδ))→ 0 as N →∞ .

We conclude now by observing that each point in co(Mδ) is within variational distance
δ of some point in the convex hull co(M). This follows easily from the convexity of
the variational distance d as a mapping onM1(E)×M1(E). Now, as δ is arbitrarily
small, limit points of (µ∗N )N∈N are necessarily in the closure of the convex hull co(M).

Proof of (6.6): We now prove (6.6) using large deviation principle and methods. We
observe that (6.3) ensures that Γ is an Iµ-continuity set of Sanov’s theorem, see
Theorem 2.7 where Iµ(ν) = H(ν|µ). Thus we get

IΓ = − lim
N→∞

1

N
logP(LYN ∈ Γ) (6.7)

and

lim sup
N→∞

1

N
logP(LYN ∈ (Mδ)

c ∩ Γ) ≤ − inf
ν∈(Mδ)c∩Γ

{H(ν|µ)}

≤ − inf
ν∈(Mδ)c∩Γ

{H(ν|µ)} .
(6.8)
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The sets (Mδ)c ∩ Γ are compact as Mδ are open sets. Thus the lower continuity
(in fact in our setting the relative entropy is continuous) of the rate function ensures
that the infimum over compact sets is attained, that is, for some ν̂ ∈ (Mδ)c ∩ Γ,

inf
ν∈(Mδ)c∩Γ

{H(ν|µ)} = H(ν̂|µ) > IΓ . (6.9)

Now, our statement (6.6) follows from (6.7),(6.8) and (6.9) because

lim sup
N→∞

1

N
logP(LYN ∈ (Mδ)

c|LYN ∈ Γ)

= lim sup
N→∞

( 1

N
logP(LYN ∈ (Mδ)c ∩ Γ)− 1

N
logP(LYN ∈ Γ)

)
< 0 .

(b) We prove (b) in our TA class and refer to Example 6.2 below. Further details can
be found in [DZ98], Chapter 3. 2

Example 6.2 (Example for Gibbs parameter) In the setting of Cramér’s theorem for finite
subsets of R in Section 2.3, Theorem 2.15, Xk = f (Yk), f : E → R, and E finite state space.
We define

K := [min
x∈E
{f (x)},max

x∈E
{f (x)}]

and assume that K̊ 6= ∅. For A 6= ∅, convex, open subset of K we have

SN ∈ A⇔ LYN ∈ {ν ∈M1(E) : 〈f, ν〉 ∈ A} =: Γ ,

and Γ is open when A is open. By Jensen’s inequality,

Λ(λ) ≥ λ〈f, ν〉 − H(ν|µ) ,

with equality holding for ν = νλ defined by

νλ(x) = µ(x)eλf (x)−Λ(λ) , x ∈ E .

Thus, for all λ and all x,

λx− Λ(λ) ≤ inf
ν∈M1(E) : 〈f,ν〉=x

{H(ν|µ)} = I(x)

with equality holding when x = 〈f, νλ〉. The unique limit of (µ∗N )N∈N is of the form νλ
with some chosen λ ∈ R, which is called the Gibbs parameter. For any x ∈ K̊, the Gibbs
parameter associated with the open set (x − δ, x + δ) converges, as δ → 0, to the unique
solution of the equation Λ′(λ) = x.

♣
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6.2 Example: microcanonical ensemble for one-dimensional Ising model

We outline how conditional measures appear in mathematical statistical mechan-
ics. For this we consider the so-called Ising model . The model is a specific dis-
tribution for families of E = {−1, 1} - valued random variables σx, indexed by the
inter lattice, i.e., x ∈ Zd. The random variable σx ∈ E is called the spin at x. We
solely discuss d ≡ 1. The distribution of (σx)x∈Z is given in terms of so-called finite-
volume distributions in finite subsets Λ ⊂ Z, |Λ| < ∞. For given finite set Λ we
define the distribution in Λ via an energy function, called Hamilton function, which
models nearest neighbour interactions in the following way. Any nearest neighbour
interaction model need to know values of the spin variables outside of Λ. Alterna-
tively, we may consider so-called periodic boundary conditions. In the following let
ΛN = {−N, . . . , 0, 1, . . . , N} ⊂ Z and define the Hamilton function for ΛN for periodic
boundary conditions as

H (per)

ΛN
(σ) = −

N∑
i=−N

σiσi+1 − h
∑
i∈ΛN

σi , σN+1 = σ−N ;h ∈ R;σ ∈ EZ . (6.10)

Here, the parameter h ∈ R describes an external magnetic field. If we like to con-
sider arbitrary boundary conditions with set σ ≡ η outside of ΛN for a given configu-
ration η ∈ EZ. Then the Hamilton function in ΛN with boundary condition η ∈ EZ is
defined as

Hη
ΛN

(σ) = −
N−1∑
i=−N

σiσi+1 − σNηN+1 − η−N−1σ−N − h
∑
i∈ΛN

σi . (6.11)

The uniform distribution on the state space or spin E is λ = 1
2
δ−1+ 1

2
δ+ ∈M1(E). The

model is then given by the Gibbs distribution γηΛN ∈ M1(EΛN ) in ΛN with boundary
condition η ∈ EZ and inverse temperature β ∈ (0,∞), defined as

γηΛN (dσ) =
1

ZΛN (β, η)
e−βH

η
ΛN

(σ)
λ⊗ΛN (dσ) ,

with the normalisation, also called partition function,

ZΛN (β, η) =

∫
EΛN

e−βH
η
ΛN

(σ)
λ⊗ΛN (dσ) .

We take a different root here by defining certain type classes as we did for
Sanov’s theorem. For this it is convenient to switch to the so-called lattice gas setting
with state space Ẽ = {0, 1} and configurations

ωi = (σi + 1)/2 σi = 2ωi − 1 , i ∈ Z, ω ∈ ẼZ, σ ∈ EZ .

When ωi = 1 we say that there is a particle at i, when ωi = 0 then site i is vacant
(empty) with no particle around. The Hamilton function for this lattice gas version of
the Ising model is

Hη
ΛN

(ω) = −
N−1∑
i=−N

ωiωi+1 − ωNηN+1 − η−N−1ω−N − µ
∑
i∈ΛN

ωi , η ∈ ẼZ, µ ∈ R . (6.12)
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We condition on lattice gas configurations ω ∈ ẼΛN with given average energy
and average particle number. This is motivated by our studies of the Gibbs principle
and the methods of types when proving Sanov’s theorem. Suppose that (εN )N∈N and
(%N )N∈N are sequences of positive real numbers such that εN |ΛN | ∈ N0, %N |ΛN | ∈ N0

for all but finitely many N ∈ N and that εN → ε and %N → % as N → ∞ with
0 < ε < % < 1 and 1 − 2% + ε > 0. We write NΛN (ω) =

∑
i∈ΛN

ωi for the number of
particles for the configuration ω ∈ ẼΛN . The set

{ω ∈ ẼΛN : Hη
ΛN

(ω) = εN |ΛN |;NΛN (ω) = %N |ΛN |}

contains all configuration with average energy εN and average particle density %N .
The microcanonical entropy for energy density εN and particle density %N if the
cardinality of that set and is denoted

Zη
ΛN ,εN ,%N

:= |{ω ∈ ẼΛN : Hη
ΛN

(ω) = εN |ΛN |;NΛN (ω) = %N |ΛN |}| .

Suppose we consider η ≡ 0 on Λc
N , then one has an explicit formula for the micro-

canonical entropy, see [Ada01], namely,

Z0
ΛN ,εN ,%N

=

(
%N |ΛN | − 1

ε|ΛN |

)(
|ΛN | − %N |ΛN |+ 1

%n|ΛN | − εN |ΛN |

)
.

Furthermore, [Ada01] provide a large deviation proof and analysis of the following
statement.

lim
N→∞

1

|ΛN |
logZ0

ΛN ,εN ,%N
= log

( %%(1− %)1−%

εε(%− ε)2(%−ε)(1− 2%+ ε)1−2%+ε)

)
=: s(ε, %) ,

and the function s(ε, %) is called the specific or limiting microcanonical entropy for en-
ergy density ε and particle density %. In mathematical statistical mechanics one can
show that in thermodynamic equilibrium the inverse temperature and the chemical
potential µ = µ(ε, %) are given as follows, see [Ada01],

β(ε, %) =
s

∂ε
(ε, %) = log

(%− ε)2

ε(1− 2%+ ε)
,

µ(ε, %) =
∂s

∂%
(ε, %= log

%(1− 2%+ ε)2

(1− %)(%− ε)2
.

7 Sample path large deviations

7.1 Mogulskii’s theorem

Let (Xi)i∈N be an i.i.d. sequence of Rd-valued random vectors with law µ ∈ M1(Rd)
such that

Λ(λ) = logE[e〈λ,X1〉] = log
∫
Rd

eλx µ(dx) <∞ for all λ ∈ Rd . (7.1)
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We shall study large deviations behaviour for random path ZN , i.e., families of Rd-
valued random vector indexed by t ∈ [0, 1],

ZN (t) =
1

N

bNtc∑
k=1

Xk , 0 ≤ t ≤ 1 . (7.2)

Let µN be the law of the empirical path ZN in L∞([0, 1]), that is, µN = µ⊗N ◦Z−1
N and

ZN = ZN (X1, . . . , XN ) : [0, 1]→ Rd. In the following we use the supremum norm ‖·‖
on L∞([0, 1]),

‖f‖ := sup
t∈[0,1]

{|f (t)|} , f ∈ L∞([0, 1]) , (7.3)

and write, throughout, |x| =
√
x2

1 + · · ·+ x2
d, x ∈ Rd, for the Euclidean norm on Rd.

Recall the definition of the Legendre-Fenchel transform in 1.34,

Λ∗(x) = sup
λ∈Rd
{〈x, λ〉 − Λ(λ)} , x ∈ Rd .

Theorem 7.1 (Sample path large deviations for random walks, Mogulskii’s theorem) The
sequence (µN )N∈N of probability measures µN satisfies in L∞([0, 1]) the LDP with the good
rate function

I(h) =

{∫ 1

0
Λ∗(ḣ(t)) dt , if h ∈ AC, h(0) = 0 ,

∞ , otherwise ,
(7.4)

where AC denotes the space of absolutely continuous functions, i.e.,

AC =
{
h ∈ C([0, 1]) :

k∑
`=1

|t` − s`| → 0 as k →∞, for t`, s` ∈ [0, 1] with

s` < t` < s`+1 < τ`+1 · · · ⇒
k∑
`=1

|h(t`)− h(s`)| → 0
}
.

(7.5)

Remark 7.2 (a) h : [0, 1] → Rd absolutely continuous implies that h is differentiable
almost everywhere; in particular, that it is the integral of an L1([0, 1]) function, h(t) =∫ t

0
f (s) ds, f ∈ L1([0, 1]). It hold sthat AC = H1([0, 1]).

(b) The measures µN are supported on the space of functions continuous from the right
and having left limits which contains the domain

DI = {h ∈ AC : h(0) = 0} .

The LDP certainly holds on that (bigger) space, see Lemma 3.5, as well equipped with
the supremum norm topology.



58 SAMPLE PATH LARGE DEVIATIONS

Before we begin our proof of Theorem 7.1 we need a new concept in large de-
viation theory. Namely, suppose that a LDP holds for some sequence which is in
some way close, or an approximation of another sequence of measures, then the
very same LDP holds holds for the other sequence. Such sequences of measures
are called exponentially equivalent .

Definition 7.3 (Exponential Equivalence) Suppose (E, d) is a Polish space. The se-
quences (µN )N∈N and (µ̃N )N∈N of probability measure on E are called exponentially equiv-
alent if there exist probability spaces (Ω,BN , PN ) and two sequences (XN )N∈N, (X̃N )N∈N
of E-valued random variables with joint law PN and marginals µN and µ̃N , respectively,
such that the following holds. For each δ > 0 the set {ω ∈ Ω: (X̃(ω), X(ω)) ∈ Γδ} ∈ BN ,
and

lim sup
N→∞

1

N
logPN (Γδ) = −∞ , (7.6)

where
Γδ = {(x̃, x) ∈ E × E : d(x̃, x) > δ} ⊂ E × E .

We cite without proof the following crucial statement that exponentially equivalent
sequences share the same LDP.

Theorem 7.4 (LDP for exponentiallly equivalent sequences) Suppose (E, d) is a Polish
space and let (µN )N∈N and (µ̃N )N∈N sequences of probability measure on E. If an LDP
with a good rate function I holds for the probability measures (µN )N∈N, which are exponen-
tially equivalent to the sequence (µ̃N )N∈N, then the same LDP holds for (µ̃N )N∈N.

Lemma 7.5 (Empirical profile as linear interpolation) Let µ̃N denote the law of the em-
pirical profile Z̃N defined via linear interpolation,

Z̃N (t) = ZN (t) +
(
t− bNtc

N

)
XbNtc+1 , 0 ≤ t ≤ 1 . (7.7)

Then the sequences (µN )N∈N and (µ̃N )N∈N of probability measures are exponentially
equivalent in L∞([0, 1]).
Proof. For every δ > 0 the sets Γδ = {‖Z̃N − ZN‖ > δ} are measurable. From its
definition we easily have the estimate

|Z̃N (t)− ZN (t)| ≤ 1

N
|XbNtc+1| .

For every δ > 0 and any λ > 0, we get by exponential Chebycheff inequality that

P(‖Z̃N − ZN‖ > δ) ≤ NP(|X1| > Nδ) ≤ NE[eλ|X1|]e−λNδ ,

where the first inequality follows from the fact that the empirical profile is a sum of
i.i.d. random variables. Since DΛ = Rd according to (7.1), it follows, by considering
first N →∞ and then λ→∞, that for any δ > 0,

lim sup
N→∞

1

N
logP(‖Z̃N − ZN‖ > δ) = −∞ ,
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and thus the statement. 2

From Theorem 7.4 and Lemma 7.5 we know that if suffices to prove the LDP for
the empirical profile Z̃N instead of ZN . The next result for the empirical profile is the
crucial step in proving Theorem 7.1.

Theorem 7.6 (LDP for the empirical profile) Let X := {h : [0, 1] → Rd : h(0) = 0}, and
equip X with the topology of pointwise convergence on [0, 1]. Then the sequence of proba-
bility measures (µ̃N )N∈N of Lemma 7.5 satisfies the LDP in this Hausdorff topological space
with the good rate function I of Theorem 7.1.

Before proving this major step we state our last ingredient for the proof of The-
orem 7.1, which is the exponential tightness. This allows us to prove the LDP in
Theorem 7.1 immediately, and we later address the proof of the major step, Theo-
rem 7.14.

Lemma 7.7 (Exponentail tightness) The probability measures µ̃N of Lemma 7.5 are expo-
nentially tight in the space C0 = {h ∈ C([0, 1]) : h(0) = 0} equipped with the supremum
norm topology.

Proof of Lemma 7.7. The proof is technical and can be found in [DZ98]. 2

The following lemma shows an LDP for any finite collection of distinct times in
[0, 1]. This result is key for the proof of Theorem 7.14.

Lemma 7.8 Let J denote the collection of all ordered finite subsets of (0, 1]. For any j =
{0 < t1 < t2 < · · · t|j| ≤ 1} ∈ J and any function f : [0, 1]→ Rd, let

pj : X → Rd|j|, f 7→ pj(f ) = (f (t1), . . . , f (t|j|))

be the projected vector in the finite-dimensional space Rd|j|, where X = {f : [0, 1] → Rd}.
Then the sequence (µN ◦p−1

j )N∈N of laws satisfies the LDP in Rd|j| with the good rate function

Ij(z) =

|j|∑
`=1

(t` − t`−1)Λ∗
(z` − z`−1

t` − t`−1

)
, z = (z1, . . . , z|j|) ∈ Rd|j| , t0 = 0, z0 = 0 . (7.8)

Proof of Lemma 7.8. Pick j ∈ J. Then µN ◦ p−1
j is the law of the random vector

Z j
N = (ZN (t1), . . . , ZN (t|j|)) ∈ Rd|j|. The key idea is to map this random vector to

its vector of increments which happens to be a continuous bijective mapping. The
vector of increments is

Y j
N = (Y j

N,1, . . . , Y
j
N,|j|) = (ZN (t1), ZN (t2)− ZN (t1), . . . , ZN (t|j|)− ZN (t|j|−1)) ,
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and Tj : Rd|j| → Rd|j| defined by Tj(Y
j
N ) = Z j

N is continuous and one-to-one. Thus
it suffices to prove the LDP for the increments (see Contraction Principle in Theo-
rem 3.6). The entries of the increments vector Y j

N are independent because (Xi)i∈N
is an i.i.d. sequence of Rd-valued random vectors. For λ = (λ1, . . . , λ|j|) ∈ Rd|j| we
get the limiting logarithmic moment generating function

lim
N→∞

1

N
logE[eN〈λ,Y

j
N 〉] = lim

N→∞

1

N
log

|j|∏
`=1

E[eN〈λ`,Y
j
N,`〉]

= lim
N→∞

1

N
log

|j|∏
`=1

bNt`c∏
k=bNt`−1c

E[e〈λ`,Xk〉]

= lim
N→∞

1

N

|j|∑
`=1

1

N
(bNt`c − bNt`−1c)Λ(λ`) =

|j|∑
`=1

(t` − t`−1)Λ(λ`)

=: Λj(λ) .

From our assumptions (7.1) we see that Λj is finite and differentiable with domain
DΛj

= Rd|j|. Thus, by the Gärtner-Ellis theorem, see Theorem 4.2, the LDP for Y j
N in

Rd|j| follows with the good rate function

Λ∗j (y) = sup
λ∈Rd|j|

{〈λ,y〉 − Λj(λ)}

= sup
λ∈Rd|j|

{ |j|∑
`=1

〈λ`, y`〉 − (t` − t`−1)Λ(λ`)
}

=

|j|∑
`=1

(t` − t`−1) sup
λ`∈Rd

{〈
λ`,

y`
(t` − t`−1)

〉
− Λ(λ`)

}
=

|j|∑
`=1

(t` − t`−1)Λ∗
( y`

(t` − t`−1)

)
, y ∈ Rd|j| .

(7.9)

2

Proof of Theorem 7.14. Step 1: From Lemma 7.8 we have that (µ̃N ◦ p−1
j )N∈N sat-

isfies the LDP in Rd|j| with the good rate function Ij, as (µ̃N )N∈N and (µN )N∈N are
exponentially equivalent according to Lemma 7.5. This holds for every j ∈ J.

Step 2: In this step with use the partial order and the projective limit method. We
start by defining the partial order in our setting.

• For i, j ∈ J, i = {s1, . . . , s|i|} and j = {t1, . . . , t|j|} :

i ≤ j⇔ ∀` ∃ q(`) such that s` = tq(`) .

• For i ≤ j, i, j ∈ J, the projection pij : Rd|j| → Rd|i| is continuous.



SAMPLE PATH LARGE DEVIATIONS 61

• We define Yj := Rd|j|, j ∈ J, then the projective system (Yj, pij)i≤j∈J consists of
Hausdorff topological spaces (Yj)j∈J and continuous maps ∂ij : Yj → Yi such
that pik = pij ◦ pjk whenever i ≤  ≤ k and pjj = id.

• The projective limit of the projective system is denoted

X̃ = lim
←−

Yj ⊂ Y =
∏
j∈J

Yj ,

consisting of all elements x = (yj)j∈J for which yi = pij(yj) whenever i ≤ j,
equipped with the topology induced by Y .

• Identification of X̃ with X in Theorem 7.14: Each function f ∈ X corre-
sponds to (pj(f ))j∈J ∈ X̃ since pi(f ) = pij(pj(f )) for i ≤ j ∈ J. Now each point
x = (xj)j∈J ∈ X̃ may be identified with f : [0, 1] → Rd by putting f (t) = x{t} for
t > 0 and f (0) = 0. The topology on X̃ is given by the collection {p−1

j (Uj) : Uj ⊂
Yj open}, and henceforth it coincides with the topology of pointwise conver-
gence.

We are now in the position to actually prove the required LDP by invoking the
so-called Dawson-Gärtner Therem (see [DZ98], Theorem 4.6.1) for projective limit
systems as above. This theorem in conjunction with Theorem 7.14 and our projec-
tive system above provides the LDP for (µ̃N )N∈N in X with the good rate function

IX(f ) = sup
0=t0<t1<···<tk≤1,k∈N

{ k∑
`=1

(t` − t`−1)Λ∗
(f (t`)− f (t`−1)

t` − t`−1

)}
. (7.10)

Step 3: Identification IX ≡ I with I from Theorem 7.14 respectively Theorem 7.1.
Recall that Λ∗ is convex, and thus by Jensen’s inequality (with respect to uniform
measure on [t`−1, t`]), for all ` = 1, . . . , k,

1

t` − t`−1

∫ t`

t`−1

Λ∗(ḟ (s)) ds ≥ Λ∗
(f (t`)− f (t`−1)

t` − t`−1

)
,

and thus we have I(f ) ≥ IX(f ). For the opposite inequality, consider f ′inAC and let
g(t) := d

dtf (t), then g ∈ L1([0, 1]), and, for k ≥ 1, define

gk(t) = k

∫ (bktc+1)/k

bktc/k
g(s) ds , t ∈ [0, 1) , gk(1) = k

∫ 1

1−1/k

g(s) ds .

Then

IX(f ) ≥ lim inf
k→∞

k∑
`=1

1

k
Λ∗(k(f (`/k)− f ((`− 1)/k))) = lim inf

k→∞

∫ 1

0

Λ∗(gk(t)) dt .
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By Lebesgue’s theorem, limk→∞ g
k(t) = g(t) almost everywhere in [0, 1]. Hence, by

Fatou’s Lemma due to the fact that Λ∗ is lower semicontinuous.

lim inf
k→∞

∫ 1

0

Λ∗(gk(t)) dt ≥
∫ 1

0

lim inf
k→∞

Λ∗(gk(t)) dt ≥
∫ 1

0

Λ∗(g(t)) dt = I(f ) ,

and hence IX(f ) ≥ I(f ). We are left to show that I(f ) = ∞ for f ∈ X but f /∈ AC.
This is left as an exercise.

2

We are finally in the position to prove Theorem 7.1 by combining our previous
results.
Proof of Theorem 7.1. By Theorem 7.14, (µ̃N )N∈N satisfies the LDP in X. Further-
more, DI ⊂ C0([0, 1]), and µ̃N (C0([0, 1])) = 1 for all N ∈ N as the empirical profile
Z̃N is continuous (actually even piece-wise differentiable) Thus, by Lemma 3.5, the
LDP for (µ̃N )N∈N holds in C0([0, 1]) when this space is equipped with the relative
(Hausdorff) topology induced by all sets

Vt,x,δ = {g ∈ C0([0, 1]) : |g(t)− x| < δ} , t ∈ (0, 1], x ∈ Rd, δ > 0 .

We observe that the sets Vt,x,δ are open sets with respect to the supremum norm,
and thus this topology on C0([0, 1]) is finer (stronger) than the pointwise convergence
topology. Now, Lemma 7.7 shows that (µ̃N )N∈N are exponentially tight with respect
to the supremum norm topology. This in turn enables us to strengthen the LDP
in C0([0, 1]) to the supremum norm topology. This follows with an application of
Proposition 3.9. Thus (µ̃N )N∈N satisfies the LDP in C0([0, 1]) with respect to the
supremum norm topology. Since C0([0, 1]) ⊂ L∞([0, 1]) is a closed subset, the same
LDP holds in L∞([0, 1]) by using Lemma 3.5 again (now in the opposite direction).
Finally, using Lemma 7.5 in conjunction with Theorem 7.4, we obtain the LDP for
(µN )N∈N in L∞([0, 1]) with respect to the supremum norm topology. 2

7.2 Schilder’s theorem

Mogulskii’s theorem Theorem 7.1 can be extended to the laws νε, ε > 0, of

Yε(t) = ε

b tεc∑
k=1

Xk , 0 ≤ t ≤ 1 . (7.11)

Note that ZN in Theorem 7.1 corresponds to the special case ε = N−1.

Theorem 7.9 Assume all the assumptions of Theorem 7.1 above. Then the probability mea-
sures (νε)ε>0 induced on L∞([0, 1]) by Yε in (7.11) satisfy the LDP with rate ε−1 and with
good rate function I given in (7.4).
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Proof. Example Sheet 4. 2

Let (B(t))t∈[0,1] denote standard Brownian motion in Rd with time horizon [0, 1] and
initial condition B(0) = 0. For any ε ≥ 0, define Bε by Bε(t) =

√
εB(t), t ∈ [0, 1], and

let nuε denote the probability measure induced by the random path Bε, Bε : [0, 1]→
Rd, on the space C0([0, 1]), the space of continuous functions h : [0, 1] → Rd with
h(0) = 0, equipped with the supremum norm topology.

Question: Is the process Bε a candidate for an LDP similar to one developed for Yε
in Theorem 7.9 ? Indeed, ‖Bε‖ → 0 in probability as ε ↓ 0 (actually, almost surely)
and exponentially fast in 1/ε as implied by Lemma 7.10 below.

To formulate our LDP we need some notations. Denote

H1 :=
{
g : [0, 1]→ Rd : g(t) =

∫ t

0

f (s) ds, t ∈ [0, 1], f ∈ L2([0, 1])
}

(7.12)

the space of all absolutely continuous functions with square integrable derivative
equipped withe the norm

‖g‖H1
=
(∫ 1

0

|ġ(t)|2 dt
)1/2

, g ∈ H1 .

Lemma 7.10 For any d ∈ N and any τ, ε, δ >,

P( sup
0≤t≤τ

{|Bε(t)| ≥ δ) ≤ 4de−δ
2/2dτε . (7.13)

The proof of this lemma requires an application of the reflection principle for
Brownian motions. We briefly recall the notation and basic facts and refer the reader
to either MA4 - Browniaa motions module or the excellent book [MP10]. Suppose
that (B(t))t≥0 is standard Brownian motion in R and that T is a stopping time. The
the process (B∗(t))t≥0 called Brownian motion reflected at T and defined by

B∗(t) = B(t)1l{t ≤ T}+ (2B(T )−B(t))1l{t > T}

is also standard Brownian motion.
We now apply this reflection principle to one-dimensional Brownian motion (B(t))t≥0.

Let
M (t) := max

0≤s≤t
{B(s)} , t ≥ 0 .

A priori it is not at all clear what the distribution of this random variable is, but we
can determine it as a consequence of the reflection principle. In the following, P0

denotes the distribution of the process with initial state at 0 ∈ Rd.

Theorem 7.11 (Maximum process, [MP10]) If a > 0 then

P0(M (t) > a) = 2P0(B(t) > a) = P0(|B(t)| > a) .
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Proof of Lemma 7.10. In the following we write B(t) = (B (1)(t), . . . , B (d)(t)) and note
that the d coordinates are independent identically distributed one-dimensional Brow-
nian motions.

P( sup
0≤t≤τ

{|Bε(t)|} ≥ δ) = P
(

sup
0≤t≤τ

{|B(t)|2} ≥ ε−1δ2
)
≤ dP

(
sup

0≤t≤τ
{|B (i)(t)|2} ≥ δ2

dε

)
where the inequality is due to the set inclusion

{x ∈ Rd : |x|2 ≥ α} ⊂
d⋃
i=1

{x ∈ Rd : |xi|2 ≥
α

d
} .

As the laws of Bt and
√
τBt/τ are identical, we obtain by time rescaling,

P( sup
0≤t≤τ

{|Bε(t)|} ≥ δ) ≤ dP(‖B (1)
[0,t]‖ ≥

δ√
dτε

) .

Since B (1) and −B (1) possess the same law in C0([0, 1]), by the reflection principle in
Theorem 7.11,

P(‖B (1)
[0,t]‖ ≥ η) ≤ 2P( sup

0≤t≤1
{B (1)(t)} ≥ η) = 4P(B (1)(1) ≥ η) ≤ 4e−

η2

2 ,

where the last inequality follows by Chebycheff’s bound.
2

Theorem 7.12 (Schilder’s theorem) The family (νε)ε>0 of laws νε ∈ M1(C0([0, 1])) satis-
fies in C0([0, 1]) an LDP with rate ε−1 and good rate function

IS(h) =

{
1
2

∫ 1

0
|ḣ(t)|2 dt , if h ∈ H1 ,

∞ , otherwise .
(7.14)

Proof of Theorem 7.12. Observe that B̂ε, defined as

B̂ε(t) := Bε(εbt/εc) , 0 ≤ t ≤ 1 ,

is the process Yε in Theorem 7.9, for the particular choice of the random variables
Xk, namely, the Xk are standard normally distributed with unit variance and zero
mean, i.e., Xk ∼ N(0, 1), k ∈ N. Thus, by Theorem 7.9, the probability laws of
B̂ε satisfy the LDP in L∞([0, 1]) with the good rate I from Theorem 7.1. Similar to
Exercise 1(c) on Example Sheet 1, we can compute

Λ(λ) = logE[e〈λ,x1〉] =
1

2
|λ|2 , , λ ∈ Rd ,

implying

Λ∗(x) = sup
λ∈Rd
{〈λ, x〉 − 1

2
|λ|2} =

1

2
|x|2 .



SAMPLE PATH LARGE DEVIATIONS 65

Hence, DI = H1, and the rate function I in Theorem 7.1 specialises to IS in Theo-
rem 7.12. We are now left to show the LDP for the scaled process Bε. The idea is to
use Theorem 7.4, that is, we shall show that B̂ and Bε are exponentially equivalent.
Then, Theorem 7.4 implies our statement. For any δ > 0, using Lemma 7.10,

P(‖Bε − B̂ε‖ ≥ δ) ≤ (b1/εc+ 1)P( sup
0≤t≤ε

{|Bε(t)| ≥ δ) ≤ 4dε−1(1 + ε)e−δ
2/(2dε2) .

Consequently, by Lemma 7.10,

lim sup
ε→0

ε logP(‖Bε − B̂ε‖ ≥ δ) = −∞ ,

and by Theorem 7.4, it follows that (νε)ε≥0 satisfies the LDP in L∞([0, 1]) with good
rate function IS. The restriction to the space C0([0, 1]) follows from Lemma 3.5, since
Bε ∈ C0([0, 1]) with probability one. 2

7.3 Application: pinning reward for polymer chains and random interfaces

We discuss some direct applications of Mogulskii’s theorem (Theorem 7.1), namely
scaling limits of random walks and random walk bridges and their relation to random
fields over lattices. A key aspect of this study is the fact that we obtain rate func-
tions which have at least two distinct zeros for some choice of critical parameter as
dimension, boundary conditions and pinning strength. For this we modify the distri-
butions of our Markov chains with adding some bias towards a subspace of the state
space. The general setting is Markov chains in discrete time with continuous state
space Rm,m ≥ 1. Consider a family (ϕx)x∈Zd of random variables ϕx taking values
in Rm. Any probability measure µ ∈ M1((Rm)Zd) is called a random field over Zd ,
or, alternatively, a (d + m)-dimensional random field model. A distribution is given
by the collection of all finite-dimensional distribution, that is, for all finite Λ ⊂ Zd, all
inverse temperatures β > 0, all boundary conditions ψ ∈ (Rm)Zd and all admissible
potential functions V : Rm → R,

µψΛ(dϕ) =
1

ZΛ(ψ)
exp

(
− β

∑
{x,y}∩Λ 6=∅;|x−y|=1

V ((ϕx − ϕy)
)∏
x∈Λ

dϕx
∏
x∈Λc

δψx(dϕx) , (7.15)

where Λc = Zd \ Λ and

ZΛ(ψ)
∫

exp
(
− β

∑
{x,y}∩Λ 6=∅;|x−y|=1

V ((ϕx − ϕy)
)∏
x∈Λ

dϕx
∏
x∈Λc

δψx(dϕx) (7.16)

is the normalisation constant, called partition function for Λ and inverse tempera-
ture β > 0 and boundary condition ψ. A potential function is admissible if (7.16) is
finite. The probability measure µψΛ on (Rm)Λ is called the Gibbs distribution in Λ with
boundary condition ψ, potential function V and inverse temperature β. We restrict
our discussion to d = 1 and m = 1 in the following. Denote ΛN = {1, . . . , N − 1}
and its boundary ∂ΛN = {0, N} and closure ΛN . As our Gibbs distribution depends
solely on the nearest neighbour gradient of the random field (ϕx)x∈Z, we need to
specify the boundary condition on site 0 and N only. We consider the following two
cases for our boundary condition:
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1.) Dirichlet boundary condition: ψ(0) = aN and ψ(N ) = bN for a choice a, b ∈ R.

2.) Free boundary condition (right hand side respectively no terminal condition):
ψ(0) = aN, a ∈ R.

We will see that the corresponding Gibbs distributions, i.e.,

µa,bN (dϕ) :=
1

ZN (a, b)
e−β

∑M
k=1 V (ϕk−ϕk−1)

∏
k∈ΛN

dϕkδaN (dϕ0)δbN (dϕN ) ,

µa,fN (dϕ) :=
1

ZN (a)
e−β

∑M
k=1 V (ϕk−ϕk−1)

∏
k∈ΛN

dϕkδaN (dϕ0) ,
(7.17)

are in fact certain Markov chain bridge respectively Markov chain distributions. The
state space of the Markov chains is Rm, and the processes have finite (discrete) time
horizon {0, 1, . . . , N}. Depending on whether there is a boundary condition on the
right hand side or not we identify a terminal condition for the terminal time N or not.
When a process obeys a terminal condition we call the process a bridge process .
The transition probability density in the state space Rm is given by

e−V (y−x)

Z
dy , x, y ∈ Rm, Z =

∫
R

e−V (x) dx ,

that is, transition probability density from state ϕk−1 to state ϕk (one time unit) is

e−V (ϕk−ϕk−1)

Z
dϕk ,

Hence, our Gibbs distributions in (7.17) are probability measure for the whole path,
i.e., they are Markov chain distributions for bridge processes or free processes. We
make the following assumptions on the potential function V .

Assumption 7.13 (Potential function V ) (i)

sup
x∈Rm
{e〈λ,x〉e−V (|x|)} <∞ , for all λ ∈ Rm .

(ii)
Λ∗(x) = sup

λ∈Rd
{〈λ, x〉 − Λ(λ)}

is finite for all x ∈ Rm, and it satisfies Λ∗ ∈ C3(Rm).

When m = 1, the Markov chain path ϕ = (ϕk)k∈ΛN
may be interpreted as the

heights of a random interface of some reference plane. We now study scaling limits
for the Markov chains. The macroscopic time parameter of the chain, observed after
scaling, runs over the interval D = [0, 1]. The range of the discrete (microscopic)
time for the Markov chain is DN = ΛN . Denote hN = (hN (t))t∈D, hN : [0, 1]→ Rm, be
the macroscopic path, called the empirical profile, of the Markov chain determined
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from the microscopic path ϕ with respect to µa,bN or µa,fN by linear interpolation of
(hN (k/N ))k∈DN , hN (k/N ) = 1/Nϕ(k), i.e.,

hN (t) =
bNtc −Nt+ 1

N
ϕ(bNtc) +

Nt− bNtc
N

ϕ(bNtc+ 1) , t ∈ D . (7.18)

A direct application of Mogulskii’s theorem in Theorem 7.1 gives the following
statement.

Theorem 7.14 The sequence (hN )N∈N under µa,bN (respectively, µa,fN ) satisfies in L∞([0, 1])
the LDP with rate N and good rate function

I(h) =

{∫ 1

0
Λ∗(ḣ(t)) dt−N (a, b) , if h ∈ AC, h(0) = a, h(1) = b ,

∞ , otherwise ,
(7.19)

with normalisation N (a, b) = infh : [0,1]→Rm{
∫ 1

0
Λ∗(ḣ(t))dt}, respectively,

If (h) =

{∫ 1

0
Λ∗(ḣ(t)) dt−N (a) , if h ∈ AC, h(0) = a ,

∞ , otherwise ,
(7.20)

with normalisation N (a) = infh : [0,1]→Rm{If (h)}.

We now modify the Markov chain distribution by building a bias towards a sub-
space of the state space Rm. We focus on {0} ⊂ Rm, that is, for some parameter
ε > 0, define

µa,bN,ε(dϕ) =
1

ZN,ε(a, b)
e−

∑N
k=1 V (|ϕk−ϕk−1|)

∏
k∈ΛN

(dϕk+εδ0(dϕk))δaN (dϕ0)δbN (dϕN ) (7.21)

with partition function

ZN,ε(a, b) =

∫
RΛN

e−
∑N
k=1 V (|ϕk−ϕk−1|)

∏
k∈ΛN

(dϕk + εδ0(dϕk))δaN (dϕ0)δbN (dϕN ) ,

and define µa,fN,ε similarly. Some well known results show that the limits

lim
N→∞

1

N
logZN (a, b) and lim

N→∞

1

N
logZN,ε(a, b)

exist, and they are called the limiting free energy respectively the limiting pinning
free energy . The difference of these two free energy for zero boundary conditions is
denoted

τ (ε) lim
N→∞

1

N
log

ZN,ε(0, 0)
ZN (0, 0)

. (7.22)

Similarly,

τ f (ε) = lim
N→∞

1

N
log

ZN,ε(0)
ZN (0, f )

exists for the free boundary condition. In the following we write super index D for
Dirichlet boundary conditions and super index f for the free boundary conditions on
the right hand side (no terminal condition). Some facts:
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(i) The limits τD(ε) and τ f (ε) exist for all ε ≥ 0.

(ii) ∃ critical values 0 ≤ εDc ≤ εfc such that

τ (ε) > 0⇔ ε > εDc

(iii)

εDc =

{
> 0 ,m ≥ 3 ,

0 ,m = 1, 2 .

Note that the pinning measures µa,bN,ε, µ
a,f
N,ε, are distortions of the Markov chain

distribution, and we call them (1+m)-dimensional pinning models. We are interested
in LDPs for the empirical profiles under the pinning model measures. We only state
the result and outline some key aspects. Ultimately, the pinning reward term with
parameter ε leads to two distinct zeros of the corresponding rate function. The
idea is to write the pinning measure as a sum over possible pinning sets when the
field or the state of the Markov chain is exactly zero. This methods allows to write
the pinning measures as a weighted sum of pinning free measures with additional
internal conditions when the the field assume the value 0. A generalisation of the
Binomial expansion leads to the following observation for any measurable function
f : RZ → R (we choose m = 1 for simplicity),

Eµa,bN,ε [f ] =
1

ZN,ε(a, b)

∫
f (ϕ) exp (− β

N∑
k=1

V (ϕk − ϕk−1))
∏
k∈ΛN

(dϕk + εδ0(dϕk))×

× δaN (dϕ0)δbN (dϕN )

=
∑
P⊂ΛN

ε|P|
ZΛN\P(ψa, ψb)
ZN,ε(a, b)

EΛN\P[f ] ,

(7.23)
where

ψa(x) =

{
a , x = 0,

0 , x 6= 0 ,
ψb(x) =

{
b , x = N,

0 , x 6= N ,

are the boundary conditions adjusted to the pinning site P as the expectation EΛN\P
is with respect to the measure µΛN\P, which is pinning free but with addition ’internal
boundary conditions’ when the field assumes the value 0, and which is defined for
any pinning set P ⊂ ΛN by

µΛN\P(dϕ) =
1

ZΛN\P(ψa, ψb)

∫
exp

(
− β

N∑
k=1

V (ϕk − ϕk−1)
)
×

×
∏
k∈ΛN

dϕk
∏
k∈P

δ0(dϕk)δaN (dϕ0)δbN (dϕN ) .
(7.24)
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We observe that the pinning measure µa,bN,ε (similar statements hold for µa,fN,ε) is a
convex combination of pinning free probabilities µΛN\P which are distributed accord-
ing to a probability measure on the power set P(ΛN ) of ΛN , namely,

ΞN (P) = ε|P|
ZΛN\P(ψa, ψb)
ZN,ε(a, b)

, P ⊂ ΛN .

We can see the probability measure of ΞN (P) as the percolation probability that the
set P is ’open’. A large deviation principle can be obtained using the expression
above, see [FS04] for the case of potential function V (x) = 1

2
x2, that is, for Gaussian

random walks. This can be generalised to the class of potential function defined in
Assumption 7.13 using [FO10], which uses different techniques as well.

Theorem 7.15 (Pinning LDP, [FS04, FO10]) The sequence (hN )N∈N of empirical profiles
satisfies under µa,bN,ε the LDP in L∞([0, 1]) with rate N and good rate function

Iε(h) =


∫ 1

0
Λ∗(ḣ(t)) dt− τ (ε)|{t ∈ D : h(t) = 0}| − Nε(a, b) , if h ∈ AC, and

h(0) = a, h(1) = b ,

∞ , otherwise ,
(7.25)

where

Nε(a, b) = inf
h∈AC,h(0)=a,h(1)=b

{∫ 1

0

Λ∗(ḣ(t)) dt− τ (ε)|{t ∈ D : h(t) = 0}|
}
,

is the normalisation of the rate function and where |{t ∈ D : h(t) = 0}| denotes the Lebesgue
measure of the zero set of the function h.

One can show that the rate function Iε has for certain parameter (τ (ε), a, b,m) two
distinct zeros, that is, there exist h1, h2 ∈ AC with hi(0) = a, hi(1) = b, i = 1, 2, h1 6=
h2, and Iε(h1) = Iε(h2) = 0. Denote the set of zeros of the rate function Iε by
Mε = {h1, h2}. Then the LDP in Theorem 7.15 tell us that

lim
N→∞

1

N
µa,bN,ε(dist∞(hN ,Mε) ≤ δ) = 1

for every δ > 0, where dist∞ denotes the distance under the supremum norm ‖·‖.
More precisely, for every δ > 0 there exists c(δ) > 0 such that

µa,bN,ε(dist∞(hN ,Mε) > δ) ≤ e−c(δ)N ,

for N large enough. We say that the two functions h1, h2 ∈ Mε coexist in the limit
N →∞ (scaling limiting regime) under the measure µa,bN,ε with probabilities p1, p2 > 0,
p1 + p2 = 1, when

lim
N→∞

µa,bN,ε(‖HN − hi‖ ≤ δ) = pi , i = 1, 2 ,
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holds for δ > 0 small enough. We then say that the scaling limit has a non-trivial
concentration of measure on the two possible scaling limits. The two zeros are
defined as follows.

h1(t) = a+ t(b− a) , t ∈ [0, 1] ,

is the affine function connection a and b by a straight line. This zero does pick any
reward as, depending on the values of a and b, the function can have no zeros or
exactly one zero which has zero Lebesgue measure. In the other case, the random
walk picks up as much of the reward as possible, namely, there are ` = `(ε, a, b) ∈
(0, 1) and r = r(ε, a, b) ∈ (0, 1), r > `, such that

h2(t) =


(`−t)
`
a , t ∈ [0, `] ,

0 , t ∈ [`, 1− r] ,
(t+r−1)

r
b , t ∈ [1− r, 1] ,

which picks up reward in the interval [`, 1− r] ⊂ [0, 1].
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Appendix A Prelimaries on Probability Theory

We recall some basic concepts and results of probability theory. The reader should
be familiar with most of this material some of which is taught in elementary prob-
ability courses in the first year. To make these lectures self-contained we review
the material mostly without proof and refer the reader to basic chapters of common
undergraduate textbooks in probability theory, e.g. [Dur19] and [Geo12]. In Sec-
tion A.1 we present basic definitions for probability space and probability measure
as well as random variables along with expectation, variance and moments. Vital for
the lecture will be the review of all classical inequalities in Section A.2.

A.1 Random variables

A probability space (Ω,F , P ) is a triple consisting of a set Ω, a −σ-algebra F and a
probability measure P . We write P(Ω) for the power set of Ω which is the set of all
subsets of Ω.

Definition A.1 (σ-algebra) Suppose Ω 6= ∅. A system F ⊂ P(Ω) satisfying

(a) Ω ∈ F

(b) A ∈ F ⇒ Ac := Ω \ A ∈ F

(c) A1, A2, . . . ∈ F ⇒
⋃
i≥1Ai ∈ F .

is called σ-algebra (or σ-field) on Ω. The pair (Ω,F) is then called an event space or mea-
surable space.

Example A.2 (Borel σ-algebra) Let Ω = Rn, n ∈ N and

G =
{ n∏
i=1

[ai, bi] : ai < bi, ai, bi ∈ Q
}

be the system consisting of all compact rectangular boxes in Rn with rational vertices and
edges parallel to the axes. In honour of Émile Borel (1871–1956), the system Bn = σ(G)
is called the Borel σ-algebra on Rn, and every A ∈ Bn a Borel set. Here, σ(G) denotes the
smallest σ-algebra generated by the system G. Note that the Bn can also be generated by the
system of open or half-open rectangular boxes, see [Dur19, Geo12].

♣

The decisive point in the process of building a stochastic model is the next step:
For each A ∈ F we need to define a value P (A) ∈ [0, 1] that indicates the probability
of A. Sensibly, this should be done so that the following holds.

(N) Normalisation: P (Ω) = 1.

(A) σ-Additivity : For pairwise disjoint events A1, A2, . . . ∈ F one has

P
(⋃
i≥1

Ai

)
=
∑
i≥1

P (Ai).
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Definition A.3 (Probability measure) Let (Ω,F) be a measurable space. A function P : F →
[0, 1] satisfying the properties (N) and (A) is called a probability measure or a probability
distribution, in short a distribution (or, a little old-fashioned, a probability law) on (Ω,F).
Then the triple (Ω,F , P ) is called a probability space.

Theorem A.4 (Construction of probability measures via densities) (a) Discrete case: For
countable Ω, the relations

P (A) =
∑
ω∈A

%(ω) for A ∈ P(Ω), %(ω) = P ({ω}) for ω ∈ Ω

establish a one-to-one correspondence between the set of all probability measures P on
(Ω,P(Ω)) and the set of all sequences % = (%(ω))ω∈Ω in [0, 1] such that

∑
ω∈Ω %(ω) = 1.

(b) Continuous case: If Ω ⊂ Rn is Borel, then every function % : Ω → [0,∞) satisfying the
properties

(i) {x ∈ Ω: %(x) ≤ c} ∈ BnΩ for all c > 0,

(ii)
∫

Ω
%(x) dx = 1

determines a unique probability measure on (Ω,BnΩ) via

P (A) =

∫
A

%(x) dx for A ∈ BnΩ

(but not every probability measure on (Ω,BnΩ) is of this form).

Proof. See [Dur19, Geo12]. 2

Definition A.5 A sequence or function % as in Theorem A.4 above is called a density (of
P ) or, more explicitly (to emphasise normalisation), a probability density (function), often
abbreviated as pdf . If a distinction between the discrete and continuous case is required, a
sequence % = (%(ω))ω∈Ω as in case (a) is called a discrete density, and a function % in case
(b) a Lebesgue density.

In probability theory one often considers the transition from a measurable space
(event space) (Ω,F) to a coarser measurable (event) space (Ω′,F ′). In general such
a mapping should satisfy the requirement

A′ ∈ F ′ ⇒ X−1A′ := {ω ∈ Ω: X(ω) ∈ A′} ∈ F . (A.1)

Definition A.6 Let (Ω,F) and (Ω′,F ′) be two measurable (event) spaces. Then every map-
ping X : Ω → Ω′ satisfying property (A.1) is called a random variable from (Ω,F) to
(Ω′,F ′), or a random element of Ω′, or a Ω′-valued random variable. Alternatively (in the
terminology of measure theory), X is said to be measurable relative to F and F ′.

In probability theory it is common to write {X ∈ A′} := X−1A′.
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Theorem A.7 (Distribution of a random variable) IfX is a random variable from a prob-
ability space (Ω,F , P ) to a measurable space (Ω′,F ′), then the prescription

P ′(A′) := P (X−1A′) = P ({X ∈ A′}) ≡ P (X ∈ A′) for any A′ ∈ F ′

defines a probability measure P ′ on (Ω′,F ′).

Definition A.8 (a) The probability measure P ′ in Theorem A.7 is called the distribution of
X under P , or the image of P under X , and is denoted by P ◦X−1. (In the literature,
one also finds the notations PX or L(X;P ). The letter L stands for the more traditional
term law, or loi in French.)

(b) Two random variables are said to be identically distributed if they have the same distri-
bution.

We are considering real-valued or Rn-valued random variables in the following
and we just call them random variables for all these cases. In basic courses in
probability theory, one learns about the two most important quantities associated
with a random variable X, namely the expectation 1 (also called the mean) and
variance. They will be noted in this lecture by

E[X] and Var(X) := E[(X − E(X))
2
].

The distribution of a real-valued random variable X is determined by the cumu-
lative distribution function (CDF) of X, defined as

FX(t) = P(X ≤ t) = P((−∞, t])), t ∈ R . (A.2)

It is often more convenient to work with the tails of random variables, namely with

P(X > t) = 1− FX(t) . (A.3)

Here we write P for the generic distribution of the random variable X which is given
by the context.

For any real-valued random variable the moment generating function (MGF) (MGF)
is defined

MX(λ) := E[eλX ] , λ ∈ R . (A.4)

When MX is finite for all λ in a neighbourhood of the origin, we can easily compute
all moments by taking derivatives (interchanging differentiation and expectation (in-
tegration) in the usual way):

E[Xk] =
dk

dλk

∣∣∣
λ=0

MX(λ) , k ∈ N . (A.5)

1In measure theory the expectation E[X] of a random variable on a probability space (Ω,F , P ) is the
Lebesgue integral of the function X : Ω → R. This makes theorems on Lebesgue integration applicable in
probability theory for expectations of random variables
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Lemma A.9 (Integral Identity) LetX be a real-valued non-negative random variable. Then

E[X] =

∫ ∞
0

P(X > t) dt .

Proof. We can write any non-negative real number x via the following identity using
indicator function 2:

x =

∫ x

0

1 dt =

∫ ∞
0

1l{t<x}(t) dt .

Substitute now the random variable X for x and take expectation (with respect to X)
on both sides. This gives

E[X] = E
[ ∫ ∞

0

1l{t<X}(t) dt
]

=

∫ ∞
0

E[1l{t<X}] dt =

∫ ∞
0

P(t < X) dt .

To change the order of expectation and integration in the second inequality, we used
the Fubini-Tonelli theorem. 2

Exercise A.10 (Integral identity) Prove the extension of Lemma A.9 to any real-valued
random variable (not necessarily positive):

E[X] =

∫ ∞
0

P(X > t) dt−
∫ 0

−∞
P(X < t) dt .

K

A.2 Classical Inequalities

In this section fundamental classical inequalities are presented. Here, classical
refers to typical estimates for analysing stochastic limits.

Proposition A.11 (Jensen’s inequality) Suppose that Φ: I → R, where I ⊂ R is an inter-
val, is a convex function. Let X be a real-valued random variable. Then

Φ(E[X]) ≤ E[Φ(X)] .

Proof. See [Dur19] or [Geo12] using either the existence of sub-derivatives for
convex functions or the definition of convexity with the epi-graph of a function. The
epi-graph of a function f : I → R, I ⊂ some interval, is the set

epi(f ) := {(x, t) ∈ R2 : x ∈ I, f (x) ≤ t} .

A function f : I → R is convex if and only if epi(f ) is a convex set in R2. 2

21lA denotes the indicator function of the set A, that is, 1lA(t) = 1 if t ∈ A and 1lA(t) = 0 if t /∈ A.
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A.3 Lp-spaces

In the following let X be a R-valued random variable, i.e., there is a probability space
(Ω,F , P ) such that X : Ω → R is a measurable function. By default, we equip the
real line R with its Borel-σ-algebra. We begin with the definition of the essential
supremum of X.

Definition A.12 (Essential supremum) Let X be R-valued random variable. The essential
supremum of X, written ess-sup(X), is the smallest number α ∈ R such that the set {x ∈
Ω: X(x) > α} has measure zero, that is,

P ({x ∈ Ω: X(x) > α}) = 0 .

If no such number exists we define ess-sup(X) =∞.

To understand this definition better we shall check the following example.

Example A.13 (Essential supremum being infinity) Suppose that Ω = (0, 1),F = B((0, 1)),
and let P be the uniform measure on (0, 1). This measure has constant probability density,

P (A) =

∫
Ω

1lA(t) dt = b− a , for any A = (a, b) with 0 ≤ a < b ≤ 1 .

Define X : (0, 1) → R, x 7→ 1
x
. Then X is continuous function and therefore measurable.

Then ess sup(X) =∞. To see this, pick any α ∈ R+. Then

{x ∈ (0, 1) :
1

x
> α} = (0,

1

α
)

and

P ((0,
1

α
)) =

1

α
> 0 .

As this holds for all α > 0, we have that ess-sup(X) =∞. ♣

Definition A.14 Let (Ω,F , P ) be a probability space. Given two measurable functions
f, g : [0,∞], we say that f is equivalent to g, written f ∼ g, if

f (x) = g(x) for P − a.e. x ∈ Ω,

that is,
P ({x ∈ Ω: f (x) 6= g(x)}) = 0 .

We shall identify - with an abuse of notation - identify a measurable function f with its
equivalence class [f ].
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Definition A.15 Let (Ω,F , P ) be a probability space and 1 ≤ p <∞.

Lp ≡ Lp(Ω,F , P ) := {f : Ω→ [−∞,∞] : f measurable and ‖f‖Lp <∞} ,

where

‖f‖Lp :=
(∫

Ω

|f |p dP
) 1
p

=
(∫

Ω

|f (x)|p P (dx)
) 1
p
.

If p =∞, then

L∞ ≡ L∞(Ω,F , P ) := {f : Ω→ [−∞,∞] : f measurable and ‖f‖L∞ <∞} ,

where
‖f‖L∞ := ess-sup(|X|) ,

and we write ‖f‖∞ ≡ ‖f‖L∞ occasionally.

A consequence of Jensen’s inequality is that ‖X‖Lp is an increasing function in the
parameter p, i.e.,

‖X‖Lp ≤ ‖X‖Lq 0 ≤ p ≤ q ≤ ∞. (A.6)

This follows form the convexity of Φ(x) = x
q
p when q ≥ p.

Exercise A.16 Show that (A.6) holds. K

Proposition A.17 (Minkowski’s inequality) For p ∈ [1,∞], let X, Y ∈ Lp, then

‖X + Y ‖Lp ≤ ‖X‖Lp + ‖Y ‖Lp .

Proposition A.18 (Cauchy-Schwarz inequality) For X, Y ∈ L2,

|E[XY ]| ≤ ‖X‖L2‖Y ‖L2 .

Proposition A.19 (Hölder’s inequality) For p, q ∈ (1,∞) with 1/p + 1/q = 1 let X ∈ Lp
and Y ∈ Lq. Then

E[XY ] ≤ E[|XY |] ≤ ‖X‖Lp‖Y ‖Lq .

Lemma A.20 (Linear Markov’s inequality) For non-negative random variablesX and t >
0 the tail probability is bounded as

P(X > t) ≤ E[X]
t

.

Proof. Pick t > 0. Any positive number x can be written as

x = x1l{X≥t} + x1l{X<t}].

As X is non-negative, we insert X into the above expression in place of x and take
the expectation (integral) to obtain

E[X] = E[X1l{X≥t}] + E[X1l{X<t}] ≥ E[t1l{X≥t}] = tP(X ≥ t) .
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2

This is one particular version of the Markov inequality which provides linear decay
in t. In the following proposition we obtain the general version which will be used
frequently throughout the lecture.

Proposition A.21 (Markov’s inequality) Let Y be a real-valued random variable and f : [0,∞)→
[0,∞) an increasing function. Then, for all ε > 0 with f (ε) > 0,

P(|Y | ≥ ε) ≤ E[f ◦ |Y |]
f (ε)

.

Proof. Clearly, the composition f ◦ |Y | is a positive random variable such that

f (ε)1l{|Y |≥ε} ≤ f ◦ |Y |.

Taking the expectation on both sides of that inequality gives

f (ε)P(|Y | ≥ ε) = E[f (ε)1l{|Y |≥ε}] ≤ E[f ◦ |Y |].

2

The following version of the Markov inequality is often called Chebyshev’s in-
equality.

Corollary A.22 (Chebyshev’s inequality, 1867) For all Y ∈ L2 with E[Y ] ∈ (−∞,∞)
and ε > 0,

P
(
|Y − E[Y ]| ≥ ε

)
≤ Var(Y )

ε2
.

Appendix B Modes of Convergence

We shall review in this chapter the basic modes of convergence of random variables.
Let (Xn)n∈N be a sequence of random variables taking values in some metric space
(E, d), that is, each Xn : Ω → E is a measurable map between a given probability
space (Ω,F,P) and the range or target space (E, d) where one equips the metric
space E with its Borel-σ-field (algebra) B(E). Let X be a random variable taking
values in (E, d).

Definition B.1 (always surely or almost everywhere or with probability 1 or strongly) The
sequence (Xn)n∈N converges almost surely or almost everywhere or with probability 1 or
strongly towards X if

P( lim
n→∞

Xn = X) = P({ω ∈ Ω: lim
n→∞

Xn(ω) = X(ω)}) = 1.

This means that the values of Xn approach the value of X , in the sense that events for
which Xn does not converge to X have probability 0. We write Xn

a.s.−→ X for almost sure
convergence.
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Definition B.2 (Convergence in probability) The sequence (Xn)n∈N converges in proba-
bility to X if

lim
n→∞

P(d(Xn, X) > ε) = 0, for all ε > 0.

We write Xn
P−→ X for convergence in probability.

Proposition B.3 (Markov’s inequality) Let Y be a real-valued random variable and f : [0,∞)→
[0,∞) an increasing function. Then, for all ε > 0 with f (ε) > 0,

P(|Y | ≥ ε) ≤ E[f ◦ |Y |]
f (ε)

.

Corollary B.4 (Chebyshev’s inequality, 1867) For all Y ∈ L2 and ε > 0,

P(|Y − E[Y ]| ≥ ε) ≤ Var(Y )
ε2

.

By Chebyshev’s inequality the convergence in probability is equivalent to E[d(Xn, X)∧
1]→ 0 as n→∞. This is related to the almost sure convergence as follows.

Lemma B.5 (Subsequence criterion) LetX,X1, X2, . . . be random variables in (E, d). Then
(Xn)n∈N converges toX in probability if and only if every subsequenceN ′ ⊂ N has a further
subsequence N ′′ ⊂ N′ such that Xn → X almost surely along N ′′. In particular, Xn

a.s.−→ X
implies that (Xn)n∈N converges to X in probability.

Definition B.6 (Convergence in distribution) We say that Xn converges in distribution to
X , if, for every bounded continuous function f : E → R,

lim
n→∞

E[f (Xn)] = E[f ].

We write Xn
d−→ X for convergence in distribution.

Remark B.7 (a) Xn
d−→ X is equivalent to weak convergence of the distributions.

(b) if Xn
d−→ X and g : E → R continuous, then g(Xn) d−→ g(X). But note that,

if E = R and Xn
d−→ X , this does not imply that E[Xn] converges to E[X], as

g(x) = x is not a bounded function on R.

(c) Suppose E = {1, . . . ,m} is finite and d(x, y) = 1 − 1lx=y. Then Xn
d−→ X if and

only if limn→∞ P(Xn = k) = P(X = k) for all k ∈ E.

(d) Let E = [0, 1] and Xn = 1/n almost surely. Then Xn
d−→ X , where X = 0 almost

surely. However, note that limn→∞ P(Xn = 0) = 0 6= P(X = 0).
�
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Appendix C Law of large numbers and the central limit theorem

Definition C.1 (Variance and covariance) Let X, Y ∈ L2 be real-valued random vari-
ables.

(a)
Var(X) := E[(X − E[X])2

] = E[X2]− E[X]2

is called the variance, and
√

Var(X) the standard deviation of X with respect to P.

(b)
cov(X, Y ) := E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

is called the covariance of X and Y . It exists since |XY | ≤ X2 + Y 2.

(c) If cov(X, Y ) = 0, then X and Y are called uncorrelated.

Theorem C.2 (Weak law of large numbers, L2-version) Let (Xn)n∈N be a sequence of un-
correlated (e.g. independent) real-valued random variables in L2 with bounded variance, in
that v := supn∈N Var(Xn) <∞. Then for all ε > 0

P
(∣∣∣ 1
n

n∑
i=1

(Xi − E[Xi])
∣∣∣ ≥ ε

)
≤ v

nε2
−→
n→∞

0,

and thus 1/n
∑n

i=1(Xi − E[Xi])
P−→ 0. In particular, if E[Xi] = E[X1] for all i ∈ N, then

1

n

n∑
i=1

Xi
P−→ E[X1].

We now present a second version of the weak law of large numbers, which does
not require the existence of the variance. To compensate we must assume that
the random variables, instead of being pairwise uncorrelated, are even pairwise
independent and identically distributed.

Theorem C.3 (Weak law of large numbers, L1-version) Let (Xn)n∈N be a sequence of pair-
wise independent, identically distributed real-valued random variables in L1. Then

1

n

n∑
i=1

Xi
P−→ E[X1].

Theorem C.4 (Strong law of large numbers) If (Xn)n∈N is a sequence of pairwise uncor-
related real-valued random variables in L2 with v := supn∈N Var(Xn) <∞, then

1

n

n∑
i=1

(Xi − E[Xi])→ 0 almost surely as n→∞.
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Theorem C.5 (Central limit theorem; A.M. Lyapunov 1901, J.W. Lindeberg 1922, P. Leévy 1922)
Let (Xn)n∈N be a sequence of independent, identically distributed real-valued random vari-
ables in L2 with E[Xi] = m and Var(Xi) = v > 0. Then,

S∗n :=
1√
n

n∑
i=1

Xi −m√
v

d−→ N(0, 1).

The normal distribution is defined in the following section.

Appendix D Normal distribution

A real-valued random variable X is normally distributed with mean µ and variance
σ2 > 0 if

P(X > x) =
1√

2πσ2

∫ ∞
x

e−
(u−µ)2

2σ2 du, for all x ∈ R.

We write X ∼ N(µ, σ2). We say that X is standard normal distributed if X ∼ N(0, 1).

A random vector X = (X1, . . . , Xn) is called a Gaussian random vector if there
exits an n×m matrix A, and an n-dimensional vector b ∈ Rn such that XT = AY +
b, where Y is an m-dimensional vector with independent standard normal entries,
i.e. Yi ∼ N(0, 1) for i = 1, . . . ,m. Likewise, a random variable Y = (Y1, . . . , Ym)
with values in Rm has the m-dimensional standard Gaussian distribution if the m
coordinates are standard normally distributed and independent. The covariance
matrix of X = AY + b is then given by

cov(Y ) = E[(Y − E[Y ])(Y − E[Y ])T ] = AAT .

Lemma D.1 If A is an orthogonal n × n matrix, i.e. AAT = 1l, and X is a n-dimensional
standard Gaussian vector, then AX is also a n-dimensional standard Gaussian vector.

Lemma D.2 Let X1 and X2 be independent and normally distributed with zero mean and
variance σ2 > 0. Then X1 + X2 and X1 − X2 are independent and normally distributed
with mean 0 and variance 2σ2.

Proposition D.3 If X and Y are n-dimensional Gaussian vectors with E[X] = E[Y ] and
cov(X) = cov(Y ), then X and Y have the same distribution.

Corollary D.4 A Gaussian random vector X has independent entries if and only if its co-
variance matrix is diagonal. In other words, the entries in a Gaussian vector are uncorre-
lated if and only if they are independent.

Lemma D.5 (Inequalities) Let X ∼ N(0, 1). Then for all x > 0,

x

x2 + 1

1√
2π

e−x
2/2 ≤ P(X > x) ≤ 1

x

1√
2π

e−x
2/2 .
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Appendix E Gaussian integration formulae

For any a > 0, ∫ ∞
−∞

e−ax
2

dx =
√
π/a.

For b ∈ C and a > 0,

I(b) =

∫ ∞
−∞

e−a/2x
2+bx dx = eb

2/2a
√

2π/a .

Let A ∈ Rn×n, A = AT > 0 (i.e. all eigenvalues of A are positive), and define
C = A−1 and write 〈ϕ, ψ〉 for the scalar product of ϕ, ψ ∈ Rn.∫

Rn
e−

1
2
〈ϕ,Aϕ〉

n∏
i=1

dϕi = (2π)n/2 det(A−
1
2 ) = det(2πC)

1
2 .

For any J ∈ Cn we obtain∫
Rn

e−
1
2
〈ϕ,Aϕ〉+〈J,ϕ〉

n∏
i=1

dϕi = det(2πC)
1
2 e

1
2
〈J,CJ〉 .

Let C ∈ Rn×n be invertible matrix and C > 0. The probability measure µC ∈M1(Rn)
defined by

µC(dϕ) =
1√

det(2πC)
e−1/2〈ϕ,C−1ϕ〉

n∏
i=1

dϕi,

is called the Gaussian measure on Rn with mean zero and covariance matrix C.

The covariance splitting formula: Let Ci = CT
i , i = 1, 2, be positive invertible

matrices. Define C = C1 + C2. Then for all F ∈ L(µC),∫
Rn

F (ϕ)µC(dϕ) =

∫
Rn

µC1(dϕ1)
∫
Rn

µC2(dϕ2)F (ϕ1 + ϕ2)

=

∫
Rn

µC1(dϕ)
∫
Rn

µC2(d(ϕ− ϕ1))F (ϕ).

In other words, if C = C1 + C2, the Gaussian random variable ϕ is the sum of two
independent (see above) Gaussian random variables, ϕ = ϕ1+ϕ2, and the Gaussian
measure factors, i.e. µC = µC1 ⊗ µC2.

The characteristic function of a Gaussian vector X = (X1, . . . , Xn) with mean µ ∈ Rn

and covariance matrix C reads as

ϕX(t) = E
[
ei〈t,µ〉−

1
2
〈t,Ct〉

]
, t ∈ Rn.
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An Rn-valued stochastic process X = {Xt : t ≥ 0} is called Gaussian if, for any
integer k ≥ 1 and real numbers 0 ≤ t1 < t2 < · · · < tk < ∞, the random vector
(Xt1 , . . . , Xtk) has a joint normal distribution. If the distribution of (Xt+t1 , . . . , Xt+tn)
does not depend on t, we say that the process is stationary. The finite-dimensional
distributions of a Gaussian process X are determined by its expectation vector
m(t) := E[X(t)], t ≥ 0, and its covariance matrix

%(s, t) := E[(Xs −m(s))(Xt −m(t))T ], s, t ≥ 0.

If m(t) = 0 for all t ≥ 0, we say that X is a zero-mean Gaussian process.
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