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The aim of these lectures is to give a very brief and concise introduction to the theory of
large deviations for stochastic processes. We are following closely the book by Feng & Kurtz
[FK06], and it is our subsequent aim in these notes to provide an instructive overview such that
the reader can easily use the book [FK06] for particular examples or more detailed questions
afterwards. In Section 1 we will first recall basic definitions and facts about large deviation
principles and techniques. At the end of that section we provide a roadmap as a guidance
through the notes and the book [FK06]. This is followed by an introduction to the so-called
nonlinear semigroup method originally going back to Fleming [Flem85] using the so-called range
condition in Section 2. In Section 3 this range condition is replaced by the weaker notion of
a comparison principle. In the last Section 4 we provide control representations of the rate
functions and conclude with a couple of examples.

1. Introduction

1.1. Large deviation Principle. We recall basic definitions of the theory of large deviations.
For that we let (E, d) denote a complete, separable metric space. The theory of large deviations
is concerned with the asymptotic estimation of probabilities of rare events. In its basic form,
the theory considers the limit of normalisations of logP (An) for a sequence (An)n≥1 of events
with asymptotically vanishing probability. To be precise, for a sequence of random variables
(Xn)n≥1 taking values in E the large deviation principle is formulated as follows.

Definition 1.1 (Large Deviation Principle). The sequence (Xn)n∈N satisfies a large de-
viation principle (LDP) if there exists a lower semicontinuous function I : E → [0,∞] such
that

∀ A open lim inf
n→∞

1

n
logP (Xn ∈ A) ≥ − inf

x∈A
I(x),

∀ B closed lim sup
n→∞

1

n
logP (Xn ∈ B) ≤ − inf

x∈B
I(x).

(1.1)

The function I is called the rate function for the large deviation principle. A rate function I is
called a good rate function if for each a ∈ [0,∞) the level set {x : I(x) ≤ a} is compact.

The traditional approach to large deviation principles is via the so-called change of measure
method. Indeed, beginning with the work of Cramér [Cra38] and including the fundamental
work on large deviations for stochastic processes by Freidlin and Wentzell [FW98] and Donsker
and Varadhan [DV76], much of the analysis has been based on change of measure techniques.
In this approach, a tilted or reference measure is identified under which the events of interest
have high probability, and the probability of the event under the original measure is estimated
in terms of the Radon-Nikodym density relating the two measures.

Another approach to large deviation principles is analogous to the Prohorov compactness ap-
proach to weak convergence of probability measures. This has been been recently established by
Puhalskii [Puh94], O’Brien and Vervaat [OV95], de Acosta [DeA97] and others. This approach
is the starting point of our approach to large deviations for stochastic processes. Hence, we
shall recall the basic definitions and facts about weak convergence of probability measures.
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Definition 1.2. A sequence (Xn)n≥1 of E-valued random variables converges in distribution
to the random variable X (that is, the distributions P (Xn ∈ ·) converge weakly to P (X ∈ ·))
if and only if limn→∞ E[f(Xn)] = E[f(X)] for each f ∈ Cb(E), where Cb(E) is the space of all
continuous bounded functions on E equipped with the supremum norm.

The analogy between large deviations and weak convergence becomes much clearer if we
recall the following equivalent formulation of convergence in distribution (weak convergence).

Proposition 1.3. A sequence (Xn)n≥1 of E-valued random variables converges in distribution
to the random variable X if and only if for all open A ⊂ E,

lim inf
n→∞

P (Xn ∈ A) ≥ P (X ∈ A), (1.2)

or equivalently, if for all closed B ⊂ E,

lim sup
n→∞

P (Xn ∈ B) ≤ P (X ∈ B). (1.3)

Our main aim in these notes is the development of the weak convergence approach to large
deviation theory applied to stochastic processes. In the next subsection we will outline Fleming’s
idea [Flem85]. Before we settle some notations to be used throughout the lecture.

Notations:

We are using the following notations. Throughout, (E, d) will be a complete, separable
metric space, M(E) will denote the space of real-valued Borel measurable functions on E,
B(E) ⊂ M(E), the space of bounded, Borel measurable functions, C(E), the space of con-
tinuous functions, Cb(E) ⊂ B(E), the space of bounded continuous functions, and M1(E),
the space of probability measures on E. By B(E) we denote the Borel σ-algebra on E. We
identity an operator A with its graph and write A ⊂ Cb(E) × Cb(E) if the domain D(A) and
range R(A) are contained in Cb(E). The space of E-valued, cadlag functions on [0,∞) with
the Skorohod topology will be denoted by DE[0,∞). We briefly recall the Skorohod topology
and its corresponding metric. For that define q(x, y) = 1 ∧ d(x, y), x, y ∈ E, and note that q is
a metric on E that is equivalent to the metric d. We define a metric on DE[0,∞) which gives
the Skorohod topology. Let Θ be the collection of strictly increasing functions mapping [0,∞)
onto [0,∞) having the property that

γ(θ) := sup
0≤s<t

{∣∣ log
θ(t)− θ(s)
t− s

∣∣} <∞, θ ∈ Θ.

For x, y ∈ DE[0,∞), define

d(x, y) = inf
θ∈Θ

{
γ(θ) ∨

∫ ∞
0

e−u sup
t≥0
{q(x(θ(t) ∧ u), y(t ∧ u)) du}

}
. (1.4)

We denote by ∆x the set of discontinuities of x ∈ DE[0,∞).

An E-valued Markov process X = (X(t))t≥0 is given by its linear generator A ⊂ B(E)×B(E)
and linear contraction semigroup (T (t))t≥0,

T (t)f(x) = E[f(X(t))|X(0) = x] =

∫
E

f(y)P (t, x, dy).



4 STEFAN ADAMS

Here, the generator is formally given as

d

dt
T (t)f = AT (t)f, T (0)f = f ;

or, for any f ∈ D(A), Af = limt↓0
1
t
(T (t)f − f), where this limit exists for each f ∈ D(A).

1.2. Fleming’s approach - main idea for LDP for stochastic processes. We outline the
ideas by Fleming [Flem85] and show how these can be further developed implying pathwise
large deviation principles for stochastic processes. Results of Varadhan and Bryc (see Theo-
rem 1.8) relate large deviations for sequences of random variables to the asymptotic behaviour
of functionals (logarithmic moment generating functionals) of the form 1/n logE[enf(Xn)]. If we
now let (Xn)n≥1 be a sequence of Markov processes taking values in E and having generator
An, one defines the linear Markov semigroup (Tn(t))t≥0,

Tn(t)f(x) = E[f(Xn(t))|Xn(0) = x], t ≥ 0, x ∈ E, (1.5)

which, at least formally, satisfies

d

dt
Tn(t)f = AnTn(t)f ; Tn(0)f = f. (1.6)

Fleming (cf. [Flem85]) introduced the following nonlinear contraction (in the supremum norm)
semigroup (Vn(t))t≥0 for Markov processes Xn,

Vn(t)f(x) =
1

n
logE[enf(Xn(t))|Xn(0) = x], t ≥ 0, x ∈ E, (1.7)

and large deviations for sequences (Xn)n≥1 of Markov processes can be studied using the as-
ymptotic behaviour of the corresponding nonlinear semigroups. Again, at least formally, Vn
should satisfy

d

dt
Vn(t)f =

1

n
Hn(nVn(t)f), (1.8)

where we define

Hnf :=
1

n
Hn(nf) =

1

n
e−nfAnenf . (1.9)

Fleming and others have used this approach to prove large deviation results for sequences
(Xn)n≥1 of Markov processes Xn at single time points and exit times (henceforth for random
sequences in E). The book by [FK06] extends this approach further, showing how convergence
of the nonlinear semigroups and their generators Hn can be used to obtain both, exponential
tightness and the large deviation principle for the finite dimensional distributions of the pro-
cesses. Showing the large deviation principle for finite dimensional distributions of the sequence
of Markov processes and using the exponential tightness gives then the full pathwise large de-
viation principle for the sequence of Markov processes. Before we embark on details of the
single steps in this programme we will discuss basic facts of large deviation theory in the next
subsection. In section 1.4 we draw up a roadmap for proving large deviations for sequences of
Markov processes using Fleming’s methodology. This roadmap will be the backbone of these
notes and will provide guidance in studying the book [FK06] or different research papers on
that subject.
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1.3. Basic facts of Large Deviation Theory. We discuss basic properties of the large
deviation principle for random variables taking values in some metric space (E, d). We start
with some remarks on the definition of the large deviation principle before proving Varadhan’s
lemma and Bryc’s formula. These two statements are the key facts in developing the weak
convergence approach to large deviation principles.

Remark 1.4 (Large deviation principle). (a) The large deviation principle (LDP) with
rate function I and rate n implies that

−I(x) = lim
ε→0

lim
n→∞

1

n
logP (Xn ∈ Bε(x)) = lim

ε→0
lim sup
n→∞

1

n
logP (Xn ∈ Bε(x)), (1.10)

and it follows that the rate function I is uniquely determined.

(b) If (1.10) holds for all x ∈ E, then the lower bound in (1.1) holds for all open sets A ⊂ E
and the upper bound in (1.1) holds for all compact sets B ⊂ E. This statement is called
the weak large deviation principle,i.e., the statement where in (1.1) closed is replaced by
compact.

(c) The large deviation principle is equivalent to the assertion that for each measurable
A ∈ B(E),

− inf
x∈A◦

≤ lim inf
n→∞

1

n
logP (Xn ∈ A) ≤ lim sup

n→∞

1

n
logP (Xn ∈ A) ≤ − inf

x∈A
I(x),

where A◦ is the interior of A and A the closure of A.

(d) The lower semi-continuity of I is equivalent to the level set {x ∈ E : I(x) ≤ c} being
closed for each c ∈ R. If all the level sets of I are compact, we say that the function I
is good.

In the theory of weak convergence, a sequence (µn)n≥1 of probability measures is tight if for
each ε > 0 there exists a compact set K ⊂ E such that infn∈N µn(K) ≥ 1 − ε. The analogous
concept in large deviation theory is exponential tightness.

Definition 1.5. A sequence of probability measures (Pn)n≥1 on E is said to be exponentially
tight if for each α > 0, there exists a compact set Kα ⊂ E such that

lim sup
n→∞

1

n
logPn(Kc

α) < −α.

A sequence (Xn)n≥1 of E-valued random variables is exponentially tight if the corresponding
sequence of distributions is exponentially tight.

Remark 1.6. If (Pn)n≥1 satisfies the LDP with good rate function I, then (Pn)n≥1 is exponen-
tially tight. This can be seen easily as follows. Pick α > 0 and define Kα := {x ∈ E : I(x) ≤ α}.
The set Kα is compact and we get from the large deviation upper bound the estimate

lim sup
n→∞

1

n
logPn(Kc

α) ≤ − inf
x∈Kc

α

{I(x)} ≤ −α.

Exponential tightness plays the same role in large deviation theory as tightness does in weak
convergence theory. The following analogue of the Prohorov compactness theorem is from
[Puh94] and stated here without proof.
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Theorem 1.7. Let (Pn)n≥1 be a sequence of tight probability measures on the Borel σ-algebra
B(E) of E. Suppose in addition that (Pn)n≥1 is exponentially tight. Then there exists a subse-
quence (nk)k≥1 along which the large deviation principle holds with a good rate function.

The following moment characterisation of the large deviation principle due to Varadhan and
Bryc is central to our study of large deviation principles for sequences of Markov processes.

Theorem 1.8. Let (Xn)n≥1 be a sequence of E-valued random variables.

(a) (Varadhan Lemma) Suppose that (Xn)n≥1 satisfies the large deviation principle with a
good rate function I. Then for each f ∈ Cb(E),

lim
n→∞

1

n
logE[enf(Xn)] = sup

x∈E
{f(x)− I(x)}. (1.11)

(b) (Bryc formula) Suppose that the sequence (Xn)n≥1 is exponentially tight and that the
limit

Λ(f) = lim
n→∞

1

n
logE[enf(Xn)] (1.12)

exists for each f ∈ Cb(E). Then (Xn)n≥1 satisfies the large deviation principle with good
rate function

I(x) = sup
f∈Cb(E)

{f(x)− Λ(f)}, x ∈ E. (1.13)

Remark 1.9. (a) Part (a) is the natural extension of Laplace’s method to infinite dimen-
sional spaces. The limit (1.11) can be extended to the case of f : E → R continuous and
bounded from above. Alternatively, the limit (1.11) holds also under a tail or moment
condition, i.e., one may assume either the tail condition

lim
M→∞

lim sup
n→∞

1

n
logE[enf(Xn)1l{f(Xn) ≥M}] = −∞,

or the following moment condition for some γ > 1,

lim sup
n→∞

1

n
logE[eγnf(Xn)] <∞.

For details we refer to Section 4.3 in [DZ98].

(b) Suppose that the sequence (Xn)n≥1 is exponentially tight and that the limit

Λ(f) = lim
n→∞

1

n
logE[enf(Xn)]

exists for each f ∈ Cb(E). Then

I(x) = − inf
f∈Cb(E) : f(x)=0

Λ(f).

This can be seen easily from (1.13) and the fact that Λ(f+c) = Λ(f)+c for any constant
c ∈ R.
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Proof. Detailed proofs are in [DZ98]. However, as the results of Theorem 1.8 are pivotal for
our approach to large deviation principles on which the whole methodology in [FK06] is relying
on, we decided to give an independent version of the proof. Pick f ∈ Cb(E), x ∈ E, and for
ε > 0, let δε > 0 satisfy

Bε(x) ⊂ {y ∈ E : f(y) > f(x)− δε},

where Bε(x) is the closed ball of radius ε around x ∈ E. By the continuity of f , we can assume
that limε→0 δε = 0. Then the exponential version of Chebycheff’s inequality gives

P (Xn ∈ Bε(x)) ≤ en(δε−f(x))E[enf(Xn)],

and henceforth

lim
ε→0

lim inf
n→∞

1

n
logP (Xn ∈ Bε(x)) ≤ −f(x) + lim inf

n→∞

1

n
logE[enf(Xn)] (1.14)

and

lim
ε→0

lim sup
n→∞

1

n
logP (Xn ∈ Bε(x)) ≤ −f(x) + lim inf

n→∞

1

n
logE[enf(Xn)]. (1.15)

The space (E, d) is regular as a metric space, hence for x ∈ E and ε > 0 there is fε,x ∈ Cb(E)
and r > 0 satisfying fε,x(y) ≤ fε,x(x)− r1lBc

ε(x)(y) for all y ∈ E. Thus we get

E[enf(Xn)] ≤ enfε,x(x)e−nr + enfε,x(x)P (Xn ∈ Bε(x)),

and therefore

lim sup
n→∞

1

n
logP (Xn ∈ Bε(x)) ≥ −fε,x(x) + lim sup

n→∞

1

n
E[enfε,x(Xn)],

lim inf
n→∞

1

n
logP (Xn ∈ Bε(x)) ≥ −fε,x(x) + lim inf

n→∞

1

n
E[enfε,x(Xn)].

(1.16)

When (1.12) holds for each f ∈ Cb(E) we get with (1.15), (1.16) and using the fact that fε,x → f
as ε→ 0,

− sup
f∈Cb(E)

{f(x)− Λ(f)} ≤ lim
ε→0

lim inf
n→∞

1

n
logP (Xn ∈ Bε(x)) ≤ lim

ε→0
lim sup
n→∞

1

n
logP (Xn ∈ Bε(x))

≤ − sup
f∈Cb(E)

{f(x)− Λ(f)},

and therefore (1.10) and thus a weak large deviation principle with rate function I(x) =
supf∈Cb(E){f(x) − Λ(f)}, and using the exponential tightness we get the statement in (b).
If (1.10) holds, then by (1.14) we have

sup
x∈E
{f(x)− I(x)} ≤ lim inf

n→∞

1

n
logE[enf(Xn)].

For the corresponding upper bound note that as I is a good rate function the sequence (Xn)n≥1

is exponentially tight, and henceforth there is a compact set K ⊂ E such that

lim sup
n→∞

1

n
logE[enf(Xn)] = lim sup

n→∞

1

n
logE[enf(Xn)1lK(Xn)].
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For each ε > 0, there exists a finite cover, i.e., a finite sequence x1, . . . , xm ∈ K such that
K ⊂

⋃m
i=1Bε(xi) such that maxy∈Bε(xi){f(y)} ≤ ε+ f(xi), i = 1, . . . ,m. Consequently,

lim sup
n→∞

1

n
logE[enf(Xn)1lK(Xn)] ≤ lim sup

n→∞

1

n
logE

[ m∑
i=1

en(ε+f(xi))1lBε(xi)(Xn)
]

≤ max
1≤i≤m

{
f(xi) + ε+ lim sup

n→∞

1

n
logP (Xn ∈ Bε(xi))

}
,

and hence for each ε > 0, there exists xε ∈ K such that

lim sup
n→∞

1

n
logE[enf(Xn)1lK(Xn)] ≤ f(xε) + ε+ lim sup

n→∞

1

n
logP (Xn ∈ Bε(xε)).

As K is compact, we can pick a subsequence along which xε → x0 ∈ K as ε→ 0. If we choose
ε > 0 such that d(xε, x0) + ε < δ for a given δ > 0, we arrive at

f(xε) + ε+ lim sup
n→∞

1

n
logP (Xn ∈ Bε(xε)) ≤ f(xε) + ε+ lim sup

n→∞

1

n
logP (Xn ∈ Bδ(x0)),

and therefore we get that

lim sup
n→∞

1

n
logE[enf(Xn)1lK(Xn)] ≤ f(x0)− I(x0),

finishing our proof of part (a). �

To prove a large deviation principle, it is, in principle, enough to verify (1.12) for a class of
functions that is smaller than Cb(E). Let Γ = {f ∈ Cb(E) : (1.12) holds for f}.

Definition 1.10. (a) A collection of functions D ⊂ Cb(E) is called rate function deter-
mining if whenever D ⊂ Γ for an exponentially tight sequence (Xn)n≥1, the sequence
(Xn)n≥1 satisfies the LDP with good rate function I(x) = supf∈D{f(x)− Λ(f)}.

(b) A sequence (fn)n≥1 of functions on E converges boundedly and uniformly on compacts
(buc) to f if and only if supn ‖fn‖ <∞ and for each compact K ⊂ E,

lim sup
n→∞

sup
x∈K
|fn(x)− f(x)| = 0.

(c) A collection of functions D ⊂ Cb(E) is bounded above if supf∈D supy∈E{f(y)} <∞.

(d) A collection of functions D ⊂ Cb(E) isolates points in E, if for each x ∈ E, each ε > 0,
and each compact K ⊂ E, there exists a function f ∈ D satisfying

|f(x)| < ε, sup
y∈K

f(y) ≤ 0, sup
y∈K∩Bc

ε(x)

f(y) < −1

ε
.

We will later work with the following set of rate function determining functions.

Proposition 1.11. If D ⊂ Cb(E) is bounded above and isolates points, then D is rate function
determining.

Proof. We give a brief sketch of this important characterisation of rate function determining
set of functions. Suppose that (Xn)n≥1 is exponentially tight. It suffices to show that for
any sequence along which the large deviation principle holds, the corresponding rate function
is given by I(x) = supf∈D{f(x) − Λ(f)}. W.l.o.g. we assume that Γ = Cb(E). Clearly,
supx∈D{f(x)− Λ(f)} ≤ I(x), where I(x) is given in (1.13). We shall show the reverse bound.
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Note that Λ(f) is a monotone function of f . Let c > 0 be such that supf∈D supy∈E f(y) ≤ c,
and fix f0 ∈ Cb(E) satisfying f0(x) = 0, and pick δ > 0. Let α > c + |Λ(f0)|, and let Kα be a
compact set (due to exponential tightness) satisfying

lim sup
n→∞

1

n
logP (Xn ∈ Kc

α) ≤ −α.

The continuity of f0 gives ε ∈ (0, δ) such that supy∈Bε(x){|f0(y)|} ≤ δ and infy∈Kα{f0(y)} ≥
−ε−1. By the property of isolating points, there exists a function f ∈ D satisfying f ≤ c1lKc

α
,

f1lKα ≤ f01lKα + δ, and |f(x)| < ε. It follows immediately that

enf ≤ enc1lKc
α

+ en(f0+δ),

and hence that

Λ(f) ≤ Λ(f0) + δ.

Thus with f(x)− Λ(f) ≥ −Λ(f0)− 2δ, we conclude with the reversed bound. �

The following conclusion of the preceding will be used frequently.

Corollary 1.12. Fix x ∈ E, and suppose that the sequence (fm)m≥1 of functions fm ∈ D ⊂
Cb(E) satisfies the following.

(a) supm≥1 supy∈E{fm(y)} ≤ c <∞.
(b) For each compact K ⊂ E and each ε > 0,

lim
m→∞

sup
y∈K
{fm(y)} ≤ 0 and lim

m→∞
sup

y∈K∩Bε(x)c

{fm(y)} = −∞.

(c) limm→∞ fm(x) = 0.

Then I(x) = − limm→∞ Λ(fm).

Proof. Pick again x ∈ E, and f0 ∈ Cb(E) with f0(x) = 0. The assumptions on the sequence
imply that for each compact K ⊂ E and δ > 0 there is an index m0 ∈ N such that for m > m0

enfm ≤ enc1lKc + en(f0−δ),

and henceforth lim infm→∞(fm(x)−Λ(fm)) ≥ −Λ(f0)− δ. Finally, assumption (c) implies that
I(x) = − limm→∞ Λ(fm). �

We finish this section with some obvious generalisation to the situation when the state space E
is given as a product space of complete separable metric spaces. This is in particular useful for
stochastic processes as the finite dimensional distributions, i.e., the distributions of the vector
(Xn(t1), . . . , Xn(tk)) for some k ∈ N and fixed times ti ≤ ti+1, i = 1, . . . , k − 1, are probability
measures on the corresponding product Ek of the state space E. First of all it is obvious that
a sequence (Xn)n≥1 of random variables taking values in a product space is exponentially tight
if and only if each of its marginal distributions is exponentially tight. Furthermore, one can
show that if D1 ⊂ C(E1) and D2 ⊂ Cb(E2) are both rate function determining in their complete
separable metric spaces E1 and E2 respectively, that D = {f1 + f1 : f1 ∈ D1, f2 ∈ D2} is a rate
function determining set for the product space E = E1×E2. For details we refer to chapter 3.3
in [FK06]. We finish with the following particularly useful result for large deviation principles
for sequences of Markov processes.
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Proposition 1.13. Let (Ei, di), i = 1, 2, be complete separable metric spaces. Suppose that
the sequence ((Xn, Yn))n≥1 of pairs of random variables taking values in (E1 × E1, d1 + d2) is
exponentially tight in the product space. Let µn ∈ M1(E1 × E2) be the distribution of (Xn, Yn)
and let µn(dx⊗ dy) = ηn(dy|x)µ(1)

n (dx). That is, µ(1)
n is the E1-marginal of µn and ηn gives the

conditional distribution of Yn given Xn. Suppose that for each f ∈ Cb(E2)

Λ2(f |x) = lim
n→∞

1

n
log

∫
E2

enf(y)ηn(dy|x) (1.17)

exists, and furthermore that this convergence is uniform for x in compact subsets of E1, and
define

I2(y|x) := sup
f∈Cb(E2)

{f(y)− Λ2(f |x)}. (1.18)

If (Xn)n≥1 satisfies the LDP with good rate function I1, then ((Xn, Yn))n≥1 satisfies the LDP
with good rate function

I(x, y) = I1(x) + I2(y|x), (x, y) ∈ E1 × E2. (1.19)

Proof. We give a brief sketch of the proof. First note that due to the assumption (1.17) we
get for f ∈ Cb(E), fi ∈ Cb(Ei), i = 1, 2, with f(x, y) = f1(x) + f2(y), that

Λ(f) = Λ1(f1 + Λ2(f2|·)),

and we note that Λ2(f2|·) ∈ Cb(E1). We shall use Corollary 1.12 for the following functions

fm1,m2 = f (1)

m1
+ f (2)

m2
:= −(m2

1d1(x0, x)) ∧m1 − (m2
2d2(y0, y)) ∧m2.

Using the continuity of Λ2(f (2)
m2
|·), we easily see that

f̂ (1)

m1
= f (1)

m1
+ Λ2(f (2)

m2
|·)− Λ2(f (1)

m1
|x0)

satisfies all the assumptions (a)-(c) of Corollary 1.12 with E = E1 and x = x0. Using Corol-
lary 1.12 two times we thus get

I(x0, y0) = lim
m1,m2→∞

Λ(fm1,m2) = lim
m2→∞

lim
m1→∞

{
Λ1

(
f (1)

m1
+ Λ2(f (2)

m2
|·)− Λ2(f (1)

m1
|x0)

)
) + Λ2(f (2)

m2
|x0)

}
= I1(x0) + I2(y0|x0),

and therefore the desired result. �

The main objective in these notes is to introduce a strategy to prove large deviation principles
for sequences of Markov processes. For that we let (Xn)n≥1 be a sequence of Markov processes
Xn with generator An taking values in E, that is, each Xn is a random element in the space
DE[0,∞) of cadlag functions on E. In order to prove large deviation principles we need to
show exponential tightness for sequences in the cadlag space DE[0,∞). We do not enter a
detailed discussion of this enterprise here and simply refer to chapter 4 in [FK06] which is
solely devoted to exponential tightness criteria for stochastic processes. Exponential tightness
is usually easier to verify if the state space E is compact. Frequently, results can be obtained
by first compactifying the state space, verifying the large deviation principle in the compact
space, and inferring the large deviation principle in the original space from the result in the
compact space. We leave the exponential tightness question by citing the following criterion,
which is frequently used in proving exponential tightness.
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Proposition 1.14. A sequence (Xn)n≥1 is exponentially tight in DE[0,∞) if and only if

(a) for each T > 0 and α > 0, there exists a compact Kα,T ⊂ E such that

lim sup
n→∞

1

n
logP (∃ t ≤ T : Xn(t) /∈ Kα,T ) ≤ −α; (1.20)

(b) there exists a family of functions F ⊂ C(E) that is closed under addition and separates
points in E such that for each f ∈ F , (f(Xn))n≥1 is exponentially tight in DR[0,∞).

We will refer to condition (1.20) as the exponential compact containment condition.

The next theorem shows that it suffices to prove large deviation principles for finite tuples
of time points of the Markov processes, that is, one picks finitely many time points 0 ≤ t1 <
t2 < · · · < tm,m ∈ N, and shows the large deviation principle on the product space Em. For
the proof we refer to chapter 4 of [FK06].

Theorem 1.15. Assume that (Xn)n≥1 is exponentially tight in DE[0,∞) and for all times
0 ≤ t1 < t2 < · · · < tm, that the m-tuple (Xn(t1), . . . , Xn(tm))n≥1 satisfies the LDP in Em with
rate the function It1,...,tm. Then (Xn)n≥1 satisfies the LDP in DE[0,∞) with good rate function

I(x) = sup
{ti}⊂∆c

x

{
It1,...,tm(x(t1), . . . , x(tm))

}
, x ∈ DE[0,∞),

where ∆x denotes the set of discontinuities of x.

Proof. We give a brief sketch. Pick x ∈ DE[0,∞) and m ∈ N. For ε > 0 and time points
t1, . . . , tm /∈ ∆x we can find ε′ > 0 such that

Bε′(x) ⊂
{
y ∈ DE[0,∞) : (y(t1), . . . , y(tm)) ∈ Bm

ε ((x(t1), . . . , x(tm)) ⊂ Em
}
.

Using (1.10) we easily arrive at

I(x) ≥ It1,...,tm(x(t1), . . . , x(tm)).

For ε > 0 and a compact set K ⊂ DE[0,∞) we find time points t1, . . . , tm, which are elements
of a set T dense in [0,∞), such that

Bε′(x) ⊃
{
y ∈ DE[0,∞) : (y(t1), . . . , y(tm)) ∈ Bm

ε ((x(t1), . . . , x(tm)) ⊂ Em
}
∩K.

Using exponential tightness we obtain the reversed bound,

I(x) ≤ sup
{ti}⊂T

{
It1,...,tm(x(t1), . . . , x(tm))

}
,

and choosing T = ∆c
x we conclude with our statement. �

We can easily draw the following conclusion of the theorem.

Corollary 1.16. Suppose that D ⊂ Cb(E) is bounded above and isolates points. Assume
that (Xn)n≥1 is exponentially tight in DE[0,∞) and that for each 0 ≤ t1 ≤ · · · ≤ tm and
f1, . . . , fm ∈ D,

Λ(t1, . . . , tm; f1, . . . , fm) := lim
n→∞

1

n
logE[en(f1(Xn(t1))+···+f(Xn(tm)))]
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exists. Then (Xn)n≥1 satisfies the LDP in DE[0,∞) with good rate function

I(x) = sup
m≥1

sup
{t1,...,tm}⊂∆x

sup
f1,...,fm∈D

{
f1(x(t1)) + · · ·+ fm(x(tm))− Λ(t1, . . . , tm; f1, . . . , fm)

}
.

1.4. Roadmap. We shall provide a rough ”road map” for studying large deviation principles
for sequences of stochastic processes. This can be used as a guide along which one can prove a
large deviation principle for any given sequence of processes taking values in the cadlag space
DE[0,∞) using the nonlinear semigroup ((Vn(t))t≥0 introduced earlier. A typical application
requires the following steps:

Step 1. Convergence of (Hn)n≥1:

Verify the convergence of (Hn)n≥1 to a limit operator H in the sense that for each f ∈ D(H),
there exists fn ∈ D(Hn) such that

fn → f, Hnfn → Hf, as n→∞,
where the type of convergence depends on the particular problem. However, in general con-
vergence will be in the extended limit or graph sense. This is necessary as in several cases the
generators Hn are defined on a different state spaces than the limiting operator H. Let En
be metric spaces and let tn : En → E be a Borel measurable and define pn : B(E) → B(En)
by pnf = f ◦ tn. Let Hn ⊂ B(En) × B(En). Then the extended limit is the collection of
(f, g) ∈ B(E)×B(E) such that there exist (fn, gn) ∈ Hn satisfying

lim
n→∞

(
‖fn − pnf‖+ ‖gn − png‖

)
= 0.

We will denote the convergence by ex− limn→∞Hn.

Step 2. Exponential tightness: The convergence of Hn typically gives exponential tightness,
provided one can verify the exponential compact containment condition. Alternatively, one
can avoid verifying the compact containment condition by compactifying the state space and
verifying the large deviation principle in the compactified space. In these notes we decided not
to address the problem of showing exponential tightness in detail but instead refer to chapter
4 in [FK06].

Step 3. Properties of the limiting operator: Having established the convergence to a
limiting operator H we need to know more about the limit operator H such that we can prove
large deviation principles using operator and nonlinear semigroup convergence. There are two
possible ways to proceed in this programme. If the limit operator H satisfies a range condition,
that is, we need existence of solutions of

(1l− αH)f = h, (1.21)

for all sufficiently small α > 0 and a large enough collection of functions h. If we can prove the
range condition we proceed with step 3 (a) below. Unfortunately, there are very few examples
for which the range condition can actually be verified in the classical sense. We overcome
this difficulty by using the weak solution theory developed by Crandall and Lions. The range
condition is replaced by the requirement that a comparison principle holds for (1.21). We shall
than proceed with step 3 (b).
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Step 3 (a): The main result of Section 2 is Theorem (2.5), which shows that the convergence of
Fleming’s log-exponential nonlinear semigroup implies the large deviation principle for Markov
processes taking values in metric spaces. The convergence of the semigroup immediately im-
plies the large deviation principle for the one dimensional distributions by Bryc’s formula, see
Theorem 1.8 (b). The semigroup property then gives the large deviation principle for the finite
dimensional distributions, which, after verifying exponential tightness, implies the pathwise
large deviation principle in Theorem 1.15.

Step 3 (b): To show that an operator satisfies the range condition is in most cases difficult.
Another approach is to extend the class of test functions and to introduce the so-called viscosity
solution for (1l− αH)f = h for a suitable class of functions h and f . As it turns out viscosity
solutions are well suited for our setting as our generators Hn and their limiting operator H have
the property that (f, g) ∈ H and c ∈ R implies (f + c, g) ∈ H. If the limit operator satisfies the
comparison principle, roughly speaking the above equation has an upper and lower solution in
a certain sense, one can derive the convergence of the nonlinear semigroup, and henceforth the
large deviation principle afterwards in an analogous way to step 3 (a).

Step 4. Variational representation for H: In many situations one can derive a variational
representation of the limiting operator H. To obtain a more convenient representation of
the rate function of the derived large deviation principle one is seeking a control space U ,
a lower semicontinuous function L on E × U , and an operator A : E → E × U such that
Hf(·) = supu∈U{Af(·, u) − L(·, u)}. These objects in turn define a control problem with
reward function −L, and it is this control problem, or more formally, the Nisio semigroup of
that control problem, which allows for a control representation of the rate function. That is,
we obtain the rate function as an optimisation of an integral with the reward function.

2. Main results

In this section we will show how the convergence of Fleming’s nonlinear semigroup implies
large deviation principles for any finite dimensional distributions of the sequences of Markov
processes taking values in E. Here we shall assume that the state space is E for all generators An
and Hn respectively. Extension to the case of n-dependent state spaces En are straightforward
and we refer to [FK06], chapter 5.

Definition 2.1. Let X = (X, ‖·‖) be a Banach space and H ⊂X ×X an operator.

(a) A (possibly nonlinear) operator H ⊂ X × X is dissipative if for each α > 0 and
(f1, g1), (f2, g2) ∈ X, ‖f1 − f2 − α(g1 − g2)‖ ≥ ‖f1 − f2‖. H denotes the closure of H
as a graph in X ×X. If H is dissipative, then H is dissipative, and for α > 0,

R(1l− αH) = R(1l− αH)

and Jα = (1l− αH)−1 is a contraction operator, that is for f1, f2 ∈ R(1l− αH)

‖Jαf1 − Jαf2‖ ≤ ‖f1 − f2‖.

Alternatively, H is dissipative if ‖αf −Hf‖ ≥ α‖f‖ for all α > 0.



14 STEFAN ADAMS

(b) The following condition will be referred to as the range condition on H. There exists
α0 > 0 such that

D(H) ⊂ R(1l− αH) for all 0 < α < α0.

The primary consequence of the range condition for a dissipative operator is the following
theorem by Crandall and Liggett which shows that we obtain a contraction semigroup in an
obvious way.

Theorem 2.2 (Crandall-Liggett Theorem). Let H ⊂ X × X be a dissipative operator

satisfying the range condition. Then for each f ∈ D(H),

S(t)f = lim
m→∞

(1l− t

m
H)−1f

exists and defines a contraction semigroup (S(t))t≥0 on D(H).

For a proof we refer to [CL71]. The following lemma provides a useful criterion showing the
range condition.

Lemma 2.3. Let V be a contraction operator on a Banach space X (that is, ‖V f − V g‖ ≤
‖f − g‖, f, g ∈X). For ε > 0, define

Hf = ε−1(V f − f).

Then H is dissipative and satisfies the range condition.

For the proof of this see [Miy91]. As outlined above, Fleming’s approach is to prove first
a semigroup convergence. The next result provides this convergence whenever our generators
satisfy the range condition with the same constant α0 > 0. We summarise this as follows.

Proposition 2.4. Let Hn be as defined and H ⊂ B(E) × B(E) be dissipative, and suppose
that each satisfies the range condition with the same constant α0 > 0. Let (Sn(t))t≥0 and
(S(t))t≥0 denote the semigroups generated by Hn and H respectively (see Theorem 2.2). Suppose

H ⊂ ex − limn→∞Hn. Then, for each f ∈ D(H) and fn ∈ D(Hn) satisfying ‖fn − pnf‖ → 0
as n→∞ and T > 0,

lim
n→∞

sup
0≤t≤T

{‖Vn(t)fn − pnV (t)f‖ = 0.

For the proof we refer to [Kur73]. This result extends the linear semigroup convergence theory
to the setting of the Crandall-Liggett theorem. Recall that convergence of linear semigroups can
be used to prove weak convergence results in much the same way as we will use convergence of
nonlinear semigroups to prove large deviation theorems. The next theorem gives the first main
result, showing that convergence of the nonlinear semigroups leads to large deviation principles
for stochastic processes as long we are able to show the range condition for the corresponding
generators. We give a version where the state spaces of all Markov processes is E and note that
one can easily generalise this to having Markov processes of metric spaces En (see [FK06]).

Theorem 2.5 (Large deviation principle). Let An be generator for the Markov processes
(Xn(t))t≥0 and define (Vn(t))t≥0 on B(E) by

Vn(t)f(x) =
1

n
logE[enf(Xn(t))|Xn(0) = x]. (2.1)
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Let D ⊂ Cb(E) be closed under addition, and suppose that there exists an operator semigroup
(V (t))t≥0 on D such that

lim
n→∞

‖V (t)f − Vn(t)f‖ = 0 whenever f ∈ D. (2.2)

Let µn = P (Xn(0) ∈ ·) and let (µn)n≥1 satisfy the LDP on E with good rate function I0,
which is equivalent to the existence of Λ0(f) = limn→∞

1
n

logEµn [enf ] for each f ∈ Cb(E), and
I0(x0) = supf∈Cb(E){f(x0)− Λ0(f)}.

Then,

(a) For each 0 ≤ t1 < · · · < tk and f1, . . . , fk ∈ D,

lim
n→∞

1

n
logE[enf1(Xn(t1))+···+nfk(Xn(tk))]

= Λ0(V (t1)(f1 + V (t2 − t1)(f2 + · · ·+ V (tk − tk−1)fk) · · · )).

(b) Let 0 ≤ t1 < · · · < tk and assume that the sequence ((Xn(t1), . . . , Xn(tk))n≥1 of random
vectors (Xn(t1), . . . , Xn(tk)) is exponentially tight in Em. If D contains a set that is
bounded above and isolates points, then the sequence ((Xn(t1), . . . , Xn(tk))n≥1 satisfies
the LDP with rate function

It1,...,tk(x1, . . . , xk) = sup
fi∈Cb(E)

{ k∑
i=1

fi(xi)− Λ0(V (t1)(f1 + V (t2 − t1)(f2 + · · · )))
}
.

(c) If (Xn)n≥1 is exponentially tight in DE[0,∞) and D contains a set that is bounded above
and isolates points, then (Xn)n≥1 satisfies the LDP in DE[0,∞) with rate function

I(x) = sup
{ti}⊂∆c

x

{
It1,...,tk(x(t1), . . . , x(tk))

}
. (2.3)

Proof. We outline important steps of the proof. Note that since D is closed under addition
and V (t) : D → D, if f1, f2 ∈ D, then f1 + V (t)f2 ∈ D. We first pick k = 2 and 0 ≤ t1 < t2.
Note that Xn is a Markov process on E with filtration F (Xn)

t at time t. Using the Markov
property and the definition of the nonlinear semigroup Vn it follows for f1, f2 ∈ D,

E
[
enf1(Xn(t1))+nf2(Xn(t2))

]
= E

[
E
[
enf1(Xn(t1))+nf2(Xn(t2))

∣∣F (Xn)

t1

]]
= E

[
enf1(Xn(t1))+nVn(t2−t1)f2(Xn(t1))

]
=

∫
E

Pn ◦X−1
n (0)(dy)enVn(t1)(f1+Vn(t2−t1)f2)(y),

where the integrand is

enVn(t1)(f1+Vn(t2−t1)f2)(y) = E
[
en{f1(Xn(t1)+Vn(t2−t1)f2(Xn(t1))}].

This can be easily extended to any f1, . . . , fk ∈ D such that

E
[
enf1(Xn(t1))+···+nfk(Xn(tk))

]
=

∫
E

Pn ◦X−1
n (0)(dy) exp(ng(y))

where we define the integrand as

gn(y) = Vn(t1)(f1 + Vn(t2 − t1)(f2 + · · ·+ Vn(tk−1 − tk−2)(fk−1 + Vn(tk − tk−1)fk) · · · )(y).
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Hence, one can show using the semigroup convergence that

lim
n→∞

1

n
logE

[
enf1(Xn(t1))+···+nfk(Xn(tk))

]
= Λ0(V (t1)(f1 +V (t2−t1)(f2 +· · ·+V (tk−tk−1)fk) · · · )).

Using the fact that D is closed under addition and is bounded from above and isolates points we
know by Proposition 1.11 that D is a rate function determining set and henceforth we obtain
statement (b). Part (c) is a direct consequences of Theorem 1.15 respectively Corollary 1.16. �

In the next Corollary we obtain a different representation of the rate function in (2.3).

Corollary 2.6. Under the assumptions of Theorem 2.5, define

It(y|x) = sup
f∈D
{f(y)− V (t)f(x)}. (2.4)

Then for 0 ≤ t1 < · · · < tk,

It1,...,tk(x1, . . . , xk) = inf
x0∈E

{
I0(x0) +

k∑
i=1

Iti−ti−1
(xi|xi−1)

}
and

I(x) = sup
{ti}⊂∆c

x

{
I0(x(0)) +

k∑
i=1

Iti−ti−1
(x(ti)|x(ti−1))

}
. (2.5)

Proof. We first note that

1

n
logE

[
enfk(Xn(tk))|Xn(t1), . . . , Xn(tk−1)

]
=

1

n
E
[
Vn(tk − tk−1)fk(Xn(tk−1)|Xn(t1), . . . , Xn(tk−1)

]
= V (tk − tk−1)fk(Xn(tk−1)) +O(‖V (tk − tk−1)fk − Vn(tk − tk−1)fk‖).

Furthermore note that the uniform convergence in Proposition 1.13 can be replaced by the
assumption that there exists a sequence Kn ⊂ E1 such that

lim
n→∞

sup
x∈Kn

∣∣∣Λ2(f |x)− 1

n
log

∫
E2

enf(y)ηn(dy|x)
∣∣∣ = 0

and

lim
n→∞

1

n
log µ(1)

n (Kc
n) = −∞.

From this and Proposition 1.13 it follows that

It1,...,tk(x1, . . . , xk) = It1,...,tk(x1, . . . , xk−1) + Itk−tk−1
(xk|xk−1).

In the same way, one can show that the rate function for (Xn(0), Xn(t1))n≥1 is I0,t1(x0, x1) =
I0(x0) + It1(x1|x0), and we conclude the proof using induction and the contraction principle of
large deviations (see e.g. [DZ98]).

�

These results finish step 3 (a) of our roadmap once we have shown the semigroup convergence.
This is done in the following Corollary.
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Corollary 2.7. Under the assumptions of Theorem 2.5, define

Hnf =
1

n
e−nfAnenf

on the domain D(Hn) = {f : enf ∈ D(An)}, and let

H ⊂ ex− lim
n→∞

Hn.

Suppose that H is dissipative, D(H) ⊂ Cb(E), H satisfies the range condition, and that the

(norm) closure D(H) is closed under addition and contains a set that is bounded above and
isolates points. Suppose further that the sequence (Xn)n≥1 satisfies the exponential compact
containment condition (1.20) and that (Xn(0))n≥1 satisfies the LDP with good rate function I0.
Then

(a) The operator H generates a semigroup (V (t))t≥0 on D(H), and for f ∈ D(H) and
fn ∈ E satisfying ‖f − fn‖ → 0 as n→∞,

lim
n→∞

‖V (t)f − Vn(t)fn‖ = 0.

(b) (Xn)n≥1 is exponentially tight and satisfies the LDP with good rate function I with

D = D(H).

Proof. We give only a brief sketch of the proof and refer otherwise to Lemma 5.13 in [FK06].
The semigroup convergence will be shown via the Yosida approximations for the generators,
that is, for εn > 0 define

Aεnn =
1

εn
((1l− εnAn)−1 − 1l) = An(1l− εnAn)−1.

The Yosida approximation is a bounded, linear dissipative operator. One shows the semigroup
convergence for the Yosida approximations, and then using for (fn, gn) ∈ Hn the estimate

sup
y∈E
{‖Vn(t)fn(y)− V εn

n (t)fn‖} ≤
√

2εnte
2n‖fn‖‖gn‖,

and the fact that we can choose εn such that limn→∞ εnenc = 0 for all c > 0, we obtain the
desired semigroup convergence. �

3. Large deviations using viscosity semigroup convergence

In the previous section, we proved a large deviation theorem using semigroup convergence by
imposing a range condition on the limit operator. A range condition essentially requires that

(1l− αH)f = h (3.1)

have a solution f ∈ D(H), for each h ∈ D(H) and small α > 0. In this section, we show
that uniqueness of f in a weak sense (i.e., the viscosity sense) is sufficient for the semigroup
convergence. This approach is quite effective in applications. However, it requires a couple
of new definitions and notions. First, recall the notion of upper and lower semicontinuous
regularisation. For g ∈ B(E), g∗ will denote the upper semicontinuous regularisation of g, that
is,

g∗(x) = lim
ε→0

sup
y∈Bε(x)

{g(y)}, (3.2)
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and g∗ will denote the lower semicontinuous regularisation,

g∗(x) = lim
ε→0

inf
y∈Bε(x)

{g(y)}. (3.3)

Using these notions we introduce the notion of viscosity solution and define the comparison
principle afterwards. The intention here is not to enter in detail the construction and properties
of viscosity solutions (we shall do that later when dealing with specific examples). Here, we are
only interested to see that viscosity solutions are often easier to obtain than the range condition
and that it turn suffices to prove large deviation theorems.

Definition 3.1. Let E be a compact metric space, and H ⊂ C(E)×B(E). Pick h ∈ C(E) and
α > 0. Let f ∈ B(E) and define g := α−1(f − h), that is, f − αg = h. Then

(a) f is a viscosity subsolution of (3.1) if and only if f is upper semicontinuous and for each
(f0, g0) ∈ H such that supx{f(x)− f0(x)} = ‖f − f0‖, there exists x0 ∈ E satisfying

(f − f0)(x0) = ‖f − f0‖, and

α−1(f(x0)− h(x0)) = g(x0) ≤ (g0)∗(x0).
(3.4)

(b) f is a viscosity supersolution of (3.1) if and only if f is lower semicontinuous and for
each (f0, g0) ∈ H such that supx∈E{f0(x) − f(x)} = ‖f0 − f‖, there exists x0 ∈ E
satisfying

(f0 − f)(x0) = ‖f−f‖, and

α−1(f(x0)− h(x0)) = g(x0) ≥ (g0)∗(x0).
(3.5)

(c) A function f ∈ C(E) is said to be a viscosity solution of (3.1) if it is both a subsolution
and a supersolution.

The basic idea of the definition of a viscosity solution is to extend the operator H so that
the desired solution is included in an extended domain while at the same time keeping the
dissipativity of the operator. Viscosity solutions have been introduced by Crandall and Lions
(1983) to study certain nonlinear partial differential equations.

Definition 3.2 (Comparison Principle). We say that

(1l− αH)f = h

satisfies a comparison principle, if f a viscosity subsolution and f a viscosity supersolution

implies f ≤ f on E.

The operator H we are going to analyse has the following property that (f, g) ∈ H and c ∈ R
implies (f + c, g) ∈ H. This allows for the following simplification of the definition of viscosity
solution.

Lemma 3.3. Suppose (f, g) ∈ H and c ∈ R implies that (f + c, g) ∈ H. Then an upper
semicontinuous function f is a viscosity subsolution of (3.1) if and only if for each (f0, g0) ∈ H,
there exists x0 ∈ E such that

f(x0)− f0(x0) = sup
x∈E
{f(x)− f0(x)}, and

α−1(f(x0)− h(x0)) = g(x0) ≤ (g0)∗(x0).
(3.6)
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Similarly, a lower semicontinuous function f is a viscosity supersolution of (3.1) if and only if
for each (f0, g0) ∈ H, there exists x0 ∈ E such that

f0(x0)− f(x0) = sup
x∈E
{f0(x)− f(x)}, and

α−1(f(x0)− h(x0)) = g(x0) ≥ (g0)∗(x0).
(3.7)

Our main aim is to replaced the range condition by the comparison principle. The following
lemma shows that this can be achieved once our limiting operator H has the property that
(f, g) ∈ H and c ∈ R implies (f + c, g) ∈ H. The generators of our nonlinear semigroups, i.e.,
each Hn and the limiting operator H, all share this property.

Lemma 3.4. Let (E, d) be a compact metric space and H ⊂ C(E) × B(E), and assume the

property that (f, g) ∈ H and c ∈ R implies (f + c, g) ∈ H. Then for all h ∈ C(E)∩R(1l− αH),
the comparison principle holds for f − αHf = h for all α > 0.

Extensions of operators are frequently used in the study of viscosity solutions. We denote
the closure of an operator H by H. It is obvious that the closure H is a viscosity extension of
the operator H in the following sense.

Definition 3.5. Ĥ ⊂ B(E) × B(E) is a viscosity extension of H if Ĥ ⊃ H and for each
h ∈ C(E), f is a viscosity subsolution (supersolution) of (1l − αH)f = h if and only if f is a

viscosity subsolution (supersolution) for (1l− αĤ)f = h.

In our applications we will often use a viscosity extension of the limiting operator. For this
we shall need a criterion when an extension of the operator is actually a viscosity extension.
Using again the property that (f, g) ∈ H and c ∈ R implies (f + c, g) ∈ H we arrive at the
following criterion for viscosity extension.

Lemma 3.6. Let (E, d) be a compact metric space and H ⊂ Ĥ ⊂ C(E)× B(E). Assume that
for each (f, g) ∈ H we have a sequence (fn, gn) ⊂ H such that ‖fn − f‖ → 0 as n → ∞ and
xn, x ∈ E with xn → x as n→∞,

g∗(x) ≤ lim inf
n→∞

gn(xn) ≤ lim sup
n→∞

gn(xn) ≤ g∗(x).

In addition, suppose that (f, g) ∈ H and c ∈ R implies (f + c, g) ∈ H. Then the extension Ĥ
is a viscosity extension.

The idea is to replace the range condition of the limiting operator H by the comparison
principle. The next result summarises the semigroup convergence when the limiting operator
satisfies the comparison principle.

Proposition 3.7 (Semigroup convergence using viscosity solution). Let (E, d) be a
compact metric space. Assume for each n ≥ 1 that Hn ⊂ B(E) × B(E) is dissipative and
satisfies the range condition for 0 < α < α0 with α0 > 0 independent of n, and assume that
(fn, gn) ∈ Hn and c ∈ R implies (fn + c, gn) ∈ Hn. Let H ⊂ C(E) × B(E). Suppose that for
each (f0, g0) ∈ H, there exists a sequences (fn,0, gn,0) ∈ Hn such that ‖fn,0 − f0‖ → 0 as n→∞
and for each x ∈ E and sequence zn → x as n→∞,

(g0)∗(x) ≤ lim inf
n→∞

(gn,0)(zn) ≤ lim sup
n→∞

(gn,0)(zn) ≤ (g0)∗(x). (3.8)
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Assume that for each 0 < α < α0, C(E) ⊂ R(1l − αHn), and that there exists a dense subset
Dα ⊂ C(E) such that for each h ∈ Dα, the comparison principle holds for

(1l− αH)f = h. (3.9)

Then

(a) For each h ∈ Dα, there exists a unique viscosity solution f := Rαh of (3.9).

(b) Rα is a contraction and extends to C(E).

(c) The operator

Ĥ =
⋃
α

{
(Rαh,

Rαh− h
α

) : h ∈ C(E)
}

(3.10)

is dissipative and satisfies the range condition, D(Ĥ) ⊃ D(H), and Ĥ generates a

strongly continuous semigroup (V (t))t≥0 on D(Ĥ) = C(E) =: D given by V (t)f =
limn→∞R

n
t/nf .

(d) Let (Vn(t))t≥0 denote the semigroup on D(Hn) generated by Hn. For each f ∈ D(Ĥ)

and fn ∈ D(Hn) with ‖fn − f‖ → 0 as n→∞,

lim
n→∞

‖Vn(t)fn − V (t)f‖ = 0.

We do not give a proof here. See chapter 6 and 7 in [FK06]. Also note that the assumption
(E, d) being a compact metric space can be relaxed, see chapter 7 and 9 in [FK06]. The
semigroup convergence uses again Theorem 2.2 of Crandall-Liggett. We arrive at our second
main large deviation result.

Theorem 3.8 (Large deviations using semigroup convergence). Let (E, d) be a compact
metric space and for any n ≥ 1 let An ⊂ B(E)×B(E) be the generator for the Markov process
Xn taking values in E. Define

Hnf =
1

n
e−nfAnenf whenever enf ∈ D(An),

and on B(E) define the semigroup (Vn(t))t≥0 by Vn(t)f(x) = 1
n

logE[enf(Xn(t))|Xn(0) = x]. Let
H ⊂ D(H) × B(E) with D(H) dense in C(E). Suppose that for each (f, g) ∈ H there exists
(fn, gn) ∈ Hn such that ‖f − fn‖ → 0 as n→∞ and supn ‖gn‖ <∞, and for each x ∈ E and
zn → x as n→∞, we have

g∗(x) ≤ lim inf
n→∞

gn(zn) ≤ lim sup
n→∞

gn(zn) ≤ (g∗)(x). (3.11)

Pick α0 > 0. Suppose that for each 0 < α < α0 , there exists a dense subset Dα ⊂ C(E)
such that for each h ∈ Dα, the comparison principle holds for (3.1). Suppose that the sequence
(Xn(0))n≥1 satisfies the LDP in E with the good rate function I0.

Then

(a) The operator Ĥ defined in (3.10) generates a semigroup ((V (t))t≥0 on C(E) such that
limn→∞ ‖V (t)f − Vn(t)fn‖ = 0 whenever f ∈ C(E),fn ∈ B(E), and ‖f − fn‖ → 0 as
n→∞.
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(b) (Xn)n≥1 is exponentially tight and satisfies the LDP on DE[0,∞) with the rate function
given in Theorem 2.5, i.e.,

I(x) = sup
{ti}⊂∆c

x

{
I0(x0) +

k∑
i=1

Iti−ti−1
(x(ti)|x(ti−1))

}
,

where It(y|x) = supf∈C(E){f(y)− V (t)f(x)}.

Proof. We only give a brief sketch of the major steps. Having the generator An one defines

a viscosity extension Ân of An, see Lemma 3.6 and Proposition 3.7. Picking εn > 0 we consider

the corresponding Yosida approximations Âεnn , i.e.,

Âεnn =
1

εn
((1l− εnÂn)−1 − 1l) = Ân(1l− εnÂn)−1.

The Yosida approximation is a bounded, linear dissipative operator. Then one define the

generator Ĥεn
n as in the statement of the theorem. Then Ĥεn

n satisfies the range condition, in

fact R(1− αĤεn
n ) = B(E) for all α > 0, and it generates the semigroup ((V εn

n (t))t≥0. We also

have Dα ⊂ R(1l− αĤεn
n ) for all α > 0. By Proposition 3.7, using (3.11), we get

‖V εn
n (t)fn − V (t)f‖ → 0 as n→∞,

whenever fn ∈ B(E), f ∈ C(E), and ‖fn − f‖ → 0 as n → ∞. The remainder of the proof
follows closely the proof of Theorem 2.5 and Corollary 2.6 �

One can extend the previous results in several directions, First, we can allow the state space E
to be a non-compact metric space. Second, one can relax the boundedness assumptions on the
domain and range of the limiting operator H This may appear odd, but it allows for greater
flexibility in the choice of test functions needed to verify the comparison principle. We refer to
chapter 7 and 9 in [FK06].

4. Control representation of the rate function

Having established large deviation theorems in the two previous sections we are now in-
terested to obtain more useful representations of the rate functions. The form of the rate
functions in Theorem 2.5, Corollary 2.6 and Theorem 3.8 may have limited use in applications.
The main idea is to obtain a variational representation of the limiting generator H of the non-
linear Fleming semigroup which allows for a control representation of the rate function of the
large deviation principles. In many situations the generators An of the Markov processes satisfy
the maximum principle which ensures a variational representation for H. As it will turn out
this representation has the form of the generator of a Nisio semigroup in control theory. Hence-
forth we can formally interpret the limiting Fleming semigroup (V (t))t≥0 in the large deviation
theorems as Nisio semigroups. We will omit technical details in this section and focus on the
main ideas and will conclude later with a couple of examples.

We pick a control space U , and let q be a metric such that (U, q) is a metric space. For that
control space we are seeking for an operator A ⊂ B(E)×B(E×U) and a lower semicontinuous
function L : E × UR such Hf = Hf , where we define

Hf(x) = sup
u∈U
{Af(x, u)− L(x, u)}. (4.1)
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If we can establish that Hf = Hf for all f in the domain of the generator H of Fleming’s
nonlinear semigroup ((V (t))t≥0 we are in the position to get derive a control representation of
the rate function. Before we show that we introduce some basic notions and facts from control
theory.

Definition 4.1. (a) Let Mm denote the set of Borel measures µ on U × [0,∞) such that
µ(U × [0, t]) = t. Let A : D(A) → M(E × U) with D(A) ⊂ B(E) be a linear operator.
The pair (x, λ) ∈ DE[0,∞) ×Mm satisfies the control equation for A, if and only if∫
U×[0,t]

Af(x(s), u)λ(du⊗ ds) <∞, and

f(x(t))− f(x(0)) =

∫
U×[0,t]

Af(x(s), u)λ(du⊗ ds), f ∈ D(A), t ≥ 0. (4.2)

We denote the set of those pairs by J, and for x0 ∈ E, we define

Jx0 = {(x, λ) ∈ J : x(0) = x0}.

(b) We let ((V(t))t≥0 denote the Nisio semigroup corresponding to the control problem with
dynamics given by (4.2) and reward function −L, that is,

V(t)g(x0) = sup
(x,λ)∈JΓ

x0

{
g(x(t))−

∫
U×[0,t]

L(x(s), u)λ(du⊗ ds)
}
, x0 ∈ E, (4.3)

where Γ ⊂ E × U is some closed set and

JΓ = {(x, λ) ∈ J :

∫
U×[0,t]

1γ(x(s), u)λ(du⊗ ds) = t, t ≥ 0}

is the set of admissible controls. This restriction of the controls is equivalent to the
requirement that λs(Γx(s)) = 1, where for any z ∈ E, Γz := {u : (z, u) ∈ Γ}.

Considering our study of the Fleming’s semigroup method for proving large deviation princi-
ples we expect that V(t) = V (t), and that we will able to simplify the form of the rate function
I using the variational structure induced by A and the reward function L. Our primary re-
sult is the representation of the rate function of our large deviation principles in the following
theorem. Unfortunately that theorem requires a long list of technical conditions to be satisfied
which we are not going to list in detail. Instead we provide the key conditions and refer to the
complete list of condition 8.9, 8.10, and 8.11 in [FK06].

Conditions (�):

(C1) A ⊂ Cb(E)× C(E × U) and D(A) separates points.

(C2) Γ ⊂ E × U closed and for each x0 ∈ E there exists (x, λ) ∈ JΓ with x(0) = x0.

(C3) L : E × U → [0,∞] is lower semicontinuous, and for each compact K ⊂ E the set
{(x, u) ∈ Γ: L(x, u) ≤ c} ∩ (K × U) is relatively compact.

(C4) Compact containment condition. That is for each compact set K ⊂ E and time horizon

T > 0 there is another compact set K̂ ⊂ such that x(0) ∈ K and the boundedness of

the integral imply that the terminal point x(T ) ∈ K̂.

(C5) Some growth condition for Af(x, u).
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(C6) For each x0 ∈ E, there exists (x, λ) ∈ JΓ such that x(0) = x0 and∫
U×[0,∞]

L(x(s), u)λ(du⊗ ds) = 0.

(C7) Certain growth conditions in case there are two limiting operators instead of H (lower
and upper bound). This applies to extensions described in chapter 7 of [FK06].

Theorem 4.2. Let A ⊂ Cb(E) × C(E × U) and L : E × U → R+ be lower semicontinuous
satisfying conditions (�). Suppose that all the conditions from Theorem 2.5 hold. Define V as
in (4.3), and assume that

V = V on D ⊂ Cb(E),

where D is the domain of the nonlinear semigroup ((V (t))t≥0 in Theorem 2.5. Assume in
addition that D contains a set that is bounded from above and isolates points. Then, for
x ∈ DE[0,∞),

I(x) = I0(x(0)) + inf
λ : (x,λ)∈JΓ

x0

{∫
U×[0,∞)

L(x(s), u)λ(du⊗ ds)
}
. (4.4)

Proof. We outline the main steps of the proof. First note that for f ∈ D and x0 ∈ we have

V (t)f(x0) = V(t)f(x0) = − inf
(x,λ)∈JΓ

x0

{∫
U×[0,∞]

L(x(s), u)λ(du⊗ ds)− f(x(t))
}
.

We are going to use Corollary 2.6 again with a sequence (fm)m≥1 of functions fm ∈ D satisfying
the conditions of Corollary 1.12. We thus get

It(x1|x0) = sup
f∈D
{f(x1)− V(t)f(x0)}

= sup
f∈D

inf
(x,λ∈JΓ

x0

{
f(x1)− f(x(t)) +

∫
U×[0,t]

L(x(s), u)λ(du⊗ ds)
}

= lim
m→∞

inf
(x,λ∈JΓ

x0

{
fm(x1)− fm(x(t)) +

∫
U×[0,t]

L(x(s), u)λ(du⊗ ds)
}
.

There are two possibilities. Either It(x1|x0) =∞ or there is a minimising sequence (xm, λm)m≥1

such that xm(t) → x1 as m → ∞ and lim supm→∞
∫
U×[0,t]

L(xm(s), λm(du ⊗ ds) < ∞. There

exists a subsequence whose limit (x∗, λ∗) satisfies x∗(0) = x0 and x∗(t) = x1, and

It(x1|x0) =

∫
U×[0,t]

L(x∗(s), u)λ∗(du⊗ ds)

= inf
(x,λ)∈JΓ

x0
: x(0)=x0,x(t)=x1

{∫
U×[0,t]

L(x(s), u)λ(du⊗ ds)
}
.

This concludes the proof. �

For the remaining technical details we refer to chapter 8 and 9 in [FK06]. We briefly discuss
the possible variational representation for H. We assume that the limiting Markov generator
A (as the limit of the generators An of our Markov processes) has as its domain D = D(A)
an algebra and that f ∈ D implies ef ∈ D. We define a new set of transformed operators as



24 STEFAN ADAMS

follows. Define for f, g ∈ D:

Hf = e−fAef ,

Agf = e−gA(feg)− (e−gf)Aeg,

Lg = Agg −Hg.
(4.5)

The following natural duality between H and L was first observed by Fleming.

Hf(x) = sup
g∈D
{Agf(x)− Lg(x)},

Lg(x) = sup
f∈D
{Agf(x)−Hf(x)},

(4.6)

with both suprema attained at f = g. In our strategy for proving large deviation principles we
are given a sequence (Hn)n≥1 of operators Hn of the form

Hnf =
1

n
e−nfAnenf .

We define

Agnf = e−ngAn(feng)− (e−ngf)Aneng,

Lgn = Agng −Hng.
(4.7)

Then for D ⊂ Cb(E) with the above properties we get the corresponding duality

Hnf(x) = sup
g∈D
{Agnf(x)− Lng(x)},

Lng(x) = sup
f∈D
{Agnf(x)−Hnf(x)}.

In application we typically compute Ln and Agn and then directly verify that the desired duality
(4.6) holds in the limit. Also note that (4.6) is a representation with control space U = D which
may not be the most convenient choice for a control space.

When E is a convex subset of a topological vector space, the limiting operator H can be (in
most cases) written as H(x,∇f(x)), where (H(x, p) is convex in the second entry and ∇f is
the gradient of f . This allows for an alternative variational representation for the operator H,
namely through the Fenchel-Legendre transform. For that let E∗ be the dual of E, and define
for each ` ∈ E∗

L(x, `) = sup
p∈E
{〈p, `〉 − H(x, p)}. (4.8)

Having some sufficient regularity on H(x, ·), we obtain

H(x, p) = sup
`∈E∗
{〈p, `〉 − L(x, `)}, (4.9)

which implies

Hf(x) = H(x,∇f(x)) = sup
`∈E∗
{〈∇f(x), `〉 − L(x, `)}.

This transform approach has been employed by Freidlin and Wentzell and is commonly used
when studying random perturbations of dynamical systems, see [FW98]. We leave a thorough
discussion of these issues and refer to chapter 8 in [FK06] and turn to the following examples.
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Example 4.3. The best-known example of large deviations for Markov processes goes back
to Freidlin and Wentzell (see [FW98]) and considers diffusions with small diffusion coefficient.
Let Xn be a sequence of diffusion processes taking values in Rd satisfying the Itô equation

Xn(t) = x+
1√
n

∫ t

0

σ(Xn(s)) dW (s) +

∫ t

0

b(Xn(s)) ds.

Putting a(x) = σ(x) · σT (x) the generator is given as

Ang(x) =
1

2n

∑
i,j

aij(x)∂i∂jg(x) +
∑
i

bi(x)∂ig(x),

where we take D(An) = C2
c (Rd). We compute

Hnf(x) =
1

2n

∑
i,j

aij(x)∂i∂jg(x) +
1

2

∑
ij

aij(x)∂if(x)∂jf(x) +
∑
i

bi(x)∂ig(x).

Henceforth we easily get Hf = limn→∞Hnf with

Hf(x) =
1

2
(∇f(x))T · a(x) · ∇f(x)〉+ b(x) · ∇f(x).

We shall find a variational representation of H. This is straightforward once we introduce a
pair of functions on Rd × Rd, namely

H(x, p) :=
1

2
|σT (x) · p|2 + b(x) · p,

L(x, `) = sup
p∈Rd
{〈p, `〉 − H(x, p)}.

Thus

Hf(x) = H(x,∇f(x)) = Hf(x) := sup
u∈Rd
{Af(x, u)− L(x, u)}

with Af(x, u) = u · ∇f(x). Hence we can use H, i.e., H, as a Nisio semigroup generator, and
using Theorem 4.2 we obtain the rate in variational form,

I(x) = I0(x0) + inf
u : (x,u)∈J

{∫ ∞
0

L(x(s), u(s)) ds
}
,

where I0 is the rate function for (Xn(0))n≥1 and J is the collection of solutions of

f(x(t))− f(x(0)) =

∫ t

0

Af(x(s), u(s)) ds, f ∈ C2
c (Rd).

This leads to ẋ(t) = u(t), and thus

I(x) =

{
I0(x(0)) +

∫∞
0
L(x(s), ẋ(s)) ds if x is absolutely continuous,

∞ otherwise.

There is another variational representation of the operator H leading to a different expression
of the rate function I. Put

Af(x, u) = u · (σT (x)∇f(x)) + b(x) · ∇f(x), f ∈ C2
0(Rd),
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L(x, u) = 1
2
|u|2, and define Hf(x) = supu∈Rd{Af(x, u)−L(x, u)}. Then H = H and we obtain

the following expression of the rate function

I(x) = I0(x(0)) +
1

2
inf
{∫ ∞

0

|u(s)|2 ds : u ∈ L2[0,∞) and x(t) = x(0)

+

∫ t

0

b(x(s)) ds+

∫ t

0

σ(x(s))u(s) ds
}
.

�

Example 4.4. We consider a Poisson walk with small increments on R. Let (Xn(t))t≥0 be
the random walk on R that jumps n−1 forward at rate bn and backward at rate dn, with
b, d ∈ (0,∞). The generator of this Markov process is given as

(Anf)(x) = bn[f(x+
1

n
)− f(x)] + dn[f(x− 1

n
)− f(x)].

If limn→∞Xn(0) = x ∈ R, then limn→∞Xn(t) = x + (b − d)t, t > 0. Henceforth, in the limit
n → ∞, the process Xn becomes a deterministic flow solving ẋ = (b − d). For all n ∈ N we
have

Xn(t) =
n∑
i=1

(X (bt)

i − Y
(dt)

i ),

where X t
i , Y

t
i , i = 1, . . . , n, are independent Poisson random variables with mean bt and dt

respectively. Thus we may employ Cramér’s theorem for sums of i.i.d. random variables (see
[DZ98] for details) to derive the rate function

I(at) = lim
n→∞

1

n
logPn(Xn(t) = at|Xn(0) = 0) = sup

λ∈R

{
atλ− Λ(λ)

}
,

where the logarithmic moment generating function Λ is given by

Λ(λ) = lim
n→∞

1

n
logEn[eλnXn(t)] = b(eλ − 1) + d(e−λ − 1). (4.10)

We can rewrite the rate function as I(at) = tL(a) with

L(a) = sup
λ∈R

{
aλ− b(eλ − 1)− d(e−λ − 1)

}
.

Using that the increments of the Poisson process are independent over disjoint time intervals,
one can easily show a large deviation principle. We do not do that here but instead employ our
roadmap in proving the large deviation principle for the sequence (Xn)n≥1 of Markov processes.
We obtain easily

(Hf)(x) := lim
n→∞

1

n
e−nf(x)

(
Anenf(x)

)
(x) = b(ef

′(x) − 1) + d(e−f
′(x) − 1).

Furthermore, we easily see that the Lagrangian L in (4.10) is the Legendre transform of the
following formal Hamiltonian (coincides in this case with the logarithmic generating function)

H(λ) = b(eλ − 1) + d(e−λ − 1). (4.11)

Thus,

H(λ) = (Hfλ)(x), for fλ(x) = λx,
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and by the convexity of H,

(Hf)(x) = H(f ′(x)) = sup
a∈R

{
af ′(x)− L(a)

}
.

Then

Pn
(
(Xn(t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
≈ exp

{
− n

∫ T

0

L(γt, γ̇t) dt
}
,

where the Lagrangian L is the function (x, λ) 7→ L(x, λ) with x = γt and λ = γ̇t. Thus in our
case (only dependence on the time derivative) we obtain

lim
n→∞

1

n
logPn

(
Xn(t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
=

∫ T

0

L(γ̇t) dt.

The latter LDP can be obtained also directly using Cramér’s theorem and the independence of
the increments for disjoint time intervals. However, this example is to show how our roadmap
may lead to LDP for sequences of Markov processes. We omitted all technical details which
can easily be filled in.

�

In the next example we study spin-flips which are frequently studied in statistical mechanics.
We outline an example from the recent paper by van Enter et al. [vEFHR10]

Example 4.5. In this example we shall be concerned with large deviation behaviour of the
trajectories of the mean magnetisation for spin-flip dynamics. We consider a simple case in
dimension one, namely Ising spins on the one-dimensional torus TN represented by the set
{1, . . . , N} subject to a rate−1 independent spin-flip dynamics. We will write PN for the law of
this process. We are interested in the trajectory of the mean magnetisation, i.e., t 7→ mN(t) =
1
N

∑N
=1 σi(t), where σi(t) is the spin at site i at time t. A spin-flip from +1 to −1 (or from −1

to +1) corresponds to a jump of size −2N−1 (or +2N−1) in the magnetisation. Henceforth the
generator AN of the process (mN(t))t≥0 is given by

(ANf)(m) =
1 +m

2
N
[
f(m− 2N−1)− f(m)

]
+

1−m
2

N
[
f(m+ 2N−1)− f(m)

]
for any m ∈ {−1,−1 + 2N−1, . . . , 1 − 2N−1, 1}. If limN→∞mN = m and f ∈ C1(R) with
bounded derivative, then

lim
N→∞

(ANf)(mN) = (Af)(m) with (Af)(m) = −2mf ′(m).

This is the generator of the deterministic flow m(t) = m(0)e−2t, solving the equation ṁ(t) =
−2m(t). We shall prove that the magnetisation satisfies the LDP with rate function given as
an integral over a finite time horizon T ∈ (0,∞) of the Lagrangian, that is, for every trajectory
γ = (γt)t∈[0,T ], we shall get that

PN
(
(mN(t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
≈ exp

{
−N

∫ T

0

L(γt, γ̇t) dt
}
,

where the Lagrangian can be computed using our roadmap following the scheme of Feng and
Kurtz [FK06]. We obtain

(Hf)(m) := lim
N→∞

(HNf)(mN),
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where

(HNf)(m) = lim
N→∞

1

N
e−Nf(mn)AN(eNf )(mN)

and limN→∞mN = m. This gives

(Hf)(m) =
m+ 1

2

[
e−2f ′(m) − 1

]
+

1−m
2

[
e2f ′(m) − 1

]
.

We can see easily that this can be written as

(Hf)(m) = H(m, f ′(m))

with the Hamiltonian

H(m, p) =
m+ 1

2

(
e−2p − 1

)
+

1−m
2

(
e2p − 1

)
.

The convexity of p 7→ H(m, p) leads to the variational representation

H(m, p) = sup
q∈R

{
pq − L(m, q)

}
,

where some computation gives us the Lagrangian

L(m, q) = sup
p∈R

{
pq −H(m, p)

}
=
q

2
log
(q +

√
q2 + 4(1−m2)

2(1 +m)

)
− 1

2

√
q2 + 4(1−m2) + 1.

We thus obtain the LDP for (mN(t))t∈[0,T ] for the magnetisation process with finite time horizon
T ∈ (0,∞) and rate function given by the Lagrangian or reward function L(m, q) where m = γt
and q = γ̇t, and

lim
N→∞

1

N
logPN

(
(mN(t))t∈[0,T ] ≈ (γt)t∈[0,T ]

)
= exp

{
−N

∫ T

0

L(γt, γ̇t) dt
}
.

�

Remark 4.6. We conclude our list of examples with the remark that in [vEFHR10] the scheme
of Feng and Kurtz (see our discussion above and [FK06]) is applied to a more general spin-flip
dynamics. First, the spin-flip is now considered on the d-dimensional torus TdN and one studies

Glauber dynamics of Ising spins, i.e., on the configuration space ΩN = {−1,+1}TdN . The second
extension is that the independence of the spin-flips is dropped and the dynamics is defined via
the generator An acting on functions f : ΩN → R as

(ANf)(σ) =
∑
i∈TdN

ci(σ)[f(σi)− f(σ)],

where σi denotes the configuration obtained from the configuration σ by flipping the spin at
site i, and where ci(σ) are given rates. The period empirical measure is a random probability
measure on ΩN defined as the random variable

LN : ΩN →M1(ΩN), σ 7→ LN(σ) =
1

|TdN |
∑
i∈TdN

δθiσ,

where θi is the shift operator by i ∈ TdN . Having the dynamics defined via the generator AN
one is interested in large deviations of the trajectory of the empirical measures. This LDP can
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be derived following the roadmap of the scheme of Feng and Kurtz, and this has been done in
[vEFHR10]. This shows how effective the scheme discussed in these notes can be.
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