Interacting Particle Systems

Problem sheet 2

- **1.** Consider the birth-death chain $(N(t) : t \ge 0)$ on the state space $X = \mathbb{N}$ with jump rates $c(n, n+1) = \alpha n$ for $n \ge 0$ and $c(n, n-1) = \beta n$ for $n \ge 1$, where $\alpha, \beta > 0$.
 - (a) Write down the master equation for this Markov chain. Is the chain irreducible?
 - (b) Derive an equation for the expected value e(t) = E(N(t)) and solve it with initial condition N(0) = k ∈ N.
 What does this imply for the asymptotic behaviour of N(t) as t → ∞?
- 2. On the finite complete graph $\Lambda_L = \{1, \ldots, L\}$ with $E = \Lambda_L \otimes \Lambda_L$ the CP $(\eta_t : t \ge 0)$ can be described by a single variable

$$N(t) = \sum_{x \in \Lambda} \eta_t(x) =$$
of infected sites at time $t \in \{0, \dots L\}$.

- (a) Write down the jump rates and the master equation for $(N(t) : t \ge 0)$.
- (b) For N(0) = 1 discuss the asymptotic behaviour of N(t) as $t \to \infty$ depending on λ .
- 3. Consider the *pair contact process (PCP)* on the lattice $\Lambda = \mathbb{Z}$ with state space $X = \{0, 1\}^{\Lambda}$ and jump rates

 $110 \xrightarrow{\lambda} 111 \;, \quad 011 \xrightarrow{\lambda} 111 \quad \text{and} \quad 11 \xrightarrow{1} 00 \;.$

- (a) Write down the generator of the process.Is the process irreducible? How many absorbing states does it have?
- (b) Derive the mean field rate equation and analyze its stationary points depending on λ . Give the mean field predition for the phase diagram and the stationary density $\rho(\lambda)$.
- (c) Consider the PCP on the finite lattice $\lambda_4 = \mathbb{Z}/4\mathbb{Z}$ with periodic boundary conditions. Provide a graphical construction that connects the initial configuration $\eta_0 = (1, 0, 1, 1)$ with $\eta_t = (0, 1, 0, 0)$. The construction should contain at least three of each basic event (infection to the left, to the right, and recovery).

How many absorbing states does this process have?

- 4. Consider the ZRP on the lattice $\Lambda_L = \mathbb{Z}$ with space-independent jump rates g(n) and jump probabilities $p(x, y) = \delta_{y, x+1}$.
 - (a) Suppose that $g(n) \nearrow$ is non-decreasing in n. Use a basic coupling (particles jump together whenever possible) to show that the ZRP is attractive.
 - (b) Suppose that g(n
 + 1) < g(n
 </p>
 for some n

 find a suitable test function f and initial condition η to show that the ZRP is not attractive.
 (Hint: Keep it as simple as possible.)