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Introduction

Interacting particle systems (IPS) are models for complex phenomena involving a large number
of interrelated components. Examples exist within all areas of natural and social sciences, such
as traffic flow on highways, pedestrians or constituents of a cell, opinion dynamics, spread of epi-
demics or fires, reaction diffusion systems, crystal surface growth, chemotaxis, financial markets...

Mathematically the components are modeled as particles confined to a lattice or some discrete
geometry. Their motion and interaction is governed by local rules. Often microscopic influences
are not accesible in full detail and are modeled as effective noise with some postulated distribution.
Therefore the system is best described by a stochastic process. Illustrative examples of such
models can be found on the web (see course homepage for some links).

These notes provide an introduction into the well developed mathematical theory for the de-
scription of the time evolution and the long-time behaviour of such processes. The second main
aspect is to get acquainted with different types of collective phenomena in complex systems.

Work out two examples...
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1 Basic theory

In general, let X be a compact metric space with measurable structure given by the Borel σ-
algebra. A continuous time stochastic process η = (ηt : t ≥ 0) is a family of random variables ηt
taking values in X , which is called the state space of the process. Let

D[0,∞) =
{
η. : [0,∞)→ X càdlàg

}
(1.1)

be the set of right continuous functions with left limits (càdlàg), which is the canonical path space
for a stochastic process on X . To define a reasonable measurable structure on D[0∞), let F be
the smallest σ-algebra on D[0,∞) such that all the mappings η. 7→ ηs for s ≥ 0 are measurable
w.r.t. F . That means that every path can be evaluated or observed at arbitrary times s, i.e.

{ηs ∈ A} =
{
η.
∣∣ηs ∈ A} ∈ F (1.2)

for all measurable subsets A ∈ X . If Ft is the smallest σ-algebra on D[0,∞) relative to which
all the mappings η. 7→ ηs for s ≤ t are measurable, then (Ft : t ≥ 0) provides a filtration
for the process. The filtered space

(
D[0,∞),F , (Ft : t ≥ 0)

)
provides a generic choice for

the probability space of a stochastic process which can be defined as a probability measure P on
D[0,∞).

Definition 1.1 A (homogeneous) Markov process onX is a collection (Pζ : ζ ∈ X) of probability
measures on D[0,∞) with the following properties:

(a) Pζ
(
η. ∈ D[0,∞) : η0 = ζ

)
= 1 for all ζ ∈ X , i.e. Pζ is normalized on all paths with

initial condition η0 = ζ.

(b) The mapping ζ 7→ Pζ(A) is measurable for every A ∈ F .

(c) Pζ(ηt+. ∈ A|Ft) = Pηt(A) for all ζ ∈ X , A ∈ F and t > 0 . (Markov property)

Note that the Markov property as formulated in (c) implies that the process is (time-)homogeneous,
since the law Pηt does not have an explicit time dependence. Markov processes can be generalized
to be inhomogeneous, but the whole content of these lectures will concentrate only on homoge-
neous processes.

1.1 Continuous time Markov chains and graphical representations

Let X now be a countable set. Then a Markov process η = (ηt : t ≥ 0) is called a Markov
chain and it can be characterized by transition rates c(ζ, ζ ′) ≥ 0, which have to be specified for
all ζ, ζ ′ ∈ X . For a given process (Pζ : ζ ∈ X) the rates are defined via

Pζ(ηt = ζ ′) = c(ζ, ζ ′) t+ o(t) as t↘ 0 , (1.3)

and represent probabilities per unit time. We will see in the next subsection how a given set of rates
determines the path measures of a process. Now we would like to get an intuitive understanding
of the time evolution and the role of the transition rates. We denote by

Wζ := inf{t ≥ 0 : ηt 6= ζ} (1.4)
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the holding time in state ζ. The value of this time is related to the total exit rate out of state ζ,

cζ :=
∑
ζ′∈X

c(ζ, ζ ′) . (1.5)

If cζ = 0, ζ is an absorbing state and Wζ =∞ a.s. .

Proposition 1.1 If cζ > 0, Wζ ∼ Exp(cζ) and Pζ(ηWζ
= ζ ′) = c(ζ, ζ ′)/cζ .

Proof. Wζ has the ’loss of memory’ property

Pζ(Wζ > s+ t|Wζ > s) = Pζ(Wζ > s+ t|ηs = ζ) = Pζ(Wζ > t) , (1.6)

the distribution of the holding timeWζ does not depend on how much time the process has already
spent in state ζ. Thus Pζ(Wζ > s+t) = Pζ(Wζ > s) Pζ(Wζ > t). This is the functional equation
for an exponential and implies that

Pζ(Wζ > t) = eλt (with initial condition Pζ(Wζ > 0) = 1) . (1.7)

The exponent is given by

λ =
d

dt
Pζ(Wζ > t)

∣∣
t=0

= lim
t↘0

Pζ(Wζ > t)− 1
t

= −cζ , (1.8)

since with (1.3)

Pζ(Wζ > 0) = 1− Pζ(ηt 6= ζ) + o(t) = 1− cζt+ o(t) . (1.9)

Now, conditioned on a jump occuring we have

Pζ(ηt = ζ ′|Wζ < t) =
Pζ(ηt = ζ ′)
Pζ(Wζ < t)

→ c(ζ, ζ ′)
cζ

as t↘ 0 (1.10)

by L’Hopital’s rule. With right-continuity of paths, this implies the second statement. 2

Let W1,W2, . . . be a sequence of independent exponentials Wi ∼ Exp(λi). Remember that
E(Wi) = 1/λi and

min{W1, . . . ,Wn} ∼ Exp
( n∑
i=1

λi

)
. (1.11)

The sum of iid exponentials with λi = λ is Γ-distributed,

n∑
i=1

Wi ∼ Γ(n, λ) with PDF
λnwn−1

(n− 1)!
e−λw . (1.12)

Example. A Poisson process N = (Nt : t ≥ 0) with rate λ (short PP (λ)) is a Markov process
with X = N = {0, 1, . . .} and c(n,m) = λδn+1,m.
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Figure 1: Sample path (càdlàg) of a Poisson process with holding times W0, W1, . . ..

With iidrv’s Wi ∼ Exp(λ) we can write Nt = max{n :
∑n

i=1Wi ≤ t}. This implies

P(Nt = n) = P
( n∑
i=1

Wi ≤ t <
n+1∑
i=1

Wi

)
=
∫ t

0
P
( n∑
i=1

Wi = s
)
P(Wn+1 > t− s) ds =

=
∫ t

0

λnsn−1

(n− 1)!
e−λs e−λ(t−s) ds =

(λt)n

n!
e−λt , (1.13)

so Nt ∼ Poi(λt) has a Poisson distribution. Alternatively a Poisson process can be characterized
by the following.

Proposition 1.2 (Nt : t ≥ 0) ∼ PP (λ) if and only if it has stationary, independent increments,
i.e.

Nt+s −Ns ∼ Nt −N0 and Nt+s −Ns independent of (Nu : u ≤ s) , (1.14)

and for each t, Nt ∼ Poi(λt).

Proof. By the loss of memory property and (1.13) increments have the distribution

Nt+s −Ns ∼ Poi(λt) for all s ≥ 0 , (1.15)

and are independent of Ns which is enough together with the Markov property.
The other direction follows by deriving the jump rates from the properties in (1.14) using (1.3). 2

Remember that for independent Poisson variables Y1, Y2, . . . with Yi ∼ Poi(λi) we have
E(Yi) = V ar(Yi) = λi and

n∑
i=1

Yi ∼ Poi
( n∑
i=1

λi

)
. (1.16)

With Prop. 1.2 this immediately implies that adding independent Poisson processes (N i
t : t ≥

0) ∼ PP (λi), i = 1, 2, . . . results in a Poisson process, i.e.

Mt =
n∑
i=1

N i
t ⇒ (Mt : t ≥ 0) ∼ PP

( n∑
i=1

λi

)
. (1.17)

Example. A continuous-time simple random walk (ηt : t ≥ 0) on X = Z with jump rates p to the
right and q to the left is given by

ηt = Rt − Lt where (Rt : t ≥ 0) ∼ PP (p), (Lt : t ≥ 0) ∼ PP (q) . (1.18)

The process can be constructed by the following graphical representation:
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X=Z

time

0 21−1−2−3−4 3 4

In each column the arrows→∼ PP (p) and←∼ PP (q) are independent Poisson processes. To-
gether with the initial condition, the trajectory of the process shown in red is then uniquely deter-
mined. An analogous construction is possible for a general Markov chain, which is a continuous
time random walk on X with jump rates c(ζ, ζ ′). In this way we can also construct interacting
random walks.

1.2 Two basic IPS

Let Λ be any countable set, the lattice for example think of regular lattices Λ = Zd, connected
subsets of these or Λ = ΛL := (Z/LZ)d a finite d-dimensional torus with Ld sites. We will
consider two basic processes on the state space1 X = {0, 1}Λ of particle configurations η =
(η(x) : x ∈ Λ). η(x) = 1 means that there is a particle at site x and if η(x) = 0 site x is empty.
Alternatively, η : Λ→ {0, 1} can be viewed as a function from Λ to {0, 1}.

1Why is X is a compact metric space?
The discrete topology σx on the local state space S = {0, 1} is simply given by the power set, i.e. all subsets are
’open’. The product topology σ on X is then given by the smallest topology such that all the canonical projections
η(x) : X → {0, 1} (particle number at a site x for a given configuration η) are continuous (pre-images of open sets are
open). That means that σ is generated by sets

η(x)−1(U) = {η : η(x) ∈ U} , U ⊆ {0, 1} , (1.19)

which are called open cylinders. Finite intersections of these sets

{η : η(x1) ∈ U1, . . . , η(xn) ∈ Un} , n ∈ N, Ui ⊆ {0, 1} (1.20)

are called cylinder sets and any open set on X is a (finite or infinite) union of cylinder sets. Clearly {0, 1} is compact
σx is finite, and by Tychonoff’s theorem any product of compact topological spaces is compact (w.r.t. the product
topology). This holds for any general finite local state space S and X = SΛ.
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Note that if Λ is infinite, X is uncountable. But for the processes we consider the particles
move/interact only locally, so a description with jump rates still makes sense. More specifically, for
a given η ∈ X there are only countably many η′ for which c(η, η′) > 0. Define the configurations
ηx and ηxy ∈ X for x 6= y ∈ Λ by

ηx(z) =
{

η(z) , z 6= x
1− η(x) , z = x

and ηxy(z) =


η(z) , z 6= x, y
η(y) , z = x
η(x) , z = y

, (1.21)

so that ηx corresponds to creation/annihilation of a particle at site x and ηxy to motion of a particle
between x and y. Then following standard notation we write for the corresponding jump rates

c(x, η) = c(η, ηx) and c(x, y, η) = c(η, ηxy) . (1.22)

Definition 1.2 Let p(x, y) ≥ 0, x, y ∈ Λ, which can be regarded as rates of a cont.-time random
walk on Λ. The exclusion process (EP) on X is characterized by the jump rates

c(x, y, η) = p(x, y)η(x)(1− η(y)) , x, y ∈ Λ (1.23)

where particles only jump to empty sites (exclusion interaction). If Λ is a regular lattice and
p(x, y) > 0 only if x ∼ y are nearest neighbours, the process is called simple EP (SEP). If in
addition p(x, y) = p(y, x) for all x, y ∈ Λ it is called symmetric SEP (SSEP) and otherwise
asymmetric SEP (ASEP).

Note that particles only move and are not created or annihilated, therefore the number of
particles in the system is conserved in time. In general such IPS are called lattice gases. The
ASEP in one dimension d = 1 is one of the most basic and most studied models in IPS, a common
quick way of defining it is

10
p−→ 01 , 01

q−→ 10 (1.24)

where particles jump to the right (left) with rate p(q).
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X=Z

time

0 21−1−2−3−4 3 4

The graphical construction is analogous to the single particle process given above, with the addi-
tional constraint of the exclusion interaction.

Definition 1.3 The contact process (CP) on X is characterized by the jump rates

c(x, η) =
{

1 , η(x) = 1
λ
∑

y∼x η(y) , η(x) = 0 , x ∈ Λ . (1.25)

Particles are interpreted as infected sites which recover with rate 1 and are infected independently
with rate λ > 0 by neighbouring particles y ∼ x, to be understood w.r.t. some graph structure on
Λ (e.g. a regular lattice).

In contrast to the SEP the CP does not have a conserved quantity like the number of particles,
but it does have an absorbing state η = 0, since there is no spontaneous infection. A compact
notation for the CP on any lattice Λ is

1 1−→ 0 , 0→ 1 with rate λ
∑
y∼x

η(x) . (1.26)

The graphical construction below contains now a third independent Poisson process × ∼ PP (1)
on each line marking the recovery events. The infection events are marked by the independent
PP (λ) Poisson processes→ and←.
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X=Z

time

0 21−1−2−3−4 3 4

1.3 Semigroups and generators

Let X be a compact metric space and denote by

C(X) = {f : X → R continuous} (1.27)

the set of real-valued continuous functions, which is a Banach space with sup-norm ‖f‖∞ =
supη∈X

∣∣f(η)
∣∣. Functions f can be regarded as observables, and we are interested in their time

evolution.

Definition 1.4 For a given process η = (ηt : t ≥ 0) on X , for each t ≥ 0 we define the operator

S(t) : C(X)→ C(X) by S(t)f(η) := Eηf(ηt) . (1.28)

In general f ∈ C(X) does not imply S(t)f ∈ C(X), but all the processes we consider have this
property and are called Feller processes.

Proposition 1.3 Let η be a Feller process on X . Then the family
(
S(t) : t ≥ 0

)
is a Markov

semigroup, i.e.

(a) S(0) = Id, (identity at t = 0)

(b) t 7→ S(t)f is right-continuous for all f ∈ C(X), (right-continuity)

(c) S(t+ s)f = S(t)S(s)f for all f ∈ C(X), s, t ≥ 0, (Markov property)

(d) S(t) 1 = 1 for all t ≥ 0, (conservation of probability)

(e) S(t)f ≥ 0 for all non-negative f ∈ C(X) . (positivity)
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Proof. (a) S(0)f(η) = Eη
(
f(η0)

)
= f(η) since η0 = η which is equivalent to (a) of Def. 1.1.

(b) follows from right-continuity of ηt and continuity of f .
(c) follows from the Markov property of ηt (Def. 1.1(c))

S(t+ s)f(η) = Eηf(ηt+s) = Eη
(
E
(
f(ηt+s

∣∣Ft)) = Eη
(
Eηt
(
f(ηt+s

))
=

= Eη
(
(S(s)f)(ηt)

)
= S(t)S(s)f . (1.29)

(d) S(t) 1 = Eη
(
1ηt(X)

)
= 1 since ηt ∈ X for all t ≥ 0 (conservation of probability).

(e) is immediate by definition. 2

Theorem 1.4 Suppose (S(t) : t ≥ 0) is a Markov semigroup onC(X). Then there exists a unique
(Feller) Markov process (ηt : t ≥ 0) on X such that

Eζf(ηt) = S(t)f(ζ) for all f ∈ C(X), ζ ∈ X and t ≥ 0 . (1.30)

Proof. for a reference see [L85] Theorem I.1.5

Interpretation. The operator S(t) determines the expected value of observables f on X at time t
for a given Markov process η. Specification of all these expected values provides a full represen-
tation of η which is dual to the path measures (Pζ : ζ ∈ X), since C(X) is dual to the set P(X)
of all probability measures on X .
For an initial distribution µ ∈ P(X) we write

Pµ :=
∫
X

Pζµ(dζ) ∈ P
(
D[0,∞)

)
(1.31)

for the path measure Pµ with Pµ(η0 ∈ .) = µ. Thus

Eµf(ηt) =
∫
X
S(t)f dµ for all f ∈ C(X) . (1.32)

Definition 1.5 For a process (S(t) : t ≥ 0) with initial distribution µ we denote by µS(t) ∈
P(X) the distribution at time t, which is uniquely determined by∫

X
f d[µS(t)] :=

∫
X
S(t)f dµ for all f ∈ C(X) . (1.33)

Remark. The fact that probability measures on X can by characterised by all expected values of
functions in C(X) is a direct consequence of the Riesz representation theorem.

Since (S(t) : t ≥ 0) has the semigroup structure given in Prop. 1.3(c), in analogy with the
proof of Prop. 1.1 we expect that it has the form of an exponential generated by the linearization
S′(0), i.e.

S(t) = ” exp(tS′(0))” = Id+ S′(0) t+ o(t) with S(0) = Id , (1.34)

which is made precise in the following.
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Definition 1.6 The generator L : DL → C(X) for the process (S(t) : t ≥ 0) is given by

Lf := lim
t↘0

S(t)f − f
t

for f ∈ DL , (1.35)

where the domain DL ⊆ C(X) is the set of functions for which the limit is exists.

In general DL ( C(X) is a proper subset for processes on infinite lattices, and we will see
later that this is in fact the case even for the simplest examples SEP and CP.

Proposition 1.5 L as defined above is a Markov generator, i.e.

(a) 1 ∈ DL and L1 = 0 , (conservation of probability)

(b) for f ∈ DL, λ ≥ 0: minζ∈X f(ζ) ≥ minζ∈X(f − λLf)(ζ) , (positivity)

(c) DL is dense in C(X) and the rangeR(Id− λL) = C(X) for sufficiently small λ > 0.

Proof. (a) is immediate from the definition (1.35) and S(t) 1 = 1, the rest is rather technical and
can be found in [L85] Section I.2.

Theorem 1.6 (Hille-Yosida) There is a one-to-one correspondence between Markov generators
and semigroups on C(X), given by (1.35) and

S(t)f = etLf := lim
n→∞

(
Id− t

n
L
)−n

f for f ∈ C(X), t ≥ 0 . (1.36)

Furthermore, for f ∈ DL also S(t)f ∈ DL for all t ≥ 0 and

d

dt
S(t)f = S(t)Lf = LS(t)f , (1.37)

called the forward and backward equation, respectively.

Proof. For a reference see [L85], Theorem I.2.9.

Remarks. Properties (a) and (b) in Prop. 1.5 are related to conservation of probability S(t) 1 = 1
and positivity of the semigroup (see Prop. 1.3. By taking closures a linear operator is uniquely
determined by its values on a dense set. So property (c) in Prop. 1.5 ensures that the semigroup
S(t) is defined for all f ∈ C(X), and that Id − t

n is actually invertible for n large enough, as is
required in (1.36).
S(t) = etL is nothing more than a notation analogous to scalar exponentials, given that S(t)f is
the unique solution to the backward equation

d

dt
u(t) = Lu(t) , u(0) = f . (1.38)

In general, for Markov chains with countable X and jump rates c(η, η′) the generator is given by

Lf(η) =
∑
η′∈X

c(η, η′)
(
f(η′)− f(η)

)
. (1.39)
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Using (1.3) this follows for small t↘ 0 from

S(t)f(η) = Eη
(
f(ηt)

)
=
∑
η′∈X

Pη(ηt = η′) f(η′) =

=
∑
η′ 6=η

c(η, η′) f(η′) t+ f(η)
(

1−
∑
η′ 6=η

c(η, η′)t
)

+ o(t) (1.40)

and the definition (1.35) of L.

Example. For the simple random walk with state space X = Z we have

c(η, η + 1) = p and c(η, η − 1) = q , (1.41)

while all other transition rates vanish. The generator is given by

Lf(η) = p
(
f(η + 1)− f(η)

)
+ q
(
f(η − 1)− f(η)

)
, (1.42)

and in the symmetric case p = q it is proportional to the discrete Laplacian.

For the indicator function f = 1η : X → {0, 1} we have∫
X
S(t)f dµ =

[
µS(t)

]
(η) =: pt(η) (1.43)

for the distribution at time t with p0(η) = µ(η). Using this and (1.39) we get for the right-hand
side of (1.38) for all η ∈ X∫

X
LS(t)1ηdµ =

∑
ζ∈X

µ(ζ)
∑
ζ′∈X

c(ζ, ζ ′)
(
S(t)1η(ζ ′)− S(t)1η(ζ)

)
=

=
∑
ζ∈X

[
µS(t)

]
(ζ)
(
c(ζ, η)− 1η(ζ)

∑
ζ′∈X

c(ζ, ζ ′)
)

=

=
∑
ζ∈X

pt(ζ) c(ζ, η)− pt(η)
∑
ζ′∈X

c(η, ζ ′) . (1.44)

In summary we get

d

dt
pt(η) =

∑
η′∈X

(
pt(η′) c(η′, η)− pt(η) c(η, η′)

)
, p0(η) = µ(η) . (1.45)

This is called the master equation, with intuitive gain and loss terms into state η on the right-hand
side. It makes sense only for countable X , and in that case it is actually equivalent to (1.38), since
the indicator functions form a basis of C(X).

For IPS (with possibly uncountable X) we can formally write down similar expressions. For
a general lattice gas (e.g. SEP) we have

Lf(η) =
∑
x,y∈Λ

c(x, y, η)
(
f(ηxy)− f(η)

)
(1.46)

and for pure reaction systems like the CP

Lf(η) =
∑
x∈Λ

c(x, η)
(
f(ηx)− f(η)

)
. (1.47)

For infinite lattices Λ convergence of the sums is an issue and we have to find a proper domain DL
of functions f for which they are finite.
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Definition 1.7 For X = {0, 1}Λ, f ∈ C(X) is a cylinder function if there exists a finite subset
∆ ⊆ Λ such that f(ηx) = f(η) for all x 6∈ ∆, η ∈ X , i.e. f depends only on a finite set of
coordinates of a configuration. We write C0(X) ⊆ C(X) for the set of all cylinder functions.

Examples. The indicator function 1η is in general not a cylinder function (only on finite lattices),
whereas the local particle number η(x) or the product η(x)η(x + y) are. These functions are
important observables, and their expectations correspond to particle densities

ρ(t, x) = Eµ
(
ηt(x)

)
(1.48)

and two-point correlation functions

ρ(t, x, x+ y) = Eµ
(
ηt(x)ηt(x+ y)

)
. (1.49)

For f ∈ C0(X) the sum (1.47) contains only finitely many non-zero terms, but (1.46) might still
diverge, corresponding to inifintely many particle exchanges attempted in a finite set of sites. This
is not the case for the SEP since particles only jump to neighbouring sites, but for more general
processes we have to restrict the jump rates to be sufficiently local.

Proposition 1.7 Suppose that

sup
y∈Λ

∑
x∈Λ

sup
η∈X

c(x, y, η) <∞ . (1.50)

Then the closure of the operator L defined in (1.46), as well as (1.47), is uniquely defined by its
values on C0(X) and is a Markov generator.

Proof. see [L85], Theorem I.3.9

Generators are linear operators and it follows directly from Prop. 1.5 that the sum of two or more
generators is again a Markov generator. In that way we can define more general processes, e.g. the
sum of (1.46) and (1.47) would define a contact process with nearest-neighbour particle motion.

1.4 Stationary measures and reversibility

Definition 1.8 A measure µ ∈ P(X) is stationary or invariant if µS(t) = µ or, equivalently,∫
X
S(t)f dµ =

∫
X
f dµ or shorter µ

(
S(t)f

)
= µ(f) for all f ∈ C(X) . (1.51)

To simplify notation here and in the following we will often use the standard notation µ(f) =∫
X f dµ for integration. The set of all invariant measures of a process is denoted by I. A measure
µ is called reversible if

µ
(
fS(t)g

)
= µ

(
gS(t)f

)
for all f, g ∈ C(X) . (1.52)

Taking g = 1 in (1.52) we see that every reversible measure is also stationary. Stationarity of
µ implies that

Pµ(η. ∈ A) = Pµ(ηt+. ∈ A) for all t ≥ 0, A ∈ F , (1.53)
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using the Markov property (Def. 1.1(c)) with notation (1.31) and (1.51). Using ηt ∼ µ as initial
distribution, the definition of a stationary process can be extended to negative times on the path
space D(−∞,∞). If µ is also reversible, this implies

Pµ(ηt+. ∈ A) = Pµ(ηt−. ∈ A) for all t ≥ 0, A ∈ F , (1.54)

i.e. the process is time-reversible. More details on this are given at the end of this section.

Proposition 1.8 Consider a Feller process on a compact state space X with generator L. Then

µ ∈ I ⇔ µ(Lf) = 0 for all f ∈ C0(X) , (1.55)

and similarly

µ is reversible ⇔ µ(fLg) = µ(gLf) for all f, g ∈ C0(X) . (1.56)

Proof. Follows from the definitions of semigroup/generator and µ(fn)→ µ(f) if ‖fn−f‖∞ → 0
by continuity of fn, f and compactness of X . 2

Analogous to the master equation (and using the same notation), we can get a meaningful re-
lation for Markov chains by inserting indicator functions f = 1η and g = 1η′ for η′ 6= η in the
stationarity condition (1.55). This yields with (1.39)

µ(L1η) =
∑
η′∈X

(
µ(η′) c(η′, η)− µ(η) c(η, η′)

)
= 0 for all η ∈ X , (1.57)

so that µ is a stationary solution of the master equation (1.45). A short computation yields

µ
(
1ηL1η′

)
=
∑
ζ∈X

µ(ζ)1η(ζ)
∑
ξ∈X

c(ζ, ξ)
(
1η′(ξ)− 1η′(ζ)

)
= µ(η) c(η, η′) . (1.58)

Inserting this into the reversibility condition (1.56) on both sides we get

µ(η′) c(η′, η) = µ(η) c(η, η′) for all η, η′ ∈ X, η 6= η′ , (1.59)

which are called detailed balance relations. So if µ is reversible, every individual term in the sum
(1.57) vanishes. On the other hand, not every solution of (1.57) has to fulfill (1.59), i.e. there are
stationary measures which are not reversible. The detailed balance equations are typically easy to
solve for µ, so if reversible measures exist they can be found as solutions of (1.59).

Examples. Consider the simple random walk on the torus X = Z/LZ, moving with rate p to the
right and q to the left. The uniform measure µ(η) = 1/L is an obvious solution to the stationary
master equation (1.57). However, the detailed balance relations are only fulfilled in the symmetric
case p = q. For the simple random walk on the infinite state space X = Z the constant solution
cannot be normalized, and in fact (1.57) does not have a normalized solution.
Another important example is a birth-death chain with state space X = N and jump rates

c(η, η + 1) = α , c(η + 1, η) = β for all η ≥ 1 . (1.60)

In this case the detailed balance relations have the solution

µ(η) = (α/β)η . (1.61)
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For α < β this can be normalized, yielding a stationary, reversible measure for the process.

In particular not every Markov chain has a stationary distribution. If X is finite there exists
at least one stationary distribution, as a direct result of linear algebra (Perron-Frobenius theorem).
For IPS we have compact state spaces X , for which a similar result holds.

Theorem 1.9 For every Feller process with compact state space X we have:

(a) I is non-empty, compact and convex.

(b) Suppose the weak limit µ = lim
t→∞

πS(t) exists for some initial distribution π ∈ P(X), i.e.

πS(t)(f) =
∫
X
S(t)f dπ → µ(f) for all f ∈ C(X) , (1.62)

then µ ∈ I.

Proof. (a) Convexity of I follows directly from the fact that a convex combination of two proba-
bility measures µ1, µ2 ∈ P(X) is again a probability measure,

λµ1 + (1− λ)µ2 ∈ P(X) for all λ ∈ [0, 1] , (1.63)

and that the stationarity condition (1.55) is linear in µ.
I is a closed subset of P(X), i.e.

µ1, µ2, . . . ∈ I, µn → µ weakly, implies µ ∈ I , (1.64)

again since (1.55) is linear (and in particular continuous) in µ. Under the topology of weak con-
vergence P(X) is compact since X is compact, and therefore also I ⊆ P(X) is compact.
Non-emptyness: By compactness of P(X) there exists a convergent subsequence of µS(t) for
every µ ∈ P(X). With (b) the limit is in I.
(b) µ = limt→∞ πS(t) ∈ I since for all f ∈ C(X),

µ(S(s)f) = lim
t→∞

∫
X
S(s)f d[πS(t)] = lim

t→∞

∫
X
S(t)S(s)f dπ =

= lim
t→∞

∫
X
S(t+ s)f dπ = lim

t→∞

∫
X
S(t)f dπ =

= lim
t→∞

∫
X
f d[πS(t)] = µ(f) . (1.65)

2

By the Krein Milman theorem, statement (a) implies that I is the closed convex hull of its extreme
points Ie. Elements of Ie are called extremal invariant measures.

What about uniqueness of stationary distributions?

Definition 1.9 A Markov process (Pη : η ∈ X) is called irreducible, if for all η, η′ ∈ X

Pη(ηt = η′) > 0 for some t ≥ 0 . (1.66)
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So an irreducible MP can sample the whole state space, and if X is countable this implies that it
has at most one stationary distribution. For IPS with uncountable state space this does in general
not hold, and non-uniqueness can be the result of absorbing states (e.g. CP), or the presence of
conservation laws on infinite lattices (e.g. SEP) as is discussed later.

Definition 1.10 A Markov process with semigroup (S(t) : t ≥ 0) is ergodic if

(a) I = {µ} is a singleton, and (unique stationary measure)

(b) lim
t→∞

πS(t) = µ for all π ∈ P(X) . (convergence to equilibrium)

Phase transition are related to the breakdown of ergodicity in irreducible systems, in particular
non-uniqueness of stationary measures.

Proposition 1.10 An irredubible Markov chain with finite state space X is ergodic.

Proof. A result of linear algebra, in particular the Perron-Frobenius theorem: The finite matrix
c(η, η′) has eigenvalue 0 with unique eigenvector µ.

Therefore, mathematically phase transitions occur only in infinite systems. Infinite systems
are often interpreted/studied as limits of finite systems, which show traces of a phase transition
by divergence or non-analytic behaviour of certain observables. In terms of applications, infinite
systems are approximations or idealizations of real systems which may large but are always finite,
so results have to interpreted with care.
There is a well developed mathematical theory of phase transitions for reversible systems pro-
vided by the framework of Gibbs measures (see e.g. [G88]). But for IPS which are in general
non-reversible, the notion of phase transitions is not well defined and we will try to get an under-
standing by looking at several examples.

Further remarks on reversibility.
We have seen before that a stationary process can be extended to negative times on the path space
D(−∞,∞). A time reversed stationary process is again a stationary Markov process and the time
evolution is given by adjoint operators as explained in the following.

Let µ ∈ P(X) be the stationary measure of the process (S(t) : t ≥ 0) and consider

L2(X,µ) =
(
f ∈ C(X) : µ(f2) <∞

)
(1.67)

the set of square integrable test functions. With the inner product 〈f, g〉 = µ(fg) the closure
of this (w.r.t. the metric given by the inner product) is a Hilbert space, and the generator L and
the S(t) are bounded linear operators on L2(X,µ). They are uniquely defined by their values on
C(X), which is a dense subset of the closure of L2(X,µ). Therefore they have an adjoint operator
L∗ and S(t)∗, respectively, uniquely defined by

〈S(t)∗f, g〉 = µ(gS(t)∗f) = µ(fS(t)g) = 〈f, S(t)g〉 for all f, g ∈ L2(X,µ) , (1.68)

and analogously for L∗. To compute the action of the adjoint operator note that for all g ∈
L2(X,µ)

µ(gS(t)∗f) =
∫
X
fS(t)g dµ = Eµ

(
f(η0) g(ηt)

)
= Eµ

(
E
(
f(η0)

∣∣ηt)g(ηt)
)

=

=
∫
X

E
(
f(η0)

∣∣ηt = ζ
)
g(ζ)µ(dζ) = µ

(
g E
(
f(η0)

∣∣ηt = .
))

, (1.69)
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where the identity between the first and second line is due to µ being the stationary measure. Since
this holds for all g it implies that

S(t)∗f(η) = E
(
f(η0)

∣∣ηt = η
)
, (1.70)

so the adjoint operator describes the evolution of the time-reversed process. Similarly, it can be
shown that the adjoint generator L∗ is actually the generator of the adjoint semigroup S(t)∗ :
t ≥ 0) (modulo some technicalities with domains of definition). The process is time-reversible if
L = L∗ and therefore reversibility is equivalent to L and S(t) being self-adjoint as in (1.52) and
(1.56).
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2 The asymmetric simple exclusion process

As given in Def. 1.2 an exclusion process (EP) has state space X = {0, 1}Λ on a lattice Λ. The
process is characterized by the generator

Lf(η) =
∑
x,y∈Λ

c(x, y, η)
(
f(ηxy)− f(η)

)
(2.1)

with jump rates

c(x, y, η) = p(x, y) η(x)
(
1− η(y)

)
. (2.2)

2.1 Stationary measures and conserved quantities

Definition 2.1 For a function ρ : Λ → [0, 1] the product measure νρ on X is defined by the
marginals

νρ
(
η(x1) = n1, . . . , η(xk) = nk

)
=

k∏
i=1

ν1
ρ(xi)

(
η(xi) = ni

)
(2.3)

for all k, xi 6= xj and ni ∈ {0, 1}, where the single-site marginals are given by

ν1
ρ(xi)

(
η(xi) = 1

)
= ρ(xi) and ν1

ρ(xi)

(
η(xi) = 0

)
= 1− ρ(xi) . (2.4)

In other words the η(x) are independent Bernoulli rvs with local density ρ(x) = ν
(
η(x)

)
.

Theorem 2.1 (a) Suppose p(., .)/C is doubly stochastic for some C > 0, i.e.∑
y′∈Λ

p(x, y′) =
∑
x′∈Λ

p(x′, y) = C for all x, y ∈ Λ , (2.5)

then νρ ∈ I for all constants ρ ∈ [0, 1] (uniform density).

(b) If λ : Λ→ [0,∞) fulfilles λ(x) p(x, y) = λ(y) p(y, x) ,

then νρ ∈ I with density ρ(x) =
λ(x)

1 + λ(x)
, x ∈ Λ.

Proof. For stationarity we have to show that νρ(Lf) = 0 for all f ∈ C0(X). By linearity, it is
enough to check this for simple cylinder functions

fA(η) =
{

1 , η(x) = 1 for eachx ∈ A
0 , otherwise

(2.6)

for all finite A ⊆ Λ. Then

νρ(LfA) =
∑
x,y∈Λ

p(x, y)
∫
X
η(x)

(
1− η(y)

)(
f(ηxy)− f(η)

)
dνρ , (2.7)

and for x 6= y the integral terms in the sum look like∫
X
f(η) η(x)

(
1− η(y)

)
dνρ =

 0 , y ∈ A
(1− ρ(y))

∏
u∈A∪{x}

ρ(u) , y 6∈ A

∫
X
f(ηxy) η(x)

(
1− η(y)

)
dνρ =

 0 , x ∈ A
(1− ρ(y))

∏
u∈A∪{x}\{y}

ρ(u) , x 6∈ A . (2.8)
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This follows from the fact that the integrands take values only in {0, 1} and the rhs is basically the
probability of the integrand being 1. Then re-arranging the sum we get

νρ(LfA) =
∑
x∈A
y 6∈A

[
ρ(y)

(
1− ρ(x)

)
p(y, x)− ρ(x)

(
1− ρ(y)

)
p(x, y)

] ∏
u∈A\{x}

ρ(u) . (2.9)

Under the assumption of (b) the square bracket vanishes for all x, y in the sum, since

ρ(x)
1− ρ(x)

p(x, y) =
ρ(y)

1− ρ(y)
p(y, x) . (2.10)

For ρ(x) ≡ ρ in (a) we get

νρ(LfA) = ρ|A|(1− ρ)
∑
x∈A
y 6∈A

[
p(y, x)− p(x, y)

]
= 0 (2.11)

due to p(., .) being proportional to a doubly-stochastic. 2

For the ASEP (1.24) in one dimension with Λ = Z we have:

• Theorem 2.1(a) holds with C = p + q and therefore νρ ∈ I for all ρ ∈ [0, 1]. These
measures have homogeneous density; they are reversible iff p = q, which is immediate
from time-reversibility.

• Also Theorem 2.1(b) is fulfilled with λ(x) = c (p/q)x for all c > 0, since
c (p/q)x p = c (p/q)x+1 q . Therefore

νρ ∈ I with ρ(x) =
c(p/q)x

1 + c(p/q)x
for all c ∈ Λ . (2.12)

For p 6= q these are not homogeneous and since e.g. for p > q the density of particles
(holes) is exponentially decaying as x→ ±∞ they concentrate on configurations such that∑

x<0

η(x) <∞ and
∑
x≥0

(
1− η(x)

)
<∞ . (2.13)

These are called blocking measures and turn out to be reversible also for p 6= q.

• There are only countably many configurations with property (2.13), forming the disjoint
union of

Xn =
{
η :
∑
x<n

η(x) =
∑
x≥n

(
1− η(x)

)
<∞

}
, n ∈ Λ . (2.14)

Conditioned on Xn, the ASEP is an irreducible MC with unique stationary distribution
νn := νρ(.|Xn). Liggett (’76) showed that all extremal measures of the ASEP are

Ie =
{
νρ : ρ ∈ [0, 1]

}
∪
{
νn : n ∈ Z

}
. (2.15)

To stress the role of the boundary conditions let us consider another example. For the ASEP on a
one-dimensional torus ΛL = Z/LZ we have:
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• Theorem 2.1(a) still applies so νρ ∈ I for all ρ ∈ [0, 1]. But part (b) does no longer hold
due to periodic boundary conditions, so there are no blocking measures.
Under νρ the total number of particles in the system is a binomial rv

ΣL(η) :=
∑
x∈Λ

η(x) ∼ Bi(L, ρ) where νρ
(
ΣL = N

)
=
(
L

N

)
ρN (1− ρ)L−N .(2.16)

The {νρ : ρ ∈ [0, 1]} are called grand-canonical measures/ensemble.

• If we fix the number of particles at time 0, i.e. ΣL(η0) = N , we condition the ASEP on

XL,N =
{
η : ΣL(η) = N

}
( XL . (2.17)

For each N ∈ N, the process is irreducible on XL,N and |XL,N | =
(
L
N

)
is finite. Therefore

it has a unique stationary measure πL,N on XL,N and the {πL,N : N = 0, . . . , L} are called
canonical measures/ensemble.

Definition 2.2 h ∈ C(X) is a conserved quantity for a process η = (ηt : t ≥ 0) if

h(ηt) = h(η0) for all t ≥ 0 . (2.18)

Remarks. For Feller processes (2.18) imlies

S(t)h(η) = S(t)∗h(η) = h(η) for all η ∈ X . (2.19)

If h ∈ C0(X) (e.g. on finite lattices) then this is equivalent to

Lh(η) = L∗h(η) = 0 for all η ∈ X , (2.20)

where S(t) and L are semigroup and generator of η. If h is conserved then so is g ◦ h for all
g : R→ R.

Proposition 2.2 Suppose that for a Feller process µ ∈ I, h ∈ C(X) is conserved and g : R →
[0,∞) is such that g ◦ h ∈ C(X) and µ(g ◦ h) = 1. Then (g ◦ h)µ ∈ I.

Proof. For all t ≥ 0 and f ∈ C(X) we have

(g ◦ h)µ(S(t)f) =
∫
X

(S(t)f)(η) g(h(η))µ(dη) =
∫
X
f S(t)∗g(h) dµ = (g ◦ h)µ(f) ,

and therefore (g ◦ h)µ ∈ I. 2

We can apply this result to characterize the stationary measures πL,N for the ASEP on XL,N

given above. For all ρ ∈ (0, 1) we can condition the product measures νρ on XL,N , i.e. define

π̃L,N := νρ(. |ΣL = N) =
1ΣL=N νρ(

L
N

)
ρN (1− ρ)L−N

. (2.21)

Since with ΣL ∈ C(X) also 1ΣL=N : X → {0, 1} is conserved, π̃L,N as defined above is
stationary for all N ∈ N. In fact,

π̃L,N (η) =

{
0 , η 6∈ XL,N

ρN (1−ρ)L−N

(LN)ρN (1−ρ)L−N
= 1/

(
L
N

)
, η ∈ XL,N

, (2.22)
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so it concentrates on XL,N and it is uniform, in particular independent of ρ. Since the stationary
measure on XL,N is unique, we have π̃L,N = πL,N .
We can write the grand-canonical product measures νρ as convex combinations

νρ =
L∑

N=0

(
L

N

)
ρN (1− ρ)L−NπL,N , (2.23)

but this is not possible for the πL,N since they concentrate on particular subsets XL,N ( XL.
Thus for the ASEP on ΛL = Z/LZ we have

Ie = {πL,N : N = 0, . . . , L} (2.24)

given by the canonical measures. So for each value of the conserved quantity ΣL we have an
extremal stationary measure and these are the only elements of Ie. This is the appropriate notion
of uniqueness of stationary measures for systems with a conserved quantity on finite lattices.

For the ASEP on the infinite lattice Λ = Z uniqueness would correspond to Ie =
{
νρ :

ρ ∈ [0, 1]
}

, since for every translation invariant distribution the actual number of particles will be
infinity. But we have seen in (2.15) that this is not the case, since we also have extremal blocking
measures. Therefore we have non-uniqueness of stationary measures which is called a phase
transition. Since the blocking measures are also not translation invariant but the dynamics of the
system is, the nature or type of this phase transition is called (spontaneous) symmetry breaking.

Later we will see other types of phase transitions, and examples which are a bit more exciting
than this one.

General remarks on symmetries.

Definition 2.3 A bijection τ : X → X is a symmetry for a Feller process (S(t) : t ≥ 0) if(
S(t)f

)
◦ τ = S(t)(f ◦ τ) for all f ∈ C(X) and t ≥ 0 . (2.25)

Note that this is equivalent to

(Lf) ◦ τ = L(f ◦ τ) for all f ∈ C0(X) (2.26)

or Pτη(η. ∈ A) = Pη(τη. ∈ A) for all space-time events A ∈ F on path space D[0,∞). An
example we have seen above is translation invariance, i.e. shifting the initial condition by a lattice
spacing and then running the process is the same as running the process and then shifting the path.

Proposition 2.3 Symmetries are groups, i.e. if τ, τ ′ are symmetries for (S(t) : t ≥ 0) so is τ ◦ τ ′
and the inverse τ−1.

Proof. Let τ, τ ′ be symmetries for (S(t) : t ≥ 0). Then for all f ∈ C(X),

(S(t)f) ◦ (τ ◦ τ ′) =
(
(S(t)f) ◦ τ

)
◦ τ ′ =

(
S(t)(f ◦ τ)

)
◦ τ ′ = S(t)(f ◦ τ ◦ τ ′) . (2.27)

Further,(
S(t)(f ◦ τ−1)

)
◦ τ = S(t)(f ◦ τ−1 ◦ τ) = S(t)f (2.28)

and therefore

S(t)(f ◦ τ−1) =
(
S(t)(f ◦ τ−1)

)
◦ τ ◦ τ−1 =

(
S(t)f

)
◦ τ−1 . (2.29)

2

For example the group corresponding to translation invariance of the one-dimensional ASEP
is the set of lattice shifts (τx : x ∈ Z) where (τxη)(y) = η(y − x).
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Proposition 2.4 Let τ be a symmetry for (S(t) : t ≥ 0) and µ ∈ I. Then µ ◦ τ ∈ I.

Proof. Since with τ also τ−1 is a symmetry, we have for all f ∈ C(X) and t ≥ 0

(µ ◦ τ)(S(t)f) =
∫
X

(S(t)f)(η) (µ ◦ τ)(dη) =
∫
X

(S(t)f)(τ−1ζ)µ(dζ) =

=
∫
X

(
S(t)(f ◦ τ−1)

)
(ζ)µ(dζ) =

∫
X
f ◦ τ−1 dµ = (µ ◦ τ)(f) , (2.30)

where we have used a change of variable ζ = τη. Therefore µ ◦ τ ∈ I. 2

For example for product measures νρ with constant density ρ ∈ [0, 1] we have νρ ◦ τx = νρ
for all lattice shifts τx so these measures are translation invariant. On the other hand the blocking
measures have x-dependent densities and are not translation invariant, but of course I contains all
translates of these measures.
There are other symmetries of the ASEP on Z, for example particle-hole and space inversion, also
called CP-invariance, given by

τη(x) = 1− η(−x) . (2.31)

Here νρ ◦ τ = ν1−ρ and νn ◦ τ = ν−n for the blocking measures, so only two elements of I,
ν1/2 and the blocking measure ν0 are invariant under τ . This is, however, not very suprising, since
CP-invariance is already broken by the conservation law on a finite lattice. On the state space
XL,N we have for the number of particles

(ΣL ◦ τ)(η) = N − ΣL(η) (2.32)

which is in general different from ΣL(η). This is in contrast to translation invariance, for which
ΣL ◦ τx = ΣL for finite systems. Therefore the breaking of translation invariance is really a result
of the infinite lattice and therefore connected to a phase transition.

In general, if τ is a symmetry for (S(t) : t ≥ 0) which is not already broken by a conservation
law, and I contains measures µ for which µ ◦ τ 6= µ the system is said to exhibit (spontaneous)
symmetry breaking. Note that by Prop. 2.4 symmetry breaking always implies non-uniqueness of
stationary measures and is therefore a phase transition.
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2.2 Currents and conservation laws

Consider the one-dimensional ASEP on Λ = Z or ΛL = Z/LZ. Remember the forward equation
from Theorem 1.6

d

dt
S(t)f = S(t)Lf which holds for all f ∈ C0(X) . (2.33)

Integrating w.r.t. the initial distribution µ the equation becomes

d

dt
µ
(
S(t)f

)
= µ

(
S(t)Lf

)
= (µS(t))(Lf) . (2.34)

Using f(η) = η(x) and writing µt := µS(t) for the distribution at time t we have

µt(f) = Eµ
(
ηt(x)

)
=: ρ(x, t) (2.35)

for the particle density at site x at time t. Note that η(x) is a cylinder function and we have

(Lf)(η) =
∑
y∈Λ

(
pη(y)

(
1− η(y + 1)

)
+ qη(y + 1)

(
1− η(y)

))(
f(ηy,y+1)− f(η)

)
=

= −pη(x)
(
1− η(x+ 1)

)
+ qη(x+ 1)

(
1− η(x)

)
−qη(x)

(
1− η(x− 1)

)
+ pη(x− 1)

(
1− η(x)

)
. (2.36)

Taking expectations w.r.t. µt and writing

µt
(
η(x)(1− η(x+ 1))

)
= µt(1x0x+1) (2.37)

we get with (2.33)

d

dt
ρ(x, t) = pµt(1x−10x) + qµt(0x1x+1)︸ ︷︷ ︸

gain

−pµt(1x0x+1)− qµt(0x−11x)︸ ︷︷ ︸
loss

. (2.38)

Definition 2.4 The average current of particles across the directed edge (x, x+ 1) is given by

j(x, x+ 1, t) := µt
(
c(x, y, η)− c(y, x, η)

)
. (2.39)

For the ASEP this is non-zero only across nearest-neighbour bonds and given by

j(x, x+ 1, t) = pµt(1x0x+1)− qµt(0x1x+1) . (2.40)

Then we can write, using the lattice derivative∇xj(x−1, x, t) = j(x, x+1, t)− j(x−1, x, t),

d

dt
ρ(x, t) +∇xj(x− 1, x, t) = 0 (2.41)

which is the (lattice) continuity equation. It describes the time evolution of the density ρ(x, t)
in terms of higher order (two-point) correlation functions. The form of this equation implies that
the particle density is conserved, i.e. on the finite lattice ΛL = Z/LZ with periodic boundary
conditions we have

d

dt

∑
x∈ΛL

ρ(x, t) = −
∑
x∈ΛL

∇xj(x− 1, x, t) = 0 . (2.42)
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In general on any finite subset A ∈ Λ

d

dt

∑
x∈A

ρ(x, t) = −
∑
x∈∂A

∇xj(x− 1, x, t) , (2.43)

where ∂A is the boundary of A. The other terms in the telescoping sum on the right-hand side
cancel, which is a primitive version of Gauss’ integration theorem (we have not been very careful
with the notation at the boundary here).

In the special case p = q (2.41) simplifies significantly. Let’s take p = q = 1, then adding and
subracting an auxiliary term we see

j(x, x+ 1, t) = µt(1x0x+1) + µt(1x1x+1)− µt(1x1x+1)− µt(0x1x+1) =
= µt(1x)− µt(1x+1) = ρ(x, t)− ρ(x+ 1, t) = −∇xρ(x, t) . (2.44)

So the current is given by the lattice derivative of the density, and (2.41) turns into a closed equation

d

dt
ρ(x, t) = ∆xρ(x, t) = ρ(x− 1, t)− 2ρ(x, t) + ρ(x+ 1, t) . (2.45)

Thus the particle density of the SSEP behaves like the probability density of a single simple ran-
dom walk with jump rates p = q = 1.

To describe this behaviour on large scales we scale the lattice constant by a factor of 1/L and
embed it in the continuum, i.e. 1

LΛ ⊆ R and 1
LΛL ⊆ T = R/[0, 1) for the torus. Using the

macroscopic space variable y = x/L ∈ R,T we define

ρ̃(y, t) := ρ
(
[yL], t

)
(2.46)

for the macroscopic density field and use a Taylor expansion

ρ(x± 1, t) = ρ̃(y ± 1
L , t) = ρ̃(y, t)± 1

L∂yρ̃(y, t) + 1
2L2∂

2
y ρ̃(y, t) + o( 1

L2 ) (2.47)

to compute the lattice Laplacian in (2.45). This leads to

∆xρ(x, t) =
1
L2
∂2
y ρ̃(y, t) , (2.48)

since first order terms vanish due to symmetry. In order to get a non-degenerate equation in the
limit L→∞, we have to scale time as s = t/L2. This corresponds to speeding up the process by
a factor of L2, in order to see diffusive motion of the particles on the scaled lattice. Using both in
(2.45) we obtain in the limit L→∞

∂sρ̃(y, s) = ∂2
y ρ̃(y, s) , (2.49)

the heat equation, describing the diffusion of particles on large scales.
If we use a stationary measure µt = µ in the continuity equation (2.41) we get

0 =
d

dt
µ(1x) = j(x− 1, x)− j(x, x+ 1) , (2.50)

which implies that the stationary current j(x, x + 1) := pµ(1x0x+1) − qµ(0x1x+1) is site-
independent. Since we know the stationary measures for the ASEP from the previous section
we can compute it explicitly. For the homogeneous product measure µ = νρ we get

j(x, x+ 1) := pνρ(1x0x+1)− qνρ(0x1x+1) = (p− q)ρ(1− ρ) = f(ρ) , (2.51)
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which is actually just a function of the total particle density ρ ∈ [0, 1]. We can use this to arrive at
a scaling limit of the continuity equation for the asymmetric case p 6= q. We use the same space
scaling y = x/L as above and write

∇xj(x− 1, x, t) = 1
L∂y j̃(y −

1
L , y, t) + o( 1

L) , (2.52)

with a similar notation j̃ as for ρ̃ above. In the asymmetric case the first order terms in the spatial
derivative do not vanish and we have to scale time as s = t/L, speeding up the process only by a
factor L to see ballistic motion. In the limit L→∞ this leads to the conservation law (PDE)

∂sρ̃(y, s) + ∂y j̃(y, s) = 0 , (2.53)

where we have redefined j̃ as

j̃(y, s) := lim
L→∞

j
(
[yL]− 1, [yL], sL) . (2.54)

Since we effectively take microscopic time t = sL → ∞ in that definition, it is plausible to
assume that

j̃(y, s) = f
(
ρ(y, s)

)
(2.55)

is in fact the stationary current corresponding to the local density ρ(y, s). This is equivalent to
the process becoming locally stationary in the limit L → ∞, the only (slowly) varying quantity
remaining on a large scale is the macroscopic density field. Local stationarity (also called local
equilibrium) implies for example

µS(sL)(1[yL]0[yL]+1)→ νρ(y,s)(1001) = ρ(y, s)
(
1− ρ(y, s)

)
as L→∞ . (2.56)

In the following we write again ρ̃ = ρ to avoid notational overload, the notation was only intro-
duced to make the scaling argument clear.

Definition 2.5 The ASEP on 1
LZ or 1

LZ/LZ with initial distribution µ, such that

ρ(y, 0) = lim
L→∞

µ(1[yL]) (2.57)

exists, is in local equilibrium if

µS(Ls)τ−[yL] → νρ(y,s) weakly (locally), as L→∞ , (2.58)

where ρ(y, s) is a solution of the Burgers equation

∂sρ(y, s) + ∂yf
(
ρ(y, s)

)
= 0 where f(ρ) = (p− q)ρ(1− ρ) , (2.59)

with initial condition ρ(y, 0).

By local weak convergence we mean

µS(Ls)τ−[yL](f)→ νρ(y,s)(f) for all f ∈ C0(X) . (2.60)

Local equilibrium has been established rigorously for the ASEP in a so-called hydrodynamic limit,
the formulation of this result requires the following definition.
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Definition 2.6 For each t ≥ 0 we define the empirical measure

πLt :=
1
L

∑
x∈Λ

ηt(x)δx/L ∈M(R) orM(T) , (2.61)

and the measure-valued process (πLt : t ≥ 0) is called the empirical process.

The πLt describe the discrete particle densities on R, T. They are (random) measures depending
on the configurations ηt and for A ⊆ R,T we have

πLt (A) =
1
L

(
# of particles in A ∩ 1

LΛ at time t
)
. (2.62)

Theorem 2.5 Consider the ASEP (ηt : t ≥ 0) on the lattice 1
LZ or 1

LZ/LZ with initial distribu-
tion µ which has a limiting density ρ(y, 0) analogous to (2.57). Then as L→∞

πLsL → ρ(., s) dy weakly, in probability , (2.63)

where ρ(y, s) is a solution of (2.59) on R or T with initial condition ρ(y, 0).

Here weak convergence means that for every g ∈ C0(R) continuous with compact support

πLsL(g) =
1
L

∑
x∈Λ

g(x/L) ηt(x)→
∫

R,T
g(y) ρ(y, s) dy . (2.64)

The left-hand side is still random, and convergence holds in probability, i.e. for all ε > 0

Pµ
(∣∣∣ 1
L

∑
x∈Λ

g(x/L) ηt(x)−
∫

R,T
g(y) ρ(y, s) dy

∣∣∣ > ε
)
→ 0 as L→∞ . (2.65)

The fact that the limiting macroscopic density is non-random can be understood as a time-dependent
version of the law of large numbers.
The proof is far beyond the scope of this course. Hydrodynamic limits are still an area of major
research and technically quite involved. Relevant results can be found in [KL99] Chapter 8. The
above result was first proved in ’81 by Rost for the TASEP (q = 0), and in ’91 by Rezakhanlou
for a more general class of models.

2.3 Hydrodynamics and the dynamic phase transition

In the previous section we were often talking about solutions to the Burgers equation (2.59), not
mentioning that it is far from clear wether that equation actually has a unique solution. A useful
method to solve a conservation law of the form

∂tρ(x, t) + ∂xf(ρ(x, t)) = 0 , ρ(x, 0) = ρ0(x) (2.66)

with general flux function f are characteristic equations.

Definition 2.7 A function x : R→ R,T is a characteristic for the PDE (2.66) if

d

dt
ρ
(
x(t), t

)
= 0 for all t ≥ 0 , (2.67)

i.e. the solution is constant along x(t) and given by the initial conditions, ρ(x(t), t) = ρ0(x(0)).
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Using the PDE (2.66) to compute the total derivative we get

d

dt
ρ
(
x(t), t

)
= ∂tρ

(
x(t), t

)
+ ∂xρ

(
x(t), t

)
ẋ(t) =

= −f ′
(
ρ(x(t), t)

)
∂xρ(x(t), t) + ∂xρ

(
x(t), t

)
ẋ(t) = 0 , (2.68)

which implies that

ẋ(t) = f ′
(
ρ(x(t), t)

)
= f ′

(
ρ0(x(0))

)
(2.69)

is a constant given by the derivative of the flux function. So the characteristic velocity u is given
by the local density through the function

u(ρ) = f ′(ρ) = (p− q)ρ(1− ρ) . (2.70)

It turns out that a general theory can be based on understanding the solutions to the Riemann
problem, which is given by step initial data

ρ0(x) =
{
ρl , x ≤ 0
ρr , x > 0

. (2.71)

Discontinuous solutions of a PDE have to be understood in a weak sense.

Definition 2.8 ρ : R × [0,∞) → R is a weak solution to the conservation law (2.66) if ρ ∈
L1
loc(R× [0,∞)) and for all φ ∈ C1(R× [0,∞) with compact support and φ(x, 0) = 0,∫

R

∫ ∞
0

∂tφ(x, t)ρ(x, t) dx dt+
∫

R

∫ ∞
0

f
(
ρ(x, t)

)
∂xφ(x, t) dx dt = 0 . (2.72)

L1
loc means that for all compact A ⊆ R× [0,∞) ,

∫
A |ρ(x, t)| dx dt <∞ .

The characteristics do not determine a unique solution everywhere, so weak solutions are not
unique. However, for given initial density profile, the IPS shows a unique time evolution on the
macroscopic scale. This unique admissible solution can be recovered from the variety of weak
solutions to (2.66) by several regularization methods. The viscosity method is directly related to
the derivation of the continuum equation in a scaling limit. For every ε > 0 consider the equation

∂tρ
ε(x, t) + ∂xf(ρε(x, t)) = ε∂2

xf(ρε(x, t)) , ρε(x, 0) = ρ0(x) . (2.73)

This is a parabolic equation and has a unique smooth global solution for all t > 0, even when
starting from non-smooth initial data ρ0. This is due to the regularizing effect of the diffusive
term (confer e.g. to the heat equation starting with initial condition δ0(x)), which captures the
fluctuations in large finite IPS. The term can be interpreted as a higher order term of order 1/L2

which disappears in the scaling limit from a particle system. Then one can define the unique
admissible weak solution to (2.66) as

ρ(., t) := lim
ε→0

ρε(., t) in L1
loc-sense as above for all t > 0 . (2.74)

It can be shown that this limit exists, and further that for one-dimensional conservation laws the
precise form of the viscosity is not essential, i.e. one could also add the simpler term ε∂2

xρ
ε(x, t)

leading to the same weak limit solution.
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Figure 2: Characteristics for the Riemann problem with ρl < ρr (left) showing a rarefaction fan, and
ρl > ρr (right), showing a shock. The curve is shock location is shown in red and the speed is given by
(2.77).

For the Riemann problem, there are two basic scenarios for the time evolution of step initial
data shown in Fig. 2. For ρr < ρl we have for the characteristic speed u(ρr) > u(ρl) and the
solution is is given by the rarefaction fan

ρ(x, t) =


ρl , x ≤ u(ρl)t
ρr , x > u(ρr)t

ρl + (x− tu(ρl))
ρl−ρr

t(u(ρl)−u(ρr))
, u(ρl)t < x ≤ u(ρr)t

. (2.75)

So the step dissolves and the solution interpolates linearly between the points uniquely determined
by the characteristics. For ρr > ρl we have u(ρr) < u(ρl) and the step is stable, called a shock
solution,

ρ(x, t) =
{
ρl , x ≤ vt
ρr , x > vt

. (2.76)

The shock speed v = v(ρl, ρr) can be derived by the conservation of mass,

v(ρl, ρr) =
j(ρr)− j(ρl)
ρr − ρl

. (2.77)

Understanding the Riemann problem is sufficient to construct solutions to general initial data by
approximation with piecewise constant functions.

In the following we will use our knowledge on solutions to the Riemann problem to understand
the time evolution of the ASEP with step initial distribution

µ = νρl,ρr product measure with νρl,ρr(1x) =
{
ρl , x ≤ 0
ρr , x > 0

. (2.78)

Theorem 2.6 For the ASEP on Λ = Z with p > q we have as t→∞

νρl,ρrS(t)→


νρr , ρr ≥ 1

2 , ρl > 1− ρr (I)
νρl , ρl ≤ 1

2 , ρr < 1− ρr (II)
ν1/2 , ρl ≥ 1

2 , ρr ≤
1
2 (III)

(2.79)

Proof. by studying shock and rarefaction fan solutions of the conservation law (2.66).

Note that all the limiting distributions are stationary product measures of the ASEP, as required
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by Theorem 1.9. But depending on the initial distribution, the systems selects different stationary
measures in the limit t → ∞, which do not depend smoothly on ρl and ρr. Therefore this phe-
nomenon is called a dynamic phase transition. The set I of stationary measures is not changed,
but the long-time behaviour of the process depends on the initial conditions in a non-smooth way.
This behaviour can be captured in a phase diagram, whose axes are given by the (fixed) parameters
of our problem, ρl and ρr. We choose the limiting density

ρ∞ := lim
t→∞

νρl,ρrS(t)
(
η(0)

)
(2.80)

as the order parameter, which characterizes the phase transition. The phase regions correspond to
areas of qualitatively distinct behaviour of ρ∞ as a function of ρl and ρr.

high density HIL
Ρ¥=Ρr

low density HIIL
Ρ¥=Ρl

Ρ¥=½
maximum current HIIIL

shocks

rarefaction

fans

0 ½ 1
0

½

1

Ρl

Ρr

(I) High density phase: The limiting density ρ∞ = ρr, since particles drifting to the right are
jamming behind the region of high density.

(II) Low density phase: The limiting density is ρ∞ = ρl, since particles can drift to the right
without jamming.

(III) Maximum current phase: The solution to the PDE is a rarefaction fan with negative (pos-
itive) characteristic velocity u on the left (right). Thus the limiting density is given by the
density 1/2 with vanishing u(1/2) = 0.

The dashed blue line is a continuous phase transition line, i.e. crossing this line the function
ρ∞(ρl, ρr) is continuous. The full red line is a first order transition line, across which the density
jumps from ρl < 1/2 to ρr > 1/2. The exact behaviour of the system on that line is discussed in
the next section.
Above the dashed diagonal the solutions of the conservation law (2.66) are given by shocks, and
below by rarefaction fans.
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2.4 Open boundaries and matrix product ansatz

In the following we consider the ASEP on the lattice ΛL = {1, . . . L} with open boundary condi-
tions. So in addition to the bulk rates

10
p−→ 01 and 01

q−→ 10 , (2.81)

we have to specify boundary rates for creation and annihilation of particles at sites x = 1 and L,

|0 α−→ |1 , |1 γ−→ |0 , 1| β−→ 0| and 0| δ−→ 1| . (2.82)

In principle we are free to choose α, β, γ and δ ≥ 0 independently. We would like to model
the situation where the system is coupled to particle reservoirs at both ends with densities ρl and
ρr ∈ [0, 1], which implies

α = ρlp , γ = q(1− ρl) , β = p(1− ρr) and δ = qρr . (2.83)

The generator of the process is then given by the sum

Lf(η) = Lbulkf(η) + Lboundf(η) =

=
L−1∑
x=1

(
pη(x)

(
1− η(x+ 1)

)
− qη(x+ 1)

(
1− η(x)

))(
f(ηx,x+1)− f(η)

)
+

+
(
pρl(1− η(1))− qη(1)(1− ρl)

)(
f(η1)− f(η)

)
+

+
(
pη(L)(1− ρr)− qρr(1− η(L))

)(
f(ηL)− f(η)

)
. (2.84)

Note that for ρl, ρr ∈ (0, 1) the conservation law is broken at the boundaries and the ASEP is a
finite state irreducible Markov chain on XL = {0, 1}ΛL . Therefore with Prop. 1.10 the process
is ergodic and has a unique stationary measure µL = µL(ρl, ρr) depending on the boundary
parameters.

Following the analysis of the previous section, the scaled stationary density profile

ρ(y) := lim
L→∞

µL(1[yL]) with y ∈ [0, 1] (2.85)

should be a stationary solution of the conservation law (2.66). This is given by the boundary value
problem

0 = ∂yf(ρ(y)) = (p− q)(1− 2ρ(y))∂yρ(y) with ρ(0) = ρl, ρ(1) = ρr , (2.86)

which has constant solutions. This is a first order equation which is not well posed having two
boundary conditions ρl 6= ρr. So jumps at the boundary cannot be avoided and obviously the
solution can be any arbitrary constant. Again one can apply the viscosity method as in the previous
section to get a unique solution for all ε > 0 and retreive a unique admissible stationary profile
ρ(y) in the limit ε→ 0.

Understanding the motion of shocks and rarefaction fans, we can derive the stationary profile
ρ(y) also from the time dependent solution ρ(y, t) in the limit t→∞. As initial condition we can
choose

ρ0(y) =
{
ρl , 0 ≤ y ≤ a
ρr , a < y ≤ 1

for some a ∈ (0, 1) . (2.87)
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Then the macroscopic stationary profile ρ(y) = ρbulk is given by a constant that corresponds
exactly to the densities observed in Theorem 2.6 for the infinite system, i.e.

ρbulk =


ρr , ρr ≥ 1

2 , ρl > 1− ρr (high density)
ρl , ρl ≤ 1

2 , ρr < 1− ρr (low density)
1/2 , ρl ≥ 1

2 , ρr ≤
1
2 (maximum current)

. (2.88)

In contrast to the previous section this is only correct in the scaling limit. For finite L boundary
effects produce visible deviations and in particular correlations. So the stationary measure is not
of product form, except for the trivial case ρl = ρr.

A very powerful ansatz to represent the non-product stationary distribution in this case is given
by using products of matrices.

Theorem 2.7 Consider the ASEP on ΛL = {0, . . . , L} with boundary densities ρl, ρr ∈ (0, 1)
and bulk rates p, q. Suppose that the (possibly infinite) matrices D, E and vectors w, v satisfy

pDE − qED = D + E

wT
(
ρlpE − (1− ρl)qD

)
= w(

(1− ρr)pD − ρrqE
)
v = v . (2.89)

These relations are called a quadratic algebra. For η ∈ XL put

gL(η) = wT
L∏
x=1

(
η(x)D +

(
1− η(x)

)
E
)
v . (2.90)

If this is a well defined number in R for all η ∈ XL and the normalization

ZL =
∑
η∈XL

gL(η) 6= 0 , (2.91)

then the stationary distribution of the ASEP is given by µL(η) = gL(η)/ZL .

The matrices are purely auxiliary and have no interpretation in terms of the particle system.

Proof. (ηt : t ≥ 0) is a finite state irreducible MC and has a unique stationary measure µL, given
by the stationary solution of the master equation

d

dt
µL(η) = 0 =

∑
η′∈XL

(
πL(η′)c(η′, η)− πL(η)c(η, η′)

)
for all η ∈ XL . (2.92)

(This is the stationarity condition µL(Lf) = 0 for f = 1η.)
Therefore it suffices to show that gL given in (2.90) fulfilles the master equation, then it can
automatically be normalized. In our case the (unnormalized) individual terms in the sum are of
the form

gL(ηx,x+1)c(x, x+ 1, ηx,x+1)− gL(η)c(x, x+ 1, η) (2.93)

for the bulk and similar for the boundaries. They can be simplified using the quadratic algebra
(2.89). Using the first rule we get for the bulk

gL(.., 0, 1, ..)q − gL(.., 1, 0, ..)p = −gL−1(.., 1, ..)− gL−1(.., 0, ..) and

gL(.., 1, 0, ..)p− gL(.., 0, 1, ..)q = gL−1(.., 1, ..) + gL−1(.., 0, ..) . (2.94)
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In general we can write for x ∈ {1, . . . , L− 1}

gL(ηx,x+1)c(ηx,x+1, η)− gL(η)c(η, ηx,x+1) =
(
1− 2η(x)

)
gL−1

(
.., η(x− 1), η(x), ..

)
−

−
(
1− 2η(x+ 1)

)
gL−1

(
.., η(x), η(x+ 1), ..

)
. (2.95)

For the boundaries we get analogously

gL(η1)c(1, η1)− gL(η)c(1, η) = −(1− 2η(1)
)
gL−1(η(2), ..) and

gL(ηL)c(L, ηL)− gL(η)c(L, η) = (1− 2η(L)
)
gL−1(.., η(L− 1)) . (2.96)

The sum over all x ∈ ΛL corresponds to the right-hand side of (2.92), and vanishes since it is a
telescoping series. 2

If the system is reversible then the terms (2.93) vanish individually. In the general non-reversible
case they are therefore called defects from reversiblity, and the quadratic algebra provides a
simplification of those in terms of distributions for smaller system sizes.

The normalization is given by

ZL = wTCLv with C = D + E (2.97)

and correlation functions can be computed as

ρ(x) = µL(1x) =
wTCx−1DCL−xv

wTCLv
(2.98)

or for higher order with x > y,

µL(1x1y) =
wTCx−1DCy−x−1DCL−yv

wTCLv
. (2.99)

In particular for the stationary current we get

j(x) =
wTCx−1(pDE − qED)CL−x−1v

wTCLv
=

wTCL−1v
wTCLv

=
ZL−1

ZL
, (2.100)

which is independent of the lattice site as expected.
For ρl = ρr = ρ and p 6= q the algebra (2.89) is fulfilled by the one-dimensional matrices

E =
1

ρ(p− q)
, D =

1
(1− ρ)(p− q)

and w = v = 1 (2.101)

since

pDE − qED =
(p− q)

(p− q)2ρ(1− ρ)
=

1
(p− q)ρ(1− ρ)

= D + E = C (2.102)

and ρpE − (1− ρ)qD = (1− ρ)pD − ρqE = 1 .
E,D ∈ R implies that µL is a product measure, and the density is not surprising,

ρ(x) = ρ(1) =
DCL−1

CL
= ρ so µL = νρ . (2.103)

In general µL is a product measure if and only if there exist scalars E,D fulfilling the algebra
(2.89), and it turns out that for ρl 6= ρr this is not the case.

In the following let’s focus on the totally asymmetric case p = 1, q = 0 (TASEP) with ρl, ρr ∈
(0, 1). The algebra simplifies to

DE = D + E , wTE =
1
ρl

wT , Dv =
1

1− ρr
v . (2.104)

The question is what kind of matrices fulfill these relations.
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Proposition 2.8 For p = 1, q = 0, if E,D are finite dimensional, then they commute.

Proof. Suppose u satisfies Eu = u. Then by the first identity Du = Du + u and hence u = 0.
Therefore E − I is invertible and we can solve the first identity

D = E(E − I)−1 which implies that D and E commute . 2 (2.105)

So D and E have to be infinite dimensional, and possible choices are

D =


1 1 0 0 . . .
0 1 1 0 . . .
0 0 1 1 . . .
...

...
. . . . . .

 , E =


1 0 0 0 . . .
1 1 0 0 . . .
0 1 1 0 . . .
...

...
. . . . . .

 (2.106)

with corresponding vectors

wT =
(

1,
1− ρl
ρl

,
(1− ρl

ρl

)2
, . . .

)
and vT =

(
1,

ρr
1− ρr

,
( ρr

1− ρr

)2
, . . .

)
. (2.107)

Correlation functions can be computed without using any representations by repeatedly applying
the algebraic relations. Using the rules

DE = C , DC = D2 + C , CE = C + E2 and

wTEk =
1
ρkl

wT , Dkv =
1

(1− ρr)k
v , (2.108)

the probability of every configuration can be written as a combination of terms of the form Zk =
wTCkv. Explicit formulas can be derived which look rather complicated, for the current we get
the following limiting behaviour,

j =
ZL−1

ZL
→


ρr(1− ρr) , ρr > 1/2, ρl > 1− ρr
ρl(1− ρl) , ρl < 1/2, ρr < 1− ρl

1/4 , ρr ≤ 1/2, ρl ≥ 1/2
as L→∞ . (2.109)

This is consistent with the hydrodynamic result. Using the MPA one can show rigorously.

Theorem 2.9 Suppose p = 1, q = 0 and let xL be a monotone sequence of integers such that
xL →∞ and L− xL →∞ for L→∞. Then

µLτxL →


νρr , ρr > 1/2, ρl > 1− ρr
νρl , ρl < 1/2, ρr < 1− ρl
ν1/2 , ρr ≤ 1/2, ρl ≥ 1/2

weakly, locally . (2.110)

If ρl < 1/2 < ρr and ρl + ρr = 1 (first order transition line), then

µLτxL → (1− a)νρl + aνρr where a = lim
L→∞

xL
L
. (2.111)

Proof. see [L99], Section III.3

Note that on the first order transition line we have a shock measure with diffusing shock loca-
tion, where the left part of the system has distribution νρl and the right part νρr . This phenomenon
is called phase coexistence, and is described by a mixture of the form (2.111).
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3 Zero-range processes

3.1 From ASEP to ZRPs

Consider the ASEP on the lattice ΛL = Z/LZ. For each configuration η ∈ XL = {0, 1}ΛL
label the particles j = 1, . . . , N with N =

∑
x∈ΛL

ηx and let xj ∈ ΛL be the position of the jth
particle. We attach the labels such that the positions are ordered x1 < . . . < xN . We map the
configuration η to a configuration ξ ∈ NΛN on the lattice ΛN = {1, . . . , N} by

ξ(j) = xj+1 − xj − 1 . (3.1)

Here the lattice site j ∈ ΛN corresponds to particle j in the ASEP and ξj ∈ N to the distance to
the next particle j + 1. Note that η and ξ are equivalent descriptions of an ASEP configuration up
to the position x1 of the first particle.

η
1 2 3 4 5

p q

ξ
1 2 3 4 5

p�Hp+qL q�Hp+qL

As can be seen from the construction, the dynamics of the ASEP (ηt : t ≥ 0) induce a process
(ξt : t ≥ 0) on the state space NΛN with rates

c(ξ, ξj→j+1) = q(1− δ0,ξ(j)) and c(ξ, ξj→j−1) = p(1− δ0,ξ(j)) , (3.2)

where we write ξx→y =


ξ(x)− 1 , z = x
ξ(y) + 1 , z = y
ξ(z) , z 6= x, y

.

Since the order of particles in the ASEP is conserved, we have ξt(j) ≥ 0 and therefore ξt ∈ NΛN

for all t ≥ 0. Note also that the number of ξ-particles is∑
j∈ΛN

ξ(j) = L−N = number of wholes in ASEP , (3.3)

which is conserved in time, and therefore (ξt : t ≥ 0) is a lattice gas. There is no exclusion
interaction for this process, i.e. the number of particles per site is not restricted. With analogy to
quantum mechanics this process is sometimes called a bosonic lattice gas, whereas the ASEP is a
fermionic system.

The ξ-process defined above is an example of a more general class of bosonic lattice gases,
zero-range processes, which we introduce in the following. From now on we will switch back to
our usual notation denoting configurations by η and lattice sizes by L.
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Definition 3.1 Consider a lattice Λ (any discrete set) and the state space X = NΛ. Let p(x, y)
be the transition probabilities of a single random walker on Λ with p(x, x) = 0, called the jump
probabilities. For each x ∈ Λ define the jump rates gx : N→ [0,∞) as a non-negative function of
the number of particles η(x) at site x. Then the process (ηt : t ≥ 0) on X defined by the generator

Lf(η) =
∑
x,y∈Λ

gx
(
η(x)

)
p(x, y)

(
f(ηx→y)− f(η)

)
(3.4)

is called a zero-range process (ZRP).

The interpretation of the generator is that each site x loses a particle with rate g(η(x)), which then
jumps to a site y with probability p(x, y). For this description to make sense we set g(0) = 0,
to avoid occurence of negative occupation numbers. In addition we also want to assure that the
process is non-degenerate, so we also assume that p(x, y) is irreducible on Λ and

gx(n) = 0 ⇔ n = 0 for all x ∈ Λ . (3.5)

Remarks.

• ZRPs are interacting random walks with zero-range interaction, since the jump rate of a
particle at site x ∈ Λ depends only on the number of particles η(x) at that site.

• The above ξ-process is a simple example of a (non-degenerate) ZRP with Λ = Z/NZ and

gx(n) ≡ p+ q , p(x, x+ 1) =
q

p+ q
and p(x, x− 1) =

p

p+ q
. (3.6)

• On finite lattices ΛL of size L, non-degeneracy implies that ZRPs are irreducible finite state
Markov chains on

XL,N =
{
η ∈ NΛL

∣∣ΣL(η) = N
}

(3.7)

for all fixed particle numbers N ∈ N (remember the shorthand ΣL(η) =
∑

x∈ΛL
η(x)).

Therefore they have a unique stationary distribution πL,N on XL,N .

On infinite lattices the number of particles is in general also infinite, but as opposed to exclu-
sion processes the local state space of a ZRP is N. This is not compact, and therefore in general
also X is not compact and the construction of the process with semigroups and generators given
in Chapter 1 does not apply directly and has to be modified.
In addition to non-degeneracy (3.5) we assume a sub-linear growth of the jump rates, i.e.

ḡ := sup
x∈Λ

sup
n∈N

∣∣gx(n+ 1)− gx(n)
∣∣ <∞ , (3.8)

and restrict to the state space

Xα =
{
η ∈ NΛ

∣∣ ‖η‖α <∞} with ‖η‖α =
∑
x∈Λ

∣∣η(x)
∣∣α|x| (3.9)

for some α ∈ (0, 1). Let L(X) ⊆ C(X) be the set of Lipshitz-continuous test functions f : Xα →
R, i.e.∣∣f(η)− f(ζ)

∣∣ ≤ l(f)‖η − ζ‖α for all η, ζ ∈ Xα . (3.10)
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Theorem 3.1 Under the above conditions (3.8) to (3.10) the generator L given in (3.4) is well-
defined for f ∈ L(X)∩C0(X) and generates a Markov semigroup (S(t) : t ≥ 0) on L(X) which
uniquely specifies a ZRP (ηt : t ≥ 0).

Proof. Andjel (1982). The proof includes in particular the statement that η0 ∈ Xα implies
ηt ∈ Xα for all t ≥ 0, which follows from showing that the semigroup is contractive, i.e.∣∣S(t)f(η)− S(t)f(ζ)

∣∣ ≤ l(f)e3ḡ t/(1−α)‖η − ζ‖α .

Remarks.

• Let µ be a measure on NΛ with density

µ(η(x)) ≤ C1C
|x|
2 for some C1, C2 > 0 (3.11)

(this includes in particular uniformly bounded densities). Then for all α < 1/C1 we have
µ(Xα) = 1, so the restricted state space is very large and contains most cases of interest.

• The conditions (3.8) to (3.10) are sufficient but not necessary, in particular (3.8) can be re-
laxed when looking on regular lattices and imposing a finite range condition on p(x, y).

3.2 Stationary measures

Let (ηt : t ≥ 0) be a (non-degenerate, well defined) ZRP on a lattice Λ with jump probabilities
p(x, y) and jump rates gx.

Lemma 3.2 There exists a positive harmonic function λ = (λx : x ∈ Λ) such that∑
y∈Λ

p(y, x)λy = λx , (3.12)

which is unique up to multiples.

Proof. Existence of non-negative λx follows directly from p(x, y) being the transition probabili-
ties of a random walk on Λ, irreducibility of p(x, y) implies uniqueness up to multiples and strict
positivity. 2

Note that we do not assume λ to be normalizable, which is only the case if the corresponding
random walk is positive recurrent. Since (3.12) is homogeneous, every multiple of λ is again a
solution. In the following we fix λ0 = 1 (for some lattice site 0 ∈ Λ, say the origin) and denote
the one-parameter family of solutions to (3.12) by

{φλ : φ ≥ 0} , (3.13)

where the parameter φ is called the fugacity.

Theorem 3.3 For each φ ≥ 0, the product measure νφ with marginals

νxφ(η(x) = n) =
wx(n)(φλx)n

zx(φ)
and wx(n) =

n∏
k=1

1
gx(k)

(3.14)
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is stationary, provided that the local normalization (also called partition function)

zx(φ) =
∞∑
n=0

wx(n)(φλx)n <∞ for all x ∈ Λ . (3.15)

Proof. To simplify notation in the proof we will write

νxφ(n) := νxφ(η(x) = n) , (3.16)

and we will assume that Λ is finite. Our argument can be immediately extended to infinite lattices.
First note that using wx(n) = 1/

∏n
k=1 gx(k) we have for all n ≥ 0

νxφ(n+ 1) =
1

zx(φ)
wx(n+ 1)(φλx)n+1 =

φλx
gx(n+ 1)

νxφ(n) . (3.17)

We have to show that for all cylinder test functions f

νφ(Lf) =
∑
η∈X

∑
x,y∈Λ

gx
(
η(x)

)
p(x, y)

(
f(ηx→y)− f(η)

)
νφ(η) = 0 , (3.18)

which will be done by two changes of variables.
1. For all x, y ∈ Λ we change variables in the sum over η∑

η∈X
gx
(
η(x)

)
p(x, y) f(ηx→y)ν(η) =

∑
η∈X

gx
(
η(x) + 1

)
p(x, y) f(η)ν(ηy→x) . (3.19)

Using (3.17) we have

ν(ηy→x) = νxφ
(
η(x) + 1

)
νyφ
(
η(y)− 1

) ∏
z 6=x,y

νzφ
(
η(z)

)
=

=
φλx

gx
(
η(x) + 1

) νxφ(η(x)
) gy(η(y)

)
φλy

νyφ
(
η(y)

) ∏
z 6=x,y

νzφ
(
η(z)

)
=

= νφ(η)
λx
λy

gy
(
η(y)

)
gx
(
η(x)

) . (3.20)

Plugging this into (3.18) we get

νφ(Lf) =
∑
η∈X

f(η)νφ(η)
∑
x,y∈Λ

(
gy
(
η(y)

)
p(x, y)

λx
λy
− gx

(
η(x)

)
p(x, y)

)
. (3.21)

2. Exchanging summation variables x↔ y in the first part of the above sum we get

νφ(Lf) =
∑
η∈X

f(η)νφ(η)
∑
x∈Λ

gx
(
η(x)

)
λx

∑
y∈Λ

(
p(y, x)λy − p(x, y)λx

)
= 0 , (3.22)

since ∑
y∈Λ

(
p(y, x)λy − p(x, y)λx

)
=
∑
y∈Λ

(
p(y, x)λy

)
− λx = 0 . (3.23)

Note that terms of the form νyφ(−1) do not appear in the above sums, since gy(0) = 0. 2
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Example. Take Λ = ΛL = Z/LZ, p(x, y) = p δy,x+1 + q δy,x−1 and gx(k) = 1 − δk,0 corre-
sponding to nearest-neighbour jumps on a one-dimensional lattice with periodic boundary condi-
tions.Then we have λx = 1 for all x ∈ ΛL and the stationary weights are just wx(n) = 1 for all
n ≥ 0. So the stationary product measures νφ have geometric marginals

νxφ(η(x) = n) = (1− φ)φn since zx(φ) =
∞∑
k=0

φn =
1

1− φ
, (3.24)

which are well defined for all φ ∈ [0, 1).

Remarks.

• The partition function zx(φ) =
∑∞

n=0wx(n)(φλx)n is a power series with radius of con-
vergence

rx =
(

lim sup
n→∞

wx(n)1/n
)−1 and so zx(φ) <∞ if φ < rx/λx . (3.25)

If g∞x = limk→∞ gx(k) exists, we have

wx(n)1/n =
( n∏
k=1

gx(k)−1
)1/n

= exp
(
− 1
n

n∑
k=1

log gx(k)
)
→ 1/g∞x (3.26)

as n→∞, so that rx = g∞x .

• The density at site x ∈ Λ is given by

ρx(φ) = νxφ(η(x)) =
1

zx(φ)

∞∑
k=1

k wx(k)(φλx)k . (3.27)

Multiplying the coefficients wx(k) by k (or any other polynomial) does not change the
radius of convergence of the power series and therefore ρx(φ) <∞ for all φ < rx/λx.
Furthermore ρx(0) = 0 and it can be shown that ρx(φ) is a monotone increasing function
of φ (see problem sheet). Note that for φ > rx/λx the partition function and ρx(φ) diverge,
but for φ = rx/λx convergence or divergence are possible.

• With Def. 2.4 the expected stationary current across a bond (x, y) is given by

j(x, y) = νxφ(gx) p(x, y)− νyφ(gy) p(y, x) , (3.28)

and using the form wx(n) = 1/
∏n
k=1 gx(k) of the stationary weight we have

νxφ(gx) =
1

zx(φ)

∞∑
n=1

gx(n)wx(n)(φλx)n =
φλx
zx(φ)

∞∑
n=1

wx(n−1)(φλx)n−1 = φλx .(3.29)

So the current is given by

j(x, y) = φ
(
λxp(x, y)− λyp(y, x)

)
, (3.30)

which is proportional to the fugacity φ and the stationary probability current of a single
random walker.
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Example. For the above example with ΛL = Z/LZ, p(x, y) = p δy,x+1 + q δy,x−1 and gx(k) =
1− δk,0 the density is

ρx(φ) = (1− φ)
∞∑
k=1

kφk =
φ

1− φ
(3.31)

and the current j(x, x+1) = φ(p−q) for all x ∈ ΛL. As we have seen before in one-dimensional
systems the stationary current is bond-independent.

3.3 Equivalence of ensembles and relative entropy

In this section let (ηt : t ≥ 0) be a homogeneous ZRP on the lattice ΛL = Z/LZ with state
space XL = NΛL , jump rates gx(n) ≡ g(n) and translation invariant jump probabilities p(x, y) =
q(y−x). This implies that the stationary product measures νφ given in Theorem 3.3 are translation
with marginals

νxφ
(
η(x) = n

)
=
w(n)φn

z(φ)
. (3.32)

Analogous to Section 2.1 for exclusion processes, the family of measures{
νφ : φ ∈ [0, φc)

}
is called grand-canonical ensemble , (3.33)

where φc is the radius of convergence of the partition function z(φ) (called rx in the previous
section for more general processes). We further assume that the jump rates are bounded away
from 0, i.e. g(k) ≥ C for k > 0, which implies that φc > 0 using (3.26). The particle density
ρ(φ) is characterized uniquely by the fugacity φ as given in (3.27)

As noted before the ZRP is irreducible on

XL,N =
{
η ∈ NΛL

∣∣ΣL(η) = N
}

(3.34)

for all fixed particle numbers N ∈ N. It has a unique stationary measure πL,N on XL,N given by

πL,N (η) =
1

ZL,N

∏
x∈ΛL

w(η(x)) δ
(
ΣL(η), N

)
, (3.35)

with canonical partition function ZL,N =
∑

η∈XL,N
∏
xw(η(x)) .

The family of measures{
πL,N : N ∈ N

}
is called canonical ensemble . (3.36)

In general these two ensembles are expected to be ’equivalent’ as L → ∞, in vague analogy to
the law of large numbers for iid random variables. We will make this precise in the following. To
do this we need to quantify the ’distance’ of two probability measures.

Definition 3.2 Let µ1, µ2 ∈ P(Ω) be two probability measures on a countable space Ω. Then the
relative entropy of µ1 w.r.t. µ2 is defined as

H(µ1;µ2) =

{
µ1

(
log µ1

µ2

)
=
∑

ω∈Ω µ1(ω) log µ1(ω)
µ2(ω) , if µ1 � µ2

∞ , if µ1 6� µ2

, (3.37)

where µ1 � µ2 is a shorthand for µ2(ω) = 0 ⇒ µ1(ω) = 0 (called absolute continuity).
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Lemma 3.4 Properties of relative entropy
Let µ1, µ2 ∈ P(Ω) be two probability measures on a countable space Ω.

(i) Non-negativity:
H(µ1;µ2) ≥ 0 and H(µ1;µ2) = 0 ⇔ µ1(ω) = µ2(ω) for all ω ∈ Ω.

(ii) Sub-additivity:
Suppose Ω = SΛ with some local state space S ⊆ N and a lattice Λ. Then for ∆ ⊆ Λ and
marginals µ∆

i , H
(
µ∆

1 ;µ∆
2

)
is increasing in ∆ and

H(µ1;µ2) ≥ H
(
µ∆

1 ;µ∆
2

)
+H

(
µ

Λ\∆
1 ;µΛ\∆

2

)
. (3.38)

If µ1 and µ2 are product measures, then equality holds.

(iii) Entropy inequality:
For all bounded f ∈ Cb(Ω) and all ε > 0 we have

µ1(f) ≤ 1
ε

(
logµ2

(
eεf
)

+H(µ1;µ2)
)
. (3.39)

Proof. In the following let µ1 � µ2 and h(ω) = µ1(ω)/µ2(ω) ≥ 0.
(i) Then

H(µ1;µ2) = µ2(h log h) = µ2

(
φ(h)

)
with φ(u) := u log u+ 1− u , (3.40)

since µ2(1− h) = 1− µ1(1) = 1− 1 = 0. Elementary properties of φ are

φ(u) ≥ 0 for u ≥ 0 and φ(u) = 0 ⇔ u = 1 , (3.41)

which implies that H(µ1;µ2) ≥ 0. If µ1 = µ2 the relative entropy obviously vanishes.
On the other hand, if H(µ1;µ2) = 0 then φ

(
h(ω)

)
= 0 whenever µ2(ω) > 0, which implies

h(ω) = 1 and thus µ1(ω) = µ2(ω). Since µ1 � µ2 equality also holds when µ2(ω) = 0.
(ii) For Ω = SΛ we fix some ∆ ( Λ and write h(η) = µ1(η)/µ2(η) and h∆(η(∆)) =
µ∆

1 (η(∆))/µ∆
2 (η(∆)) for marginal distributions with ∆ ⊆ ΛL. Then h∆ is given by an ex-

pectation conditioned on the sub-configuration η(∆) on ∆,

h∆(η(∆)) =
µ∆

1

µ∆
2

(η(∆)) = µ2

(µ1

µ2

∣∣∣η(∆)
)

= µ2

(
h
∣∣η(∆)

)
. (3.42)

Since φ is convex we can apply Jensen’s inequality to get

φ(h∆(η(∆)) = φ
(
µ2

(
h
∣∣η(∆)

))
≤ µ2

(
φ(h)

∣∣η(∆)
)
. (3.43)

Therefore with µ2

(
µ2

(
φ(h)

∣∣η(∆)
))

= µ2

(
φ(h)

)
we have

H
(
µ∆

1 ;µ∆
2

)
= µ2

(
φ(h∆)

)
≤ µ2

(
φ(h)

)
= H

(
µ1;µ2

)
, (3.44)

which implies that in general H
(
µ∆

1 ;µ∆
2

)
is increasing in ∆.

Using the auxiliary measure ν = µ∆
1

µ∆
2
µ2 monotonicity in ∆ implies

H(µ1;µ2)−H
(
µ∆

1 ;µ∆
2

)
= µ1

(
log

µ1 µ
∆
2

µ2 µ∆
1

)
= µ1

(
log

µ1

ν

)
= H(µ; ν) ≥

≥ H
(
µ

Λ\∆
1 ; νΛ\∆) = H

(
µ

Λ\∆
1 ;µΛ\∆

2

)
, (3.45)
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since νΛ\∆ = µ
Λ\∆
2 by definition (µ∆

1 /µ
∆
2 does not change µ2 on Λ \∆).

If µ1 and µ2 are product measures h = µ1/µ2 factorizes, leading to equality.
(iii) harder, see e.g. [KL99], Appendix 1. 2

Remarks.

• H(µ1;µ2) is not symmetric and therefore not a metric on P(X).

• (i) only holds if µ1, µ2 are normalized probability measures, for general distributions the
relative entropy can also be negative.

• H(µ1;µ2) is a well studied concept from information theory, often also called Kullback-
Leibler divergence or information gain.

Theorem 3.5 Consider the canonical and grand-canonical ensembles for a homogeneous ZRP as
defined above. Then the specific relative entropy

hL(φ) :=
1
L
H(πL,N ; νφ)→ 0 (3.46)

in the thermodynamic limit L → ∞ and N/L → ρ̄ ≥ 0, provided that φ ∈ [0, φc) solves
ρ(φ) = ρ̄.

Proof. First we fix some L ≥ 0. Note that for all η ∈ XL and φ > 0, νφ(η) > 0, so in particular
πL,N � νφ and we have

hL(φ) =
∑

η∈XL,N

πL,N (η) log
πL,N (η)
νφ(η)

. (3.47)

Using the form (3.32) and (3.35) of the two measures we get for η ∈ XL,N

πL,N (η)
νφ(η)

=
∏
xw(η(x))
ZL,N

z(φ)L∏
xw(η(x))φη(x)

=
z(φ)L

ZL,NφN
. (3.48)

So due to the special form of the ensembles we get the simple expression

hL(φ) =
1
L

∑
η∈XL,N

πL,N (η) log
z(φ)L

ZL,NφN
= − 1

L
log

ZL,Nφ
N

z(φ)L
. (3.49)

Further note that

ZL,N =
∑

η∈XL,N

∏
x∈ΛL

w(η(x)) = νφ
(
ΣL(η) = N

)
φ−Nz(φ)L , (3.50)

and thus

hL(φ) = − 1
L

log νφ
(
ΣL(η) = N

)
. (3.51)

Since φ < φc we have
∑

n n
2w(n)φn < ∞. So under νφ the η(x) are iidrvs with finite variance

and mean νxφ(η(x)) = ρ(φ) = ρ̄. Now taking L → ∞ with N/L → ρ̄ by the local central limit
theorem

νφ
(
ΣL(η) = N

)
= νφ

( ∑
x∈ΛL

η(x) = N
)

= O(L−1/2) , (3.52)
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which corresponds to the width
√
L of the distribution of a sum of iidrv’s. This implies that

hL(φ) = O
( 1
L

logL
)
→ 0 as L→∞ . (3.53)

2

Note that this convergence result only holds if ρ̄ is in the range of the function ρ(φ) for φ ∈ [0, φc).
Whenever this is not the case the system exhibits an interesting phase transition which is discussed
in detail in the next section.

Corollary 3.6 Let f ∈ C0(X) be a cylinder test function with νφ
(
eεf
)
< ∞ for some ε > 0.

Then

µL,N (f)→ νφ(f) as L→∞ , (3.54)

provided that φ ∈ [0, φc) solves ρ(φ) = ρ̄ = limL→∞N/L.

Proof. Let ∆ ⊆ ΛL be the finite range of dependence of the cylinder function f ∈ C0(X). Then
we can plug f − ν∆

φ (f) and ν∆
φ (f)− f in the entropy inequality (3.39) to show that∣∣πL,N (f)− νφ(f)

∣∣ ≤ H(π∆
L,N ; ν∆

φ ) . (3.55)

This involves extending the inequality to unbounded functions f with finite exponential moments
and a standard ε−δ argument. It is rather lengthy and we do not present this here, for a reference
see e.g. [Csiszár, Ann. Prob. 3, 146 (1975), Lemma 3.1].
Then sub-additivity (Lemma 3.4(ii)) gives

H(π∆
L,N ; ν∆

φ ) ≤ |∆|
L
H(πL,N ; νφ) = |∆|hL(φ)→ 0 (3.56)

as L→∞ which implies the statement. 2

Remarks.

• The above corrolary implies e.g. convergence of the test function f(η) = η(x), since for all
φ < φc

∞∑
n=0

eεnw(n)φn <∞ for eεφ < φc , i.e. ε < log
φc
φ
. (3.57)

So πL,N (η(x)) = N/L→ νφ(η(x)) = ρ(φ), which is not very surprising since φ is chosen
to match the density ρ.

• The function f(η) = η(x)2 corresponding to the second moment is not covered by the
above result, since eεn

2
grows to fast with n for all ε > 0. However, convergence can be

extended to functions f ∈ L2(νφ) (with considerable technical effort, see e.g. appendix of
[KL99]). Since φ < φc leads to an exponential decay of w(n)φn, this extension includes all
polynomial correlation functions.
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3.4 Phase separation and condensation

Since ZRPs are bosonic lattice gases, they exhibit a condensation transition under certain condi-
tions which is similar to Bose-Einstein condensation for bosons. As in the previous section we
consider a homogeneous ZRP on the lattice ΛL = Z/LZ with jump rates g(n) bounded away
from 0 for n > 0 and translation invariant jump probabilities p(x, y) = q(y − x).

Definition 3.3 Let ρ(φ) = νφ(η(x)) be the density of the grand-canonical product measure νφ
and φc ∈ [0,∞] be the radius of convergence of the partition function z(φ). Then we define the
critical density

ρc = lim
φ↗φc

ρ(φ) ∈ [0,∞] . (3.58)

ρc can take the value∞, as we have seen above for the example

g(k) = 1− δk,0 ⇒ ρ(φ) =
φ

1− φ
↗∞ as φ↗ φc = 1 . (3.59)

In fact, this is the ’usual’ situation since it implies that there exists a grand-canonical stationary
measure for all densities ρ ≥ 0.

Are there examples with ρc <∞? To realize this we need

∞∑
n=0

nw(n)φnc <∞ , (3.60)

i.e. the power series has to converge at the radius of convergence φc. Therefore w(n)φnc has to
decay sub-exponentially (by definition of φc), but fast enough for the sum to converge. A generic
example is a power law decay

w(n)φnc ' n−b as n→∞ with b > 2 . (3.61)

Since we have the explicit formula w(n) =
∏n
k=1 g(k)−1 this implies for the jump rates

g(n) =
w(n− 1)
w(n)

' (n− 1)−bφ−(n−1)
c

n−bφ−nc
= φc(1− 1/n)−b ' φc(1 + b/n) . (3.62)

Such a generic example

g(n) = 1 + b/n with φc = 1 and w(n) ' Γ(1 + b)n−b (3.63)

was introduced by Evans (’00). For this model ρc can be computed explicitly,

ρc =
1

b− 2
<∞ for b > 2 . (3.64)

The interesting question is now, what happens to the equivalence of ensembles in the limit L→∞
with N/L→ ρ̄ > ρc?

Theorem 3.7 Consider the canonical πL,N and the grand-canonical measures νφ of a homoge-
neous ZRP, for which we assume that

lim
n→∞

1
n

n∑
k=1

log g(k) ∈ R exists . (3.65)
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Then

hL(φ) :=
1
L
H(πL,N ; νφ)→ 0 as L→∞ and N/L→ ρ̄ ≥ 0 , (3.66)

provided that for ρ̄ ≤ ρc, φ ∈ [0, φc] solves ρ(φ) = ρ (sub-critical case) and for ρ̄ > ρc, φ = φc
(super-critical case).

Proof. Analogous to the proof of Theorem 3.5 we have

hL(φ) = − 1
L

log νφ
(
ΣL(η) = N

)
, (3.67)

and for ρ̄ ≤ ρc or ρc =∞ this implies the result as before.
For ρ̄ > ρc,

∑
x∈ΛL

η(x) = N is a large deviation event, and to get an upper bound on (3.67) we
need a lower bound on its probability under the critical measure νφc .

νφc

( ∑
x∈ΛL

η(x) = N
)
≥

≥ ν1
φc

(
η(1) = N − [ρc(L− 1)]

)
ν

ΛL\{1}
φc

( ∑
x∈ΛL\{1}

η(x) = [ρc(L− 1)]
)
, (3.68)

which corresponds to putting an extensive amount of particles on lattice site 1 and distributing an
amount which is typical under νφc on the remaining sites.
The second term can be treated by local limit theorems analogous to the previous result* (see
remark below). Since φc is the radius of convergence of the partition function ν1

φc
has a subexpo-

nential tail, i.e.

1
L

log ν1
φc

(
η(1) = N − [ρc(L− 1)]

)
→ 0 as L→∞ , (3.69)

since N − [ρc(L − 1)] ' (ρ̄ − ρc)L → ∞ for ρ̄ > ρc. Existence of the limit is guaranteed by
assumption (3.65) using

log ν1
φc

(
η(1) = n

)
= n log

(
φcw(n)1/n

)
− log z(φc) (3.70)

and (3.26). Plugging these results for (3.68) into (3.67) we get hL(φc)→ 0 for ρ̄ > ρc. 2

Remarks.

• Existence of the Cesàro limit in (3.65) is a very weak assumption, it is certainly fulfilled if
g(k) has a limit as k → ∞ as in our example above. It only excludes pathological cases
where g(k) has an exponentially diverging subsequence.

• *For b > 3 the η(x) are iidrvs with finite variance and the second term in (3.68) is of order
1/
√
L. For 2 < b ≤ 3 the variance is infinite and the sum of η(x) has a non-normal limit

distribution. Using adapted local limit theorems, the second term can be still be bounded
below by terms of order 1/L for all b > 2.

• Corollary 3.6 still applies, but note that in the super-critical case νφc(e
εη(x)) = ∞ for all

ε > 0 due to sub-exponential tails. So the test function f(η) = η(x) is not included in the
result, which is to be expected, since for ρ > ρc

πL,N (η(x)) = N/L→ ρ > ρc = νφc(η(x)) . (3.71)
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Interpretation.

• Elements νφ of the grand-canonical ensemble are also called fluid phases. For ρ > ρc the
ensemble{

νφ : φ ∈ [0, φc]
}

has density range [0, ρc] , (3.72)

and there are no fluid phases with density ρ > ρc.

• The limiting distribution in any finite fixed volume ∆ is given by the fluid phase ν∆
φc

with
density is ρc. Therefore for large systems the excess mass (ρ − ρc)L concentrates in a re-
gion with vanishing volume fraction (volume o(L)), the so-called condensed phase. This
phenomenon is called phase separation in general, and since one of the phases covers only
a vanishing fraction of the system this particular form of phase separation is called conden-
sation.

• It can be shown that in fact the condensed phase concentrates on a single lattice site, i.e. for
ρ > ρc we have a law of large numbers for the maximal occupation number in the canonical
ensemble,

πL,N

(∣∣∣ 1
L

max
x∈ΛL

η(x)− (ρ− ρc)
∣∣∣ > ε

)
→ 0 as L→∞ for all ε > 0 . (3.73)

For the above example with g(k) = 1 + b/k, k > 0 and ρc(b) = 1/(b − 2) these results can be
summarized in the following phase diagram.

Ρbulk=Ρc

condensed

Ρbulk=Ρ

fluid

ΡcHbL

0 1 2 3 4 5
0

1

2

3

4

5

b

Ρ

The axes are given by the system parameters b and the density ρ̄ = limL→∞N/L. As order
parameter we took the limiting bulk density ρbulk := νφ

(
η(x)

)
, where νφ is the limit measure of

Theorem 3.7. This leads to

ρbulk =
{
ρ̄ , ρ̄ ≤ ρc
ρc , ρ̄ > ρc

, (3.74)

and the two phase regions we call fluid and condensed. ρbulk is continuous across the phase
transition line (red), and therefore condensation is a continuous phase transition w.r.t. the order
parameter ρbulk.
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4 The contact process

The lattice Λ, an arbitrary countable set, is endowed with a graph structure by a directed edge set
E ⊆ Λ⊗ Λ. We assume that (Λ, E) is connected, i.e. for all x, y ∈ Λ there exists a directed path
of edges connecting x to y. The state space of the contact process (CP) is X = {0, 1}Λ and the
generator is

Lf(η) =
∑
x∈Λ

(
η(x) + λ

(
1− η(x)

)∑
y∼x

η(y)
)(
f(ηx)− f(η)

)
, (4.1)

where y ∼ x if (y, x) ∈ E. Infected sites (η(x) = 1) recover independently with rate 1, and infect
neighbouring sites independently with rate λ > 0.

4.1 Mean field rate equations

Choosing f(η) = η(x), denoting by µt = µ0S(t) the distribution at time t and writing ρt(x) =
µt(η(x)) ∈ [0, 1] for the density, we get from the backward equation (1.38)

d

dt
ρt(x) = µt(Lf) = −ρt(x) + λ

∑
y∼x

µt

(
η(y)

(
1− η(x)

))
. (4.2)

So the time evolution of the first moment ρ(t) involves second moments and is not a closed equa-
tion, similar to what we have seen for the ASEP in Section 2. The simplest way to close these
equations is called the mean-field assumption:

µt
(
η(y)(1− η(x))

)
= µt

(
η(y)

)
µt
(
1− η(x)

)
= ρt(y)

(
1− ρt(x)

)
, (4.3)

i.e. µt is assumed to be a product measure and the η(x) to be independent. If the graph (Λ, E) is
translation invariant, e.g. a regular lattice such as Zd or

(
Z/LZ

)d or homogeneous trees, and the
initial distribution µ0 is as well, the system is homogeneous and we have the additional identity
ρt(x) ≡ ρt for all x ∈ Λ. Using this and the mean-field assumption in (4.2) we get the mean-field
rate equation for the CP

d

dt
ρt = −ρt +mλρt(1− ρt) , (4.4)

where m is the coordination number or vertex degree of the lattice Λ, i.e. the number of neigh-
bours of a lattice site, such as m = 2d for d-dimensional cubic lattices.

Remarks.

• Of course there is no reason why the mean-field assumption should be correct. However, it
turns out that for high coordination number the replacement

µt

(∑
y∼x

η(y)(1− η(x))
)
≈
∑
y∼x

ρt(y)
(
1− ρt(x)

)
(4.5)

leads to quantitatively good predictions. Due to a ’law of large numbers’-effect
∑

y∼x η(y)
can be replaced by its expected value when the numberm of terms is large. For example this
is the case for d-dimensional cubic lattices (m = 2d) with d > 4. The highest dimension
for which the mean-field assumption is not exact is often referred to as the upper critical
dimension in the physics literature.
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• For low dimensions/coordination numbers the mean-field assumption still is useful to get a
first idea of the critical behaviour of the system, since it typically easy to derive and analyze.
In most cases quantitative predictions are wrong (such as location of phase boundaries and
critical exponents), but qualitative features are often predicted correctly (such as the number
of phase regions or existence of critical points).

Analysis of the rate equation.
The long-time behaviour of solutions to an equation of the form d

dtρt = f(ρt) is given by stationary
points of the right-hand side f(ρ) = 0. In our case for (4.4) these are given by

0 = −ρ+mλρ(1− ρ) = −mλρ2 + (mλ− 1)ρ , (4.6)

which are the roots of a downward parabola, given by ρ1 = 0 and ρ2 = 1− 1/(mλ).
ρ ≡ ρ1 = 0 is always a stationary solution to the equation, corresponding to the absorbing state
η = 0 of the CP, called the inactive phase. For mλ > 1 there is a second stationary density
ρ2 = 1 − 1/(mλ) ∈ (0, 1) called the active phase. The domains of attraction of these stationary
points are determined by the sign of f(ρ), and ρi is locally stable if f ′(ρi) < 0. In summary we
have

f ′(0) = mλ− 1 ⇒ ρ = 0
stable for mλ ≤ 1

unstable for mλ > 1

f ′(ρ2) = 1−mλ ⇒ ρ = ρ2
6∈ (0, 1] for mλ ≤ 1
stable for mλ > 1

, (4.7)

which leads to the following mean-field prediction of the phase diagram of the CP with the critical
value λc = 1/m.

Λ

0
ergodic non-ergodic

Ρ=0 Ρ=0

Ρ=Ρ2>0

1�m

As opposed to previous sections the diagram is one-dimensional, since the number of particles in
the CP is not conserved and λ is the only system parameter. The phase regions can be character-
ized by ergodicity of the infinite system, as is explained below.

Remarks.

• The mean-field rate equation does not take into account fluctuations. Since the CP is irre-
ducible on X \ {0}, on a finite lattice the states in the active phase are transient and the CP
is ergodic with unique stationary measure µ = δ0.
However, if the infection rate λ is large enough and we start the system in the active phase
(e.g. η0(x) = 1 for all x), it remains active for a (random) time with mean of the order
exp(CL) where L is the size of the lattice. If L is large it takes the system very long to
reach its stationary distribution and the active phase is said to be metastable.

• The lifetime of the active phase diverges for infinite lattice size. Therefore infinite systems
exhibit a truly stationary active phase if λ is large enough. The system is no longer ergodic
since it has two stationary distributions, δ0 corresponding to the absorbing state (inactive
phase) and µ corresponding to the active phase.
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• On Z (d = 1) precise numerical estimates (and rigorous bounds) show that λc = 1.64893,
which is quite far from the mean field value 1/m = 1/2 we predicted. Nevertheless, the
qualitative prediction of a phase transitions turns out to be true. Comparing to the first re-
mark it is actually not surprising that mean field underestimates the critical value, since even
for λ > 1/2 the system can still die out due to fluctuations. Clearly λc should decrease with
m, and in fact the numerical estimate for Z2 is 0.4119 (MF prediction 1/m = 0.25).

4.2 Stochastic monotonicity and coupling

In this section we introduce a powerful technique which can be used to get rigorous results on the
contact process. Let X = SΛ be the state space of a particle system with S ⊆ N and Λ some
arbitrary discrete lattice. X is a partially ordered set, given by

η ≤ ζ if η(x) ≤ ζ(x) for all x ∈ Λ . (4.8)

Definition 4.1 A function f ∈ C(X) is increasing if

η ≤ ζ implies f(η) ≤ f(ζ) . (4.9)

This leads to the concept of stochastic monotonicity for probability measures µ1, µ2 on X:

µ1 ≤ µ2 provided that µ1(f) ≤ µ2(f) for all increasing f ∈ C(X) . (4.10)

This definition is quite hard to work with, and the best way to understand and use stochastic
monotonicity is in terms of couplings.

Definition 4.2 A coupling of two measures µ1, µ2 ∈ P(X) is a measure µ on the product state
space X ⊗X of pair configurations η = (η1, η2), such that the marginals for i = 1, 2 are

µi = µi i.e. µ
(
{η : ηi ∈ A}

)
= µ1(A) for all measurable A ⊆ X . (4.11)

Remark. In other words, a coupling means constructing the random variables η1(ω) and η2(ω)
on the same probability space (Ω,A,P), such that

P
(
{ω : ηi(ω) ∈ A}

)
= µi(A) for all measurable A ⊆ X . (4.12)

Theorem 4.1 (Strassen) Suppose µ1, µ2 ∈ P(X). Then µ1 ≤ µ2 if and only if there exists a
coupling µ ∈ P(X ⊗X) such that

µ
(
{η : η1 ≤ η2}

)
= 1 (η1 ≤ η2 µ− a.s.) . (4.13)

Proof. ⇐: Suppose such a coupling µ exists. If f ∈ C(X) is increasing then f(η1) ≤ f(η2)
µ − a.s. and writing πi : X ⊗X → X for the projection on the i-th coordinate πi(η) = ηi, we
have

µ1(f) = µ
(
f ◦ π1

)
≤ µ

(
f ◦ π2

)
= µ2(f) , (4.14)

so that µ1 ≤ µ2.
⇒: involves a construction of the coupling on a probability space, see e.g. Theorem 2.4, p. 72
[L99] 2
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Example.
Let νρ1 , νρ2 be product measures on X = {0, 1}Λ with ρ1 ≤ ρ2. Then for each i = 1, 2 the
ηi(x) are iid Be(ρi) random variables. To construct a coupling µ on X ⊗X let Ωx = (0, 1) and
Px = U(0, 1) be the uniform measure independently for each x ∈ Λ. Then define

ηi(x)(ω) :=
{

1 , ωx ≤ ρi
0 , ωx > ρi

, (4.15)

which implies that η1(x)(ω) ≤ η2(x)(ω) for all ω ∈ Ω and x ∈ Λ. Taking the product over all
lattice sites with P =

∏
x Px, we can define a coupling measure on X ⊗X by

µ := P η−1 i.e. µ(A) = P
{
ω : η(ω) ∈ A}

)
for all A ∈ X ⊗X , (4.16)

and we have η1 ≤ η2 µ− a.s.. Therefore the theorem implies νρ1 ≤ νρ2 .

The idea of monotinicity and coupling can be extended to processes.

Definition 4.3 Consider an IPS on X with generator (S(t) : t ≥ 0). The process is attractive or
monotone if

f increasing ⇒ S(t)f increasing for all t ≥ 0 , (4.17)

or equivalently

µ1 ≤ µ2 ⇒ µ1S(t) ≤ µ2S(t) for all t ≥ 0 . (4.18)

Let P1,P2 ∈ P
(
D[0,∞)

)
be the path space measures of two IPS (η1

t : t ≥ 0) and (η2
t ; t ≥ 0).

Then a coupling of the processes is given by a Markov process
(
(η1
t , η

2
t ) : t ≥ 0

)
on X ⊗X with

measure P ∼ P
(
D[0,∞)⊗D[0,∞)

)
, having marginal processes (ηit : t ≥ 0) ∼ Pi, i.e. Pi = Pi.

Lemma 4.2 The contact process is attractive.

Proof. We couple two contact processes (η1
t : t ≥ 0) (shown red) and (η2

t ; t ≥ 0) (shown blue)
using a graphical construction.
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X=Z

time

0 21−1−2−3−4 3 4

Both processes use the same realization of infection and recovery processes→,← and ×, and the
initial conditions fulfill η2

0 ≤ η1
0 . Then by inspection of the coupling construction this immediately

implies that η2
t ≤ η1

t for all t ≥ 0 (example shown above). Therefore we have for all f ∈ C(X),

S(t)f(η2
0) = Eη

2
0
(
f(η2

t )
)
≤ Eη

1
0
(
f(η1

t )
)

= S(t)f(η1
0) , (4.19)

and since this holds for all ordered initial conditions the CP is attractive as given in Def. 4.3. 2

More generally it can be shown that:

Proposition 4.3 A general spin system on {0, 1}Λ with generator

Lf(η) =
∑
x∈Λ

c(x, η)
(
f(ηx)− f(η)

)
(4.20)

is attractive if and only if the jump rates (spin flip rates) fulfill

η ≤ ζ implies
{
c(x, η) ≤ c(x, ζ) , if η(x) = ζ(x) = 0
c(x, η) ≥ c(x, ζ) , if η(x) = ζ(x) = 1

. (4.21)

Proof. Suppose the spin system is attractive, i.e. f increasing implies S(t)f increasing for all
t ≥ 0. Since f(η) = η(x) is increasing and in C0(X) we have

Lf(η) = lim
t↘0

S(t)f(η)− f(η)
t

, (4.22)

and for all η ≤ ζ with η(x) = ζ(x)

Lf(η)− Lf(ζ) = lim
t↘0

S(t)f(η)− S(t)f(ζ) + η(x)− ζ(x)
t

≤ 0 . (4.23)
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Therefore Lf(η) ≤ Lf(ζ) and since

Lf(η) = c(x, η)
(
1− 2η(x)

)
(4.24)

this implies 4.21.
The other direction involves a more general version of the coupling given int he proof of Lemma
4.2 above, see e.g. Theorem 2.2, p. 134 [L99]. 2

Remark. Property (4.21) asserts that 0 is more likely to flip to 1 in a environment of more 1s (ζ ≥
η), and vice versa. That means that local occupation numbers ’attract’ one another, explaining the
term ’attractive’ for such particle systems.

Lemma 4.4 Monotonicity in λ
Let (ηλt : t ≥ 0) and (ηλ

′
t : t ≥ 0) be two CPs with infection rates λ ≤ λ′. Then

µλ ≤ µλ′ implies µλS(t) ≤ µλ′S(t) for all t > 0 , (4.25)

i.e. there exists a coupling such that

ηλ0 ≤ ηλ
′

0 and ηλt ≤ ηλ
′
t for all t > 0 . (4.26)

Proof. By Strassen’s Theorem, µλ ≤ µλ′ implies existence of a coupling such that ηλ0 ≤ ηλ
′

0 . Sup-
pose first that ηλ0 = ηλ

′
0 and couple the processes (ηλt : t ≥ 0) and (ηλ

′
t : t ≥ 0) by using coupled

infection processes PP (λ) and PP (λ) + PP (λ′ − λ) ∼ PP (λ′) in the graphical construction.
Then clearly ηλt ≤ ηλ

′
t for all t > 0. Now by attractivity of the process (ηλt : t ≥ 0) this also holds

for initial conditions ηλ0 ≤ ηλ
′

0 . 2

4.3 Invariant measures and critical values

Consider a CP with infection rate λ on some connected graph (Λ, E) and let δ0 be the point mass
on the empty configuration and δ1 on the full configuration η(x) = 1, x ∈ Λ. Since η ≡ 0 is
absorbing, δ0 is stationary.

Proposition 4.5 For all 0 ≤ s ≤ t we have

δ1S(s) ≥ δ1S(t) , ν̄λ = lim
t→∞

δ1S(t) exists and ν̄λ ∈ Ie . (4.27)

ν̄λ is called the upper invariant measure, and we have δ0 ≤ µ ≤ ν̄λ for all µ ∈ I.
Furthermore, λ < λ′ implies ν̄λ ≤ ν̄λ′ , and for each x ∈ Λ

ρx(λ) := ν̄λ
(
η(x)

)
is monotone increasing in λ . (4.28)

Proof. Since δ1 is maximal on X we have

δ1 ≥ δ1S(t− s) for all 0 ≤ s ≤ t . (4.29)

By attractivity of the CP and the Markov property this implies

δ1S(s) ≥ δ1S(t− s)S(s) = δ1S(t) . (4.30)

Therefore δ1S(t) is a monotone sequence, and by compactness of P(X) (in the topology of weak
convergence) the limit exists and is stationary by Theorem 1.9(b). Furthermore δ0 ≤ µ ≤ δ1 for
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all µ ∈ P . Every stationary measure can be written as limt→∞ µS(t) for some µ, so by attractivity
it will also be bounded by δ0 and ν̄λ.
Suppose that ν̄λ ∈ I is not extremal, i.e. ν̄λ = αµ1 + (1 − α)µ2 for µ1, µ2 ∈ I and α ∈ (0, 1).
Then µ1, µ2 ≤ ν̄λ, so for all increasing f ∈ C(X) we have µ1(f), µ2(f) ≤ ν̄λ(f). Suppose now
that µ1(f) < ν̄λ(f), then

αµ1(f) + (1− α)µ2(f) < αν̄λ(f) + (1− α)ν̄λ(f) = ν̄λ(f) (4.31)

in contradiction to the assumption. So µ1(f) = µ2(f) = ν̄λ(f) for all increasing f ∈ C(X), and
thus µ1 = µ2 = ν̄λ and ν̄λ ∈ Ie.
By monotonicity in λ we have for all t ≥ 0

δ1S
λ(t) ≤ δ1S

λ′(t) , (4.32)

provided that λ ≤ λ′, which implies ν̄λ ≤ ν̄λ′ . Since η(x) is increasing this also holds for the
corresponding densities. 2

On a finite lattice η ≡ 0 can be reached in finite time from any other configuration, and since
η ≡ 0 is absorbing this implies

µS(t)→ δ0 as t→∞ for all µ ∈ P(X) . (4.33)

This holds in particular for µ = δ1, and thus the upper invariant measure is ν̄λ = δ0 and the CP is
ergodic for all λ ≥ 0. On the other hand, on an infinite lattice it might be possible that ν̄λ 6= δ0

and the mean-field prediction of an active phase is correct. It turns out that this is indeed the case
for high enough infection rate λ as we will see below.

Definition 4.4 Denote by

αη := Pη(ηt 6= 0 for all t ≥ 0) (4.34)

the survival probability with initial configuration η ∈ X . For each x ∈ Λ denote by ξx ∈ X the
configuration with ξx(y) = δy,x having a single infection at x. The CP (ηt : t ≥ 0) is said to die
out if αξx = 0 for some x ∈ Λ, otherwise it is said to survive.

Note that condition (4.4) actually does not depend on the lattice site x, since Λ is connected and
therefore the CP is irreducible on X \ {0}.

Proposition 4.6 If the CP dies out for infection rate λ′ > 0, then it dies out for all λ ∈ [0, λ′].
The critical value λc ∈ [0,∞] is then given by

λc := sup
{
λ ≥ 0 : CP with infection rate λ dies out

}
. (4.35)

Proof. Monotonicity in λ of the CP (Lemma 4.4) and ηλ0 = ηλ
′

0 imply that if (ηλ
′
t : t ≥ 0) dies out

so does (ηλt : t ≥ 0).
Since the CP with λ = 0 certainly dies out, the supremum λc is well defined in [0,∞]. 2

Proposition 4.7 Analogous to above for any A ⊆ Λ write ξA ∈ X for ξA(y) = 1A(y). Then the
survival probability is

αξA = PξA(ηt 6= 0 for all t ≥ 0) = ν̄λ
(
{ξB : B ∩A 6= ∅}

)
, (4.36)

and for λ < λc we have ν̄λ = δ0 for λ > λc, ν̄λ 6= δ0.
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Proof. The result is based on the following duality property of the CP. For all A,B ⊆ Λ we have

PξA(ηt(x) = 1 for some x ∈ B) = PξB (ηt(x) = 1 for some x ∈ A) . (4.37)

For a proof of this see e.g. [L85] Theorem VI.1.7. Now choosing B = Λ we have ξB(x) = 1 for
all x ∈ Λ and

PξA(ηt 6= 0) = Pδ1(ηt(x) = 1 for some x ∈ A) . (4.38)

Taking the limit t → ∞ implies the first statement. For λ < λc the process dies out with proba-
bility 1 for all initial configurations ξx and thus with A = {x} in (4.36) we have

ν̄λ
(
η(x) = 1

)
= ν̄λ

(
η(x)

)
= ρx(λ) = 0 for all x ∈ Λ , (4.39)

which imlies that ν̄λ = δ0. For λ > λc the process survives, and thus (4.39) has non-zero value
and ν̄λ 6= δ0. 2

Remark. Note that Prop. 4.7 implies in particular that the density

ρx(λ) = ν̄λ
(
η(x)

)
= Pξx(ηt 6= 0 for all t ≥ 0) (4.40)

is equal to the survival probability.
Our results so far imply that there is a well defined critical value λc ∈ [0,∞] such that the CP dies
out and ν̄λ = δ0 for λ < λc, and the CP survives and ν̄λ 6= δ0 for λ > λc. On a finite lattice we
have discussed above that λc = ∞. The crucial question on infinite lattices is now whether λc is
non-trivial, i.e. λc ∈ (0,∞). Certainly the value of λc will depend on the lattice Λ but at least one
can derive a quite general lower bound.

Let (ηt : t ≥ 0) be the CP with infection rate λ on a connected graph (Λ, E). Consider the
auxiliary process (ζt : t ≥ 0) on the same graph with state space X = NΛ and generator

Lf(ζ) =
∑
x∈Λ

(
η(x)

(
f(ζ−x)− f(ζ)

)
+ λ

∑
y∼x

ζ(y)
(
f(ζ+x)− f(ζ)

))
, (4.41)

where we write ζ±x(y) =
{
ζ(y)± 1 , y = x
ζ(y) , y 6= x

. In this process particles independently create

new particles at connected sites with rate λ and die independently with rate 1, so the number of
particles per site can be larger than 1. We couple this process to a CP (ηt : t ≥ 0) by using the same
Poisson processes PP (λ) and PP (1) for infection/creation and death/recovery in the graphical
construction. If for the auxiliary process ζt > 1, we use independent creation and death processes
for the extra particles. This construction implies that the CP is dominated by the ζ-process, i.e.

η0 ≤ ζ0 ⇒ ηt ≤ ζt for all t ≥ 0 . (4.42)

Therefore if (ζt : t ≥ 0) dies out then the CP dies out as well. Now let m be the maximal vertex
degree of the graph (Λ, E). Then the number of particles in the ζ-process is dominated by a
Markov chain N(t) on the state space N with transition rates

c(n, n+ 1) = nmλ for n ≥ 0 , c(n, n− 1) = n for n ≥ 1 . (4.43)

All the particles independently create new particles at rate mλ and die at rate 1. Again there exists
an obvious coupling such that∑

x∈Λ

ζt(x) ≤ N(t) for all t ≥ 0 . (4.44)
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N(t) is a well-known birth-death chain with absorbing state n = 0, and dies out with probability
1 if and only ifmλ ≤ 1. Formλ > 1 the average E(N(t)) is monotone increasing and the process
can survive with positive probability.

Proposition 4.8 Consider a CP on a connected graph (Λ, E) with maximal vertex degree m.
Then λc ≥ 1/m.

Proof. With initial condition ξx as in Definition 4.4 and using the above coupling the number of
active sites in the CP is dominated by the birth-death chain∑

x∈Λ

ηt(x) ≤ N(t) with N(0) = 1 . (4.45)

Therefore λ ≤ 1/m implies that the CP dies out and thus λc ≥ 1/m. 2

Note that the lower bound coincides with the mean-field prediction λc = 1/m = 1/(2d) of Sec-
tion 4.1. To get an upper bound on λc is in general harder. In the following we will concentrate on
Λ = Zd and only give a small part of the proof.

4.4 Results for Λ = Zd

Consider the CP on the regular lattice Λ = Zd.

Theorem 4.9 For the critical value λc(d) of a CP on the lattice Λ = Zd we have

1
2d
≤ λc(d) ≤ 2

d
for all d ≥ 1 . (4.46)

Proof. The lower bound is given by Prop. 4.8, for the proof of λc(1) ≤ 2 see Theorem VI.1.33 in
[L85]. For higher dimensions the required inequality λc(d) ≤ λc(1)/d follows from

Pξx(ηdt 6= 0) ≥ Pξx(η1
t 6= 0) , t ≥ 0 , (4.47)

where (ηdt : t ≥ 0) is the d-dimensional CP with rate λ, and (η1
t : t ≥ 0) is a 1-dimensional CP

with rate dλ. We show this by coupling the two processes such that for each y ∈ Z

η1
t (y) = 1 implies ηdt (x) = 1 for some x such that πd(x) = y , (4.48)

where for all x ∈ Zd we denote

πd(x) = πd(x1, . . . , xd) = x1 + . . .+ xd ∈ Z . (4.49)

Suppose that A ⊆ Zd and B ⊆ Z are finite and such that

B ⊆ πd(A) =
{
πd(x) : x ∈ A

}
, (4.50)

i.e. for each y ∈ B there is (at least) one x ∈ A such that y = πd(x). Choose one of these x̄, and
associate its PP (1) death process with site y. Also, for all of the 2d neighbours of x̄ we have

x ∼ x̄ implies πd(x) = y ± 1 ∼ y . (4.51)

Now associate the infection processes PP (λ) pointing towards x̄ from all its neighbours with in-
fections at y, which leads to a net infection rate of dλ from each of the two neighbours y±1. Note
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that all other deaths and infections in the d-dimensional CP that would correspond to y are not
used in the coupling. With this construction both marginal processes (η1

t : t ≥ 0) and (ηdt : t ≥ 0)
have the right law, and clearly (4.48) is fulfilled, which finishes the proof. 2

Using more involved techniques than we do here, lower and upper bound can be improved signif-
icantly, depending on the dimension d. Further it can be shown that

d λc(d)→ 1
2

as d→∞ , (4.52)

supporting the physcis wisdom that ’mean-field theory is exact in high dimensions’.

Theorem 4.10 Complete convergence
Suppose that λ > λc, then for every η ∈ X as t→∞

δηS(t)→ αην̄λ + (1− αη)δ0 weakly (locally) , (4.53)

where αη = Pη(ηt 6= 0 for all t ≥ 0) is the survival probability.

Proof. See e.g. [L99], Theorem I.2.27.

Remark.
Taking the expected value w.r.t. an initial distribution µ in (4.53) we get weak convergence of

µS(t)→ µ(αη)ν̄λ +
(
1− µ(αη)

)
δ0 . (4.54)

This holds in particular for all stationary µ ∈ P(X), and therefore every stationary distribution is
a convex combination of δ0 and ν̄λ and we have

Ie = {δ0, ν̄λ} . (4.55)

Theorem 4.11 Extinction time
Suppose λ > λc and for the CP (ηt : t ≥ 0) let

τ := inf{t ≥ 0 : ηt = 0} (4.56)

be the extinction time of the process. Then there exists ε > 0 such that for every initial condition
η0 = η ∈ X

Pη(τ <∞) ≤ e−ε|η| where |η| =
∑
x∈Λ

η(x) . (4.57)

Proof. see [L99], Theorem I.2.30

Note that this implies that the supercritical CP can only die out with positive probability if the
initial condition is finite |η| <∞. If, however, µ ∈ P(X) is translation invariant and µ(η(x)) > 0,
then we have µ

(
|η| =∞

)
= 1, and therefore

Pη(τ =∞) = αη = 1 (4.58)

and the process survives with probability 1. With Theorem 4.10 this implies

µS(t)→ ν̄λ as t→∞ . (4.59)
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Theorem 4.12 The critical contact process dies out.

Proof. see [L99], Theorem I.2.25

This implies that the density

ρ(λ) = ν̄λ
(
η(x)

)
= Pξx(ηt 6= 0 for all t ≥ 0) (4.60)

which is independent of x due to translation invariance, is a continuous function of λ. By Propo-
sition 4.5 it is also monotone increasing, for λ > λc and vanishes for λ < λc by Proposition 4.7.
In particular, to leading order the behaviour at the critical point is given by

ρ(λ) ∼ C(λ− λc)β (4.61)

for some exponent β > 0. The only rigorous bound is β ≤ 1, and our mean-field result from
section 4.1 predicts λc = 1/(2d) and for λ ≥ λc similar we have to leading order

ρ(λ) = 1− 1
2dλ

= 1− 1
2dλc

(
1 +

λ− λc
λc

)−1
' λ− λc

λc
, (4.62)

which implies β = 1. In fact numerical estimates give values β ≈ 0.28 (d = 1), 0.58 (d =
2), 0.81 (d = 3), and for d ≥ 4 the mean field value β = 1 should be ’exact’.

The CP has also been analyzed on other regular lattices, in particular homogeneous trees T d (see
e.g. Chapter I.4 in [L99]). In this case the critical behaviour turns out to be more complicated,
there exists a second critical value λ2 > λc and complete convergence in the sense of Theorem
4.10 only holds outside the interval [λc, λ2]. Inside this interval there exist infinitely many ex-
tremal invariant measures and the infection survives globally but dies out locally.
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