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Abstract. We describe a series of works, joint with Francesco Caravenna and Rongfeng
Sun, which make some first steps towards the understanding of scaling limits of disordered
systems in a suitable weak disorder regime, where disorder has a so-called marginally
relevant effect. This includes some first understanding of the KPZ equation in two space
dimensions, which in the language of SPDEs is the “critical dimension”. Among the results
that we will describe is a phase transition and the identification of the KPZ solution below
a critical temperature, which falls into the Edwards-Wilkinson universality class. Emphasis
will be given on conveying the main ideas, stripped off the technical parts, as well as
describing the methods which include Lindeberg principles, fourth moment theorems,
analysis on Wiener spaces, multiscale analysis etc.
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1. Introduction.

The KPZ equation is a stochastic PDE, formally written as

Bthpt, xq “
1

2
∆hpt, xq `

1

2
|∇hpt, xq|2 ` β 9W pt, xq, t ą 0, x P Rd, (1.1)
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where 9W pt, xq is the space-time white noise, defined as a gaussian field, which is delta-
correlated in space and time as

Er 9W pt, xq 9W ps, yqs “ δpt´ sqδpx´ yq.

The parameter β ą 0 modulates the strength of the noise. The KPZ equation was introduced
by Kardar, Parisi and Zhang [KPZ86] as a model for random interface growth obeying three
basic principles:

‚ growth is proportional to the normal vector of the interface
a

1` |∇h|2, which is
“approximated” via a Taylor expansion by 1` 1

2 |∇h|
2,

‚ there is local smoothing, represented by the Laplacian ∆h,

‚ there is local randomness, represented by the white noise ξpt, xq.

The well posedness of equation (1.1) is subject to questioning as one expects the solution to
be “rough” in space, thus leading to ambiguities in the definition of the term |∇h|2, since
∇h should be a distribution rather than a function.

A vast amount of work has been carried out in spatial dimension one, which has by now
put into firm grounds (and has significantly extended) the original predictions of Kardar,
Parisi and Zhang that the fluctuation of the “solution” hpt, xq should be of order t1{3, contrary
to the usual t1{2 dictated by the central limit theorem. This fact was established by first
discovering and analysing an “integrable” structure via the study of discrete models, such as
the asymmetric exclusion process, the directed polymer model, last passage percolation etc.,
and then approximating via the discrete models the solution to (1.1) in a suitable sense.
We refer to the surveys [C12, QS15, BP14, BG16, Z18] for some relevant reviews. Thus,
devising a way to provide a meaning to the notion of solution to the KPZ equation (and
therefore a means of approximating it) is an important task. In dimension one the first
result of this type was achieved by Bertini and Giacomin [BG97], who approximated the
KPZ via a particle system called the asymmetric exclusion process; this is a one dimensional
particle system where each particle jumps independently at an exponentially distributed
time with probability p to the right and 1´ p to the left, with the constraint that no two or
more particles occupy the same site.

More robust approaches emerged in recent years, giving rise to new revolutionary theories
that further allowed to treat a wide class of singular stochastic PDEs. These are the theories
of Regulariy Structures by Hairer [H14], of Paractontrolled Distributions by Gubinelli-
Imkeller-Perkowski [GIP15] and of Energy Solutions by Goncalves and Jara [GJ10, GJ14].
A renormalisation approach to the one dimensional KPZ equation has also been successful
through the work of Kupiainen [K14].

In higher dimensions the situation is much less understood. A firm prediction about the
exponents that govern the fluctuations of the solution to the KPZ is missing and so does
a solution theory. Dimension two is characterised as a critical dimension and marks the
limitation of the above solution theories. The goal of these notes is to review some first
steps that have taken place more recently into understanding the two dimensional KPZ
equation. Moreover, we will see that some of the mechanisms governing the KPZ equation
in the critical dimension two also govern a wider class of models of statistical mechanics
where disorder is present and has a so called marginal effect. Our focus here will be mainly
to summarise a series of works [CSZ17a, CSZ17b, CSZ18a, CSZ18b, CSZ18c, CSZ18+]. At
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the end of this introduction we will briefly describe some other interesting works around
this topic.

One may see the qualitative difference between dimension one and higher dimensions via
a renormalisation procedure. Let us describe this on the closely (as we will explain) related
model of the stochastic heat equation (SHE), which will also link nicely to the theme of
disordered systems and disorder relevance. The stochastic heat equation writes as

Btupt, xq “
1

2
∆upt, xq ` 9W pt, xqupt, xq, with t ą 0, x P Rd. (1.2)

and its solution is formally related to the solution of the KPZ via the Hopf-Cole transfor-
mation h “ log u (we will be more precise about this and some subtleties later on). The
renormalisation we alluded to earlier amounts, in its simplest formulation, to a scaling of
the variables as

pt, xq ÞÑ pε2t, εxq . (1.3)

Using the gaussian scaling property of the white noise, which says that

9W pε2t, εxq :“
W pdpε2 tq , dpεxqq

dpε2 tqdpεxq
d
“ ε´1´

d
2
W pdt , dxq

dtdx
“ ε´1´

d
2 9W pt, xq,

it is not difficult to see that uεpt, xq :“ upε2t, εxq formally solves the SPDE

Btu
ε “

1

2
∆uε ` βε1´ d

2
9
ĂW uε, (1.4)

where 9
rW is a new space-time White noise obtained from 9W via the above scaling. Therefore,

space-time renormalisation has the effect of changing the strength of the noise to ε1´ d
2β.

We now see that if d ă 2, then, as εÑ 0, the strength of the noise in the renormalized
equation goes to zero, which means that the noise will have a gradually decreasing effect
on the regularity of the solution to the SHE and thus a solution can be suitably defined.
On the other hand, for d ą 2 the noise should crucially affect the solution as its strength
after renormalisation increases. One also sees that d “ 2 is a critical dimension as the
renormalisation leaves the noise invariant and thus no conclusion can be drawn on the effect
of noise to the existence and regularity of a solution.

In this notes we will be viewing the KPZ and SHE equations within the framework of
disordered systems. In the realm of disordered systems, one is interested in large scale effects,
as these would be captured by the reciprocal change of variables pt, xq ÞÑ pε´2t, ε´1xq. This
will result to a renormalized equation where now the strength of the noise is ε

d
2
´1β. Then

for d ă 2, then noise (disorder) has a prevailing effect (amounting to disorder relevance),
while for d ą 2 the effect of the noise vanishes, amounting to disorder irrelevance. However,
again, when d “ 2 the renormalisation leaves the noise invariant and no conclusion can be
drawn on the effect of noise. This is the marginal case. We will provide more details on this
framework in Section 2.

The rigorous procedure that is followed in order to make sense of singular SPDEs like
(1.2) is to first look at an equation with some sorts of smoothed out or mollified noise and
show that the solution to this has some sort of limit when the mollification is taken away.
In the case of SHE one typically proceeds by looking at the equation

Btu
ε “

1

2
∆uε ` βuε 9W ε, (1.5)
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where 9W ε is the mollified in space noise 9W εpt, xq :“
ş

R2 jεpx ´ yq 9W pt, yqdy with jεpxq :“

ε´djpx{εq and with j P C8c pRdq a symmetric, probability density on Rd. 9W ε is still a white
noise in time. In particular, 9W εpt, ¨qdt “: 9W εpdt, ¨q is a Brownian motion with quadratic
variation equal to ε´d}j}2

L2pRdq.
Using an adaptation of the Feynman-Kac formula for Brownian-like potentials such as

9W εpdt, ¨q one can write a path integral representation for the solution to (1.5) as [BC95,
Sec. 3 and (3.22)]

uεpt, xq “ Ex

”

exp
!

β

ż t

0

9W εpt´ s,Bsqds´
1

2
β2 E

”´

ż t

0

9W εpt´ s,Bsqds
¯2ı)ı

, (1.6)

where Ex is expectation with respect to a standard Brownian motion pBsqsě0 on Rd with
B0 “ x. E denotes the expectation with respect to the white noise. By time reversal, we
note that uεpt, xq has the same distribution (for fixed pt, xq) as

ruεpt, xq :“ Ex

”

exp
!

β

ż t

0

9W εps,Bsqds´
1

2
β2 E

”´

ż t

0

9W εps,Bsqds
¯2ı)ı

(1.7)

“ Ex

”

exp
!

β

ż t

0

ż

R2

jεpBs ´ yq 9W ps, yqdsdy ´
1

2
β2t}jε}

2
2

)ı

“ Eε´1x

”

exp
!

β ε1´
d
2

ż ε´2t

0

ż

R2

jpB
rs ´ ryq

9
ĂW prs, ryqdrsdry ´

β2ε2p1´
d
2 q

2
pε´2tq}j}22

)ı

,

where in the last step we made the change of variables pεry, ε2
rsq :“ py, sq using that, by

scaling, 9
ĂW defined by 9

ĂW prs, ryqdrsdry :“ ε´1´
d
2 9W pε2

rs, εryqdpε2
rsqdpεryq is also a two-dimensional

space-time white noise.
Formula (1.7) is what is known as the (partition function of the) continuum directed

polymer in a random medium or simply the continuum directed polymer model. The role of
the polymer is played by the Brownian path pBsqsą0 and the role of the random medium is
played by the white noise. One approach to the SHE (and, thus, to the KPZ equation) will
be to use the polymer representation and justify that a limit exists as εÑ 0. In dimension
one this was successfully dealt with by Bertini and Cancrini in [BC95]. In dimension two we

have that 1´ d
2 “ 0 and thus the regularity provided by the factor ε1´

d
2 in d “ 1 disappears

and things become more subtle. It turns out that, in order to have a hope to obtain a non
trivial limit, one needs to consider a renormalised version of the mollified SHE (1.5) where
β is chosen to be βε “ β̂

a

2π{ log ε´1. The reason for this choice will be clarified later. The
goal then is to establish a limit for

Eε´1x

”

exp
!

βε

ż ε´2t

0

ż

R2

jpBs ´ yq 9W ps, yqdsdy ´
β2
ε

2
pε´2tq}j}22

)ı

. (1.8)

It is worth highlighting the following. In dimension two, choosing βε “ β̂
a

2π{ log ε´1, the
term containing the noise in

Btu
ε “

1

2
∆uε `

β̂
?

2π
a

log ε´1
uε 9W ε,

appears to be reduced to zero. Thus the naive guess would be that the limit is just the
solution of the standard heat equation, which, assuming initial condition equal to one, would
be also equal to one. However, as we will see, this is certainly not the case. For any fixed
space-time point pt, xq P R` ˆ R2, uεpt, xq will converge to a log-normal variable, as ε Ó 0, if
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β̂ ă 1. As a field, uεpt, ¨q is uncorrelated as captured by a central limit theorem in the form
that for every test function φ P C8c pR2q

c

log ε´1

2π

ż

R2

puεpt, xq ´ 1qφpxq dx
d

ÝÝÝÑ
εÑ0

ż

R2

vpcβ̂qpt, xqφpxqdx (1.9)

where the centering 1 is due to the assumption that the initial condition is 1 and where
vpcqpt, xq is the solution of the two-dimensional additive stochastic heat equation

$

&

%

Btv
pcqpt, xq “

1

2
∆vpcqpt, xq ` c 9W pt, xq

vp0, xq ” 0,
(1.10)

The value of cβ in (1.9) equals cβ̂ :“

c

β̂2

1´β̂2
. The solution to this linear equation is

well defined and it is a mean zero gaussian field. This field is what governs the so-called
Edward-Wilkinson universality class, which is characterised by gaussian fluctuations.

Interesting correlations also appear at scales εχ with χ P p0, 1q (still for βε “ β̂
a

2π{ log ε´1

with β̂ ă 1). In this case uεpt, εχ ¨q converges to a field of correlated log-normals with the
correlations depending on the exponent χ. We will not expand in this direction and we will
refer to [CSZ17b, Theorems 2.12 and 2.15] for details.

More interesting is the situation at or above the critical temperature β̂critical “ 1 where,
on the one hand, uεpt, xq turns out to converge to zero, for every fixed pt, xq but, on the
other hand, the field is strongly correlated. In particular, at β̂ “ β̂critical “ 1 one expects a
non-trivial limit for

ż

R2

puεpt, xq ´ 1qφpxqdx

where comparing to (1.9) we notice the absence of the factor
a

log ε´1. However, the scaling
limit in this case is still not understood. In fact, even the existence of a unique limit has not
been proved, yet. The only results that exists are moment computations [BC98, CSZ18a,
GQT19], which provide existence of non-trivial (i.e. not constant) subsequential limits but
however do not provide uniqueness or do not determine the limit, except the fact that
limits are log-correlated and non gaussian fields. Let us mention, though, some interesting
recents works of Clark [C19a, C19b, C19c] where he studies polymers on the so-called
hierarchical diamond lattice in a weak disorder scaling, similar as we consider here, at the
critical temperature and proves existence and some characterisation of the scaling limit.
It is possible that there exists some relation between these scaling limits and the ones for
the 2d polymer / SHE. So far, there have not been any works above the critical value, i.e.
β̂ ą β̂critical “ 1.

Coming back to the KPZ equation, let us see how we can transfer some of the under-
standing described around the SHE. First, let us relate the two solutions via the Hopf-Cole
transformation hε :“ log uε. One needs to be careful in deriving the equation for hε as
uε is the solution of a stochastic PDE and thus one needs to employ Itô calculus when
differentiating with respect to time. Doing this carefully, we have that the equation for hε is

Bth
εpt, xq “

1

2
∆hεpt, xq `

1

2
|∇hεpt, xq|2 ` β 9W εpt, xq ´

β2

2
ε´d}j}2L2pRdq. (1.11)

where one notices the correction term ´
β2

2 ε
´d}j}2

L2pRdq, which converges to infinity as εÑ 0.
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Restricting attention to dimension two, we choose, as in the SHE, β “ βε “ β̂
a

2π{ log ε´1

and the equation we deal with is

Bth
εpt, xq “

1

2
∆hεpt, xq `

1

2
|∇hεpt, xq|2 ` β2

ε
9W εpt, xq ´

β2
ε

2
ε´2}j}2L2pRdq. (1.12)

It turns out that equation (1.12) has certain invariance (see, for example, [CSZ18b, Appendix
A]), which leads to the equivalent formulation

Btrh
εpt, xq “

1

2
∆rhεpt, xq `

βε
2
|∇rhεpt, xq|2 ` 9W εpt, xq. (1.13)

The relation between the solutions to the two equations is that

hεpt, xq “ βε rh
εpt, xq.

Again, looking at the form of equation (1.13) we see that the nonlinearity is gradually
reduced to zero and one might naively expect that the limit satisfies the additive SHE
(5.4) with c “ 1, as would be by just dropping out the nonlinearity in (1.13). This is not
completely true, though, as we will see that for β̂ ă 1

1

βε

ż

R2

phεpt, xq ´ 1qφpxqdx
d
“

ż

R2

prhεpt, xq ´ 1qφpxqdx
d

ÝÝÝÑ
εÑ0

ż

R2

vprcβ̂qpt, xqφpxqdx

with rcβ̂ “
b

1
1´β̂2

, which is strictly larger than 1. This suggests that the term βε
2 |∇rhε|2

produces in the limit a noise term. We remark that the situation for β̂ ě 1 has not yet been
settled for the KPZ equation.

In these notes we will mostly work in a discrete setting, with the discrete version of the
partition function of the continuum polymer. This is not only a matter of convenience. It
fits into a more general framework of studying scaling limits of so called disordered systems.

The discrete version of the polymer partition function is

ZN,β :“ E
”

e
řN
n“1pβωpn,Snq´λpβqq

ı

.

Here pωpn, xqqně1,xPZd is a collection of i.i.d. random variables, which we assume to have
mean zero, variance one and log-moment generating function λpβq :“ logE

“

eβω
‰

ă 8 for all
β ą 0. This family of variables plays the role of the white noise. The role of the Brownian
path pBsqsą0 is played by a simple, symmetric random walk pSnqně1 on Zd.

In dimension one, choosing ε “ 1{
?
N , we have that the discrete analogue of (1.7) is the

partition function ZN,βN with βN “ β̂N´1{4. The fact that in this case ZN,βN has a well
defined limit was shown by Alberts-Khanin-Quastel [AKQ14] (see also [CSZ17a] for a more
general framework). In dimension two we will choose βN “ β̂{

?
logN in analogy with what

was described above within the SHE and KPZ framework.

The directed polymer model is an example of a disordered system, where a “pure” statistical
model (in this case the simple random walk) is perturbed by disorder / noise. The interest
then is to understand the effect that disorder has on the pure systems and whether arbitrarily
small amount of disorder is sufficient to change its statistical properties. If it does, then
disorder is called relevant while if a sufficiently large amount of disorder is required, then
disorder is called irrelevant. In [CSZ17a, CSZ18+] we formulated the question of disorder
relevance in the form of whether a partition function, such as that of the directed polymer,
has a non trivial. i.e. random, limit for suitable choice of the parameter β going to zero as
the size of the system increases. In [CSZ17b] we extended this framework to include systems
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where disorder has a marginally relevant effect. This included the two dimensional directed
polymer and SHE. Our treatment of the two dimensional directed polymer and SHE follows
the methods which were motivated by the study of more general disordered systems and the
phenomenon of disorder relevance.

Before closing this introduction let us make a quick review of the recent literature around
higher dimensional KPZ and SHE equations, which has been marked by a surge of activity.
In dimension two, which we will be mainly interested here, Chatterjee and Dunlap, using
different methods, proved tightness of the solution to the KPZ equation (1.13). Gu [G18],
using methods around Malliavin calculus, proved Edwards-Wilkinson universality. Neither
of these works covers the whole subcritical regime β̂ ă β̂critical.

In d ě 3 the strength of the noise in the SHE (1.5) is modulated as β̂ε
2´d

2 and there also
exists a critical value β̂critical, which marks a transition between weak and strong disorder.
The existence of this phase transition was shown in [MSZ16, CCM18] and it is in the spirit
of the transition that has been known for directed polymers in d ě 3 from the works of
Comets, Shiga, Yoshida [CSY04]. In particular, if β̂ ă β̂critical then, for fixed pt, xq, the
solution uεpt, xq converges to an a.s. positive limit, while for β̂ ą β̂critical it converges to
zero. Contrary to dimension two, where we have identified precisely the critical value of β̂,
in d ě 3 the understanding of the weak-to-strong transition and the critical temperature
that marks this transition is rather poor . For example there is no characterisation of the
critical value of β̂.

The Malliavin calculus approach of [G18] was used earlier in [DGRZ18] to prove Edwards-
Wilkinson universality for the KPZ equation in d ě 3. Earlier works on the d ě 3 KPZ via
renormalisation techniques are those of Magnen and Unterberger [MU18]. These works also
do not cover the whole subcritical regime. The advantage of the methods exposed in these
notes compared to those in the above works, which allow to cover the whole subcritical
regime in d “ 2, is that they make a detailed analysis of the polynomial / Wiener chaos
expansion of the polymer model / SHE. There is currently work in progress [L19] to extend
the Edwards-Wilkinson universality for d ě 3 in the whole subcritical regime.

Let us remark that in space dimension d “ 1, the Cole-Hopf solution hpt, xq :“ log upt, xq
of the KPZ equation (1.1) is well-defined as a random function, for all β P p0,8q. Moreover,
there is no phase transition in the one-point distribution as β varies. Thus, Edwards-
Wilkinson fluctuations for hpt, xq and upt, xq can be easily established as β Ó 0, combining
Wiener chaos and Taylor expansion (because upt, xq Ñ 1).

It is also interesting to consider a variation of the KPZ equation, which is called anisotropic
KPZ and where the nonlinearity |∇h|2 is replaced by x∇h,A∇hy for some matrix A with
detpAq ď 0. There is some belief and some evidence that the anisotropic KPZ falls into the
Edwards-Wilkinson universality class. We refer to the review [T17] for some details on the
current understanding. Let us just mention some recent work by Cannizzaro, Erhard and
Schönbauer [CES19], where A is the diagonal matrix with diagonal elements 1,´1 and the
nonlinearity is modulate in a similar fashion as the 2d KPZ equation by β{

a

log ε´1 †. They
prove tightness of the fields and non triviality of the limit points. Unlike the usual KPZ
equation there is currently no indication of a phase transition in β̂ in the anisotropic KPZ.

†the approximation of the anisotropic KPZ that is performed in [CES19] is a bit different than the
mollification procedure we have been working with. It goes into working in the Fourier space and performing
a truncation in the Fourier modes
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2. Disorder relevance

Let us start with a description of the notion of a disordered system. Consider an open
set Ω Ď Rd and define the lattice 
δ :“ pδZqd X Ω, for δ ą 0, which is the support of a
“random field” σ “ pσxqxP
δ whose law is determined by a probability measure denoted by
Pref

δ
. Typically, the field takes values σx P t0, 1u or t˘1u. Even though it also sensible to

consider fields that take non binary values, currently the treatment of such fields is not
covered by the methods we will describe.

Some examples of such fields can be:

‚ Ising models. In this case, 
δ :“ pδZqd X Ω with δ representing the mesh of the grid
on Ω Ă Rd and σx P t˘1u. The measure Pref


δ
is the Ising measure given by

Pref

δ pσq “

1

Zref

δ

e J
ř

x„y σxσy ,

where x „ y means that sites x, y are nearest neighbour, i.e. connected by an edge
of Zd. J is a coupling constant, which represents the strength of interaction between
neighbouring values of the field σ and

Zref

δ :“

ÿ

σ

e J
ř

x„y σxσy ,

is the partition function.

‚ Random walks. In this case, Ω is typically Zd ˆ t0, 1, ..., Nu for N ě 1 and 
δ is the
scaled version N´1{2Zd ˆ N´1pNX r0, 1sq, We notice that in this case the lattice is
given its more natural parabolic scaling. The field σ “ pσn,xqnďN,xPZd is σn,x “ 1tSn“xu,
where pSnqně1 is the trajectory of a random walk.

A disordered system arises when on the lattice 
δ, on top of the reference field σ, there exists
an additional randomness, ω :“ pωxqxP
δ modelled in the form of an i.i.d. collection, which is
typically assumed to be of mean zero, variance one and having exponential moments (although
it is sensible to relax the exponential moment assumption and consider heavy tailed fields, in
which case new phenomena often arise, see for example [AL11, HM07, DZ16, BT18, BT19]).
We call the randomness ω disorder and denote its law by P and its expectation with respect
to it by E.

Given a realisation of the disorder ω, the disordered model is defined as the following
probability measure Pω
δ;λ,h for the field σ “ pσxqxP
δ :

Pω
δ;β,hpσq :“
e
ř

xP
δ
pβωx`hqσx

Zω
δ;β,h
Pref

δ pσq , (2.1)

where now the partition function is defined by

Zω
δ;β,h :“ Eref

δ

“

e
ř

xP
δ
pβωx`hqσx

‰

. (2.2)

and we remark that in this case it is itself a random variable, depending on the realisation
ω.

A question of central interest in statistical physics but often very poorly understood is

Q. “ does an arbitrarily small amount of disorder change the statistical mechanics properties
of the reference field ? ”
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In the 70s A.B. Harris [H74] proposed the following criterion, which is known as Harris
criterion:

Harris criterion: If d is the (effective) dimension and γ is the correlation length exponent
(we will be more precise about this below) of the reference model, then if γ ą d

2 , the model
is disorder irrelevant, meaning that small enough amount of disorder is not sufficient to
change its statistical properties. If γ ă d

2 , then the model is disorder relevant, meaning
that any arbitrarily small amount of disorder does change its statistical properties.

Let us first define what we mean by a correlation length exponent here: Consider the
(what is called) k-point correlation function of the field σ to be:

ψ
pkq
δ px1, ..., xkq :“ Eref


δ rσx1 ¨ ¨ ¨σxks.

Then the correlation length exponent can be defined as the exponent γ such that

pδ´γqk ψ
pkq
δ px1, . . . , xkq ÝÝÑ

δÓ0
ψ
pkq
Ω px1, . . . , xkq. (2.3)

where the limit is to be thought of as pointwise, although stronger forms such as in L2pΩkq

will be needed for the framework we will develop.
Even though very simple, actually rigorously verifying the Harris criterion in concrete

examples is often difficult and requires a careful case by case analysis (although one can
transfer some intuition and a set of “general principles” between different problems). An
overview of the features of disorder relevance and the challenges verifying the Harris criterion
can be found in [G11].

In [CSZ17a] we proposed a different point of view for the Harris criterion focusing on the
existence of non-trivial (i.e. random) scaling limits of the partition functions when β, h are
suitably scaled to zero as δ Ñ 0. The question can be phrased as:

Q. Consider the partition function of a disordered model as defined in (2.2). Can we
choose β “ βδ and h “ hδ, converging to zero as δ Ñ 0, such that Zω
δ;βδ,hδ converges in
distribution to a random (i.e. finite and not constant) random variable ZW

Ω;β̂,ĥ
?

Here W denotes white noise on Rd and we request that the limit should be a non trivial
function of an underlying white noise.

We will now describe this point of view, whose core is multilinear and Wiener chaos
expansion and Lindeberg principles for multilinear polynomials, which we will describe in
detail in the following section.

Although it makes sense to consider a general value of h, we will, for simplicity, restrict
ourselves to the choice of h “ ´λpβq, where λpβq :“ logEreβωxs. We denote the partition
function associated to this choice by Zω
δ;β .

Let us assume that the field pσxq takes values in t0, 1u. The starting point is to write the
partition function in the form of a multilinear polynomial. We do this via what is called in
statistical mechanics high temperature or Mayer expansion, which goes by writing

Zω
δ;β “ Eref

δ

«

ź

xP
δ

`

1` βσxζx
˘

ff

, where ζx :“
epβωx´λpβqq ´ 1

β
. (2.4)

Here we used the fact that

epβωx´λpβq qσx ´ 1 “
´

epβωx´λpβqq ´ 1
¯

σx, if σx P t0, 1u.



10 N.ZYGOURAS

Expanding the product and interchanging the (finite) summation with the expectation Eref

δ

,
we write

Zω
δ;β “ 1`
8
ÿ

k“1

βk
ÿ

x1,...,xkP
δ

Eref

δ

“

σx1 ¨ ¨ ¨σxk
‰

k
ź

i“1

ζxi ,

where the inner sum is taken over k-tuples of distinct x1, ..., xk P 
δ (and so the sum over
k even though written as an infinite sum it is in fact finite). Denoting ψpkqδ px1, ..., xkq :“

Eref

δ
rσx1 ¨ ¨ ¨σxks we write

Zω
δ;β “ 1`
8
ÿ

k“1

pβδγqk
ÿ

x1,...,xkP
δ

pδ´γqk ψ
pkq
δ px1, ..., xkq

k
ź

i“1

ζxi , (2.5)

where we have inserted the assumed scaling of the k-point correlation function. Note that
the random variables pζxq are mean zero precisely due to the choice of the parameter h to
be equal to ´λpβq. Moreover, for β small, they have asymptotically unit variance.

At this point we need of a Lindeberg principle : suppose that we can replace the random
variables pζxq, from (2.4), by standard normal variables, which we denote by pξxq. If so, then
we could model this new collection of i.i.d. normal via a White noise W p¨q on Rd as

ξx “ |Cx,δ|
´1{2W

`

Cx,δ
˘

,

where Cx,δ is the cube in pδZqd with side length δ, “bottom-left” corner equal to x and
volume |Cx,δ| “ δd. Consider now the partition function

ZW
δ;β “ 1`
8
ÿ

k“1

`

βδ γ´
d
2
˘k

ÿ

x1,...,xkP
δ

pδ´γqk ψ
pkq
δ px1, ..., xkq

k
ź

i“1

W pCxi,δq, (2.6)

which can also be written as an iterated Wiener-Itô integral in the form

ZW
δ;β “ 1`
8
ÿ

k“1

`

βδ γ´
d
2
˘k

ż

¨ ¨ ¨

ż

Ωk
pδ´γqk ψ

pk,extq
δ px1, ..., xkq

k
ź

i“1

W pdxiq,

where ψpk,extq
δ is the piecewise constant function on Ωk, which takes the constant value ψpkqδ

on the cubes Cx1,δ ˆ ¨ ¨ ¨ ˆ Cxk,δ.

Choosing now

β “ βδ “ β̂ δ
d
2´γ , (2.7)

ones sees via an easy L2pPq estimate and using assumption (2.3) (strengthened to hold in
an L2pΩkq sense) that

ZW

δ;β̂

L2pPq
ÝÝÝÑ
δÓ0

1`
8
ÿ

k“1

β̂k
ż

¨ ¨ ¨

ż

Ωk
ψpkqpx1, ..., xkq

k
ź

i“1

W pdxiq. (2.8)

We should here remark at the consistency with the Harris criterion: the scaling of β
in (2.7) is consistent with the requirement that βδ Ñ 0 for δ Ñ 0 (thus disorder is gradually
weaker) if γ ă d{2. In the case that γ ą d{2 it turns out that any scaling of β tending to
zero as δ Ñ 0 will always lead to be a trivial, i.e. non random and in fact constant, limit.

As we see, the main point in obtaining the scaling limit of the disordered partition
function is justifying the passage (in the limit δ Ñ 0) from (2.5) to (2.6). This step is
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precisely achieved with the Lindeberg principle, which will be described in the next section,
see Theorem 3.2. Let us note that if h in (2.2) is taken to be different than ´λpβq, then
the random variables pζxq are not mean zero and in this case one needs to be more careful
as issues of convergence of the series in (2.5) arise. Moreover, one needs an extension of
Lindeberg Theorem 3.2 that will cover the situation of non-mean-zero variables. These issues
have been settled and suitable extensions of Theorem 3.2 have been achieved in [CSZ17a].

At the marginal case d
2 “ γ the above procedure has two problems. The first one is that

the scaling of β is not well defined as the exponent d
2 ´ γ vanishes. This is rectified by

typically choosing a logarithmic (or more general slowly varying) scaling. However, another
more serious issue typically arises, that the limiting correlation kernel ψkΩ in (2.3) is not in
L2pΩkq and thus the candidate Wiener integrals in (2.8) are not well defined. This is the
situation that one also faces when attempting to define the limit of the directed polymer
model or of the SHE and KPZ. We will see in Section 4 that a different structure takes
place in this situation.

3. Some general tools:
Chaos expansions, Lindeberg principles, Fourth moment

theorems, Hypercontractivity

3.1. Multilinear polynomials and Lindeberg principle. Let us define mul-
tilinear polynomials as follows. Consider a family of i.i.d. random variables ξ :“ pξxqxPS
indexed by a countable set S Let PfinpSq :“ tI Ă S : |I| ă 8u, the set of all finite subsets of
S. Consider also a function ψ : PfinpSq Ñ R. Then a multilinear polynomial of disorder ξ,
associated to ψ is defined as

Ψpξq :“
ÿ

IPPfinpSq

ψpIqξI , where ξI :“
ź

aPI

ξa, with ξH :“ 1. (3.1)

Assuming that Erξas “ 0 and Varpξaq “ 1, it is easy to compute the variance of Ψpξq as

VarpΨpξqq “ σ2
Ψ :“

ÿ

IPPfinpSq,I‰H

ψpIq2. (3.2)

An important feature, that we would like to quantify, is the “influence” that a single
variable has on the overall random function. In other words, “how much” does the random
function change if we change, e.g. by resampling, one of its random variables.

This motivates putting the notion of influence in a mathematical context. We define

Definition 3.1. Let pωxqxPS be a family of i.i.d., mean zero and variance one real valued
variables indexed by a countable set S. Let f : RS Ñ R be a function of this family of variables.
The influence of entry x P S is defined as

Infxpfq :“ E
”

Varpfpωq
ˇ

ˇ tωyuy‰xq
ı

.

In the case of multilinear polynomials the influence of entry x P S equals

Infx
`

Ψ
˘

“ E

«

´

BΨ

Bωx

¯2
ff

“
ÿ

IQx

ψpIq2.

The notion of influence plays an important role in the “replacement principle” that we
discussed earlier (see discussion around (2.6)) and which goes under the name of Lindeberg
principle. We have the following theorem
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Theorem 3.2. Let ζ “ pζaqaPS and ξ “ pξaqaPS be two families of independent ran-
dom variables with mean zero, variance one and uniformly integrable second moment. Let
Ψpξq,Ψpζq be the associated multilinear polynomials as defined in (3.1) and assume that
σ2

Ψ :“
ř

H‰IPPfinpSq ψpIq
2 is finite.

Then for every f P C3
b pRq and any ε ą 0, there exists Cε depending not only on ε but also

on }f 1}8, }f2}8, }f3}8 and σ2
Ψ, such that

ˇ

ˇ

ˇ
E
“

f
`

Ψpξq
˘‰

´ E
“

f
`

Ψpζq
˘‰

ˇ

ˇ

ˇ
ď ε` Cε

b

max
aPS

InfapΨq. (3.3)

The above theorem was proved in [CSZ17a] and it is an improvement of a theorem in
[MOO10] (see also [R74]), where the Lindeberg principle for multilinear polynomials was
proved under the assumption of finite third moment. The above theorem captures an optimal,
in terms of moments, condition. In [CSZ17a] a more quantitative expression of the right hand
side on (3.3) was provided. Moreover, in [CSZ17a] a statement of the Lindeberg principle
for non mean zero variables was proved.

A direct consequence of the above theorem is that if one has a sequence of multi-linear
functionals Ψn for which it holds that

max
aPS

InfapΨnq ÝÝÝÑ
nÑ8

0, (3.4)

then the asymptotic distribution of Ψnpξq and Ψnpζq are the same assuming that the families
ξ and ζ have matching first and second moment (e.g. mean zero and variance one) and
uniformly integrable second moments. Assumption (3.4) is typically satisfied when one
considers multilinear polynomials corresponding to partition functions of disorder relevant
systems and thus the Lindeberg principle of Theorem 3.2 facilitates the passage between
representations (2.5) and (2.6).

We will provide the proof of Theorem 3.2 in the Appendix.

3.2. Fourth Moment Theorem. A main tool that we will use to handle the asymp-
totic limits of the two dimensional SHE and KPZ as well as of general marginally relevant
disordered systems (in the subcritical regime β̂ ă βcritical) is the so-called fourth moment
theorem. In the form of multilinear polynomials this remarkable type of theorem asserts that
a sequence of multilinear polynomials of mean zero and variance one random variables ξ
with sufficient moments (recall also notation from (3.1))

Ψnpζq “
ÿ

IPPfinpSq

ψnpIqξ
I ,

converges to a standard normal variable if and only if its variance converges to 1 and its
fourth moment converges to 3.

Fourth moment theorems were (re)discovered and popularised by Nualart and Pec-
cati [NP05] in the context of Wiener chaoses. Versions of the fourth moment theorem in the
setting of discrete chaoses were discovered earlier in the study of statistics by Sevastyanov
[S61] (for bilinear forms) and later by de Jong [dJ87, dJ90]. Since the work of Nualart and
Peccati there has been an explosion of fourth moment theorems in various contexts and
with many applications. Some of the most sharp proof techniques make use of Malliavin
calculus (see for example [NPR10]).

Let us state a version of the fourth moment theorem from [CSZ17b], which is an extension
(using the Lindeberg Theorem 3.2) of a theorem of Nourdin, Peccati and Reinert [NPR10]
to random variables with just uniformly integrable second moments.
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Theorem 3.3. For each N P N, let pξxqxPS be independent random variables with mean 0
and variance 1, indexed by a countable set S. Assume that pξ2

xqxPS are uniformly integrable.
Fix k P N and d1, . . . , dk P N. For each 1 ď i ď k, let Ψ

piq
N pξq be a multi-linear polynomial in

pξxqxPS of degree di, i.e.,

Ψ
piq
N pξq “

ÿ

IĂS, |I|“di

ψ
piq
N pIqξ

I for some real-valued ψpiqN p¨q.

Assume further that:

(i) For all 1 ď i, j ď k, ErΨpiqN pξqΨ
pjq
N pξqs Ñ V pi, jq for some matrix V as N Ñ8;

(ii) For each 1 ď i ď k, ErΨpiqN pωq
4s Ñ 3V pi, iq2 as N Ñ 8, where we have replaced

pξxqxPS by i.i.d. standard normal random variables pωxqxPS;

(iii) The maximal influence of each variable ξx on the polynomials of degree one among
pΨ
piq
N pξxqq1ďiďk is asymptotically negligible, i.e., for each 1 ď i ď k,

max
xPS

|ψ
piq
N pxq| Ñ 0 as N Ñ8. (3.5)

Then pΨpiqN pξq1ďiďk converge jointly in law to a centered Gaussian vector with covariance V .

3.3. Hypercontractivity. Let us now discuss the notion of hypercontractivity. Some
references on hypercontractivity are [S98] for a discrete setting and [J97] for hypercontrac-
tivity on Gaussian spaces.

The notion of hypercontractivity is very useful when one needs to control higher than two
moments via second moments. The significance of this is that when dealing with multilinear
expansions their second moments can be easily computed (see for example (3.2)), while
higher moments, which do appear in our KPZ estimates, are not easily computable, in
particular when these are non integers. Thus having a tool that will allow this reduction
in a sharp way is very important and we will make use of this in Section 5 when proving
Edwards-Wilkinson universality of the 2d KPZ.

Let us give the following definition of hypercontractivity for multi-linear polynomials.

Definition 3.4. Let Ψpξq :“
ř

IPPfinpSq ψpIqξ
I be a multi-linear polynomial of the family of

random variables ξ “ pξaqaPS. For % ą 0, define the operator T% acting on the multilinear
polynomial as

`

T%Ψ
˘

pξq :“
ÿ

IPPfinpSq

%|I| ψpIq ξI ,

where |I| denotes the cardinality of the set |I|. For % ě 1 and 1 ď p ď q ă 8, we will say
that the family ξ is pp, q, %q´hypercontractive if

}Ψ}q ď }T%Ψ }p.

for all multi-linear polynomials Ψ.

The following theorem shows that families of random variables with more than two
moments are hypercontractive.

Theorem 3.5. Let ξ “ pξxqxPS be a family of i.i.d. random variables such that

E
“

ξx
‰

“ 0, E
“

ξ2
x

‰

“ 1 and Dp0 P p2,8q : E
“

ξp0
x

‰

ă 8
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Then, for every p P p2, p0q the family ξ is p2, p, %pq-hypercontractive with

lim
pÓ2

%p “ 1. (3.6)

In particular, we have that, for every every multilinear polynomial Ψpξq “
ř

IPPfinpSq ψpIqξ
I

and for p P p2, p0q,

E
“

|Ψpξq|p
‰

ď

´

ÿ

IPPfinpSq

%|I|p ψpIq ξI
¯p{2

.

Except for the sharp asymptotic (3.6), this theorem was proved in [MOO10] as an extension
of the corresponding result in the Gaussian framework, see [J97, S98]. The sharp asymptotic
(3.6) was proved in [CSZ18b, Theorem B.1] and is important for proving the Edwards-
Wilkinson fluctuations for the KPZ in the entire subcritical regime β̂ ă 1 in Theorem 5.1.
The estimate on the hypercontractivity constant given in [MOO10, Proposition 3.16] was

2
a

p´ 1 sup
NPN

Er|ξx|ps1{p

Er|ξx|2s1{2
“ 2

a

p´ 1 sup
NPN

Er|ξx|
ps1{p ,

which when p Ó 2 it converges to 2, instead of the natural value 1. This extra factor 2 is the
byproduct of a non-optimal symmetrization argument in the proof in [MOO10].

4. Marginal relevance via the 2d directed polymer and SHE

We will now study the case of marginal relevance that we touched upon at the end of
Section 2. The two dimensional polymer and SHE fall in this category and so we will use
this as the main example in this section. For other marginal models that fall under the scope
of the methods described here we refer to [CSZ17b].

Let pSnqně1 be a simple, two dimensional random walk and let the disorder pωn,xqnPN,xPZd
satisfy the usual conditions of mean zero, variance one and exponential moments λpβq :“
logEreβωs ă 8. We will denote the law and expectation of a random walk starting at
location x by Px and Ex, respectively, while the law and expectation with respect to the
disorder will be denoted by P and E. We set

qnpxq :“ PpSn “ xq . (4.1)

The local limit theorem asserts that

qnpxq “ 2gn{2pxq1tn`x1`x2P2Zu ` op
1
nq, uniformly for x P Z2, (4.2)

where the factor 2 is due to periodicity and gtpxq “ 1
2πte

´|x|2{2t is the two dimensional heat
kernel. Denoting by rS an independent copy of S, we define the expected overlap, which will
play an important role in the normalisation below, by

RN :“
N
ÿ

n“1

PpSn “ rSnq “
N
ÿ

n“1

ÿ

xPZ2

qnpxq
2 “

N
ÿ

n“1

q2np0q “
logN

π
`Op1q , (4.3)

where we used the convolution property of the random walk
ř

x qnpxq
2 “ q2np0q and the

local limit theorem asymptotics. The partition function of the directed polymer model, for a
random walk starting at location x, is given by

ZN,βpxq :“ Ex

”

e
řN
n“1pβ ωpn,Snq´λpβqq

ı

“ Ex

”

e
ř

1ďnďN,yPZ2 pβ ωpn,yq´λpβqq 1tSn“yu
ı

. (4.4)
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Performing a similar expansion as in (2.4) we can write the partition function as

ZN,βpxq “ 1`
N
ÿ

k“1

σpβqk
ÿ

0“n0ăn1ă...ănkďN
x0“x, x1,...,xkPZ2

k
ź

i“1

qni´ni´1pxi ´ xi´1q ξni,xi , (4.5)

where

ξn,x :“ σpβq´1
´

eβωpn,xq´λpβq ´ 1
¯

with σ “ σpβq :“
a

eλp2βq´2λpβq ´ 1. (4.6)

σpβq is chosen so that the random variables ξn,x are normalized to have variance one. But
since σpβq „ β, for β small, we will usually replace it by β without extra reference.

The determination of the scaling of β in terms of N comes from a variance computation

ErZN,βpxq
2s “ 1`

N
ÿ

k“1

σpβq2k
ÿ

0“:n0ăn1ă...ănkďN
x0“:x, x1,...,xkPZ2

k
ź

i“1

qni´ni´1pxi ´ xi´1q
2

“ 1`
N
ÿ

k“1

σpβq2k
ÿ

0“:n0ăn1ă...ănkďN

q2pni´ni´1q
p0q .

(4.7)

Looking, for example, at the first term of this expansion and using (4.3) we see that to keep
this term of order one, we should choose β “ βN as

βN :“
β̂

?
RN

“

?
πβ̂

?
logN

p1` op1qq , for β̂ P p0,8q. (4.8)

This turns out to also be the right choice in order to keep the variance of the rest of the
terms to be of order one. The logarithmic scaling, here, should be contrasted to the power
law scaling in (2.7). This reflects the fact that we are at the marginal case and so the
exponent in (2.7) vanishes. Indeed, under the parabolic scaling and the local limit theorem
(4.2), it holds that NqtN px

?
Nq has a non trivial limit and so the correlation exponent is

γ “ 1, reflected by the power of N multiplying the kernel q. On the other hand, the effective
dimension is deff “ one time scaling` twice space scaling “ 1` 2 ¨ 1

2 “ 2. Thus deff{2 “ γ.

The first guess for the continuum limit of ZN,βN pxq under this choice of βN would be

1`
ÿ

kě1

β̂k
ż

¨ ¨ ¨

ż

0ăt1ă¨¨¨ătk´1ăε
´2

x1,...,xkPR2 , x0“x

k
ź

i“1

g ti´ti´1pxi ´ xi´1qW pdti,dxiq.

Notice that this would be the obvious form for the solution to the stochastic heat equation
via the standard Picard iteration. However, there is a problem as the above integrals are
not properly defined in the Itô sense. This can be easily checked by computing the L2 norm
of, for example, the first integral which is

β̂2

ż 1

0

ż

R2

gtpxq
2dt dx “ β̂2

ż 1

0

1

4πt
dt,

which blows up logarithmically.
The scaling limit is indeed more subtle and less obvious. Remarkably, the situation is

universal among models which can be characterised as marginally relevant in the sense
described in the following theorem
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Theorem 4.1 ([CSZ17b]). Let Zmarginal
N,βN

be a multilinear polynomial (typically a partition
function) of the form

Zmarginal
N,βN

“ 1`
N
ÿ

k“1

βkN
ÿ

1ďn1ă¨¨¨ănkďN
x1,...,xkPZd

k
ź

i“1

qni´ni´1pxi ´ xi´1q ξni,xi ,

where we may assume that x0 in the the above summation is equal to 0. pξn,xqnPN,xPZd is a
collection of i.i.d. mean zero, variance one random variables with exponential moments and
the kernel pqnpxqqnPN,xPZd satisfies that

RN :“
N
ÿ

n“1

ÿ

xPZd

qnpxq
2 grows to infinity as a slowly varying function. (4.9)

We also assume that the kernel qnpxq satisfies a type of local limit theorem, i.e.

sup
xPZd

!

nγ qnpxq ´ g
` x

na
˘

)

ÝÝÝÑ
nÑ8

0 , (4.10)

for a sufficiently smooth density gp¨q and exponents a, γ ą 0 †. Then, if βN :“ β̂{
?
RN , it

holds that

Zmarginal
N,βN

d
ÝÝÝÝÑ
NÑ8

#

exp
`

σβ̂X´
1
2σ

2
β̂

˘

if β̂ ă 1

0 if β̂ ě 1
. (4.11)

where X is a standard normal variable and σ2
β̂
“ logp1´ β̂2q´1.

We will outline the main ideas of the above theorem below. Before, let us describe the
analogue of this theorem for the stochastic heat equation in the following

Theorem 4.2. Let j P C8c pR2q be a probability density on R2 with jpxq “ jp´xq, and
let J :“ j ˚ j. For ε ą 0, let jεpxq :“ ε´2jpx{εq and define the mollified noise 9W ε by
9W εpt, xq :“

ş

R2 jεpx´ yq 9W pt, yqdy. Then the solution to the regularised SHE

Btu
ε “

1

2
∆uε ` βεu

ε 9W ε, uεp0, ¨q ” 1, (4.12)

with βε “ β̂
a

2π{ log ε´1 satisfies the pointwise (i.e. for fixed t P R, x P R2) distributional
limit

uεpt, xq
pdq
ÝÝÝÑ
εÑ0

#

exp
`

σβ̂X´
1
2σ

2
β̂

˘

if β̂ ă 1

0 if β̂ ě 1
. (4.13)

where X is a standard normal variable and σ2
β̂
“ logp1´ β̂2q´1.

We remark that the difference between the factor 2π in the above theorem and the factor
π in (4.3) is due to the periodicity of the walk. The proof of Theorem 4.2 is given in Section

†we see that in order for (4.9) to hold, the exponents a, γ need to satisfy the relation γ “ 1`ad
2

, which
is consistent with Harris criterion for effective dimension deff :“ 1` ad. But also notice that in order for
the limit of qnp¨q to be a probability density, it is required that γ “ ad, which combined with the relation
γ “ 1`ad

2
, leads to the interpretation of marginality, in terms of the physical dimension as d “ 1{a
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9 of [CSZ17b] and it is based on an approximation of the solution to the SHE, in the form
of a Wiener chaos expansion

uεpt, zq
d
“ 1`

ÿ

kě1

βkε

ż

¨ ¨ ¨

ż

0ăt1ă¨¨¨ătkăε
´2t

~xPpR2qk

˜

ż

pR2qk

k
ź

i“1

gti´ti´1pyi´yi´1q jpyi´xiqdyi

¸

k
ź

i“1

ξpti, xiqdtidxi ,

(4.14)
where y0 “ ε´1z, by the partition function of the directed polymer model. Since this
approximation is mostly technical and long but does not bring in any news insights, we will
not expose it here.

Before sketching the proof Theorem 4.1, let us remark on the significance of the critical
value β̂critical “ 1. This lies on the fact that for β̂ ă 1, the L2pPq norm of Zmarginal

N,βN
is

uniformly bounded in N , while for β̂ ě 1 it increases to infinity as N Ñ 8. For β̂ “ 1
precise estimates [CSZ18c] show that this L2pPq norm grows as logN .

Sketch of the proof of Theorem 4.1. We will outline the proof having in mind the case
of a directed two dimensional polymer, in which case qnpxq is the transition probability
kernel of a two dimensional simple random and, therefore from (4.3), RN „ 1

π logN .
An important first observation has to do with the correct time scale upon which one

observes a change in the fluctuations. To determine this time scale, one may look at the
partition function of a system of length tN for arbitrary t ą 0. Computing the variance
of ZtN,βN with βN as in (4.8), one obtains that it is asymptotically independent of t when
N Ñ8. One can be easily convinced about this by looking, for example, at the variance of
the first term in the chaos expansion (4.5), which behaves as (we denote by σN :“ σpβN q)

σ2
N Var

´

ÿ

1ďnďtN
xPZ2

qnpxqξn,x

¯

“
β̂2

RN

ÿ

1ďnďtN
xPZ2

qnpxq
2 “ β̂2RtN

RN
ÝÝÝÝÑ
NÑ8

β̂2,

which is independent of t, since RN is a slowly varying function. Moreover, a similar
computation shows that the contribution to the fluctuations from disorder ξn,x sampled in
the time interval rtN,N s is negligible, for any t ą 0 fixed. On the other hand, one starts
seeing a change in the fluctuations when looking at time scales N t, with t ą 0. These facts
dictate that the meaningful time scale is not tN but N t and that the partition function
ZN,βN essentially depends only on disorder ξn,x with n{N Ñ 0, as N Ñ8. We remark that
this observation will also be important later on when we will try to approximate the KPZ
equation via the SHE.

To quantify the observation on the time scale, we decompose the summations over n1, ..., nk

in the multilinear expansion (4.5), over intervals nj ´ nj´1 P Iij , with Iij “
`

N
ij´1

M , N
ij
M

‰

,
ij P t1, ...,Mu with M being a coarse graining parameter (which will eventually tend to
infinity). We can then rewrite the k-th term in the expansion (4.5) as

β̂k

Mk{2

ÿ

1ďi1,...,ikďM

ΘN,M
i1,...,ik

where (4.15)

ΘN,M
i1,...,ik

:“

ˆ

M

RN

˙k{2
ÿ

nj´nj´1P Iij for j“1,...,k

x1,...,xkPZ
d

k
ź

j“1

qnj´nj´1pxj ´ xj´1q ξnj ,xj .
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For technical reasons, that should become obvious below, we are led to restrict the summation
in (4.15) to the subset

i1, ..., ik P t1, ...,Mu7 with

t1, ...,Mu7 :“ ti “ pi1, ..., ikq : |ij ´ ij1 | ě 2, for all j ‰ j1u.

It is not difficult to justify this restriction via an L2pPq but we will omit the details.
We now observe that if an index ij is a running maximum for the k-tuple i :“ pi1, ..., ikq,

i.e. ij ą maxti1, ..., ij´1u then
`

N
ij´1

M , N
ij
M

‰

Q nj " nr P
`

N
ir´1
M , N

ir
M

‰

, for all r ă j, when
N Ñ8. This is the point where we also use the restriction into t1, ...,Mu7 . This implies that
qnj´nj´1pxj´xj´1q « qnj pxjq for nj P Iij and nj´1 P Iij´1 , where the drop out of the spatial
term xj´1 makes use of the diffusive properties of the random walk. Thus, decomposing
the sequence i :“ pi1, ..., ikq according to its running maxima, i.e. i “ pip1q, ..., ipmpiqqq with
iprq :“ pi`r , ..., i`r`1´1q and with i1 “ i`1 ă i`2 ă ¨ ¨ ¨ ă i`m being the successive running
maxima, it can be shown that (4.15) asymptotically factorizes for large N as

β̂k

M
k
2

ÿ

iPt1,...,Muk
7

ΘN ;M

ip1q
ΘN ;M

ip2q
¨ ¨ ¨ΘN ;M

ipmq
. (4.16)

The heart of the matter is to show that all the ΘN ;M

ipjq
converge jointly, when N Ñ 8 to

standard normal variables. This is where the fourth moment theorem is used and we will
show how this is done in Proposition 4.3 that follows. Assuming this, let us see how we can
obtain the convergence to the log-normal distribution in (4.11) when β̂ ă 1.

We can start by replacing, using the Lindeberg principle, the ΘN ;M
i variables in (4.16) by

standard normals, which we denote by ζi. Then denoting by

ζrpaq :“
ÿ

pa,a2,...,arqPt1,...,a´1ur´1

ζpa,a2,...,arq

we have that Zmarginal
N,βN

is approximately (in the large N limit)

Zmarginal
N,βN

« 1`
8
ÿ

k“1

k
ÿ

m“1

βk

M
k
2

ÿ

1ď`1ă¨¨¨ă`mďk
1ďa1ăa2ă¨¨¨ăamďM

m
ź

j“1

ζ`j`1´`j pajq,

where m denotes the number of running maxima in the sequence i “ pi1, ..., ikq in (4.15)
(thus determining the number of dominated sequences), `1, ..., `m denotes the location of
the running maxima in i and a1, ..., am denote the values of i`1 , ..., i`m . We can continue by
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rewriting the above as

1`
8
ÿ

k“1

k
ÿ

m“1

β̂k

M
k
2

ÿ

r1,...rmPN
r1`¨¨¨`rm“k

ÿ

1ďa1ăa2ă¨¨¨ăamďM

m
ź

j“1

ζrj pajq

“ 1`
8
ÿ

m“1

ÿ

r1,...,rmPN

ÿ

1ďa1ăa2ă...ăamďM

m
ź

j“1

β̂rj

M
rj
2

ζrj pajq

“ 1`
8
ÿ

m“1

ÿ

r1,...,rmPN

ÿ

0ăt1ăt2ă...ătmď1
t1,...,tmP

1
M
N

m
ź

j“1

β̂rj

M
rj
2

ζrj pMtjq

“ 1`
8
ÿ

m“1

ÿ

0ăt1ăt2ă...ătmď1
t1,...,tmP

1
M
N

m
ź

j“1

"

ÿ

rPN

β̂r

M
r
2

ζrpMtjq

*

, (4.17)

In the first equality we interchanged the summations overm and k and for this the assumption
β̂ ă 1, that ensures convergence in L2pPq is crucially used.

Since pβ̂{
?
MqrζrpMtq are normal random variables, independent for different values of

r P N and t PM´1N, we have that the random variables

ΞM,t :“
ÿ

rPN

β̂r

M
r
2

ζrpMtq, t P p0, 1s X
1

M
N,

are also independent normal with mean zero and variance

VarpΞM,tq “
ÿ

rPN

β̂2r

M r
VarpξrpMtqq “

ÿ

rPN

β̂2r

M r
pMt´ 1qr´1 “

β̂2

M
¨

1` εM ptq

1´ β̂2t
,

with the error εM ptq easily seen to converge to 0, uniformly in t P r0, 1s, as M Ñ 8 for
β̂ ă 1. We can, therefore, represent ΞM,t in terms of a standard, one dimensional Wiener
process W :

ΞM,t “
β̂p1` εM ptqq
b

1´ β̂2 t

ż t

t´ 1
M

dWs, t P r0, 1s X
1

M
N. (4.18)

and we can rewrite (4.17) as

1`
8
ÿ

m“1

ÿ

0ăt1ăt2ă...ătmď1
t1,...,tmP

1
M
N

m
ź

j“1

β̂p1` εM ptqq
b

1´ β̂2 tj

ż tj

tj´
1
M

dWs. (4.19)

So, for β̂ ă 1, we have that (4.18) converges in L2pPq, for M Ñ8, to

1`
8
ÿ

m“1

ż

¨ ¨ ¨

ż

0ăt1ă...ătmă1

m
ź

j“1

β̂
b

1´ β̂2 tj

dWtj “ exp

#

ż 1

0

β̂
b

1´ β̂2 t
dW ptq´

1

2
E
”´

ż 1

0

β̂
b

1´ β̂2 t
dW ptq

¯2ı
+

,

where the last equality holds by the properties of the Wick exponential [J97, §3.2]. Since
ş1
0

β̂?
1´β̂2 t

dW ptq is a gaussian variable with variance
ş1
0
β̂2 dt

1´β̂2
“ logp1´ β̂2q, the result follows.
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This concludes the proof of the log-normality in the subcritical regime β̂ ă 1. The
proof that at the critical temperature β̂ “ 1 the limit of Zmarginal

N,βN
is zero makes use of the

convergence for β̂ ă 1 and goes via a fractional moment computation. For ϑ ă 1,

lim
NÑ8

ErpZmarginal
N,βN

qϑs “ E

„

exp
´

ϑ

ż 1

0

β̂
b

1´ β̂2 t
dW ptq ´

ϑ

2

ż 1

0

β̂2

1´ β̂2 t
dt
¯



“ exp
´ϑpϑ´ 1q

2

ż 1

0

β̂2

1´ β̂2 t
dt
¯

“
`

1´ β̂2
˘´

ϑpϑ´1q
2 ,

which, since ϑ ă 1, goes to zero as β̂ Õ 1. The proof is completed by a monotonicity
property of β ÞÑ E

“`

Zmarginal
N,β

˘ϑ‰, which allows for an interchange of the limits in N and β̂
in the above computation; for details see [CSZ17b, Theorem 2.8 and its proof]. �

We will now prove the core proposition, which outlines how ΘN ;M
i converges to a normal

variable for just a single i. The joint convergence, that is required in the previous theorem,
follows easily from the computation that we will outline and the general statement of
Theorem 3.3.

Proposition 4.3 (Dominated sequences). Let ΘN,M
i be defined as in (4.15) with the

kernel qnpxq satisfying the assumption of marginal relevance as in Theorem 4.1 and i “
pi1, ..., ikq, for some k ě 1, being a dominated sequence, that is i1 ą i2, ..., ik. Then, for
every fixed M , ΘN,M

i converges to a standard normal as N Ñ8.

Proof. The proof uses the Fourth Moment Theorem. Let i “ pi1, ..., ikq be a dominated
sequence and compute

E
”

`

ΘN,M
i

˘4
ı

“

´ M

RN

¯2k ÿ

aj´aj´1P Iij
x1,...,xk

ÿ

bj´bj´1P Iij
y1,...,yk

ÿ

cj´cj´1P Iij
z1,...,zk

ÿ

dj´dj´1P Iij
w1,...,wk

E
“

k
ź

j“1

ξaj ,xjξbj ,yjξcj ,zjξdj ,wj
‰

ˆ

k
ź

j“1

qaj´aj´1pxj ´ xj´1q qbj´bj´1
pyj ´ yj´1q qcj´cj´1pzj ´ zj´1q qdj´dj´1

pwj ´ wj´1q.

(4.20)

By the Lindeberg principle, Theorem 3.2, we may assume that the random variables ξn,x
are standard normals and therefore the expectation that appears inside the sum above
will be zero unless the variables

`

ξaj ,xj , ξbj ,yj , ξcj ,zj , ξdj ,wj : j “ 1, ..., k
˘

match in pairs or in
quadruples.

We will show that there is only one case that contributes to the asymptotic behaviour
when N Ñ 8, which is when either paj , xjq “ pbj , yjq and pcj , zjq “ pdj , wjq for all j or
paj , xjq “ pcj , zjq and pbj , yjq “ pdj , wjq for all j or paj , xjq “ pdj , wjq and pcj , zjq “ pbj , yjq
for all j. The restriction to these three possibilities is what gives that the limit of the fourth
moment of ΘN,M

i converges to three - we also need to notice that the contribution of each
term is 1. To see this last point, look, for example, at the case paj , xjq “ pbj , yjq. The



2d-KPZ AND MARGINAL RELEVANCE 21

corresponding term in the right hand side of (4.20) equals (we also use that Erξ2s “ 1)

´ M

RN

¯2k ÿ

aj´aj´1P Iij
x1,...,xk

ÿ

cj´cj´1P Iij
z1,...,zk

k
ź

j“1

qaj´aj´1pxj ´ xj´1q
2 qcj´cj´1pzj ´ zj´1q

2

“

´ M

RN

¯2k ´ ÿ

aj´aj´1P Iij
x1,...,xk

k
ź

j“1

qaj´aj´1pxj ´ xj´1q
2
¯2
. (4.21)

Having in mind the case of the two dimensional directed polymer, that we are concerned
with here, in which case RN „ 1

π logN , we notice that

M

RN

ÿ

aj´aj´1P Iij
xkPZ2

qaj´aj´1pxj ´ xj´1q
2 “

M

RN
pR

N ij {M ´RNpij´1q{M q « 1. (4.22)

Let us now describe how the rest of the possible matching cases lead to negligible contribution.
For this, let us label the elements of the set tpaj , xjq, pbj , yjq, pcj , zjq, pdj , wjq : j “ 1, ..., ku
as tpf1, χ1q, ..., pfp, χpqu with p ď 2k denoting the cardinality of the set. The first case to
exclude is the case where a quadruple matching exists.
Quadruple matchings. In this case p ă 2k. Every time we sum a double matching, we

will have a sum of the form
ÿ

ar P ar´1`Iir
bm P bm´1`Iim

xr“ym PZ2 and ar“bm

qar´ar´1pxr ´ xr´1qqbm´bm´1pym ´ ym´1q, (4.23)

which, by Cauchy-Schwarz and the computations in (4.21), (4.22), is easily seen to be
bounded by pRN{Mq2.

On the other hand, when a quadruple matching occurs, we have a sum of the form
ÿ

ar P ar´1`Iir , bm P bm´1`Iim
cu P cu´1`Iiu , dv P dv´1`Iiv

xr“ym“zu“wv PZ2

ar“bm“cu“dv

qar´ar´1pxr ´ xr´1qqbm´bm´1pym ´ ym´1q

ˆ qcu´cu´1pzu ´ zu´1qqdv´dv´1pwv ´ wv´1q,

and bounding the last two kernels by 1 we come back to the same sum as in (4.23) and,
thus, the contribution of this quadruple summation is also bounded by RN{M . Performing
successively all summations of tpf1, χ1q, ..., pfp, χpqu we obtain a bound of order pRN{Mqp,
which, since p ă 2k, is dominated by the factor pM{RN q2k in (4.20) (recall that RN Ñ8).

Mixed pairwise matchings. This case is the central one and here is where one sees
the significance of the logarithmic (or in general slowly varying) growth of the overlap RN ,
i.e. marginal relevance, as well as the role of the dominated sequence.

The situation here is that we only have pairwise matchings but the labels mix. For
example, we may have that pf1, χ1q “ pa1, x1q “ pb1, y1q but then the pa, xq label does not
continue to match with the pb, yq label but, for example, pf2, χ2q “ pa2, x2q “ pc1, z1q. In
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this case, let us look at the normalised sum
M

RN

ÿ

a2 P a1`Ii2 , c1 P Ii1
x2“z1 PZ2 and a2“c1

qa2´a1px2 ´ x1qqc1pz1q.

We notice that the matching a2 “ c1 constraints the range of c1 from its original set Ii1 to
a1 ` Ii2 . Thus, via Cauchy-Schwarz we bound this by

M

RN

´

ÿ

a2 P a1`Ii2 , x2PZ2

qa2´a1px2 ´ x1q
2
¯1{2´ ÿ

c1 P a1`Ii2 , z1 PZ
2

qc1pz1q
2
¯1{2

.

The first sum is bounded by RN{M but the second one is
ÿ

c1 P a1`Ii2 , z1 PZ
2

qc1pz1q
2 “

ÿ

c1 P a1`Ii2

q2c1p0q
2 « logpa1 `N

i2{M q ´ logpa1 `N
pi2´1q{M q

and since a1 P Ii1 it is of order N i1{M ąą N i2{M , the above difference converges to zero as
N tends to infinity.

The more general mix-and-match-labels case follows the same route. �

Theorem 4.1 describes the asymptotics of a single partition function of a marginally
relevant model when the starting point of the polymer path is fixed. We can also ask about
the asymptotics of the joint laws of

`

Zmarginal
N,βN

pxq
˘

xPZd . This will be described by the next
theorem, which, for simplicity in terms of notation, we only state in the case of the standard
two dimensional directed polymer model.

Theorem 4.4 (Partition function of 2d polymer as a field). Let ZN,βN pxq be the
partition function of a directed polymer corresponding to a two dimensional, simple random
walk. Let βN be chosen as

βN :“
β̂

?
RN

, with β̂ ă 1 and RN :“
ÿ

nďN , xPZ2

qnpxq
2 “

logN

π
p1` op1qq. (4.24)

Let also φ P CbpR2q X L1pR2q be a test function. Then

ZN,βN pφq :“

?
RN
N

ÿ

xPZd

`

ZN,βN pxq ´ 1
˘

φ
`

x?
N

˘

converges to a gaussian variable with mean zero and variance

σ2
β̂,φ
“

β̂2

1´ β̂2

ż

R2

ż

R2

φpxqKpx, yqφpyq dxdy, with Kpx, yq “

ż 1

0

1

2πt
e´

|x|2

2t dt.

Proof. The proof of this theorem follows similar lines as that of Theorem 4.1 and also
makes crucial use of Proposition 4.3 on the asymptotic normality of dominated sequences.
However, there is a key difference with Theorem 4.1, where we saw, via variance estimates,
that the main contribution to fluctuations of the partition function with fixed starting point
comes from disorder ξn,x with n “ N t for t ă 1. Here the fact that we average at spatial
scales

?
N will make those contributions to the fluctuations of ZN,βN pφq negligible. Thus,

here, the noise that will drive the fluctuations is ξn,x with n of order N †. This can be seen

†This qualitative difference will also play a crucial role in the KPZ fluctuations and the approximation of
the KPZ by the field of partition functions
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again via a variance computation: starting from the chaos expansion

ZN,βN pφq “

?
RN
N

N
ÿ

k“1

βkN
ÿ

1ďn1ă¨¨¨ănkďN
x0,x1,...,xkPZd

φ
`

x0?
N

˘

k
ź

i“1

qni´ni´1pxi ´ xi´1q ξni,xi ,

the variance is computed as

Var
`

ZN,βN pφq
˘

“
RN
N2

N
ÿ

k“1

β2k
N

ÿ

1ďn1ă¨¨¨ănkďN
x0,rx0,x1,...,xkPZd

φ
`

x0?
N

˘

φ
`

rx0?
N

˘

qn1px1 ´ x0qqn1px1 ´ rx0q

k
ź

i“2

qni´ni´1pxi ´ xi´1q
2.

Summing successively over the variables pnk, xkq, pnk´1, xk´1q, ..., pn2, x2q and using (4.24)
will produce a factor of Rk´1

N , which will be cancelled by k´ 1 powers of β2
N . There remains

one more power of β2
N which will then cancel the prefactor RN (recall that βN “ β̂{

?
RN ).

Thus, we have that the variance is approximately, for large N , equal to

Var
`

ZN,βN pφq
˘

«
1

N2

8
ÿ

k“1

β̂2k
ÿ

1ďn1ďN

ÿ

x0,rx0,x1

φ
`

x0?
N

˘

φ
`

rx0?
N

˘

qn1px1 ´ x0qqn1px1 ´ rx0q

“
β̂2

1´ β̂2

1

N2

ÿ

1ďn1ďN

ÿ

x0,rx0

φ
`

x0?
N

˘

φ
`

rx0?
N

˘

q2n1px0 ´ rx0q,

where in the second equality we performed the geometric summation over the β̂2k and we
summed over x1 using the convolution property of the random walk. Using the local limit
theorem, we see that the variance is approximately

Var
`

ZN,βN pφq
˘

«
β̂2

1´ β̂2

1

N

ÿ

1ďn1ďN

1

N2

ÿ

x0,rx0

φ
`

x0?
N

˘

φ
`

rx0?
N

˘

¨
1

π n1
N

exp
´

´
|x0 ´ rx0|

2{N

2n1{N

¯

.

The Riemann sum approximation shows immediately that contributions from n1 “ opNq
are negligible. Moreover, it also shows that the limiting variance is

σ2
β̂,φ
“

β̂2

1´ β̂2

ż

R2

ż

R2

φpxqKpx, yqφpyq dxdy, with Kpx, yq “

ż 1

0

1

2πt
e´

|x|2

2t dt.

as claimed in the statement of the theorem.
Having made this crucial observation, the proof of the theorem proceeds as the proof of

Theorem 4.1 by first coarse graining the temporal variables so that nj ´ nj´1 P Iij with

Ij “
`

N
ij´1
M , N

ij´1
M

‰

as

ZN,βN pφq “
ÿ

kě1

β̂k

Mk{2

ÿ

1ďi1,...,ikďM

ΘN,M,φ
i1,...,ik

where (4.25)

ΘN,M,φ
i1,...,ik

:“

ˆ

M

RN

˙k{2
ÿ

nj´nj´1P Iij for j“1,...,k

x0,x1,...,xkPZ2

φ
`

x0?
N

˘

k
ź

j“1

qnj´nj´1pxj ´ xj´1q ξnj ,xj .

But now the crucial observation on the time scale comes into place, imposing that the main
contribution is when n1 is of order N , thus forcing i1 “ 1. Therefore, the decomposition
of ZN,βN pφq into dominated subsequence will consist of only one dominated subsequence,
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that of (4.25) with i1 “ 1 as (opposed to the decomposition of ZN,βN for fixed initial point
as in (4.16)). A slight modification of Proposition 4.3 shows that ΘN,M,φ

i1,...,ik
with i1 “ 1 is

asymptotically normal variable and thus ZN,βN pφq as in (4.25) is a sum of asymptotically
uncorrelated, gaussian variables. This now easily leads to the conclusion.

�

5. The two dimensional KPZ in the subcritical regime

With respect to the KPZ equation, Theorem 4.1 translates, via the Hopf-Cole transfor-
mation hε “ log uε, to

hεpt, xq
d
ÝÝÑ
εÓ0

#

σβ̂X´
1
2σ

2
β̂

if β̂ ă 1

´8 if β̂ ě 1
with σ2

β̂
:“ log 1

1´β̂2
, X „ Np0, 1q , (5.1)

which indicates a phase transition at β̂ “ 1. In this section we will describe that, when
viewed as a field, the solution to the KPZ in dimension two falls into the Edwards-Wikinson
class in the subcritical regime β̂ ă 1. In particular, we have the following theorem

Theorem 5.1 (Edwards-Wilkinson fluctuations for 2-dimensional KPZ - [CSZ18b]).
Let hε be the solution of the mollified KPZ equation (1.11) with initial condition hεp0, xq ” 1

and with βε “ β̂
a

2π{ log ε´1 and β̂ P p0, 1q. Denote

hεpt, xq :“
hεpt, xq ´ Erhεpt, xqs

βε
“

a

log ε´1

?
2π β̂

`

hεpt, xq ´ Erhεpt, xqs
˘

, (5.2)

where the centering satisfies Erhεpt, xqs “ ´1
2σ

2
β̂
` op1q as ε Ó 0, see (5.1).

For any t ą 0 and φ P CcpR2q, the following convergence in law holds:

xhεpt, ¨q, φp¨qy “

ż

R2

hεpt, xqφpxqdx
d
ÝÝÑ
εÓ0

xvpcβ̂qpt, ¨q, φp¨qy, (5.3)

where vpcqpt, xq is the solution of the two-dimensional additive stochastic heat equation
$

&

%

Btv
pcqpt, xq “

1

2
∆vpcqpt, xq ` c ξpt, xq

vpcqp0, xq ” 0
, where c :“ cβ̂ :“

b

1
1´β̂2

. (5.4)

In terms of the two dimensional polymer model, the above theorem writes as in the
following theorem. This will be the theorem whose proof we will outline. The proof of
Theorem 5.1 follows exactly the same lines if instead of working with the polynomial chaos
expansion of the partition function we work with the Wiener chaos expansion of uε as in
(4.14). We refer to [CSZ18b, Section 5] for details.

We have

Theorem 5.2 (Edwards-Wilkinson fluctuations for directed polymer - [CSZ18b]).
Let ZN,βN pxq be the family of partition functions defined as in (4.4) with βN as in (4.8) and
β̂ P p0, 1q. The disorder ω satisfies the usual assumptions of mean zero, variance one and
finite exponential moments and in addition we require it to satisfy a concentration property
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AxN

N1´aN

¨ ¨ ¨p0, xq

(a) Partition fuction ZAN,βN
pxq.

N1´aN

AxN

BN

p0, xq ¨ ¨ ¨

(b) Partition function ZBN,βN
pxq.

Figure 1. The above figures depict the chaos expansions of ZAN,βN pxq and
ZBN,βN pxq. The disorder sampled by ZAN,βN pxq is restricted to the set AxN ,
while that of ZBN,βN pxq is restricted to BN

†:
Dγ ą 1, C1, C2 P p0,8q : for all n P N and f : Rn Ñ R convex and 1-Lipschitz

P
´

ˇ

ˇfpω1, . . . , ωN q ´Mf

ˇ

ˇ ě t
¯

ď C1 exp

ˆ

´
tγ

C2

˙

,
(5.5)

where Mf denotes a median of fpω1, . . . , ωN q. Denote

hN pt, xq :“
logZtN px

?
Nq ´ ErlogZtN s

βN
“

?
logN
?
π β̂

`

logZtN px
?
Nq ´ ErlogZtN s

˘

. (5.6)

For any t ą 0 and φ P C8c pR2q, the following convergence in law holds, with cβ̂ as in (5.4):

xhN pt, ¨q, φp¨qy “

ż

R2

hN pt, xqφpxqdx
d

ÝÝÝÝÑ
NÑ8

xvp
?

2cβ̂qpt{2, ¨q, φp¨qy , (5.7)

where vpcqps, xq is the solution of the two-dimensional additive SHE as in (5.4).

Outline of the proof of Theorem 5.2. The main idea is to try to “linearize” the loga-
rithm of the partition function. The way to achieve this is guided by the observation (see
the discussion at the beginning of the proof of Theorem 4.1) that the main contribution to
the fluctuations of the partition function ZN,βN pxq comes from disorder ξn,x with n “ opNq
and in particular with n “ N t for t ă 1. This leads us to define the set

AxN :“
!

pn, zq P Nˆ Z2 : n ď N1´aN , |z ´ x| ă N
1
2´

aN
4

)

, (5.8)

where

aN “
1

plogNq1´γ
with γ P p0, γ˚q, (5.9)

†Condition (5.5) is satisfied if ω are bounded, Gaussian, or if they have a density expp´V p¨q`Up¨qq, with
V uniformly strictly convex and U bounded. We refer to [Led01] for more details.
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for some γ˚ ą 0 depending only on β̂. The precise choice of γ˚ is more of a technical nature
and we will not bother with it here; one can refer for details in [CSZ18b]. The spatial
coordinates of the set AxN are essentially restricted to a slightly superdiffusive window in
order to make sure that the random walk path stays, with high probability, within this box
during the corresponding time scale.

We define now the partition function ZAN,βpxq which only samples disorder in AxN , i.e.

ZAN,βN pxq :“ Ex
“

e
HAx

N
,βN

‰

, where HAxN ,βN
:“

ÿ

pn,xqPAxN

pβNωn,x ´ λpβN qq1tSn“xu .

(5.10)
This allows to decompose the original partition function ZN,βN pxq as follows:

ZN,βN pxq “ ZAN,βN pxq ` Ẑ
A
N,βN

pxq, (5.11)

where ẐAN,βN pxq is defined via this relation as the “remainder”. Since, as we mentioned,
ZAN,βN pxq captures the main contribution in ZN,βN , we expect that for any fixed x, Ẑ

A
N,βN

pxq !

ZAN,βN pxq in a suitable sense. In particular, an L2pPq estimate shows that

@β̂ P p0, 1q DCβ̂ ă 8 such that @N P N : ErẐAN,βN pxq
2s ď Cβ̂ aN . (5.12)

with an as defined in (5.9). The proof of this estimate is not difficult but it is, nevertheless, a
bit technical and it can be found in Section 3.4 of [CSZ18b]. We now have the approximation

logZN,βN pxq “ logZAN,βN pxq ` log
´

1`
ẐAN,βN pxq

ZAN,βN pxq

¯

« logZAN,βN pxq `
ẐAN,βN pxq

ZAN,βN pxq
. (5.13)

This approximation is quantified via the following estimate:

Estimate 1. Define the error ON pxq via

logZN,βN pxq “ logZAN,βN pxq `
ẐAN,βN pxq

ZAN,βN pxq
`ON pxq. (5.14)

Then for every suitable test function φp¨q we have that
a

logN
1

N

ÿ

xPZ2

`

ON pxq ´ ErON pxqs
˘

φp x?
N
q

L2pPq
ÝÝÝÝÑ
NÑ8

0 . (5.15)

The proof of this estimate uses a simple Taylor expansion estimate, which says that,

essentially, the error term ON pzq is bounded by
` ẐAN,βN

pxq

ZAN,βN
pxq

˘2. In order to estimate this error,

one needs to use Hölder inequality, in order to separate the numerator and denominator

as E
”

`

ẐAN,βN pxq
˘2p

ı1{p
¨ E

”

`

ZAN,βN pxq
˘´2q

ı1{q
. The estimate on the first expectation makes

use of the Hypercontractivity, Theorem 3.5:

E
”

`

ẐAN,βN pxq
˘2p

ı

ď 1`
N
ÿ

kě1

`

%2p β
2
N

˘k
ÿ

1ďn1ă¨¨¨ănkďN
x1,...,xkPZd

DjPt1,...,ku : pnj ,xjqRA

k
ź

i“1

qni´ni´1pxi ´ xi´1q
2 (5.16)

ď 1`
N
ÿ

kě1

`

%2p β
2
N

˘k
ÿ

1ďn1ă¨¨¨ănkďN
x1,...,xkPZd

k
ź

i“1

qni´ni´1pxi ´ xi´1q
2,
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where %2p is the hypercontractivity constant. The significance of the estimate limpÑ1 %2p “ 1,
that was proved in Theorem 3.5, is that by choosing p sufficiently close to 1, we have
that %pβ2

N “ %pβ̂
2
a

π{ logN , and %pβ̂
2 is still less than 1. Thus the right hand side

is finite. Moreover, feeding the first line of (5.16) into (5.12) will eventually show that
E
”

`

ẐAN,βN pxq
˘2p

ı

is sufficiently small when p is sufficiently close to 1, so that (5.15) holds.
We should remark that choosing p close to 1 has the consequence that q is made very large

But this is still fine in terms of estimating E
”

`

ZAN,βN pxq
˘´2q

ı

since all negative moments of
the partition function can be shown to exist. In particular, we have (see [CSZ18b, Poposition
3.1]) that

Negative tails. For any β̂ P p0, 1q, there exists cβ̂ P p0,8q with the following property:
for every N P N and for every choice of Λ Ď t1, . . . , Nu ˆ Z2, one has

@t ě 0 : PplogZΛ,βN ď ´tq ď cβ̂ e
´tγ{cβ̂ , (5.17)

where γ ą 1 is the same exponent appearing in assumption (5.5).

The proof of the negative moment tails makes use of an interesting concentration estimate,
which is of general interest. This was proved in [CTT17, Proposition 3.4], inspired by [Led01,
Proposition 1.6].

Proposition 5.3 (Concentration estimate, [CTT17, Led01]). Assume that disorder ω
has the concentration property (5.5). There exist constants c1, c2 P p0,8q such that, for every
n P N and for every differentiable convex function f : Rn Ñ R, the following bound holds for
all a P R and t, c P p0,8q,

P
`

fpωq ď a´ t
˘

P
`

fpωq ě a, |∇fpωq| ď c
˘

ď c1 exp
´

´
pt{cqγ

c2

¯

, (5.18)

where ω “ pω1, . . . , ωnq and |∇fpωq| :“
a

řn
i“1pBifpωqq

2 is the norm of the gradient.

The second step, after Estimate 1, is to use the other important observation, already
discussed at the beginning of the proof of Theorem 4.4, that, when averaged at spatial
scales of order

?
N , the contributions to the averaged field from disorder ξn,x with n “ opNq

actually become negligible. In particular,

Estimate 2. For ZAN,βN p¨q defined as in (5.10) and any suitable test function φ

a

logN
1

N

ÿ

xPZ2

`

logZAN,βN pxq ´ ErlogZAN,βN pxqs
˘

φp x?
N
q

L2pPq
ÝÝÝÝÑ
NÑ8

0 . (5.19)

The proof of this is a fairly simple L2pPq estimate where we only use the boundedness of
moments of logZAN,βN , which follows from the negative tail estimate 5.17 as well as that for
β̂ ă 1 it holds that ZAN,βN has bounded second moment.

Estimates 1. and 2. imply that the fluctuations of the average of ZN,βN p¨q will be

governed by the fluctuations of the average of the fraction
` ẐAN,βN

p¨q

ZAN,βN
p¨q

˘

. The crucial point here

is that the numerator of this fraction approximately factorises in a way that cancels the
denominator and what remains is a sort of a restricted polymer partition function for which
we can apply a variation of Theorem 4.4.
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To see this, we notice that, for any fixed x, ẐAN,βN pxq is by definition a “partition function”
where disorder outside the box AxN is necessarily sampled. This can then be either disorder

ξn,z with n ă N1´aN and with z such that |z´x| ą N
1
2´

aN
4 or disorder ξn,z with n ą N1´aN .

The first possibility is negligible as then the random walk will have to travel superdiffusively
(this is the reason why the width of the box AxN was chosen to be slightly larger than the
diffusive scale). In the second situation, the main contribution will actually come from the
sampling of disorder in the set

BN :“
`

pN1´9aN {40, N s X N
˘

ˆ Z2, (5.20)

(the choice of the exponent 9{40 is mostly arbitrary and rather technical). This is simply
because the slice

`

pN1´aN {4 , N1´9aN {40s X N
˘

ˆ Z2 is “thin”, i.e. its volume is negligible
compared to that of BN . Defining now the corresponding partition function

ZBN,βN pxq :“ Ex
“

eHBN,βN
‰

where HBN ,βN :“
ÿ

pn,xqPBN

pβNωn,x ´ λpβN qq1tSn“xu

we will have that

ẐAN,βN pxq « ZAN,βN pxq
`

ZBN,βN pxq ´ 1
˘

, (5.21)

The quantitative estimate related to this is

Estimate 3. For ZAN,βN p¨q, Ẑ
A
N,βN

p¨q, ZBN,βN p¨q defined as above and any suitable test
function φ, we have that

a

logN
1

N

ÿ

xPZ2

ˆ

ẐAN,βN pxq

ZAN,βN pxq
´

`

ZBN,βN pxq ´ 1
˘

˙

φp x?
N
q

L1pPq
ÝÝÝÝÑ
NÑ8

0 .

To understand the reason behind this last estimate and (5.21), let us decompose the chaos
expansion of ẐAN,βN pxq according to the last disorder ξt,w sampled with t ă N1´aN (see also
the Figure above). As we already said, we assume that there is no disorder ξn,z sampled

with n ă N1´aN and |z ´ x| ą N
1
2´

aN
4 (such contributions are negligible) and moreover

we assume that the first disorder ξn,z that is sampled after time N1´aN will be such that
n ą N1´9an{40 (again, as already mentioned contributions, from sampling disorder between
times N1´aN and N1´9an{40 are negligible). Thus,

ẐAN,βN pxq «
ÿ

pt,wq P tp0,xquYAxN
pr,zq PBN

ZA0,t,βN px,wq ¨ qr´tpz ´ wq ¨ σN ξr,z ¨ Zr,N,βN pzq, (5.22)

where ZA0,t,βN px,wq denotes the “point-to-point” partition function where the random walk
starts from p0, xq and ends at pt, wq (with the convention that ZA0,t,βN px,wq :“ 1 if pt, wq “
p0, xq) and restricted to sample disorder only in the set AxN . Moreover, Zr,N,βN pzq denotes
the partition function where the walk starts at time r from position z and runs until time
N without any constraint at its end point. The main observation now is that

qr´tpz ´ wq « qrpz ´ xq for r ą N1´9aN {40 ąą N1´aN ě t,
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using also the diffusive properties of the random walk to say that in these time scales
z ´ x «

?
r ´ t «

?
r « z ´ w. This leads to an (asymptotic) factorisation of (5.22) as

ÿ

pt,wq P tp0,xquYAxN

ZA0,t,βN px,wq ¨
ÿ

pr,zq PBN

qrpz ´ xq ¨ σN ξr,z ¨ Zr,N,βN pzq “ ZAN,βN pZ
B
N,βN

pxq ´ 1q,

(5.23)

which is the desired factorisation.

The above estimates reduce the study of the fluctuation to those of ZBN,βN p¨q:

Final step. Let vpcqps, xq be the solution of the two-dimensional additive SHE. Then
?

logN
?
π β̂

1

N

ÿ

xPZ2

`

ZBN,βN pxq ´ 1
˘

φp x?
N
q

d
ÝÝÝÝÑ
NÑ8

xvp
?

2cβ̂qp1{2, ¨q, φy , (5.24)

which is essentially Theorem 4.4. �

6. Criticality and moment estimates

The critical case for the two dimensional SHE corresponds to temperature scaling as
βε “

a

2π{ log ε´1. In fact, it turns out that there is a critical window of the form

β2
ε “

2π

log ε´1
`

ϑ

plog ε´1q2
, for ϑ P R,

where one observes a non trivial behaviour depending on the tuning parameter ϑ. In the
case of the two dimensional polymer the critical case corresponds to temperature scaling βN
so that

σ2
N :“ σpβN q

2 “
1

RN

´

1`
ϑ` op1q

logN

¯

, ϑ P R, (6.1)

where we recall that σpβq2 :“ eλp2βq´2λpβq ´ 1 and the asymptotic RN “
p1`op1qq

π logN .
For the sake of brevity of exposition we will only discuss the polymer case. The details

for the SHE can be found in [CSZ18b]. Let us denote by Zcrit.
N the partition function of the

two dimensional directed polymer ZN,βN with βN as in (6.1). As we have already seen in
Theorem 4.1, Zcrit.

N converges in distribution to 0. However, we will see that when averaged
over the starting point it exhibits a nontrivial behaviour.

Let us highlight that the critical temperature is marked by the fact that its second moment
grows to infinity as N Ñ 8. In fact, we have the more precise asymptotic information,
which we will explain below, that it grows as logN .

Proposition 6.1. Let Zcrit.
N be the partition function of the two dimensional polymer with

βN as in (6.1). Then

Var
´

Zcrit.
N

¯

« logN

ż 1

0
Gϑptqdt, with Gϑptq “

ż 8

0
epϑ´γqs

sts´1

Γps` 1q
ds, (6.2)

where γ is the Euler-Mascheroni constant γ « 0.577 and Γp¨q is the gamma function.

The proof of this theorem goes via creating a link to renewal theory, which further allows
for refinements that are useful towards higher moment estimates. We will provide the proof
later. For the moment let us mark a distinction between the behaviour of the partition
function of a random polymer starting from a fixed point, which without loss of generality
we assume to be zero, and the behaviour when the partition function is averaged over its
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starting point against suitable test functions. Assuming φ P C8c pR2q it turns out that the
variance of

Zcrit.
N pφq :“

1

N

ÿ

xPZ2

´

Zcrit.
N pxq ´ 1

¯

φp
x
?
N
q

remains bounded as N Ñ8. In fact it turns out that,

lim
NÑ8

Var
”

Zcrit.
N pφq

ı

“

ż

R2ˆR2

φpzqφpz1qKϑpz ´ z
1qdz dz1 , (6.3)

where the covariance kernel Kϑp¨q is given by

Kϑpxq :“ π

ż

0ăuăvă1

gupxqGϑpv ´ uqdudv . (6.4)

where Gϑ is defined as above and gupxq is the heat kernel. It is worth to remark that the
kernel Kϑpxq „ C log 1

|x| as x „ 0, which means that any (conjecturally unique) limit of the
field is log-correlated.

The boundedness of Zcrit.
N pφq shows the existence of limits of the field at critical-

ity without any rescaling (as was the case below the critical temperature, see Theorem
4.4). However, to ensure that the / any limiting field is non trivial, i.e. not just “flat”
(Lebesque), requires boundedness of higher moments. This is because in order to say that
Var

`

limNÑ8 Z
crit.
N pφq

˘

“ limNÑ8 Var
`

Zcrit.
N pφq

˘

(the latter being non zero as we remarked
above), we need control of higher moments that will allow to interchange the limits via
uniform integrability. The first such estimate was achieved in [CSZ18b]:

Theorem 6.2 (Third moment). Let φ P CcpR2q, ϑ P R. Let Zcrit.
N be the partition function

corresponding to the choice of critical βN (6.1). Then

lim
NÑ8

E
”

`

Zcrit.
N pφq ´ E

“

Zcrit.
N pφq

‰ ˘3
ı

“

ż

pR2q3

φpzqφpz1qφpz2qMϑpz, z
1, z2q dz dz1 dz2 ă 8 ,

(6.5)
where the kernel Mϑp¨q is given by

Mϑpz, z
1, z2q :“

8
ÿ

m“2

2m´1 πm
 

Ipmqϑ pz, z1, z2q ` Ipmqϑ pz1, z2, zq ` Ipmqϑ pz2, z, z1q
(

, (6.6)

with Ipmqϑ p¨q defined as follows:

Ipmqϑ pz, z1, z2q :“

ż

¨ ¨ ¨

ż

0ăa1ăb1ă...ăamăbmăt
x1,y1,...,xm,ymPR2

d~ad~bd~x d~y ga1
2
px1 ´ zq ga1

2
px1 ´ z

1q ga2
2
px2 ´ z

2q

¨Gϑpb1 ´ a1, y1 ´ x1q ga2´b1
2

px2 ´ y1qGϑpb2 ´ a2, y2 ´ x2q

¨

m
ź

i“3

gai´bi´2
2

pxi ´ yi´2q gai´bi´1
2

pxi ´ yi´1qGϑpbi ´ ai, yi ´ xiq ,

(6.7)

where Gϑpt, xq “ Gϑptqgt{4pxq with Gϑptq as in (6.2) and gtpxq the two dimensional heat
kernel.
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pa2, x2q pb2, y2q

pa3, x3q
pb3, y3q

pb1, y1q

p0, z1q

p0, z2q

pa1, x1q

p0, z3q

pa4, x4q
pb4, y4q

Figure 2. Diagramatic representation of the expansion (6.10) of the
third moment. Curly lines between nodes pai, xiq and pbi, yiq have weight
UN pbi ´ xi, yi ´ xiq, coming for pairwise matchings between a single
pair of copies AB,BC or CA, while solid, curved lines between nodes
pai, xiq and pbi´1, yi´1q or between pai, xiq and pbi´2, yi´2q indicate a weight
qbi´1,aipyi´1, xiq and qbi´2,aipyi´2, xiq, respectively.

The analogue of this theorem for the two-dimensional SHE was also established in
[CSZ17b]. More recently Gu-Quastel-Tsai [GQT19] established the analogue of the above
theorem for higher than three moments for the SHE. We will not expose it here as it requires
a different set of notation but we will give an informal description of their result and compare
it with the formulation of Theorem 6.2 below.

Let us give a very brief sketch of the framework of the proof of Theorem 6.2.

Sketch of the proof of Theorem 6.2. Our framework involves again the polynomial
chaos expansion of the partition function (4.5). For conciseness we will introduce the
notation

qNt pφ, xq :“
ÿ

yPZ2

qtpx´ yqφ
` y
?
N

˘

,

which incorporates the averaging over the initial condition combined with the first transition
kernel in the chaos expansion. Replacing Zcrit.

N with is chaos expansion and using Fubini to
develop the third power we have

E
”

`

Zcrit.
N pφq ´ ErZcrit.

N pφqs
˘3
ı

“
ÿ

A,B,CĎt1,...,tNuˆZ2

|Aě1, |B|ě1, |C|ě1

σ
|A|`|B|`|C|
N

N3
qNs,a1

pφ, x1q q
N
s,b1pφ, y1q ¨ q

N
s,c1pφ, z1q ¨

¨ E

«

ξA1

|A|
ź

i“2

ξAi qpAi´1, Aiq ¨ ξB1

|B|
ź

j“2

ξBj qpBj´1, Bjq ¨ ξC1

|C|
ź

k“2

ξCk qpCk´1, Ckq

ff

(6.8)

where we have used the shorthand notation A “ pA1, . . . , A|A|q with Ai “ pai, xiq P Z3
even,

and B, C defined similarly, with Bj “ pbj , yjq, Ck “ pck, zkq, and we have set

qpAi´1, Aiq :“ qai´ai´1pxi ´ xi´1q .

When |A| “ 1, we use the convention that
ś|A|
i“2 . . . equals 1 and similarly for B and C.
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Denote D :“ AYBYC Ă t1, . . . , Nu ˆZ2, with D “ pD1, . . . , D|D|q and Di “ pdi, wiq.
Since Erξzs “ 0, the contributions toMN,NT

s,t pφ, ψq come only from A,B,C where the points
in AYB YC pair up - for the sake of exposition we ignore here a triple matching. That
is, we ignore the case that Ai “ Bj “ Ck for some i, k, j. In particular, we assume that
k :“ |D| “ 1

2p|A| ` |B| ` |C|q and that each point Dj belongs to exactly two of the three
sets A,B,C. Hence we can associate a vector ` “ p`1, . . . , `kq of labels `j P tAB, BC, ACu.
Note that there is a one to one correspondence between pA,B,Cq and pD, `q. So we can
write (6.8) as

1

N3

8
ÿ

k“2

σ2k
N

ÿ

DĎt1,...,NuˆZ2

|D|“kě2

ÿ

`PtAB,BC,ACuk

qNs,a1
pφ, x1q q

N
s,b1pφ, y1q q

N
s,c1pφ, z1q ¨

¨

|A|
ź

i“2

qpAi´1, Aiq

|B|
ź

j“2

qpBj´1, Bjq

|C|
ź

m“2

qpCm´1, Cmq ,

(6.9)

with the A,B,C in the above expression being implicitly determined by pD, `q.

We now make a combinatorial observation, see also Figure 2. The sequence ` “ p`1, . . . , `kq
consists of consecutive stretches p`1, . . . , `iq, p`i`1, . . . , `jq, etc., such that the labels are
constant in each stretch and change from one stretch to the next. Any stretch, say p`p, . . . , `qq,
has a first point Dp “ pa, xq and a last point Dq “ pb, yq. Let m denote the number of
stretches and let pai, xiq and pbi, yiq, with ai ď bi, be the first and last points of the i-th
stretch.

We now rewrite (6.9) by summing overm P N, pa1, b1, . . . , am, bmq, and px1, y1, . . . , xm, ymq.
The sum over the labels of ` leads to a combinatorial factor 3 ¨ 2m´1, because there are
3 choices for the label of the first stretch and two choices for the label of the following
stretches. Once we fix pa1, x1q and pb1, y1q, summing over all possible configurations inside
the first stretch gives the factor

8
ÿ

r“1

σ
2pr`1q
N

ÿ

a1“t0ăt1ă...ătr“b1
z0“x1, z1,z2,...,zr´1PZ2, zr“y1

r
ź

i“1

qti´1,tipzi´1, ziq
2 “: σ2

N UN pb1 ´ a1, y1 ´ x1q ,

The quantity UN in the right hand side is defined via this relation and it is closely related
to the (point-to-point) variance of the polymer partition function. A similar factor arises
from each stretch and this leads to the following expression for the centred third moment
(assuming we have ignored the case of triple matchings of the ξ variables, hence the quotation
marks in the equality below; this is a technical point that can be dealt with some extra
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work)

E
”

`

Zcrit.
N pφq ´ ErZcrit.

N pφqs
˘3
ı

“ “ ”
8
ÿ

m“2

3 ¨ 2m´1I
pN,mq
ϑ pφq, where

I
pN,mq
ϑ pφq :“

σ2m
N

N3

ÿ

săa1ďb1ăa2ďb2ă...ăamďbmăt
x1,y1,x2,y2,...,xm,ymPZ2

qNs,a1
pφ, x1q

2 qNs,a2
pφ, x2q ¨

¨ UN pb1 ´ a1, y1 ´ x1q qb1,a2py1, x2qUN pb2 ´ a2, y2 ´ x2q ¨

¨

m
ź

i“3

!

qbi´2,aipyi´2, xiq qbi´1,aipyi´1, xiqUN pbi ´ ai, yi ´ xiq
)

,

(6.10)

with the convention that
śm
i“3t. . .u “ 1 for m “ 2. Note that the sum starts with m “ 2

because in (6.9), we have |A|, |B|, |C| ě 1.
Passing from (6.10) to (6.5)-(6.6) amounts to a Riemann sum approximation after scaling

the time variables proportionally to N and the space variables proportionally to
?
N . Crucial

to this limiting procedure, as well as ensuring that the resulting series converge, is the
asymptotic behaviour of UN ptN, x

?
Nq for large N and t P R, x P R2. In particular, for

x P Z2, n P N, it holds that

UN pn, xq «
logN

N2
Gϑp

n

N
,
x
?
N
q 21tn`x1`x2 evenu, (6.11)

with Gϑpt, xq “ Gϑptqgt{4pxq and Gϑptq defined in (6.4). The factors of logN will cancel
with the factors of σ2

N in (6.10) and the factors N´2 will be absorbed by the Riemann sum
approximations. Moreover, for every fixed ϑ P R, we have the asymptotic behaviour

Gϑptq “
1

t plog 1
t q

2
`

2ϑ` op1q

t plog 1
t q

3
as tÑ 0 . (6.12)

These asymptotic behaviours are based on the renewal theory framework, same as the one
that underlies the variance asymptotics in Proposition 6.1. Even though we will not discuss
the details, which can be found in [CSZ18c], the underlying framework will become clear
when we sketch the proof of Proposition 6.1 below. One thing that should be remarked is
the bare integrability of Gϑptq which shows how marginal is the integrability of the moments
of the averaged field of partition functions in two dimensions.

Having these estimates, what remains to conclude is to ensure that the series
ř8
m“2 3 ¨

2m´1I
pN,mq
ϑ pφq in (6.10) converge, uniformly in N . This point is quite technical due to the

interlacing structure as shown in Figure 2 and we refer for the details to [CSZ18b]. �
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Sketch of the proof of Proposition 6.1. As we have already seen a few times, using
the polynomial chaos expansion of the partition function its variance can be written as

Var
`

Zcrit.
N

˘

“
ÿ

kě1

σ2k
N

ÿ

1ďn1ă¨¨¨ănkďN
x1,...,xkPZ2

k
ź

i“1

qni´ni´1pxi ´ xi´1q
2

“
ÿ

kě1

σ2k
N

ÿ

1ďn1ă¨¨¨ănkďN

k
ź

i“1

q2pni´ni´1q
p0q2

“
ÿ

kě1

´

1`
ϑ` op1q

logN

¯k 1

RkN

ÿ

1ďn1ă¨¨¨ănkďN

k
ź

i“1

q2pni´ni´1q
p0q2,

where in the second equality we just used the convolution property of the random walk and
in the third the definition of the choice of σ2

N . Now, we will write the last convolution as a
renewal probability. In particular, we define the i.i.d. random variables T pNq1 , ..., T

pNq
k with

P
`

T
pNq
1 “ n

˘

“
1

RN
q2np0q1nďN «

1

logN

1nďN
n

,

(with the last due to the local limit theorem and the asymptotics of RN ) and

τ
pNq
k :“ T

pNq
1 ` ¨ ¨ ¨ ` T

pNq
k .

We can then write

Var
`

Zcrit.
N

˘

“
ÿ

kě1

´

1`
ϑ` op1q

logN

¯k
P
`

τ
pNq
k ď N

˘

. (6.13)

The point now is that
`

1
N τ

pNq
s logN

˘

są0
converges to a process pYs qsą0 with a density which

can be explicitly computed. We will see this in a moment, but let us now use this fact to
conclude the asymptotics of the variance from (6.13). This boils down to a Riemann sum
approximation as

Var
`

Zcrit.
N

˘

“
ÿ

kě1

´

1`
ϑ` op1q

logN

¯2k
P
`

τ
pNq
k ď N

˘

“ logN
1

logN

ÿ

sP
1

logN N

´

1`
ϑ` op1q

logN

¯s logN
P
`

τ
pNq
s logN ď N

˘

« logN

ż 8

0
eϑsPpYs ď 1q ds “ logN

ż 8

0
eϑs

ż 1

0
fsptqdt ds,

where fsptq is the density of Ys, which can be computed exactly (see [CSZ18c]) as

fsptq “

$

’

’

’

&

’

’

’

%

s ts´1 e´γ s

Γps` 1q
for t P p0, 1s,

s ts´1e´γs

Γps` 1q
´ sts´1

ż t´1

0

fspaq

p1` aqs
da for t P p1,8q,

(6.14)

This leads to the form of the asymptotic variance as in (6.2).
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p0, z1q

pa2, x2q pb2, y2q

pa3, x3q
pb3, y3q

pb1, y1q

p0, z2q

p0, z3q

pa1, x1q

p0, z4q

Figure 3. Diagramatic representation of the expansion of in the case of the
fourth moment in analogy with the diagram of Figure 2. Curly and curved
lines bare the same weights as in Figure 2. Here we notice the non locality of
the topmost lace.

The convergence of
`

1
N τ

pNq
s logN

˘

są0
can be easily seen via a Fourier transform computation

as

E
”

e
λ
N τ

pNq
s logN

ı

“

´

E
”

e
λ
N T

pNq
1

ı ¯s logN
«

´

1`
1

logN

N
ÿ

k“1

`

e
λ
N n
´ 1

˘ 1

n

¯s logN
,

which again by a Riemann sum approximation converges to

exp
´

s

ż 1

0

`

eλx ´ 1
˘dx

x

¯

.

This expression plus the independence of the increments, inherited by the independence
to tT pNqk ukě1, shows that pYsqsą0 is a Lévy type process with Lévy measure 1p0,1qpxqdx{x.
The fact that the density of Ys can be computed explicitly as in (6.14) is a non trivial fact
and was done in [CSZ18c, Appendix B]. Its computability is related to an invariance of the
process Y , which amounts to the fact that conditionally on all the jumps up to time s being
smaller than t, the law of Ys{t is the same as the law of Ys (see [CSZ18c, Proposition B.1]).

It is worth remarking that the density fsp¨q is related to what is called the Dickman
function, which is a very distinguished function in analytic number theory. In particular, if
we define (the Dickman function)

%ptq “ eγf1ptq,

then %p1{tq equals the asymptotic probability that the largest prime factor of a number
chosen uniformly from t1, ..., Nu is less than N t, see [Ten95]. �

Before closing this section let us comment on the higher moments of the averaged field
and the work of Gu-Quastel-Tsai [GQT19]. If we wanted to adapt the approach we described
for the third moment, then we would need to deal with (further) non local interactions. For
example (see Figure 2), if we wanted to compute the fourth moment, then we would need to
deal with four copies of polymer and consider the pairwise matchings, as was done earlier.
The non locality in this approach would consist of the possible scenario (among others) that
three of the copies match pairwise for some time, until, only much later, the copy that was
left alone (in the case of Figure 2 this would correspond to the topmost line) starts matching
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p0, z1q

pa2, x2q pb2, y2q

pa3, x3q
pb3, y3q

pb1, y1q

p0, z2q

p0, z3q

pa1, x1q

p0, z4q

pa4, x4q

Figure 4. Diagramatic representation of the expansion of the fourth moment
(in a discrete format) followed by [GQT19]. Curly and curved lines bare the
same (or rather continuous analogues of the) weights as in Figures 2 and
3. Additionally, this diagram keeps track of all the marked points on the
vertical lines and not only the beginning and end points of the curly lines as
in the previous two figures.

with one of the other three copies. This connection is non local and keeping track of the
starting points of non local laces is complicated.

The approach of [GQT19], was to introduce additional space-time points, see Figure 4,
and consider these in the decomposition of the summation. Notice that we could remove
these additional points by summing over them and this would bring us back to the previous
decomposition as in Figure 3. However, keeping track of the leads to a Markovian structure,
which allows to handle the combinatorics easier. This approach was inspired by previous
works on Hamiltonians with point interactions[DR04]

´∆`
ÿ

iăj

δpxi ´ xjq, on R2.

It also used some crucial estimates on suitable norms of the operator corresponding to
propagation between points in strips without curly lines from [DFT94]. The corresponding
estimates on the operators corresponding to propagation between points in strips with curly
lines is close in spirit to our estimates around the function UN pn, xq as derived from (6.11).

7. Appendix

Proof of Theorem 3.2. Without loss of generality we will assume that the index set S
is finite and for notational simplicity we identify it with t1, ..., nu. More crucially, we will
assume that Ψ has degree ` which stays bounded in n, that is

Ψpξq “
ÿ

IĂS , |I|ď`

ψpIq ξI .

This assumption can be justified by a simple truncation argument, we refer to [CSZ17a] for
details. For a function f P C3

b pRq we denote

gpx1, ..., xnq :“ fpΨpxqq, (7.1)

and

hX
j

n,jpyq :“ gpζ1, ..., ζj´1, y, ξj`1, ..., ξnq, with Xj :“ pζ1, ..., ζj´1, ξj`1, ..., ξnq, (7.2)
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and we have that

fpΨpξqq ´ fpΨpζqq “
n
ÿ

j“1

`

hX
j

n,jpξjq ´ h
Xj

n,jpζjq
˘

. (7.3)

We now Taylor expand the function hXj

n,jp¨q around zero as

hX
j

n,jpyq “ hX
j

n,jp0q `
`

By h
Xj

n,jp0q
˘

y `
1

2

`

B2
y h

Xj

n,jp0q
˘

y2 `RX
j

n,jpyq,

where the error term

RX
j

n,i pyq “
1

2

ż y

0

´

B3
yh

Xj

n,i ptq
¯

py ´ tq2dt, (7.4)

and the following two bounds hold:
ˇ

ˇRX
j

n,i pyq
ˇ

ˇ ď
1

6
} B3

yh
Xj

n,i }8 |y|
3 “

1

6
}f3}8|y|

3 (7.5)
ˇ

ˇRX
j

n,i pyq
ˇ

ˇ ď } B2
yh

Xj

n,i }8 y
2 “ }f2}8y

2. (7.6)

The first bound follows by bounding B3
yh

Xj

n,i in (7.4) by its supremum norm, while for the
second bound we first perform an integration by parts and write the remainder as

RX
j

n,i pyq “ ´
1

2
B2
yh

Xj

n,i p0qy
2 `

ż y

0
B2
yh

Xj

n,i ptqpy ´ tqdt,

and then bound B2
yh

Xj

n,i by its supremum norm.

Inserting this Taylor expansion into (7.3) for hXj

n,jpξjq and h
Xj

n,jpζjq and using the fact that
the first and second moments of the ξ and ζ variables match, we have the estimate

ˇ

ˇ

ˇ
ErfpΨpξqqs ´ ErfpΨpζqqs

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

E
”

RX
j

n,jpξjq ´R
Xj

n,jpζjq
ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

j“1

E
”

|RX
j

n,jpζjq|
ı

`

N
ÿ

j“1

E
”

|RX
j

n,jpξjq|
ı

.

The derivatives of hxj p¨q :“ gpx1, ..., xj´1, y, xj`1, ..., xnq with g defined as in (7.1) are
computed as:
`

Bmy h
x
j

˘

pyq “ f pmq
´

Ψpx1, . . . , xj´1, y, xj`1, . . . , xN q
¯´

ByΨpx1, . . . , xj´1, y, xj`1, . . . , xN q
¯m

“ f pmq
´

Ψpx1, . . . , xj´1, y, xj`1, . . . , xN q
¯ ´

ÿ

IQj

ψpIqxIztju
¯m

.

Defining

Ljpxq :“
ÿ

IQj

ψpIqxI ,

we obtain that bounds (7.5) and (7.6) on RXj

n,j pyq give

N
ÿ

j“1

E
”

|RX
j

n,jpζjq|
ı

ď Cf

N
ÿ

j“1

E
“

ϕpLjpX
jqq

‰

, (7.7)
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with Cf “ maxt}f 1}8, }f
p2q}8, }f

p3q}8u and ϕpxq :“ min
 

|x|3

6 , |x|2
(

. To proceed with a
sharp estimate on (7.7) under only the assumption of uniformly integrable second moments,
we need to truncate the random variables in a way that also respects an orthogonality. The
general truncation is described as follows:

Truncation procedure : Fix M P p0,8q. We can decompose any real-valued random
variable Y with zero mean and finite variance as

Y “ Y ´ ` Y ` , (7.8)

where Y ´, Y ` are functions of Y and possibly of some extra randomness, such that

ErY ´s “ ErY `s “ 0 , Y ´Y ` “ 0 ,

|Y ´| ď |Y | 1t|Y |ďMu , ErpY `q2s ď 2ErY 21t|Y |ąMus .
(7.9)

We postpone the proof of the truncation properties (7.9) until the end of the proof of
this theorem. Assuming these properties, we proceed by denoting by Xj´ the vector Xj

from (7.2) with all its entries truncated as above and also Xj` :“ Xj ´Xj´. Noting the
elementary inequality

ϕpa` bq ď 2a2 `
4

3
|b|3, for real a, b,

we have that the bound in (7.7) can be extended to

E
“

ϕpLjpX
jqq

‰

ď 4E
”

`

LjpX
jq ´ LjpX

j´q
˘2
ı

`
4

3
E
“

|LjpX
j´q|3

‰

. (7.10)

Estimate on the first term in (7.10): To estimate the first term in (7.10) we write

LjpX
jq ´ LjpX

j´q “
ÿ

IQj

ψpIq
ÿ

ΓĎI, |Γ|ě1

pXj`qΓpXj´qIzΓ .

By (7.9) the random variables Xj´
1 , Xj`

1 , Xj´
2 , Xj`

2 , . . . are orthogonal. Setting σ2
˘,i :“

ErpXj˘
i q

2s and observing that σ2
´,i ` σ

2
`,i “ VarpXj

i q “ 1, we obtain

E
“`

LjpX
jq ´ LjpX

j´q
˘2‰

“
ÿ

IQj

ψpIq2
ÿ

ΓĎI, |Γ|ě1

pσ2
`q

Γpσ2
´q

IzΓ (7.11)

“
ÿ

IQj

ψpIq2
`

1´ pσ2
´q

I
˘

ď
ÿ

IQj

ψpIq2
`

1´ p1´ σ2
`q
|I|
˘

,

where

σ2
` :“ max

i“1,...,N
σ2
`,i “ max

i“1,...,n
ErpXj`

i q
2s ď 2 max

i“1,...,n
ErpXj

i q
2 1
t|Xj

i |ąMu
s ď 2mąM

2 ,

having used (7.9) and having defined

mąM
2 :“ sup

XPtζi,ξiuiě1

E
“

X21|X|ěM
‰

.
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Using the estimate
`

1´ p1´ σ2
`q
|I| ď |I| σ2

` in (7.11) we have that

n
ÿ

j“1

E
“`

LjpX
jq ´ LjpX

j´q
˘2‰

ď 2mąM
2

ÿ

j

˜

ÿ

IQj

|I|ψpIq2

¸

ď 2 mąM
2 `2

ÿ

I

ψpIq2 , (7.12)

where we recall that ` is the degree of Ψ. Given the uniform integrability of the second
moment, the last bound can be made arbitrarily small, say less than ε, by choosing M large
enough.

Estimate on the second term in (7.10): For the second term we will use hypercon-
tractivity bound Theorem 3.5 with an non optimal constant (as provided in [MOO10])

r%3 :“ 2
?

2 maxiďn
}Xj´

i }3

}Xj´
i }2

. In particular,

}LjpX
j´q}3 ď r% `3 }LjpX

j´q}2 , (7.13)

Since for every i we have that |Xj´
i | ď |X

j
i | 1|Xj´

i |ďM
, by (7.9), we have

}Xj´
i }3 ď E

“

|Xj
i |

3 1
t|Xj

i |ďMu

‰1{3
ď

`

mďM
3

˘1{3
,

with mďM
3 being the maximum truncated third moment of variables ξi, ζi, i ě 1. On the

other hand, again by (7.9), we have that for every i

}Xj´
i }

2
2 “ }X

j
i }

2
2 ´ }X

j`
i }

2
2 “ ErpXj

i q
2s ´ ErpXj`

i q
2s ě ErpXj

i q
2s ´ 2ErpXj

i q
21
t|Xj

i |ąMu
s

“ 1´ 2ErpXj
i q

21
t|Xj

i |ąMu
s ě 1´ 2mąM

2 ,

hence

r%3 ď 2
?

2

`

mďM
3

˘1{3

b

1´ 2mąM
2

ď 4
`

mďM
3

˘1{3
,

provided mp2q
ąM ď 1

4 , which can be achieved by choosing M large enough, thanks to the
uniform integrability of the second moment. Therefore, (7.13) yields

E
“

|LjpX
j´q|3

‰

ď 64`
`

mďM
3

˘`
E
“

LjpX
j´q2

‰3{2
.

Note that, since ErpXj´
i q

2s ď ErpXj
i q

2s “ 1, we have

E
“

LjpX
j´q2

‰

“
ÿ

IQj

ψpIq2
ź

iPI

ErpXj´
i q

2s ď
ÿ

IQj

ψpIq2 “ InfjrΨs .

Therefore
N
ÿ

j“1

E
“

|LjpX
j´q|3

‰

ď 64`
`

mďM
3

˘`
´

max
i

a

InfirΨs
¯

ÿ

j

ÿ

IQj

ψpIq2

ď ` 64`
`

mďM
3

˘`
´

max
i

a

InfirΨs
¯

ÿ

|I|ď`

ψpIq2 .

(7.14)

Together with bound (7.12), this shows the desired bound (3.3).
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Proof of truncation properties (7.9). Let M ą 0. If ErY 1t´MďYďMus “ 0 we
are done: just choose Y ´ :“ Y 1t´MďYďMu and Y ` :“ Y ´ Y ´. If, on the other hand,
ErY 1t´MďYďMus ą 0 (the strictly negative case is analogous), we set

T :“ suptT P r0,M s : ErY 1t´MďYďT us ď 0u P r0,M s .

Note that ErY 1
t´MďYďT us ě 0, because T ÞÑ ErY 1t´MďYďT us is right-continuous. If

ErY 1
t´MďYďT us “ 0, defining Y ´ :“ Y 1

t´MďYďT u and Y
` :“ Y ´ Y ´, all the properties

in (7.9) are clearly satisfied, except the last one that will be checked below. Finally, we
consider the case ErY 1

t´MďYďT us ą 0 (then necessarily T ą 0). Since ErY 1
t´MďYăT us ď 0

by definition of T , we must have PpY “ T q ą 0. Then take a random variable U uniformly
distributed in p0, 1q and independent of Y , and define

Y ´ :“ Y
`

1
t´MďYăT u ` 1

tY“T , Uď%u

˘

, where % :“
´ErY 1

t´MďYăT us

T PpY “ T q
P p0, 1q .

Setting Y ` :“ Y ´ Y ´, all the properties (7.9) but the last one are clearly satisfied.
For the last property, we write

ErpY `q2s “ ErpY `q21t|Y |ąMus ` ErpY `q21t|Y |ďMus “ ErY 21t|Y |ąMus ` ErpY `q21t|Y |ďMus ,

because Y ` “ Y on the event t|Y | ą Mu. For the second term, since 0 ď Y ` ď M
on the event t|Y | ď Mu, we can write pY `q2 ď MY ` (no absolute value needed). Since
Y ´ “ Y ´1t|Y |ďMu has zero mean by (7.9), we obtain

ErpY `q21t|Y |ďMus ďM ErY `1t|Y |ďMus “M ErpY ` ` Y ´q1t|Y |ďMus

“M ErY 1t|Y |ďMus “M p´ErY 1t|Y |ąMusq ď ErY 21t|Y |ąMus ,

where we have used the fact that ErY s “ 0 by assumption, and Markov’s inequality. The
last relation in (7.9) is proved. �
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