THE 2d KPZ AS A MARGINALLY RELEVANT DISORDERED SYSTEM

NIKOS ZYGOURAS

ABSTRACT. We describe a series of works, joint with Francesco Caravenna and Rongfeng
Sun, which make some first steps towards the understanding of scaling limits of disordered
systems in a suitable weak disorder regime, where disorder has a so-called marginally
relevant effect. This includes some first understanding of the KPZ equation in two space
dimensions, which in the language of SPDEs is the “critical dimension”. Among the results
that we will describe is a phase transition and the identification of the KPZ solution below
a critical temperature, which falls into the Edwards-Wilkinson universality class. Emphasis
will be given on conveying the main ideas, stripped off the technical parts, as well as
describing the methods which include Lindeberg principles, fourth moment theorems,
analysis on Wiener spaces, multiscale analysis etc.
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1. INTRODUCTION.

The KPZ equation is a stochastic PDE, formally written as

1 1 :
Orh(t,x) = 5 Ah(t,z) + §|Vh(t,$)|2 +B8W(t,x), t>0,2eR% (1.1)
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where W(t,l‘) is the space-time white noise, defined as a gaussian field, which is delta-
correlated in space and time as

E[ (£, 2) W (s,4)] = 8(t — )(x — ).

The parameter 8 > 0 modulates the strength of the noise. The KPZ equation was introduced
by Kardar, Parisi and Zhang [KPZ86] as a model for random interface growth obeying three
basic principles:

e growth is proportional to the normal vector of the interface 4/1 + |Vh|?, which is
“approximated” via a Taylor expansion by 1 + %|Vh|2,

e there is local smoothing, represented by the Laplacian Ah,
e there is local randomness, represented by the white noise £(¢, x).

The well posedness of equation ([1.1]) is subject to questioning as one expects the solution to
be “rough” in space, thus leading to ambiguities in the definition of the term |Vh|?, since
Vh should be a distribution rather than a function.

A vast amount of work has been carried out in spatial dimension one, which has by now
put into firm grounds (and has significantly extended) the original predictions of Kardar,
Parisi and Zhang that the fluctuation of the “solution” h(t, z) should be of order t!/3, contrary
to the usual t/2 dictated by the central limit theorem. This fact was established by first
discovering and analysing an “integrable” structure via the study of discrete models, such as
the asymmetric exclusion process, the directed polymer model, last passage percolation etc.,
and then approximating via the discrete models the solution to in a suitable sense.
We refer to the surveys [C12) [QS15, BP14l, [BG16, [Z18| for some relevant reviews. Thus,
devising a way to provide a meaning to the notion of solution to the KPZ equation (and
therefore a means of approximating it) is an important task. In dimension one the first
result of this type was achieved by Bertini and Giacomin [BG97|, who approximated the
KPZ via a particle system called the asymmetric exclusion process; this is a one dimensional
particle system where each particle jumps independently at an exponentially distributed
time with probability p to the right and 1 — p to the left, with the constraint that no two or
more particles occupy the same site.

More robust approaches emerged in recent years, giving rise to new revolutionary theories
that further allowed to treat a wide class of singular stochastic PDEs. These are the theories
of Regulariy Structures by Hairer [H14], of Paractontrolled Distributions by Gubinelli-
Imkeller-Perkowski [GIP15] and of Energy Solutions by Goncalves and Jara [GJ10, [GJ14].
A renormalisation approach to the one dimensional KPZ equation has also been successful
through the work of Kupiainen [K14].

In higher dimensions the situation is much less understood. A firm prediction about the
exponents that govern the fluctuations of the solution to the KPZ is missing and so does
a solution theory. Dimension two is characterised as a critical dimension and marks the
limitation of the above solution theories. The goal of these notes is to review some first
steps that have taken place more recently into understanding the two dimensional KPZ
equation. Moreover, we will see that some of the mechanisms governing the KPZ equation
in the critical dimension two also govern a wider class of models of statistical mechanics

where disorder is present and has a so called marginal effect. Our focus here will be mainly
to summarise a series of works |[CSZ17al [(CSZ17bl, (CSZ18al, (CSZ18bl [CSZ18cl, (CSZ18+]. At
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the end of this introduction we will briefly describe some other interesting works around
this topic.

One may see the qualitative difference between dimension one and higher dimensions via
a renormalisation procedure. Let us describe this on the closely (as we will explain) related
model of the stochastic heat equation (SHE), which will also link nicely to the theme of
disordered systems and disorder relevance. The stochastic heat equation writes as

1 .
oru(t,x) = iAu(t,x) + W (t,z)u(t,x), with ¢ > 0,2 e R% (1.2)

and its solution is formally related to the solution of the KPZ via the Hopf-Cole transfor-
mation h = logu (we will be more precise about this and some subtleties later on). The
renormalisation we alluded to earlier amounts, in its simplest formulation, to a scaling of
the variables as

(t,x) — (%, ex). (1.3)
Using the gaussian scaling property of the white noise, which says that
- d(e?t), d d W(dt,d d_.
W (e, ex) := W(dEt), d(ez)) 4 172 Widt, dz) _ e T2 (¢, ),

d(e?t)d(ex) dtdz
it is not difficult to see that u®(t, z) := u(et,ex) formally solves the SPDE

1 iy
Opuf = iAue + le_gWua, (1.4)

where W is a new space-time White noise obtained from W via the above scaling. Therefore,
space-time renormalisation has the effect of changing the strength of the noise to 51_%ﬁ .

We now see that if d < 2, then, as € — 0, the strength of the noise in the renormalized
equation goes to zero, which means that the noise will have a gradually decreasing effect
on the regularity of the solution to the SHE and thus a solution can be suitably defined.
On the other hand, for d > 2 the noise should crucially affect the solution as its strength
after renormalisation increases. One also sees that d = 2 is a critical dimension as the
renormalisation leaves the noise invariant and thus no conclusion can be drawn on the effect
of noise to the existence and regularity of a solution.

In this notes we will be viewing the KPZ and SHE equations within the framework of
disordered systems. In the realm of disordered systems, one is interested in large scale effects,
as these would be captured by the reciprocal change of variables (¢, ) — (7%, 1x). This

will result to a renormalized equation where now the strength of the noise is g1 B. Then
for d < 2, then noise (disorder) has a prevailing effect (amounting to disorder relevance),
while for d > 2 the effect of the noise vanishes, amounting to disorder irrelevance. However,
again, when d = 2 the renormalisation leaves the noise invariant and no conclusion can be
drawn on the effect of noise. This is the marginal case. We will provide more details on this
framework in Section

The rigorous procedure that is followed in order to make sense of singular SPDEs like
is to first look at an equation with some sorts of smoothed out or mollified noise and
show that the solution to this has some sort of limit when the mollification is taken away.
In the case of SHE one typically proceeds by looking at the equation

1 :
opu’ = iAua + puWe, (1.5)
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where W€ is the mollified in space noise We(t, x) := Se Je(a — Y)W (¢, y)dy with jo(z) :=
7% (x/e) and with j e COO(Rd) a symmetric, probability density on R, We is still a white
noise in time. In particular, We(t,-)dt =: W¢(dt,-) is a Brownian motion with quadratic
variation equal to s_deH%Q(Rd).

Using an adaptation of the Feynman-Kac formula for Brownian-like potentials such as
We (dt,-) one can write a path integral representation for the solution to as [BC95,
Sec. 3 and (3.22)]

u(t,x) = Ex[exp {ﬁf: We(t — s, Bg)ds — %ﬂ2 E[(Lt We(t — s, Bs)ds>2] }], (1.6)

where E, is expectation with respect to a standard Brownian motion (B;)s>o on R? with
By = x. E denotes the expectation with respect to the white noise. By time reversal, we
note that u®(¢,x) has the same distribution (for fixed (¢,z)) as

W (tx) = By| exp { BJtW‘E(s,BS)ds—lﬁzE JtW‘E(s,BS)ds)Z]}] (1.7)
= e {5 [ [ a8 - oW sasy — 35013}
d e 52:20-9)
- Eofew {5 | fR2 (Bs = DG Dy — =213}

where in the last step we made the change of variables (g7,e%3) := (y, s) using that, by

, €2
scaling, W defined by W(§, y)dsdy := e~ 2 W (23, e7)d(€23)d(e]) is also a two-dimensional
space-time white noise.

Formula is what is known as the (partition function of the) continuum directed
polymer in a random medium or simply the continuum directed polymer model. The role of
the polymer is played by the Brownian path (Bjs)s~¢ and the role of the random medium is
played by the white noise. One approach to the SHE (and, thus, to the KPZ equation) will
be to use the polymer representation and justify that a limit exists as € — 0. In dimension
one this was successfully dealt with by Bertini and Cancrini in [BC95]. In dimension two we

have that 1 — % = 0 and thus the regularity provided by the factor 517% in d = 1 disappears
and things become more subtle. It turns out that, in order to have a hope to obtain a non
trivial limit, one needs to consider a renormalised version of the mollified SHE (|1.5)) where
B is chosen to be 5. = B\/?W/ loge~1. The reason for this choice will be clarified later. The
goal then is to establish a limit for

pofen (o [ [ pienan- Zetoug)] o

It is worth highlighting the following. In dimension two, choosing 5. = [3’«/271/ loge~1, the
term containing the noise in

B\/ 2 UEW‘E’
y/log e~1

appears to be reduced to zero. Thus the naive guess would be that the limit is just the
solution of the standard heat equation, which, assuming initial condition equal to one, would
be also equal to one. However, as we will see, this is certainly not the case. For any fixed
space-time point (f,z) € Ry x R?, uf(t,z) will converge to a log-normal variable, as € | 0, if

1
5tus = §AU€ +
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ﬁ < 1. As a field, u®(t,-) is uncorrelated as captured by a central limit theorem in the form
that for every test function ¢ € C*(R?)

10%8‘1 “(t,a) — 1) o) de —s | oD (t, 2)p(z) da (1.9)

e—0 JR2

where the centering 1 is due to the assumption that the initial condition is 1 and where
v (t, ) is the solution of the two-dimensional additive stochastic heat equation

o (¢, ) %Av(c)(t,az) v Wt @)
v(0,z) =0,

(1.10)

The value of cg in (1.9) equals ¢ = AT 52 The solution to this linear equation is

well defined and it is a mean zero gaussian field. This field is what governs the so-called
Edward-Wilkinson universality class, which is characterised by gaussian fluctuations.
Interesting correlations also appear at scales eX with y € (0,1) (still for 8. = 54/27/loge!

with 3 < 1). In this case u(t,eX-) converges to a field of correlated log-normals with the
correlations depending on the exponent x. We will not expand in this direction and we will
refer to [CSZI7b, Theorems 2.12 and 2.15] for details.

More interesting is the situation at or above the critical temperature Bcritical = 1 where,
on the one hand, u®(¢,z) turns out to converge to zero, for every fixed (¢,z) but, on the
other hand, the field is strongly correlated. In particular, at B = Bcritical = 1 one expects a
non-trivial limit for

f (u®(t,z) — 1) p(x) dx
R2

where comparing to we notice the absence of the factor 4/loge—1. However, the scaling
limit in this case is still not understood. In fact, even the existence of a unique limit has not
been proved, yet. The only results that exists are moment computations [BCI8, [CSZ18al,
GQT19|, which provide existence of non-trivial (i.e. not constant) subsequential limits but
however do not provide uniqueness or do not determine the limit, except the fact that
limits are log-correlated and non gaussian fields. Let us mention, though, some interesting
recents works of Clark [C19al, [C19bl [C19¢] where he studies polymers on the so-called
hierarchical diamond lattice in a weak disorder scaling, similar as we consider here, at the
critical temperature and proves existence and some characterisation of the scaling limit.
It is possible that there exists some relation between these scaling limits and the ones for
the 2d polymer / SHE. So far, there have not been any works above the critical value, i.e.

6 > ﬁcritical = 1.

Coming back to the KPZ equation, let us see how we can transfer some of the under-
standing described around the SHE. First, let us relate the two solutions via the Hopf-Cole
transformation A® := logu®. One needs to be careful in deriving the equation for h® as
u® is the solution of a stochastic PDE and thus one needs to employ It6 calculus when
differentiating with respect to time. Doing this carefully, we have that the equation for h° is

1 1 2 : 52 —d) 12
Oth®(t,z) = iAhE(t, x) + §\Vh€(t,x)\ + BWE(t, z) — 5€ H]HLQ(Rd). (1.11)

where one notices the correction term —2- _dH 3l? 72(ray: Which converges to infinity as ¢ — 0.
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Restricting attention to dimension two, we choose, as in the SHE, 8 = 5, = BA«/ 27 /loge=!
and the equation we deal with is

1 1 . 2
Oh®(t,w) = SARS(t,x) + §|Vh€(t,m)|2 + BEWE(t, x) — %g—Qng'HiQ(Rd). (1.12)

It turns out that equation ([1.12)) has certain invariance (see, for example, [CSZ18bl Appendix
A]), which leads to the equivalent formulation

~ 1 ~ ~ .
Othe(t,z) = iAhE(t,x) + %|Vh€(t, z) 2+ We(t, z). (1.13)
The relation between the solutions to the two equations is that
hE(t,z) = Be hE(t, ).

Again, looking at the form of equation we see that the nonlinearity is gradually
reduced to zero and one might naively expect that the limit satisfies the additive SHE
with ¢ = 1, as would be by just dropping out the nonlinearity in . This is not
completely true, though, as we will see that for B <1

1J (he(t,2) — 1) b(a) da if (et 2) — 1) d(@) dz — [ v (1, 2)é(x) da
R2

65 R2 e—>0 JRr2
with EB = ﬁ, which is strictly larger than 1. This suggests that the term %]V?ﬂz

produces in the limit a noise term. We remark that the situation for B > 1 has not yet been
settled for the KPZ equation.

In these notes we will mostly work in a discrete setting, with the discrete version of the
partition function of the continuum polymer. This is not only a matter of convenience. It
fits into a more general framework of studying scaling limits of so called disordered systems.

The discrete version of the polymer partition function is

Zy = B[S B2

Here (w(n,)),>1 zez¢ is a collection of i.i.d. random variables, which we assume to have
mean zero, variance one and log-moment generating function \(5) := log E[eﬁ‘*’] < oo for all
B > 0. This family of variables plays the role of the white noise. The role of the Brownian
path (By)s=0 is played by a simple, symmetric random walk (S, ),>1 on Z<

In dimension one, choosing ¢ = 1/ V/N, we have that the discrete analogue of is the
partition function Zy g, with gy = BN_1/4. The fact that in this case Zy g, has a well
defined limit was shown by Alberts-Khanin-Quastel [AKQ14] (see also [CSZ17a| for a more
general framework). In dimension two we will choose Sy = 3/+/log N in analogy with what
was described above within the SHE and KPZ framework.

The directed polymer model is an example of a disordered system, where a “pure” statistical
model (in this case the simple random walk) is perturbed by disorder / noise. The interest
then is to understand the effect that disorder has on the pure systems and whether arbitrarily
small amount of disorder is sufficient to change its statistical properties. If it does, then
disorder is called relevant while if a sufficiently large amount of disorder is required, then
disorder is called irrelevant. In |[CSZ17al, [CSZ18+] we formulated the question of disorder
relevance in the form of whether a partition function, such as that of the directed polymer,
has a non trivial. i.e. random, limit for suitable choice of the parameter 8 going to zero as
the size of the system increases. In [CSZ17b| we extended this framework to include systems
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where disorder has a marginally relevant effect. This included the two dimensional directed
polymer and SHE. Our treatment of the two dimensional directed polymer and SHE follows
the methods which were motivated by the study of more general disordered systems and the
phenomenon of disorder relevance.

Before closing this introduction let us make a quick review of the recent literature around
higher dimensional KPZ and SHE equations, which has been marked by a surge of activity.
In dimension two, which we will be mainly interested here, Chatterjee and Dunlap, using
different methods, proved tightness of the solution to the KPZ equation . Gu [G18],
using methods around Malliavin calculus, proved Edwards-Wilkinson universality. Neither

of these works covers the whole subcritical regime 5 < Beritical-
2—d

In d > 3 the strength of the noise in the SHE is modulated as Bs 2 and there also
exists a critical value Bcriticala which marks a transition between weak and strong disorder.
The existence of this phase transition was shown in [MSZ16, [CCM18]| and it is in the spirit
of the transition that has been known for directed polymers in d > 3 from the works of
Comets, Shiga, Yoshida [CSY04]. In particular, if B < Beritical then, for fixed (t,z), the
solution u®(t,x) converges to an a.s. positive limit, while for ﬁ > Bcritical it converges to
zero. Contrary to dimension two, where we have identified precisely the critical value of B ,
in d = 3 the understanding of the weak-to-strong transition and the critical temperature
that marks this transition is rather poor . For example there is no characterisation of the
critical value of B .

The Malliavin calculus approach of [G18| was used earlier in [DGRZI18]| to prove Edwards-
Wilkinson universality for the KPZ equation in d > 3. Earlier works on the d > 3 KPZ via
renormalisation techniques are those of Magnen and Unterberger [MUIS§|. These works also
do not cover the whole subcritical regime. The advantage of the methods exposed in these
notes compared to those in the above works, which allow to cover the whole subcritical
regime in d = 2, is that they make a detailed analysis of the polynomial / Wiener chaos
expansion of the polymer model / SHE. There is currently work in progress [L.19] to extend
the Edwards-Wilkinson universality for d > 3 in the whole subcritical regime.

Let us remark that in space dimension d = 1, the Cole-Hopf solution h(t, z) := log u(t, x)
of the KPZ equation is well-defined as a random function, for all g € (0, 00). Moreover,
there is no phase transition in the one-point distribution as f varies. Thus, Edwards-
Wilkinson fluctuations for h(t,x) and u(t,z) can be easily established as £ | 0, combining
Wiener chaos and Taylor expansion (because u(t,z) — 1).

It is also interesting to consider a variation of the KPZ equation, which is called anisotropic
KPZ and where the nonlinearity |Vh|? is replaced by (Vh, AVh) for some matrix A with
det(A) < 0. There is some belief and some evidence that the anisotropic KPZ falls into the
Edwards-Wilkinson universality class. We refer to the review [T17] for some details on the
current understanding. Let us just mention some recent work by Cannizzaro, Erhard and
Schonbauer [CES19], where A is the diagonal matrix with diagonal elements 1, —1 and the
nonlinearity is modulate in a similar fashion as the 2d KPZ equation by /+/loge=1 || They
prove tightness of the fields and non triviality of the limit points. Unlike the usual KPZ
equation there is currently no indication of a phase transition in B in the anisotropic KPZ.

fthe approximation of the anisotropic KPZ that is performed in [CES19| is a bit different than the
mollification procedure we have been working with. It goes into working in the Fourier space and performing
a truncation in the Fourier modes
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2. DISORDER RELEVANCE

Let us start with a description of the notion of a disordered system. Consider an open
set © € R? and define the lattice s := (6Z)% n Q, for § > 0, which is the support of a
“random field” o = (04)ze , whose law is determined by a probability measure denoted by
Preaf. Typically, the field takes values o, € {0,1} or {£1}. Even though it also sensible to
consider fields that take non binary values, currently the treatment of such fields is not
covered by the methods we will describe.

Some examples of such fields can be:

e Ising models. In this case, s:= (6Z)? N Q with § representing the mesh of the grid
on Q < R? and o, € {+1}. The measure Preéf is the Ising measure given by

Pre(sf(o_) _ 1 I iy Uzay,

- ref €
)

where x ~ y means that sites x,y are nearest neighbour, i.e. connected by an edge
of Z%. J is a coupling constant, which represents the strength of interaction between
neighbouring values of the field ¢ and

ref . J 0 T2
7= e B,
o

is the partition function.

e Random walks. In this case, Q is typically Z¢ x {0,1,...,N} for N > 1 and ; is the
scaled version N~%2Z% x N='(N ~ [0,1]), We notice that in this case the lattice is
given its more natural parabolic scaling. The field 0 = (0p.2) <N wezd 18 Tnaz = Lig,—a}s
where (S,)n>1 is the trajectory of a random walk.

A disordered system arises when on the lattice 4, on top of the reference field o, there exists
an additional randomness, w := (wg)ze , modelled in the form of an i.i.d. collection, which is
typically assumed to be of mean zero, variance one and having exponential moments (although
it is sensible to relax the exponential moment assumption and consider heavy tailed fields, in
which case new phenomena often arise, see for example [AL11, [HMO7, [DZ16l [BT18|, BT19]).
We call the randomness w disorder and denote its law by P and its expectation with respect
to it by E.

Given a realisation of the disorder w, the disordered model is defined as the following
probability measure P¥_, ; for the field o = (02)ze 4

Zae 5 (Busth)o

P sn(o) == o P*l(), (2.1)
5;57}7/
where now the partition function is defined by
Z¥ g = E“;f [eZZE 6(Bw”+h)%] ) (2.2)

and we remark that in this case it is itself a random variable, depending on the realisation
w.

A question of central interest in statistical physics but often very poorly understood is

Q. “ does an arbitrarily small amount of disorder change the statistical mechanics properties
of the reference field ? 7



2d-KPZ AND MARGINAL RELEVANCE 9

In the 70s A.B. Harris [H74] proposed the following criterion, which is known as Harris
criterion:

Harris criterion: If d is the (effective) dimension and vy is the correlation length exponent
(we will be more precise about this below) of the reference model, then if v > %, the model
1s disorder irrelevant, meaning that small enough amount of disorder is not sufficient to
change its statistical properties. If v < %, then the model is disorder relevant, meaning
that any arbitrarily small amount of disorder does change its statistical properties.

Let us first define what we mean by a correlation length exponent here: Consider the
(what is called) k-point correlation function of the field o to be:

k re
O (@1, ey zy) = B oy, - 00, ]

Then the correlation length exponent can be defined as the exponent « such that

((577)]61/}((5]6)(1'1,...,.%]6) m) ’ll)g)(l'l,,xk) (23)
where the limit is to be thought of as pointwise, although stronger forms such as in L?(QF)
will be needed for the framework we will develop.

Even though very simple, actually rigorously verifying the Harris criterion in concrete
examples is often difficult and requires a careful case by case analysis (although one can
transfer some intuition and a set of “general principles” between different problems). An
overview of the features of disorder relevance and the challenges verifying the Harris criterion
can be found in |G11].

In [CSZ17a] we proposed a different point of view for the Harris criterion focusing on the
existence of non-trivial (i.e. random) scaling limits of the partition functions when /3, h are
suitably scaled to zero as § — 0. The question can be phrased as:

Q. Consider the partition function of a disordered model as defined in (2.2). Can we
choose B = Bs and h = hgs, converging to zero as 6 — 0, such that Z¥, 55 ns CONVETGES UM

W 9

distribution to a random (i.e. finite and not constant) random variable ZQ~,8 i

Here W denotes white noise on R? and we request that the limit should be a non trivial
function of an underlying white noise.

We will now describe this point of view, whose core is multilinear and Wiener chaos
expansion and Lindeberg principles for multilinear polynomials, which we will describe in
detail in the following section.

Although it makes sense to consider a general value of h, we will, for simplicity, restrict
ourselves to the choice of h = —A(j3), where A(B) := log E[e?+]. We denote the partition
function associated to this choice by Z%_ .

Let us assume that the field (o,) takes values in {0,1}. The starting point is to write the
partition function in the form of a multilinear polynomial. We do this via what is called in
statistical mechanics high temperature or Mayer expansion, which goes by writing

(Bwz—A(B)) _ 1

. e

Z% 5=E eéf[ H (1+ ﬁaxcm)] , where Cp = — 5 (2.4)
TE §

Here we used the fact that

e(Bes=AB))ow _ 1 — (e(ﬁwz—*w” . 1)% it 0, € {0, 1}.
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Expanding the product and interchanging the (finite) summation with the expectation Ere;,
we write

o0
74 5 =1+ Z gk Z Eref O,Zl. O, ngl,

k=1 T1,...,LLE §
where the inner sum is taken over k-tuples of distinct 1, ...,z € s (and so the sum over

k even though written as an infinite sum it is in fact finite). Denoting ¢§k) (1, ..., Tk) =
El”otsf[ax1 -0y, | We write

Z%5=1+ 2 (B0 S (6P (@, Hg@, (2.5)
k=1

T1;--,TKE §

where we have inserted the assumed scaling of the k-point correlation function. Note that
the random variables ({,) are mean zero precisely due to the choice of the parameter h to
be equal to —A(8). Moreover, for 5 small, they have asymptotically unit variance.

At this point we need of a Lindeberg principle : suppose that we can replace the random
variables ((,), from ({2.4)), by standard normal variables, which we denote by (). If so, then
we could model this new collection of i.i.d. normal via a White noise W (-) on R? as

= |Cx,5’71/2 W(Cz,6)7

where C, 5 is the cube in (5Z)d with side length §, “bottom-left” corner equal to x and
volume |C,, 5| = 9. Consider now the partition function

s k
Z" =14 > (ﬁm—%)’“ O It R T HW p (2.6)
k=1 =1

T1,.-,TKE §

which can also be written as an iterated Wiener-I1t6 integral in the form

k
ZW5_1+Z 572 J Qkav e (@1, oy p) | [W(da),

where wgk’eXt) is the piecewise constant function on QF, which takes the constant value wgk)
on the cubes Cy, 5 x -+ x Oy, 5.

Choosing now

B =B =352, (2.7)

ones sees via an easy L?(P) estimate and using assumption (2.3)) (strengthened to hold in
an L%(QF) sense) that

2P N b
ARE= L) ka j W ® (21, ) [ W (day). (2.8)
) ! 1 QF i=1

We should here remark at the consistency with the Harris criterion: the scaling of
in is consistent with the requirement that 55 — 0 for 6 — 0 (thus disorder is gradually
weaker) if v < d/2. In the case that v > d/2 it turns out that any scaling of § tending to
zero as § — 0 will always lead to be a trivial, i.e. non random and in fact constant, limit.

As we see, the main point in obtaining the scaling limit of the disordered partition
function is justifying the passage (in the limit 6 — 0) from (2.5) to (2.6). This step is



2d-KPZ AND MARGINAL RELEVANCE 11

precisely achieved with the Lindeberg principle, which will be described in the next section,
see Theorem Let us note that if h in is taken to be different than —A(f), then
the random variables ((;) are not mean zero and in this case one needs to be more careful
as issues of convergence of the series in arise. Moreover, one needs an extension of
Lindeberg Theorem [3.2) that will cover the situation of non-mean-zero variables. These issues
have been settled and suitable extensions of Theorem have been achieved in [CSZ17al.

At the marginal case g =~ the above procedure has two problems. The first one is that
the scaling of § is not well defined as the exponent % — ~v vanishes. This is rectified by
typically choosing a logarithmic (or more general slowly varying) scaling. However, another
more serious issue typically arises, that the limiting correlation kernel 1&6 in is not in
L%(QF) and thus the candidate Wiener integrals in are not well defined. This is the
situation that one also faces when attempting to define the limit of the directed polymer
model or of the SHE and KPZ. We will see in Section [ that a different structure takes

place in this situation.

3. SOME GENERAL TOOLS:
CHAOS EXPANSIONS, LINDEBERG PRINCIPLES, FOURTH MOMENT
THEOREMS, HYPERCONTRACTIVITY

3.1. MULTILINEAR POLYNOMIALS AND LINDEBERG PRINCIPLE. Let us define mul-
tilinear polynomials as follows. Consider a family of i.i.d. random variables & := (&;)zes
indexed by a countable set S Let Pfi"(S) := {I = S: |I| < o0}, the set of all finite subsets of
S. Consider also a function ¢: Pi"(S) — R. Then a multilinear polynomial of disorder &,
associated to ¢ is defined as

V()= > (g, where ¢ i=][&, with ¢7:=1. (3.1)
Iepfin(s) acl
Assuming that E[{,] = 0 and Var(§,) = 1, it is easy to compute the variance of ¥(¢) as
Var(¥(¢)) = o2 := D e (3.2)
IePhin(S), I£

An important feature, that we would like to quantify, is the “influence” that a single
variable has on the overall random function. In other words, “how much” does the random
function change if we change, e.g. by resampling, one of its random variables.

This motivates putting the notion of influence in a mathematical context. We define

Definition 3.1. Let (wy)zes be a family of i.i.d., mean zero and variance one real valued
variables indexed by a countable set S. Let f: RS — R be a function of this family of variables.
The influence of entry x € S is defined as

Inf, (f) = E| Var(f(w) | {wybyer) |

In the case of multilinear polynomials the influence of entry x € S equals

Inf, () = E _<§Z>1 = N1

The notion of influence plays an important role in the “replacement principle” that we
discussed earlier (see discussion around ({2.6])) and which goes under the name of Lindeberg
principle. We have the following theorem
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Theorem 3.2. Let ( = (Cu)aes and & = (&)aes be two families of independent ran-
dom variables with mean zero, variance one and uniformly integrable second moment. Let
U (), ¥(C) be the associated multilinear polynomials as defined in and assume that
o3 = 2.5 £1ePin(s) W(I)? is finite.

Then for every f € C3(R) and any € > 0, there exists C. depending not only on & but also
on || f'loo, 1" lo0s [ f" oo and o, such that

ELF ()]~ E[£(¥(0)] | < & + Ce, fmaxTnf, (¥). (3:3)

The above theorem was proved in [CSZ17al] and it is an improvement of a theorem in
[MOOI10] (see also [R74]), where the Lindeberg principle for multilinear polynomials was
proved under the assumption of finite third moment. The above theorem captures an optimal,
in terms of moments, condition. In [CSZ17a] a more quantitative expression of the right hand
side on was provided. Moreover, in [CSZ17a] a statement of the Lindeberg principle
for non mean zero variables was proved.

A direct consequence of the above theorem is that if one has a sequence of multi-linear
functionals W,, for which it holds that

max Inf,(¥,) —— 0, (3.4)

a€esS n—00

then the asymptotic distribution of ¥,,(§) and W¥,,({) are the same assuming that the families
¢ and ¢ have matching first and second moment (e.g. mean zero and variance one) and
uniformly integrable second moments. Assumption is typically satisfied when one
considers multilinear polynomials corresponding to partition functions of disorder relevant
systems and thus the Lindeberg principle of Theorem [3.2] facilitates the passage between

representations ([2.5)) and (2.6)).

We will provide the proof of Theorem [3.2] in the Appendix.

3.2. FOURTH MOMENT THEOREM. A main tool that we will use to handle the asymp-
totic limits of the two dimensional SHE and KPZ as well as of general marginally relevant
disordered systems (in the subcritical regime B < Beritical) 18 the so-called fourth moment
theorem. In the form of multilinear polynomials this remarkable type of theorem asserts that
a sequence of multilinear polynomials of mean zero and variance one random variables &
with sufficient moments (recall also notation from (3.1))

\I}n(C) = Z %(I)fl,

IePfin(S)

converges to a standard normal variable if and only if its variance converges to 1 and its
fourth moment converges to 3.

Fourth moment theorems were (re)discovered and popularised by Nualart and Pec-
cati [NP05] in the context of Wiener chaoses. Versions of the fourth moment theorem in the
setting of discrete chaoses were discovered earlier in the study of statistics by Sevastyanov
[S61] (for bilinear forms) and later by de Jong [dJ87, [dJ90]. Since the work of Nualart and
Peccati there has been an explosion of fourth moment theorems in various contexts and
with many applications. Some of the most sharp proof techniques make use of Malliavin
calculus (see for example [NPR10]).

Let us state a version of the fourth moment theorem from [CSZ17b], which is an extension
(using the Lindeberg Theorem of a theorem of Nourdin, Peccati and Reinert [NPR10]
to random variables with just uniformly integrable second moments.
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Theorem 3.3. For each N € N, let (£;)zes be independent random variables with mean 0
and variance 1, indexed by a countable set S. Assume that (£2),es are uniformly integrable.

FitkeN anddy,...,d; € N. For each 1 <1 <k, let \Ilg\i,) (&) be a multi-linear polynomial in
(€2)zes of degree d;, i.e.,
\Il%) (&) = Z ¢J(\Z,) s for some real-valued @ZJE\?()
1S, [1|=d;
Assume further that:

(i) For all 1 <i,j <k, E[\I/%)(f)\I/%)(ﬁ)] — V(i,7) for some matriz V as N — oo;

(ii) For each 1 < i < k, E[\I'%)(w)ﬂ — 3V (i,i)? as N — o0, where we have replaced
(€2)zes by i.i.d. standard normal random variables (wy)zes;

(iii) The mazimal influence of each variable &; on the polynomials of degree one among
(\PS\Z,) (&2))1<i<k is asymptotically negligible, i.e., for each 1 < i < k,

max |¢J(\Z,)(x)\ -0 as N — oo. (3.5)
xe

Then (\IIS\? (&)1<i<k converge jointly in law to a centered Gaussian vector with covariance V.

3.3. HYPERCONTRACTIVITY. Let us now discuss the notion of hypercontractivity. Some
references on hypercontractivity are [S98| for a discrete setting and [J97] for hypercontrac-
tivity on Gaussian spaces.

The notion of hypercontractivity is very useful when one needs to control higher than two
moments via second moments. The significance of this is that when dealing with multilinear
expansions their second moments can be easily computed (see for example ), while
higher moments, which do appear in our KPZ estimates, are not easily computable, in
particular when these are non integers. Thus having a tool that will allow this reduction
in a sharp way is very important and we will make use of this in Section [f| when proving
Edwards-Wilkinson universality of the 2d KPZ.

Let us give the following definition of hypercontractivity for multi-linear polynomials.

Definition 3.4. Let ¥(§) := Zlepﬁn(s) Y(DEL be a multi-linear polynomial of the family of
random variables § = (£,)aes. For o > 0, define the operator T, acting on the multilinear
polynomial as

(T,9)(©) = >, oyp)e,
IePpfin(S)

where |I| denotes the cardinality of the set |I|. For p > 1 and 1 < p < q < 00, we will say
that the family & is (p, q, 0)—hypercontractive if

[Wlg < [ T -
for all multi-linear polynomials W.

The following theorem shows that families of random variables with more than two
moments are hypercontractive.

Theorem 3.5. Let & = (§4)zes be a family of i.i.d. random variables such that
E[¢.] =0, E[&] =1 and 3Ipoe (2,00): E[¢2] < w0
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Then, for every p € (2,po) the family & is (2, p, op)-hypercontractive with

lim o, = 1. 3.6
plQQp ( )

In particular, we have that, for every every multilinear polynomial W(§) = Z[epﬁn(s) P(I)E!
and for p € (2,po),

ellw©r] < (Y dlvme)”

IePfin(s)

Except for the sharp asymptotic , this theorem was proved in [MOO10] as an extension
of the corresponding result in the Gaussian framework, see [J97, [S98|. The sharp asymptotic
was proved in [CSZI8D, Theorem B.1] and is important for proving the Edwards-
Wilkinson fluctuations for the KPZ in the entire subcritical regime 3 < 1 in Theorem
The estimate on the hypercontractivity constant given in [MOOI0, Proposition 3.16] was

24/p — 1 sup 7[|£x|p]i/z = 24/p—1 sup E[|€l’|p]1/pu
NeN E[[[2]Y NeN

which when p | 2 it converges to 2, instead of the natural value 1. This extra factor 2 is the

byproduct of a non-optimal symmetrization argument in the proof in [MOO10].

4. MARGINAL RELEVANCE VIA THE 2d DIRECTED POLYMER AND SHE

We will now study the case of marginal relevance that we touched upon at the end of
Section [2| The two dimensional polymer and SHE fall in this category and so we will use
this as the main example in this section. For other marginal models that fall under the scope
of the methods described here we refer to [CSZ17h.

Let (Sn)n>1 be a simple, two dimensional random walk and let the disorder (wnz)neN zezd
satisfy the usual conditions of mean zero, variance one and exponential moments A(3) :=
logE[e#*] < 0. We will denote the law and expectation of a random walk starting at
location x by P, and E,, respectively, while the law and expectation with respect to the
disorder will be denoted by P and E. We set

qn(z) :==P(S, = x). (4.1)
The local limit theorem asserts that

Qn(x) = 2gn/2($)1{n+x1+z2622} + O(%)> uniformly for z € 227 (4'2)

—l21?/2t is the two dimensional heat

where the factor 2 is due to periodicity and g,(z) = 2 e
kernel. Denoting by S an independent copy of S, we deﬁne the expected overlap, which will

play an important role in the normalisation below, by

N ~ N logN
RN = Z P(Sn = Sn) = Z Z Qn Z Q2n = 0(1)7 (43)
n=1 n=1gecZ2

where we used the convolution property of the random walk Y. g,(z)? = ¢2,(0) and the
local limit theorem asymptotics. The partition function of the directed polymer model, for a
random walk starting at location z, is given by

() = Ex [ezﬁzlwwm,sn)—w»] —E, [ezlsngw,yeza (Bwiny)=2B) Lsn=y) ] (4.4)

ZN3
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Performing a similar expansion as in (2.4) we can write the partition function as

ZNg =1+ Z Z qu —ni_ 1 — Tij— 1)€n1,z17 (4.5)

O=np<ni<..<np<N i=1
To=x, T1,...,tLEZ2

where

bnei=0(B)? (eﬂ“’("’x)_)‘(ﬁ) — 1) with o =0 (8) = Ve 2)-226) — 1. (4.6)

o (/) is chosen so that the random variables &, , are normalized to have variance one. But
since o(f3) ~ 3, for B small, we will usually replace it by  without extra reference.
The determination of the scaling of 8 in terms of N comes from a variance computation

E[ZNﬁ =1+ Z Z HQn, ni_ 1 — Tij— 1)2

0=mpo<ni<..<np<N i=1
To=:T, T1,...,CLEZ> (47)

N
=1+ Z o(B)%k Z @2(ni—ni_)(0) .
k=1

0=mp<ni<..<np<N

Looking, for example, at the first term of this expansion and using we see that to keep
this term of order one, we should choose 8 = By as
i ~

By = \/%N = \/%(1 +0(1)),  for e (0,00). (4.8)
This turns out to also be the right choice in order to keep the variance of the rest of the
terms to be of order one. The logarithmic scaling, here, should be contrasted to the power
law scaling in (2.7). This reflects the fact that we are at the marginal case and so the
exponent in nishes. Indeed, under the parabolic scaling and the local limit theorem
, it holds that N qtN(x\/N ) has a non trivial limit and so the correlation exponent is
~v = 1, reflected by the power of N multiplying the kernel ¢q. On the other hand, the effective
dimension is deg = one time scaling + twice space scaling =1+ 2 - % = 2. Thus deg/2 = 7

The first guess for the continuum limit of Zy g, (z) under this choice of Sy would be

1+ > B* f f Hgt oy (i — xy) W(dty, day).

k=1 i=1
= O<ty<--<tp_q<e 2

z1,...,x,€R? , xo=1
Notice that this would be the obvious form for the solution to the stochastic heat equation
via the standard Picard iteration. However, there is a problem as the above integrals are
not properly defined in the It6 sense. This can be easily checked by computing the L? norm
of, for example, the first integral which is

BQJ fRQ dtdx—BQJ —dt

which blows up logarithmically.

The scaling limit is indeed more subtle and less obvious. Remarkably, the situation is
universal among models which can be characterised as marginally relevant in the sense
described in the following theorem
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Theorem 4.1 (|[CSZ17b]). Let Zﬁ?}%mal be a multilinear polynomial (typically a partition
function) of the form

N k
inal
Z]Igjigrl%,ma =1+ Z B]’i[ Z HQni—ni_l (mz - $i—1) Eni,xia
k=1

1STL1<~~~<TL}CSN =1
:El,...,l'kEZd

where we may assume that xo in the the above summation is equal t0 0. (§n.2)peN zezd 15 @
collection of i.i.d. mean zero, variance one random variables with exponential moments and
the kernel (qn(7))pen zeza satisfies that

N
Ry := 2 2 qn(x)?  grows to infinity as a slowly varying function. (4.9)

n=1 zezd
We also assume that the kernel g, () satisfies a type of local limit theorem, i.e.

sup {17 ga(2) — 9(-2)} —— 0, (4.10)

a ‘
reZd n n—®

for a sufficiently smooth density g(-) and exponents a,y > 0 . Then, if By := B/v/Rn, it
holds that

X —152Y) R
marginal __d {exp(aﬂx 203) ip<1 _ (4.11)

N,Bn N—oo 0 Zf,@ >1

where X is a standard normal variable and 02 = log(1 — 2)1.

We will outline the main ideas of the above theorem below. Before, let us describe the
analogue of this theorem for the stochastic heat equation in the following

Theorem 4.2. Let j € CX(R?) be a probability density on R? with j(z) = j(—=), and
let J := j=j. Fore >0, let je(z) := e 2j(z/e) and define the mollified noise W¢ by
We(t,x) := §ge je(x — y)W(t,y)dy. Then the solution to the regularised SHE

1 )
out = EAua + ButWe, u®(0,-) =1, (4.12)

with B, = B+/2r/loge~1 satisfies the pointwise (i.e. for fized t € R, x € R?) distributional
limat

(4.13)

e—0

et ) 0, [P LN —aof) HE<1
0 ifB=1

where X is a standard normal variable and U% = log(1 — 2)~ 1.

We remark that the difference between the factor 27 in the above theorem and the factor
7 in (4.3) is due to the periodicity of the walk. The proof of Theorem is given in Section

fwe see that in order for to hold, the exponents a,~ need to satisfy the relation v = #, which
is consistent with Harris criterion for effective dimension deg := 1 + ad. But also notice that in order for
the limit of ¢, (-) to be a probability density, it is required that v = ad, which combined with the relation
vy = HT“d, leads to the interpretation of marginality, in terms of the physical dimension as d = 1/a
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9 of |[CSZI7Dh] and it is based on an approximation of the solution to the SHE, in the form
of a Wiener chaos expansion

(t,2) £ 1+Z Bk f J ( f Hgt i ( yi—l)j(yi—xi)dyi) ﬁf(tiawi)dtidxiy

k>10<t1< <tp<e~? ’“Z 1 =1
Ze(R?)k
(4.14)
where yy = £ 'z, by the partition function of the directed polymer model. Since this
approximation is mostly technical and long but does not bring in any news insights, we will

not expose it here.

Before sketching the proof Theorem [4.1] let us remark on the significance of the critical

value Beriticat = 1. This lies on the fact that for 3 < 1, the L?(P) norm of Z]r\rflagiinal is

uniformly bounded in N, while for B > 1 it increases to infinity as N — oo0. For 8 =1
precise estimates [CSZ18c| show that this L?(P) norm grows as log N.

Sketch of the proof of Theorem We will outline the proof having in mind the case
of a directed two dimensional polymer, in which case ¢,(z) is the transition probability
kernel of a two dimensional simple random and, therefore from , Ry ~ %log N.

An important first observation has to do with the correct time scale upon which one
observes a change in the fluctuations. To determine this time scale, one may look at the
partition function of a system of length tN for arbitrary ¢ > 0. Computing the variance
of Zin gy with By as in , one obtains that it is asymptotically independent of ¢ when
N — 0. One can be easily convinced about this by looking, for example, at the variance of
the first term in the chaos expansion ([£.5), which behaves as (we denote by on := o(8n))

A~

AVar (Y a@ns) = o Y aule) - RN
1<n<tN Ry | 2in Ry N-—o

xeZ? xeZ?

which is independent of ¢, since Ry is a slowly varying function. Moreover, a similar
computation shows that the contribution to the fluctuations from disorder &, , sampled in
the time interval [¢N, N]| is negligible, for any ¢ > 0 fixed. On the other hand, one starts
seeing a change in the fluctuations when looking at time scales N*, with ¢t > 0. These facts
dictate that the meaningful time scale is not tN but N¢ and that the partition function
Zn gy essentially depends only on disorder &, ;, with n/N — 0, as N — co. We remark that
this observation will also be important later on when we will try to approximate the KPZ
equation via the SHE.

To quantify the observation on the time scale, we decompose the summations OVeT N1, ..., N

in the multilinear expansion , over intervals n; —n;_1 € I;;, with I;; (N M NM]
ij € {1,...,M} with M being a coarse graining parameter (which will eventually tend to
infinity). We can then rewrite the k-th term in the expansion (4.5)) as

Bk N,M
MFE/2 2 @il,,,,,ik where (4.15)
1<, ipn <M
NM
@il,...,ik T (R]V> Z anj —Nnj— 1 xj l)énj,xj

nj—njflelij for j:]., ,
xl,...,xkeZ‘l
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For technical reasons, that should become obvious below, we are led to restrict the summation

in (4.15)) to the subset

U1y eeey b € {1,...,M}ﬁ with
{1, ,M}ﬁ = {7, = (’il, ,Zk) ‘Z] - ij/| > 2, for all j # ]/}

It is not difficult to justify this restriction via an L?(P) but we will omit the details.
We now observe that if an index Z] is a running maximum for the k-tuple @ := (i1, ..., %),

i.e. i; > max{iy,...,i;—1} then (N Y NM] 3nj»n, € (N A NM] for all » < j, when
N — 0. This is the point where we also use the restriction into {1, ..., M}y . This implies that
Gn;—n; 1 (Tj —xj1) ~ qn,;(x;) for nj € I;; and nj_1 € I;;_,, where the drop out of the spatial
term xj_; makes use of the diffusive properties of the random walk. Thus, decomposing
the sequence % := (iy, ..., i) according to its running maxima, i.e. s = (1), ..., {(™@)) with
i = (i, veesip, 1 —1) and with iy = 4y < iy, < --- < i, being the successive running
maxima, it can be shown that asymptotically factorizes for large N as

gt N;M N; M N;M
?ie(l,., M)}

The heart of the matter is to show that all the @i\([;)M converge jointly, when N — oo to
standard normal variables. This is where the fourth moment theorem is used and we will
show how this is done in Proposition that follows. Assuming this, let us see how we can
obtain the convergence to the log-normal distribution in when ﬁ < 1.

We can start by replacing, using the Lindeberg principle, the @éV;M variables in by
standard normals, which we denote by (;. Then denoting by

Cr(a) = Z C(a@g,...,ar)

(a,ag,...,aT)E{l,...,afl}""_l

we have that Zﬁ%ﬁinal is approximately (in the large N limit)

. m
Zﬁfgf,mal ~ 1+ Z Z % Z HQ]_H 2 CL]

k=1m=1 M2 1<l <<lp<k j=1
I<ai<ao<--<am<M

where m denotes the number of running maxima in the sequence ¢ = (i1, ..., 1) in (4.15)
(thus determining the number of dominated sequences), ¢1, ..., £;, denotes the location of
the running maxima in ¢ and a, ..., a,, denote the values of i/, ..., 7y, . We can continue by
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rewriting the above as

Z Z ﬁ Gr; (ay)

r1,...TmEN  1<a;<as<-<am<M j=1
1+ +rm=k

> S I @)

1 r1,...,rmeN1<ai<as<..<am<M jle

29
SRED DD W § - X HeTh
1+mE

=1 r1,...,rmeNO<ti<teo<..<tm;<1 j=1 M

t1,stmE2F N

2 ﬁ{z ]\i Cr(Mtj)}a (4.17)

=10<t1<t2<.. <tm 1 j=1
t1,...,tm€E

»

reN

IWN

In the first equality we interchanged the summations over m and k& and for this the assumption
3 < 1, that ensures convergence in L2(P) is crucially used.

Since (8/v/M)"¢,(Mt) are normal random variables, independent for different values of
re N and t € M~'N, we have that the random variables

1

Ere = Y Ai: G(Mb), e (0,1]n N,

reN

are also independent normal with mean zero and variance

Mt— 1y 1_@ 1+€M<t>

Var(E) (M _ 57 1+em)
ar( TG t)) M M1

reN reN

with the error e)/(t) easily seen to converge to 0, uniformly in ¢ € [0,1], as M — oo for

B < 1. We can, therefore, represent =), in terms of a standard, one dimensional Wiener
process W:

_ B +en(®) Jt aw,,  te0,1] AN} (4.18)

Emt = =
A/1— B2t Jtmar M

and we can rewrite (4.17)) as
0 m 5 -
B +em(t) [V
1+ ) > [[—F/——* - dw,. (4.19)

3 1
m=10<ti<ty<..<tm<l j=1 /1 —[2¢; b~
1

tl,...,tmEMN

So, for # < 1, we have that [@.18) converges in L2(P), for M — o, to

o0 m B 1 B 1 1 B 2
1+n;10<t1£.“.<.t£<1 ]Ul mdwtj — exp {L 1_B2tdW(t)—2E[<L 1_BQtdW(t)) ]}

where the last equality holds by the properties of the Wick exponential [J97, §3.2]. Since
— log(1—/3?), the result follows.

Sé \/fimtdW( ) is a gaussian variable with variance SO - 52
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This concludes the proof of the log-normality in the subcritical regime /3’ < 1. The
proof that at the critical temperature 3 = 1 the limit of Zﬁaﬁr]%mal is zero makes use of the

convergence for ﬁ < 1 and goes via a fractional moment computation. For ¢ < 1,

aw(t) - -

1 B 9 1 BQ
0] o )]

= exp (19(192_ D) J: n —B;2tdt) = (1 — B%‘W,

li E Zmarginal 9 —E
[N [( N.,Bn )"]

which, since ¢ < 1, goes to zero as B /" 1. The proof is completed by a monotonicity

property of 3+ E[(Zﬁégginal )19], which allows for an interchange of the limits in N and /3

in the above computation; for details see [CSZ17bl, Theorem 2.8 and its proof]. O

We will now prove the core proposition, which outlines how @éV;M converges to a normal
variable for just a single ¢. The joint convergence, that is required in the previous theorem,
follows easily from the computation that we will outline and the general statement of
Theorem [3.3]

Proposition 4.3 (Dominated sequences). Let @éV’M be defined as in with the
kernel qn(x) satisfying the assumption of marginal relevance as in Theorem and © =
(i1, ..y k), for some k = 1, being a dominated sequence, that is i1 > ia,...,i. Then, for
every fixed M, @éV’M converges to a standard normal as N — o0.

Proof. The proof uses the Fourth Moment Theorem. Let ¢ = (i1, ..., i) be a dominated
sequence and compute

e ]-(7) ¥ ¥ ¥ ¥ T e

aj—ajflelij bj*bjflEL;j Cj—ijlelij dj*djflelij jil
T1,...,Tk Y1 sy Yk 21,32k W1 ,... Wk

k
X H Q(l]'—aj_1 (mj - xj—l) qufbjfl(yj - yj—l) qu—Cj—l (Z] - Zj_l) de*djfl (w] - ’U)j_l)-
j=1

(4.20)

By the Lindeberg principle, Theorem we may assume that the random variables &, ,
are standard normals and therefore the expectation that appears inside the sum above
will be zero unless the variables ({a].,x].,§bj7yj,§cj7zj,§dj7wj g=1,. k) match in pairs or in
quadruples.

We will show that there is only one case that contributes to the asymptotic behaviour
when N — oo, which is when either (aj,z;) = (bj,y;) and (¢j, 25) = (dj,w;) for all j or
(aj,25) = (¢j,z;) and (b, y;) = (dj, w;) for all j or (aj,z;) = (dj, w;) and (¢, 2;) = (bj, y;)
for all j. The restriction to these three possibilities is what gives that the limit of the fourth
moment of @éV’M converges to three - we also need to notice that the contribution of each
term is 1. To see this last point, look, for example, at the case (a;,z;) = (b;,y;). The
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corresponding term in the right hand side of (4.20]) equals (we also use that E[¢2] = 1)

M N\ 2k k , )
(RiN) Z 2 H qaj_a]’—l(xj - xj—l) qu—Cj_l(zj — Zj—l)

aj;—a;—1€ Iij Cj—Cj—1€ Iij ]:1
T1y.-Tk 21592k

- (}];fv)% ( Z ﬁ qaj*ajfl(xj - xjfl)Q)z- (4.21)

aj—aj;—1€ Iij j:1
L1y, Tk

Having in mind the case of the two dimensional directed polymer, that we are concerned
with here, in which case Ry ~ %log N, we notice that

M M
Ri Z daj—a;_1 (xj - xj*1)2 = RiN(RNij/M - RN(ijfl)/M) ~ 1. (4'22)

aj—aj;—1€ Iij
$k622

Let us now describe how the rest of the possible matching cases lead to negligible contribution.
For this, let us label the elements of the set {(a;j, x;), (bj,v;), (¢j,25), (dj,wj): j =1,.... k}
as {(f1,x1), -, (fp, Xp)} with p < 2k denoting the cardinality of the set. The first case to
exclude is the case where a quadruple matching exists.

Quadruple matchings. In this case p < 2k. Every time we sum a double matching, we
will have a sum of the form

> ar—ar—1 (Tr — Tr—1) @by 1 (Ym — Ym-1), (4.23)
ar€ar—1+1;,
bm €bm—1+1;,,
Tr=Ym €Z? and ar=b,,

which, by Cauchy-Schwarz and the computations in (4.21)), (4.22)), is easily seen to be
bounded by (Ry/M)2.

On the other hand, when a quadruple matching occurs, we have a sum of the form

Z dar—ar—1 (-’Er - x?“—l)qu_bmfl (ym - ym—l)
ar € ar—1 +Iir ,om €bm—1 +I’Lm
cu€cy—1+1;, ,dv€dy_1+1;,
LTr=Ym =2y =Wy €72
ar=bm=cy=dy

X Qey—cy1 (Zu - Zu—l)QdU—dv,1 (wv - wv—l)a

and bounding the last two kernels by 1 we come back to the same sum as in and,
thus, the contribution of this quadruple summation is also bounded by Ry/M. Performing
successively all summations of {(f1,x1), ..., (fp, Xp)} We obtain a bound of order (Ry/M)P,
which, since p < 2k, is dominated by the factor (M /Ry)?* in (recall that Ry — ).

Mixed pairwise matchings. This case is the central one and here is where one sees
the significance of the logarithmic (or in general slowly varying) growth of the overlap Ry,
i.e. marginal relevance, as well as the role of the dominated sequence.

The situation here is that we only have pairwise matchings but the labels mix. For
example, we may have that (f1,x1) = (a1,21) = (b1,y1) but then the (a,z) label does not
continue to match with the (b,y) label but, for example, (f2, x2) = (a2, z2) = (c1,21). In
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this case, let us look at the normalised sum

M
Rf 2 QQg—al (xQ - x1>QC1 (Zl)-
N az €a1+1i2 ,C1 EI,'l
To=2z1 €Z2 and az=c;
We notice that the matching as = ¢; constraints the range of ¢; from its original set I;; to
a1 + I;,. Thus, via Cauchy-Schwarz we bound this by

CHCS ) S )"

a2€a1+li2,x2622 &1 €a1+1i2 , 21 eZ2

The first sum is bounded by Ry /M but the second one is
Z ey (21)? = Z G2e,(0)2 ~ log(ay + N2/M) _log(a; + N2=D/M)

&1 ECL1+I¢2 , 21 €2Z? c1 Ea1+IZ-2

and since a; € I;, it is of order N /M - Niz/M , the above difference converges to zero as
N tends to infinity.
The more general mix-and-match-labels case follows the same route. O

Theorem [£.1] describes the asymptotics of a single partition function of a marginally
relevant model when the starting point of the polymer path is fixed. We can also ask about
the asymptotics of the joint laws of (Z]n\}?ﬂriinal(:c))xezd. This will be described by the next
theorem, which, for simplicity in terms of notation, we only state in the case of the standard

two dimensional directed polymer model.

Theorem 4.4 (Partition function of 2d polymer as a field). Let Zyg, (z) be the
partition function of a directed polymer corresponding to a two dimensional, simple random
walk. Let By be chosen as

B ) A 5 logN
——, with <1 and Ry := qn(z)” =
VRN ngNz,;geﬁ g

Let also ¢ € Cy(R?) n LY (R?) be a test function. Then

By = (1+0(1)). (4.24)

Znon (@)= VXS (2 (@) — 1))

xeZd
converges to a gaussmn variable with mean zero and variance
2 f J ,y)b(y) dzd th — K(z,y) 1 -5 g
o x wi x,y)=| ——e 2t
5= 1—ﬁ2 .- y) dzdy, 12 N

Proof. The proof of this theorem follows similar lines as that of Theorem [.1] and also
makes crucial use of Proposition [4.3] on the asymptotic normality of dominated sequences.
However, there is a key difference with Theorem [4.1} where we saw, via variance estimates,
that the main contribution to fluctuations of the partition function with fixed starting point
comes from disorder &, , with n = N* for ¢ < 1. Here the fact that we average at spatial
scales v/ N will make those contributions to the fluctuations of Z N8y (@) negligible. Thus,
here, the noise that will drive the fluctuations is &, , with n of order NV ﬂ This can be seen

TThis qualitative difference will also play a crucial role in the KPZ fluctuations and the approximation of
the KPZ by the field of partition functions
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again via a variance computation: starting from the chaos expansion

/;RN N B} o k
ZN gy (0) = N Z BN Z Qs(ﬁ) HQM—M (@i = zi1) Gniays
k=1 1<n1<---<nk<N =1
20,150, xEZY
the variance is computed as
Var (Zn,sy(¢))
Ry & N
=~ 2 B¥ > S(F)$(J%) an (21 — 20)dny (w anz iy (i = wi1)
k=1 I<sni<--<nip<N

:Eo,fio,:ﬂh..‘,wkezd
Summing successively over the variables (ng, zx), (nk—1,Tk—1), ..., (N2, z2) and using (4.24)
will produce a factor of Rf\fl, which will be cancelled by k — 1 powers of 512\[ There remains

one more power of 3% which will then cancel the prefactor Ry (recall that Sy = B/\/RN)-
Thus, we have that the variance is approximately, for large N, equal to

Var (ZN,ﬁN N2 Z ﬁgk Z Z ¢ )in( l’O)in (x1 — Zo)

1<n1 <N z0,T0,21

) ﬁz D WD WIC ST ST )

1<n1 <N z0,Z0

where in the second equality we performed the geometric summation over the B% and we
summed over x1 using the convolution property of the random walk. Using the local limit
theorem, we see that the variance is approximately

~ BQ 1 930 50 1 |$07%O|2/N
Var (Znsn @) S T 2 5 Y 6()0( %) e (- )

1<ni<N 0,0

The Riemann sum approximation shows immediately that contributions from n; = o(N)
are negligible. Moreover, it also shows that the limiting variance is

22 1 2
s P : _ 1 _E=?
Thp = @ 2 L{Q L‘P o(z)K (z,y)p(y) dzedy, with K(z,y) 3¢ dt.

as claimed in the statement of the theorem.
Having made this crucial observation, the proof of the theorem proceeds as the proof of

Theorem - by first coarse graining the temporal variables so that n; —n;_ € I;; with
i;—1
I = (N M, N M| as

Bk N, M,
Ing(@) =D Tm 2, Oni where (4.25)
k=1 1<y, i, <M
NMé M k/2 k
@%17 U (RN> 2 d)(%) Hanfnjq (xj B xj*l)gnj,mj-
nj—nj_ 16[ for j=1,....k j=1

T0, L5 7901«622
But now the crucial observation on the time scale comes into place, imposing that the main

contribution is when n is of order N, thus forcing i; = 1. Therefore, the decomposition
of Zn gy (¢) into dominated subsequence will consist of only one dominated subsequence,
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that of (4.25)) with i; = 1 as (opposed to the decomposition of Zy g, for fixed initial point
as in (4.16))). A slight modification of Proposition shows that @f\lfMi with 41 = 1 is

asymptotically normal variable and thus Zy g, (¢) as in (4.25)) is a sum of asymptotically
uncorrelated, gaussian variables. This now easily leads to the conclusion.

O

5. THE TWO DIMENSIONAL KPZ IN THE SUBCRITICAL REGIME

With respect to the KPZ equation, Theorem [4.] translates, via the Hopf-Cole transfor-
mation h® = logu®, to

o:X—152 ifp<1
he(t,x) 2> AT 275 5 ith o2:=log—L_, X~N(0,1), (5.1
(t2) 5 {_OO fhs1 ViR o= logg 0,1), (5.1)

which indicates a phase transition at B = 1. In this section we will describe that, when
viewed as a field, the solution to the KPZ in dimension two falls into the Edwards-Wikinson
class in the subcritical regime 8 < 1. In particular, we have the following theorem

Theorem 5.1 (Edwards-Wilkinson fluctuations for 2-dimensional KPZ - [CSZ18b]).
Let h® be the solution of the mollified KPZ equation (1.11) with initial condition h®(0,z) =1

and with B. = B~/27/loge=1 and j € (0,1). Denote
b (1) o DL D) B D] V1082 L ey oy Epe(r,2)]) (5.2)

B- V2r 3

where the centering satisfies E[h®(t,x)] = —%O‘E +o(1) ase | 0, see (5.1)).
For any t > 0 and ¢ € C.(R?), the following convergence in law holds:

(1), 6()) = jR2 b (t,2)p(a)de T Dt 0()), (5:3)

el0

where v(©) (t,x) is the solution of the two-dimensional additive stochastic heat equation

o (t, z) = %Av(c) (t,z) + c&(t, o)

, where c¢:= ¢y := L. (5.4)
09(0,2) =0 ’ 0

In terms of the two dimensional polymer model, the above theorem writes as in the
following theorem. This will be the theorem whose proof we will outline. The proof of
Theorem follows exactly the same lines if instead of working with the polynomial chaos
expansion of the partition function we work with the Wiener chaos expansion of u® as in
(4.14). We refer to [CSZ18bl Section 5] for details.

We have

Theorem 5.2 (Edwards-Wilkinson fluctuations for directed polymer - [CSZI8D]).
Let Zn gy () be the family of partition functions defined as in with BN as in and
B € (0,1). The disorder w satisfies the usual assumptions of mean zero, variance one and
finite exponential moments and in addition we require it to satisfy a concentration property
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(A) Partition fuction Z](‘,,BN (z). (B) Partition function Zﬁ,BN (z).

FIGURE 1. The above figures depict the chaos expansions of Zfé/, B (z) and
zB By (z). The disorder sampled by Zj(‘, By (x) is restricted to the set A%,
while that of ZJI\?’,BN (x) is restricted to By

3y >1,C1,C2€ (0,00) : for allme N and f : R" — R convex and 1-Lipschitz

Y (5.5)
P<|f(w1,...,wN) —Mf‘ > t) <Ciexp| — = |,

Cy
where My denotes a median of f(wr,...,wn). Denote

_ log ZtN(M/NB?v_ Ellog Zin] _ \/\l/(%?év(log Zun(2VN) — E[log Ziy]) . (5.6)

bn(t,x) :

For any t > 0 and ¢ € CP(R?), the following convergence in law holds, with cg as in (5.4) -

()00 = [ bt o@ de o D200, 60)

N—o

where ’U(C)(S, x) is the solution of the two-dimensional additive SHE as in ((5.4)).

Outline of the proof of Theorem The main idea is to try to “linearize” the loga-
rithm of the partition function. The way to achieve this is guided by the observation (see
the discussion at the beginning of the proof of Theorem that the main contribution to
the fluctuations of the partition function Zy g, () comes from disorder &, , with n = o(IN)
and in particular with n = N? for ¢+ < 1. This leads us to define the set

1 a
‘fv:z{(n,z)eNxZQ: ngNl_‘”\’,|z—x|<N§_TN}, (5.8)
where
1 .
an = Tog V)T with € (0,7%), (5.9)

fCondition (5.5) is satisfied if w are bounded, Gaussian, or if they have a density exp(—V(-) + U(-)), with
V uniformly strictly convex and U bounded. We refer to [Led01] for more details.
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for some v* > 0 depending only on 3 . The precise choice of v* is more of a technical nature
and we will not bother with it here; one can refer for details in [CSZI8b|. The spatial
coordinates of the set A%, are essentially restricted to a slightly superdiffusive window in
order to make sure that the random walk path stays, with high probability, within this box
during the corresponding time scale.

We define now the partition function Z j?,’ () which only samples disorder in A%, i.e.

Z4t oy (@) = Eg[e RN where  Hag gy = . (Byvwno — ABN))1{s,—e) -
(n,x)eA%;
(5.10)
This allows to decompose the original partition function Zy g, (x) as follows:

A 7 A
ZNpy () = ZN g\ (7) + Z 5, (2), (5.11)
where Z]’é, gy (%) is defined via this relation as the “remainder”. Since, as we mentioned,

Z Jlé/, By (x) captures the main contribution in Zy g, , we expect that for any fized x, Z f\‘,’ By (r) «

Zje;ﬁN (z) in a suitable sense. In particular, an L?(P) estimate shows that
V3 e (0,1)3C; <o such that YN eN: E[Z7 5 (2)*] < Cjan . (5.12)

with a,, as defined in (5.9)). The proof of this estimate is not difficult but it is, nevertheless, a
bit technical and it can be found in Section 3.4 of [CSZ18b]. We now have the approximation

Z3% 5 (%) Z3% 5y (%)
BN A N.,Bn
log Zn gy () = log Za 5. (x) + log <1 + 7) ~log Zy 5, () + =————. (5.13)
N BN ijéf,ﬁN (2) BN Z]e,ﬁN (z)
This approximation is quantified via the following estimate:
Estimate 1. Define the error Oy (z) via
Zii gy (%)
log Zn gy (z) = long\q,ﬂN(x) + % + On(x). (5.14)
’ Zy 8 ()
PN
Then for every suitable test function ¢(-) we have that
1 L2(P)
Viog N = > (On(x) —E[On(@)]) 6( ) > 0. (5.15)

xeZ?

The proof of this estimate uses a simple Taylor expansion estimate, which says that,
ZAI(‘,Y Bn (z)
ZJI?’,BN (z)
one needs to use Holder inequality, in order to separate the numerator and denominator

. 1/ —2¢71/
as E[(Zféf,,BN (2) )21)] P E[(wa]v (2) ) 21 q. The estimate on the first expectation makes
3.9

use of the Hypercontractivity, Theorem

N k
E[(ZJG,BN(l'))Qp] <1+ 2 (QQPBJQV)k Z qu*mf1 (@i — mifl)z (5.16)

k=1 1<ni<--<np<N i=1
x1,..., €%
Hje{l ..... k,‘}: (TLj,iEj)%A

essentially, the error term Oy (z) is bounded by ( )2. In order to estimate this error,

N k

2\k 2

< 1 + Z (QQPﬂN) Z ani—ni_l(xi _:ri—l) )
k=1 ISni<--<np<N i=1

.’El,...,xkezd
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where g9, is the hypercontractivity constant. The significance of the estimate lim,_1 g2, = 1,
that was proved in Theorem [3.5] is that by choosing p sufficiently close to 1, we have
that ngJQV = Qpﬁzx/ﬂ‘/log N, and QPBQ is still less than 1. Thus the right hand side
is finite. Moreover, feeding the first line of (5.16) into (5.12)) will eventually show that
E[(ZAX‘, By (z) )2p ] is sufficiently small when p is sufficiently close to 1, so that holds.

We should remark that choosing p close to 1 has the consequence that ¢ is made very large

But this is still fine in terms of estimating E[(Zjé, B (x) )_zq] since all negative moments of
the partition function can be shown to exist. In particular, we have (see [CSZ18b, Poposition
3.1]) that
Negative tails. For any 3 € (0,1), there exists cp € (0, 00) with the following property:
for every N € N and for every choice of A < {1,..., N} x Z2, one has

VE>0: P(log Zy sy < —t) <cge /%, (5.17)

where v > 1 is the same exponent appearing in assumption (5.5)).

The proof of the negative moment tails makes use of an interesting concentration estimate,
which is of general interest. This was proved in [CTT17, Proposition 3.4], inspired by [Led01]
Proposition 1.6].

Proposition 5.3 (Concentration estimate, [CTTI17, [Led01]). Assume that disorder w
has the concentration property . There exist constants c1,co € (0,00) such that, for every
n € N and for every differentiable convez function f: R™ — R, the following bound holds for
allaeR and t,c e (0,00),

P(fw) <a—t) P(f(w)=a,|Vf(w)| <c) <crexp ( - (téz)” ), (5.18)
where w = (w1, ...,wy) and |V f(w)| := /21 (0if(w))? is the norm of the gradient.

The second step, after Estimate 1, is to use the other important observation, already
discussed at the beginning of the proof of Theorem [£.4] that, when averaged at spatial
scales of order v/N, the contributions to the averaged field from disorder &, . with n = o(IV)
actually become negligible. In particular,

Estimate 2. For Z4 -) defined as in ((5.10)) and any suitable test function
N.Bn

1 2
ViegN = 37 (log Z3} 5, (2) — Ellog Z3 5, (@)]) 6(5) J—LV:(% 0. (5.19)

reZ?

The proof of this is a fairly simple L?(P) estimate where we only use the boundedness of
moments of log Zﬁ By which follows from the negative tail estimate as well as that for

B < 1 it holds that Z jé, By has bounded second moment.

Estimates 1. and 2. imply that the fluctuations of the average of Zy g, (-) will be

Z]é/',BN(')
Z]‘é],gN ()
is that the numerator of this fraction approrimately factorises in a way that cancels the

denominator and what remains is a sort of a restricted polymer partition function for which
we can apply a variation of Theorem [£.4]

governed by the fluctuations of the average of the fraction ( ) The crucial point here
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To see this, we notice that, for any fixed =z, Z 1‘3’ B (z) is by definition a “partition function”

where disorder outside the box A%; is necessarily sampled. This can then be either disorder
1 _an

&, with n < N'79 and with 2 such that |z —xz| > N2~ 4 or disorder &, , withn > N17a~,

The first possibility is negligible as then the random walk will have to travel superdiffusively

(this is the reason why the width of the box A%, was chosen to be slightly larger than the

diffusive scale). In the second situation, the main contribution will actually come from the
sampling of disorder in the set

By := (N9~ NTAN) x 22, (5.20)

(the choice of the exponent 9/40 is mostly arbitrary and rather technical). This is simply
because the slice ((Nl_aN/4, N1=9an/40] N) x Z? is “thin”, i.e. its volume is negligible
compared to that of By. Defining now the corresponding partition function

ZR o (@) = Ba[e"Byon] where Hpypyi= Y. (Bxwna — ABN))1(s,—0)

(n,z)eBN

we will have that

7 A A
I gy (@) ~ 2 5y () (28 5y (@) — 1), (5.21)
The quantitative estimate related to this is

Estirpate 3. For Zj(‘w (), Z4 OB Zﬁ,ﬁw(') defined as above and any suitable test
function ¢, we have that

N (@ B z y L'P)
«/logN N 2 < NﬁN x) — (Zn gy (@) — 1)) ¢(ﬁ) o 0.
To understand the reason behind this last estimate and , let us decompose the chaos
expansion of Zjé, B (x) according to the last disorder & ,, sampled with t < N 1=an (see also
the Figure above). As we already said, we assume that there is no disorder &, . sampled

with n < N'7¥ and |z — 2| > N%_GTN (such contributions are negligible) and moreover
we assume that the first disorder &, . that is sampled after time NV 1=an will be such that
n > N1-9an/40 (again, as already mentioned contributions, from sampling disorder between
times N1~ and N1799n/40 are negligible). Thus,

ATMEIRS > Zk o (@ w) - roi(z —w) - ON &z Zrnpy(2),  (5.22)
(t,w) € {(0,x)}UA%,
(r,z)€ By

where Zé‘t B (z,w) denotes the “point-to-point” partition function where the random walk
starts from (0, z) and ends at (¢,w) (with the convention that ZOtB (x,w) :=1if (t,w) =
(0,x)) and restricted to sample disorder only in the set A%;. Moreover, Z, y g, (2) denotes
the partition function where the walk starts at time r from position z and runs until time
N without any constraint at its end point. The main observation now is that

Gr—t(z —w) ~ ¢-(z — x) for r> N9an/40 o o Nl-an > t,
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using also the diffusive properties of the random walk to say that in these time scales
z— 12~ +\r—t~,/r~z—w. This leads to an (asymptotic) factorisation of (5.22) as

Z 264,15,,81\]('1.71”) ' 2 q”'(z - x) *ON 57",2 : ZT’,N,,BN <Z) = Zﬁ,ﬁN(Zﬁ,ﬁN (x) - 1)7
(t,w) € {(0,z)}UA%; (r,2)e BNy
(5.23)

which is the desired factorisation.

The above estimates reduce the study of the fluctuation to those of Zﬁ y 0):

Final step. Let v(9)(s, z) be the solution of the two-dimensional additive SHE. Then

Viog N 1 B d (V2e3)
— — > (Zygy(x) —1) d(F) —— WV (1/2,4),9), (5.24)
B NerZJQ o VN N
which is essentially Theorem [4.4] O

6. CRITICALITY AND MOMENT ESTIMATES
The critical case for the two dimensional SHE corresponds to temperature scaling as
Be = 4/27/loge~1. In fact, it turns out that there is a critical window of the form
27 )
B2 = Tt 120
loge (loge—1)
where one observes a non trivial behaviour depending on the tuning parameter 9. In the

case of the two dimensional polymer the critical case corresponds to temperature scaling Sy
so that

for ¥eR,

1 9+ o(1
o3 = o(Bn)? = EO + li_g]sf))’ JeR, (6.1)
where we recall that o(8)? := e}?/)=2M8) _ 1 and the asymptotic Ry = (Hﬂﬂ log N.

For the sake of brevity of exposition we will only discuss the polymer case. The details
for the SHE can be found in [CSZI8b]. Let us denote by Z{* the partition function of the
two dimensional directed polymer Zy g, with By as in . As we have already seen in
Theorem Z]C\}”it' converges in distribution to 0. However, we will see that when averaged
over the starting point it exhibits a nontrivial behaviour.

Let us highlight that the critical temperature is marked by the fact that its second moment
grows to infinity as N — oo. In fact, we have the more precise asymptotic information,
which we will explain below, that it grows as log V.

Proposition 6.1. Let Z]C\}it' be the partition function of the two dimensional polymer with

By as in (6.1). Then

Var (Z]C\fit) ~ long1 Gy(t)dt, with Gy(t) = foc €(ﬁ77)5£d8 (6.2)
0 ’ 0 I(s+1)

where v is the Euler-Mascheroni constant v ~ 0.577 and I'(-) is the gamma function.

The proof of this theorem goes via creating a link to renewal theory, which further allows
for refinements that are useful towards higher moment estimates. We will provide the proof
later. For the moment let us mark a distinction between the behaviour of the partition
function of a random polymer starting from a fixed point, which without loss of generality
we assume to be zero, and the behaviour when the partition function is averaged over its
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starting point against suitable test functions. Assuming ¢ € C°(R?) it turns out that the
variance of

Z8 (§) 1= Z (th >¢(\/%)

x622

remains bounded as N — o0. In fact it turns out that,

lim Var [ 257 (6)] = LW 6(2) 6(2) Ky(z — #)dzd, (6.3)

N—o

where the covariance kernel Ky(-) is given by

Kyx) = f gu(@) G (v — u) dudv. (6.4)
O<u<wv<l

where Gy is defined as above and g, (z) is the heat kernel. It is worth to remark that the
kernel Ky(z) ~ C'log \71| as x ~ 0, which means that any (conjecturally unique) limit of the
field is log-correlated.

The boundedness of Z{(¢) shows the existence of limits of the field at critical-
ity without any rescaling (as was the case below the critical temperature, see Theorem
. However, to ensure that the / any limiting field is non trivial, i.e. not just “flat”
(Lebesque), requires boundedness of higher moments. This is because in order to say that
Var (limy_,c0 Z§ (¢)) = limy_,o0 Var (Z&*(¢)) (the latter being non zero as we remarked
above), we need control of higher moments that will allow to interchange the limits via
uniform integrability. The first such estimate was achieved in [CSZ18b]:

Theorem 6.2 (Third moment). Let ¢ € C.(R?), 9 € R. Let Z$® be the partition function
corresponding to the choice of critical By (6.1). Then

lim E[(vaﬁt-(@ E[Z3t( )])3] - f 6(2) (2) $(2") My(z, 7', ") dzd2' d2" < oo,

N—o0

(6.5)
where the kernel My(-) is given by
0
My(z,2',2") = Z gm=1 zm {Iém)(z,z’,z”) +I§m)(z',z",z) +I§m)(z”,z,z')}, (6.6)
m=2
with qum)(-) defined as follows:
200 = [ | dadBATAT gy (or - 2) gap o1~ #) g (aa - )
O<ai<bi<..<am<bm<t
T1,Y1 e T Ym ER?
(6.7)

-Gy(by —a1,y1 — x1) Gaz_by (x2 —y1) Gy(ba — a2, y2 — x2)
Hgarbz 2 (T — Yi—2) Gai—viy (Ti — Yi—1) Go(bi — ai, yi — @),
2

where Gy(t,x) = Gy(t)gya(z) with Gy(t) as in (6.2) and g;(v) the two dimensional heat

kernel.
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FIGURE 2. Diagramatic representation of the expansion ([6.10)) of the
third moment. Curly lines between nodes (a;, z;) and (b;,y;) have weight
Un(b; — x;,y; — z;), coming for pairwise matchings between a single
pair of copies AB,BC or CA, while solid, curved lines between nodes
(a;, z;) and (bj—1,y;—1) or between (a;, x;) and (b;—2,y;—2) indicate a weight
Q;_1,a;(Yi—1, ;) and qy,_, q, (Yi—2, T;), respectively.

The analogue of this theorem for the two-dimensional SHE was also established in
[CSZ1Th]. More recently Gu-Quastel-Tsai [GQT19] established the analogue of the above
theorem for higher than three moments for the SHE. We will not expose it here as it requires
a different set of notation but we will give an informal description of their result and compare
it with the formulation of Theorem [6.2 below.

Let us give a very brief sketch of the framework of the proof of Theorem

Sketch of the proof of Theorem Our framework involves again the polynomial
chaos expansion of the partition function (4.5). For conciseness we will introduce the
notation

N o r— vy
q (¢,z) : yezz:2%( y)¢(m),

which incorporates the averaging over the initial condition combined with the first transition
kernel in the chaos expansion. Replacing Z§$™ with is chaos expansion and using Fubini to
develop the third power we have

B[ (25 (9) — E[Z5" (4)])’]
SAI+IBI+C]

- 2 e G (@21 65, (. 11) - 455, (6:21)

A,B,Cc{1,...tN}xZ2 (6.8)
|A>1,|B|>1,|C|>1

|A] |B| IC|
: E[fAl [Téa a(Aii1, A) - €8, [ [ €8, a(Bj-1, B)) - éc, [ [ écv ¢(Ch1, Ci)
i=2 =2 k=2

where we have used the shorthand notation A = (Ay,..., Aj4)) with 4; = (a;, ;) € Z3p,
and B, C defined similarly, with B; = (bj,y;), Ci = (ck, 2k), and we have set
q(Ai—1, Ai) = Gay—a;_ (T — Ti-1) -

When |A| = 1, we use the convention that HL’:‘Q ... equals 1 and similarly for B and C.
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Denote D := AUBuUC c {1,...,N} x Z?, with D = (D1,...,D|p|) and D; = (ds, w;).
Since E[£,] = 0, the contributions to M, S]?/;’NT(QS, 1) come only from A, B, C where the points
in A U B u C pair up - for the sake of exposition we ignore here a triple matching. That
is, we ignore the case that A; = B; = C}, for some i, k,j. In particular, we assume that
k:=|D| = $(|A| + |B| + |C|) and that each point D; belongs to exactly two of the three
sets A, B, C. Hence we can associate a vector £ = ({1,...,4) of labels ¢; € {AB, BC, AC}.

Note that there is a one to one correspondence between (A, B, C) and (D, £). So we can

write as

0
DI DY S @), (6 @l (6,20
k=2 DC{1,...,N}xZ2 £e{AB,BC, AC}*
|D|=k>2 (6.9)
|A] |B| IC|
JTa(Ai4) [T a(Bj—1.By) [T a(Crni1,Ci).
=2 j=2 m=2

with the A, B, C in the above expression being implicitly determined by (D, £).

We now make a combinatorial observation, see also Figure [2l The sequence £ = ({1, ..., )
consists of consecutive stretches ({1,...,4;), (lit1,...,%;), etc., such that the labels are
constant in each stretch and change from one stretch to the next. Any stretch, say (¢p,. .., %),

has a first point D, = (a,z) and a last point Dy = (b,y). Let m denote the number of
stretches and let (a;,z;) and (b;,y;), with a; < b;, be the first and last points of the i-th
stretch.

We now rewrite by summing over m € N, (a1,b1, ..., am,by), and (z1, 91, . ., T, Ym)-
The sum over the labels of £ leads to a combinatorial factor 3 - 2™~ because there are
3 choices for the label of the first stretch and two choices for the label of the following
stretches. Once we fix (a1, 1) and (b1, y1), summing over all possible configurations inside
the first stretch gives the factor

0 '

2(r+1
2 oY 2 [[anrt(zio1, 20)* = 0% Un (b1 — ax, y1 — 1),
r=1

a1 =to<t;<..<tr=b1 =1
2O=T1, 21,224 2r—1EZ2, 2r=11

The quantity Uy in the right hand side is defined via this relation and it is closely related
to the (point-to-point) variance of the polymer partition function. A similar factor arises
from each stretch and this leads to the following expression for the centred third moment
(assuming we have ignored the case of triple matchings of the £ variables, hence the quotation
marks in the equality below; this is a technical point that can be dealt with some extra
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work)

B[ (257 (6) — E[Z5"(0)])* |« =~ Z 3-2m 1N (), where

m=2

m g
L(9N7 )(¢) = % Z Qé\,{al (¢7$1)2qé\,{a2(¢’ 2) -

s<ai1<bi<ao<ba<..<am<bm<t
T1,Y1,82,Y2,-- Trm Y EZ>

(b1 — a1, Y1 — 1) @by a0 (Y1, 72) Un (b2 — a2,y2 — 2) -

Un
m
'H{qbl 2,a; y’L 27x2) Gb;_ 1,az(y7, lvwz) UN(b i, Yi _wz)}a
=3
(6.10)

with the convention that [["4{...} = 1 for m = 2. Note that the sum starts with m = 2
because in (6.9), we have |A], |B|,|C| > 1.

Passing from to - amounts to a Riemann sum approximation after scaling
the time variables proportionally to N and the space variables proportionally to v/N. Crucial
to this limiting procedure, as well as ensuring that the resulting series converge, is the
asymptotic behaviour of Uy (tN,zv/N) for large N and ¢t € R,z € R?. In particular, for
x € Z%,n e N, it holds that

log N

Un(n,x) ~ 2

Gy( (6.11)

n T
N’ ﬁ) 21{n+21+x2 even}»

with Gy(t,7) = Gy(t)gya(z) and Gy(t) defined in (6.4). The factors of log N will cancel
with the factors of 0% in (6.10) and the factors N~2 will be absorbed by the Riemann sum
approximations. Moreover, for every fixed ¥ € R, we have the asymptotic behaviour

1 2
Go(t) = FELRLIC (6.12)

t(log1)?  t(log})?

These asymptotic behaviours are based on the renewal theory framework, same as the one
that underlies the variance asymptotics in Proposition [6.1} Even though we will not discuss
the details, which can be found in [CSZ18¢|, the underlying framework will become clear
when we sketch the proof of Proposition [6.1] below. One thing that should be remarked is
the bare integrability of Gy(t) which shows how marginal is the integrability of the moments
of the averaged field of partition functions in two dimensions.

Having these estimates, what remains to conclude is to ensure that the series Z;ﬁ:z 3

om-1g éN’m)(gb) in (6.10)) converge, uniformly in N. This point is quite technical due to the
interlacing structure as shown in Figure [2| and we refer for the details to [CSZ18b]. ]
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Sketch of the proof of Proposition As we have already seen a few times, using
the polynomial chaos expansion of the partition function its variance can be written as

Var ZCrlt Z O‘ Z anrnl @ —xi— 1)2

k>1 1<ni<--<np<Ni=1
:cl,...,:vk622

k
S IEC D S (R

k=1 1<ni<--<np<Ni=1

9+ of ))k 1 k 9
Z ( Dk Z Hq2(ni—ni,1)(0) )
k=1 IOgN RN I<ni<--<np<Ni=1

where in the second equality we just used the convolution property of the random walk and
in the third the definition of the choice of O'JZV. Now, we will write the last convolution as a

renewal probability. In particular, we define the i.i.d. random variables TI(N), o T,EN) with

1 1 1
p(T™ _ ) = 0L,y ~ n<N
( 1 n) RNQ2 (0)2nen logN n

9

(with the last due to the local limit theorem and the asymptotics of Ry ) and

T,E,N) = Tl(N) + e+ T,E,N).

We can then write

¥+ o(1)\k (V)
Var (Z§") = 14+ ——2) P(r, ' < N). (6.13)
1;1 ( log N ) k

The point now is that ( N s(ﬁg_{ N )S>0 converges to a process (Y )s>o with a density which
can be explicitly computed. We will see this in a moment, but let us now use this fact to

conclude the asymptotics of the variance from ((6.13)). This boils down to a Riemann sum
approximation as

crit. U+ o(1)\2k
var (75) = 3 (14 T 57) P < )
k=1

1 19+0(1) slog N (N)
lOgNm 21: (1+W) P(TslogNgN)

SEWN
long eVsP(Y. )ds—logNJ ffs t)dt ds,

where fs(t) is the density of Ys, which can be computed exactly (see [CSZ18c]) as

s—1 —vs
st e
SA for ¢ € (0,1],
I'(s+1)
fs(t) - s—1,—s t—1 (614)
st e’ s—1 fS( )
———— — st ————da for t € (1, 0),
I'(s+1) o ([L+a)s

This leads to the form of the asymptotic variance as in (6.2)).
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FIGURE 3. Diagramatic representation of the expansion of in the case of the
fourth moment in analogy with the diagram of Figure [2] Curly and curved
lines bare the same weights as in Figure 2] Here we notice the non locality of
the topmost lace.

N . . . .
The convergence of ( L) can be easily seen via a Fourier transform computation

N ‘slog N )s>0
as

N
A (V) A (V)7 slogN 1 2y 1\ slogN
E|: NTSIO N:| - (E[ NTl ]) ~ (1 Nn_l 7) ’
e g e + logN;l (e )n

which again by a Riemann sum approximation converges to

exp (s fl (ez\x _ 1)%)

0 x
This expression plus the independence of the increments, inherited by the independence
to {T]‘(:N)}kzl, shows that (Yj)s=0 is a Lévy type process with Lévy measure 1(g 1y(z) dv/x.
The fact that the density of Yy can be computed explicitly as in is a non trivial fact
and was done in |[CSZ18c, Appendix B|. Its computability is related to an invariance of the
process Y, which amounts to the fact that conditionally on all the jumps up to time s being
smaller than ¢, the law of Y/t is the same as the law of Y (see |[CSZ18c, Proposition B.1]).

It is worth remarking that the density fs(-) is related to what is called the Dickman
function, which is a very distinguished function in analytic number theory. In particular, if
we define (the Dickman function)

o(t) = e f1(t),

then o(1/t) equals the asymptotic probability that the largest prime factor of a number
chosen uniformly from {1, ..., N} is less than N?, see [Ten95]. O

Before closing this section let us comment on the higher moments of the averaged field
and the work of Gu-Quastel-Tsai [GQT19]. If we wanted to adapt the approach we described
for the third moment, then we would need to deal with (further) non local interactions. For
example (see Figure , if we wanted to compute the fourth moment, then we would need to
deal with four copies of polymer and consider the pairwise matchings, as was done earlier.
The non locality in this approach would consist of the possible scenario (among others) that
three of the copies match pairwise for some time, until, only much later, the copy that was
left alone (in the case of Figure [2| this would correspond to the topmost line) starts matching
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FIGURE 4. Diagramatic representation of the expansion of the fourth moment
(in a discrete format) followed by [GQT19|. Curly and curved lines bare the
same (or rather continuous analogues of the) weights as in Figures [2| and
Additionally, this diagram keeps track of all the marked points on the
vertical lines and not only the beginning and end points of the curly lines as
in the previous two figures.

with one of the other three copies. This connection is non local and keeping track of the
starting points of non local laces is complicated.

The approach of [GQT19], was to introduce additional space-time points, see Figure ,
and consider these in the decomposition of the summation. Notice that we could remove
these additional points by summing over them and this would bring us back to the previous
decomposition as in Figure [3] However, keeping track of the leads to a Markovian structure,
which allows to handle the combinatorics easier. This approach was inspired by previous
works on Hamiltonians with point interactions[DR04]

—A—FZ(S(.Z’i—l‘j), on R%.
1<j
It also used some crucial estimates on suitable norms of the operator corresponding to
propagation between points in strips without curly lines from [DET94|. The corresponding

estimates on the operators corresponding to propagation between points in strips with curly
lines is close in spirit to our estimates around the function Uy (n,x) as derived from (6.11]).

7. APPENDIX

Proof of Theorem [3.2l. Without loss of generality we will assume that the index set S
is finite and for notational simplicity we identify it with {1,...,n}. More crucially, we will
assume that W has degree £ which stays bounded in n, that is

vE) = > w)e
IcS, |I|<¢

This assumption can be justified by a simple truncation argument, we refer to [CSZ17al for
details. For a function f € C3(R) we denote

g(x1, ey ) = f(¥(x)), (7.1)

and

hi;(y) = g(Ch '”7€j—1ay7£j+17 '”7571)7 with XJ = (Cl?~”7€j—17€j+17 ‘”7671)7 (72)
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and we have that

Fw(e) - i WX ) - X)), (7.3

We now Taylor expand the function hi;() around zero as

R i (y) = h5(0) + (9 hixy(0))y + (thX<>)y2+R§,;i<y>,

Y'inyg Yy on.g

where the error term

R¥0) =3 [ (@05 0) -7 (74)

and the following two bounds hold:

R )| < gl

1
yf* = S 15" el (7.5)
| R ()| < 12157 oo 42 = | " |oy®. (7.6)

The first bound follows by bounding 23hX7 in 7.4) by its supremum norm, while for the

y''n,i
second bound we first perform an integratlon by parts and write the remainder as

RX (y) = fthX] f RN () (y — t) dt,

n,t 27y nz Y TL’L

and then bound 8ZhnXz by its supremum norm.

Inserting this Taylor expansion into for hX ’ ;(&5) and hXJ ;(¢;) and using the fact that
the first and second moments of the & and ¢ Varlables match, We have the estimate

Z E|RY) (&) — B (G)]

< Se[ma] « Lerse]

The derivatives of hj(-) = g(z1,...,Zj-1,¥Tj+1, ..., Tn) with g defined as in (7.1) are
computed as:

(8;%?) (y) = f(m) (\I’(a:l, e X1, Y, X1y - - ,.I'N)> <6y\I/(a;1, s L1, Y, Tj1y - - ,1'N))m
:f(m)(\I/(l‘l,...,xjfl,y,$j+1,...,l‘]\[)) <Z¢(I)$l\“}>m

I35

ELF(2(€)] — ELF(¥(0)]| =

Mz

I
—

Defining

)= Y (D)’

JEY)

we obtain that bounds (| and (| . on RXJ

(y)
N N
D E []RX] ] < Z , (7.7)

J=1

give
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with O = max{||f'||co, | f? o0, [fP|loo} and ¢(z) := min{%, |z|?}. To proceed with a
sharp estimate on under only the assumption of uniformly integrable second moments,
we need to truncate the random variables in a way that also respects an orthogonality. The
general truncation is described as follows:

Truncation procedure : Fix M € (0,00). We can decompose any real-valued random
variable Y with zero mean and finite variance as

Y=Y +YT, (7.8)
where Y7, Y are functions of Y and possibly of some extra randomness, such that
E[Y ] =E[Y*] =0, Y YT =

; (.9
Yo <Y 1gyiemy,  E[YT)?] < 2E[Y*Lgyiaan] - .

We postpone the proof of the truncation properties until the end of the proof of
this theorem. Assuming these properties, we proceed by denoting by X7~ the vector X/
from with all its entries truncated as above and also X7/* := X7 — X7~ Noting the
elementary inequality

4
ola+b) < 2a* + §|b|3, for real a, b,
we have that the bound in (7.7) can be extended to

B[ (L;(X7))] < 4E[ (L;(X7) — L;(X77)*| + % E[1L;(X7)%]. (7.10)

Estimate on the first term in (7.10)): To estimate the first term in (7.10) we write

LX) — LX) = Y)Y, (X))

I35 I'cl,|D|>1

By (7.9) the random variables Xf_,Xer,Xg_,Xng, ... are orthogonal. Setting Ui,z’ =
E[(Xgi)2] and observing that 0371- + O'_th = Var(Xij) =1, we obtain

E[(L;(X7) = LX)’ = Y w()? D) (0 (0?)"f (7.11)

I35 rci, |r=1
= > () (1—=(e2)) < Dw)?*(1— (1 -72)),
I35 JEY]
where
o= max of = max E[(X])’] <2 max E[(X])* 1)y ,] < 2m5?,

having used ([7.9) and having defined

m;M = sup E[X21|X‘>M].

Xe{¢i&itiz1
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Using the estimate (1 — (1 —&2)/l < |I| % in (7.1I) we have that

ZEWAW%JAW)ﬁszm@MZ(Zuwmﬁ

Jj=1 J

<2mi 50 (7.12)

where we recall that £ is the degree of W. Given the uniform integrability of the second
moment, the last bound can be made arbitrarily small, say less than e, by choosing M large
enough.

Estimate on the second term in (7.10): For the second term we will use hypercon-
tractivity bound Theorem with an non optimal constant (as provided in [MOO10])

(RS
\IX = ll2

03 1= 2¢/2 max;<p . In particular,

| (X775 < 85 L (X77)]2 (7.13)
Since for every i we have that \Xij_] < \Xf\ 1|X§‘|<M7 by (7.9), we have

Y

M)1/3

IX7 s < E[|1X7P1 1"

<
i ] < (M5
with m:fM being the maximum truncated third moment of variables &, (;, ¢ = 1. On the
other hand, again by ([7.9), we have that for every i

X773 = 1X7 3 — X7 3 = ELXI)] — ELXT*)?) = ELXT)2] — 26LXL o)

=1 - 2E[(X])? 1—2m;M

)

Lixipsan] 2

hence
<M ) 1/3

03 < 2V/2 (m3

\/1—2m;M
(2)

provided m_;, < 4, which can be achieved by choosmg M large enough, thanks to the
uniform mtegrablhty of the second moment. Therefore, (7.13]) yields

< 4(m5*)"",

waﬂﬂ<MW$WﬂhmﬂT”

Note that, since E[(Xl-jf)2] < E[(XZ)Q] =1, we have
E[L;(X77)*] = Y o) [ [ENXTT)?) < D w(1)? = Inty[¥].
Ia5 el I35

Therefore

N
Z [1Z;( (X9~ ]<64€ (m;M)g <max /Inf;[¥] ) ZE@ZJ
7= Z 715 (7.14)
< £64° (m?M)é (max Inf ) Z (I
' i<t

Together with bound ([7.12)), this shows the desired bound ({3.3]).
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Proof of truncation properties (7.9). Let M > 0. If E[Y1( ycy<any] = 0 we
are done: just choose Y™ := Y1 p<y<pyy and Yt :=Y — Y. If, on the other hand,
E[Y1_m<y<my] > 0 (the strictly negative case is analogous), we set

T :=sup{T € [0,M]: E[Y1_p<y<r] <0} €[0,M].
Note that E[Y1, /oy ] = 0, because T' — E[Y1{_pr<y<ry] is right-continuous. If
E[Y1 —MsYsT}] = 0, defining Y~ := Yl{_nggf} and Y1 :=Y — Y, all the properties

in (7.9) are clearly satisfied, except the last one that will be checked below. Finally, we
consider the case E[Y1,_ ),y 7] > 0 (then necessarily T > 0). Since EYL ey ml <0

by definition of T', we must have P(Y = T) > 0. Then take a random variable U uniformly
distributed in (0, 1) and independent of Y, and define

_E[Yl{—M<Y<T}]
TP(Y =T)

Setting Y+ :=Y — Y, all the properties (7.9) but the last one are clearly satisfied.
For the last property, we write

E[Y™")?] = E[(Y ") Lyyvi=an] + ELY D) Lyyvi<an] = EV?Lgyvi=an] + ELY D) Lgvi<an]

because YT = Y on the event {|Y| > M}. For the second term, since 0 < Y+ < M
on the event {|Y| < M}, we can write (Y )% < MY (no absolute value needed). Since
Y™ =Y " 1jy|<m; has zero mean by (7.9)), we obtain

E[(Y ") Lyican] S ME[Y T 1lyican] = ME[(YT + Y ) 1yi<an]
= ME[Y1lyyi<an] = M (—E[Y1y=an]) < EY1gyi=anl,

where we have used the fact that E[Y] = 0 by assumption, and Markov’s inequality. The
last relation in ([7.9)) is proved. O

Y™ = Y(l{—M<Y<T} + 1{Y:T, Ugg}) , where 0:= € (0,1).
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