
DISCRETE STOCHASTIC ANALYSIS

NIKOS ZYGOURAS

Abstract. These are notes of series of lectures given at National Taiwan University and
the University of Warwick.

Part of the classical stochastic analysis is devoted to the analysis of the so-called
Wiener chaos, which is used to express L

2 random variables as a series expansion of
iterated Wiener-Itô integrals. Theories like Malliavin calculus, hypercontractivity, Wick
normalisation etc. play a significant role in the analysis of these expansions and associated
gaussian spaces.

From the point of view of statistical mechanics of disordered systems or theoretical
computer science and boolean functions, one is motivated to look at discrete analogues
of Wiener chaos and develop tools that will allow to analyse these discrete structures.
Furthermore, one is interested in scaling limits, which amounts to establishing convergence
of the discrete structure to the continuum objects.

We use the term “Discrete Stochastic Analysis” to describe a set of tools that fall into
this framework. The topics we will expose in these lectures cover

‚ general Lindeberg principles

‚ convergence of multilinear polynomials of random variables to Wiener chaoses

‚ Hoeffding decomposition

‚ the Fourth Moment Theorem

‚ elements of Malliavin calculus

‚ Stein’s method

‚ discrete versions of general functional (such as Poincaré) inequalities

‚ applications
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1. Lindeberg Theorems

1.1. Lindeberg’s central limit theorem.

Theorem 1.1. Let pωn,jq1ďjďn be an i.i.d. triangular array satisfying

Eωn,j “ 0 ,
n
ÿ

i“1

Eω2
n,i “ 1 and (1.1)

for every ε ą 0
n
ÿ

i“1

E
“

ω2
n,i ; |ωn,i| ą ε

‰

ÝÝÝÑ
nÑ8

0. (1.2)

Then Zn :“ ωn,1` ¨ ¨ ¨ωn,n converges in distribution to a standard Gaussian random variable.

Before getting into the proof, let us make a few remarks. First, let us see how this applies
to the standard central limit theorem. In this situation the triangular array is ωn,i “ ωi{

?
n.

The Lindeberg condition writes as

1

n

n
ÿ

i“1

E
“

ω2
i ; |ωi| ě ε

?
n
‰

“ E
“

ω2 ; |ω| ě ε
?
n
‰

,

which converges to zero by the assumption on finite second moment and dominated conver-
gence.

The Lindeberg condition says that the CLT holds whenever no random variable in the
sum is exceedingly large. So the Lindeberg condition is to be thought as a uniform smallness
assumption. This is in contrast with the Poisson convergence where typically all variables are
negligible except very few ones which are “large”. For example if pωn,iq are t0, 1u ´ valued
variables with

pn,i “ Ppωn,i “ 1q “ 1´ Ppωn,i “ 0q,
n
ÿ

i“1

pn,i ÝÝÝÑ
nÑ8

λ ą 0 and max
1ďiďn

pn,i ÝÝÝÑ
nÑ8

0,

then
řn
i“1 ωn,i converges, as nÑ8, to a Poisson random variable with parameter λ (check

this as an exrecise).

Our final remark, which is also a preparation for the proof is that the Lindeberg theorem
can be thought as a perturbation argument. This is to be understood as follows: the CLT is
obvious when pωn,iq are Gaussian variables (since the sum of Gaussian variables is Gaussian).
Lindeberg’s uniform smallness condition allows to say that for large n the limit that one
has for general i.i.d variables is asymptotically the same if one had Gaussian variables.

Proof of Lindeberg’s theorem. Let f P CbpRq and for a triangular array pωn,iq denote

fnpωn,1, . . . , ωn,nq :“ f
`

ωn,1 ` ¨ ¨ ¨ ` ωn,n
˘

. (1.3)

We will also consider the i.i.d. sequence of Gaussian variables ξ1, ξ2, ... and consider (1.3)
but with ωn,1, ωn,2, ... replaced with ξn,i :“ n´1{2ξi for i “ 1, 2, .... By the definition of weak
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convergence, it suffices to show that

E
“

fnpωn,1, . . . , ωn,nq
‰

ÝÝÝÑ
nÑ8

1
?

2π

ż

R
fpxq e´

x
2

2 dx,

and since this limit is trivially valid for E
“

fnpξn,1, . . . , ξn,nq
‰

, it suffices to show that
ˇ

ˇ

ˇ
E
“

fnpωn,1, . . . , ωn,nq
‰

´ E
“

fnpξn,1, . . . , ξn,nq
‰

ˇ

ˇ

ˇ
ÝÝÝÑ
nÑ8

0. (1.4)

The perturbation argument alluded to in the above remarks will be done through a telescoping
argument, where we will successively change the array pωn,1, ..., ωn,nq one by one, until we
change all the array to pξn,1, ..., ξn,nq. In this way, we can bound the left hand side of (1.4)
(the “bound” just amounts to simple use of the triangle inequality) by

n
ÿ

i“1

ˇ

ˇ

ˇ
E
“

fnp ξn,1 , . . . , ξn,i´1 , ξn,i , ωn,i`1 , ..., ωn,n q
‰

´

´ E
“

fnp ξn,1 , . . . , ξn,i´1 , ωn,i , ωn,i`1 , ..., ωn,n q
‰

ˇ

ˇ

ˇ
, (1.5)

where we notice that in the above difference there is only a discrepancy at the ith coordinate.
We will Taylor expand in that coordinate. For this, let us introduce, for a sequence x1, ..., xn,
the function

hxn,ipyq :“ fpx1, ..., xi´1, y, xi`1, ..., xnq.

The Taylor expansion is as follows:

hxn,ipyq “ hxn,ip0q `
´

Byh
x
n,ip0q

¯

y `
1

2

´

B
2
yh

x
n,i

¯

p0q y2
`Rxn,ipyq, (1.6)

where the remainder term has the expression

Rxn,ipyq “
1

2

ż y

0

´

B
3
yh

x
n,iptq

¯

py ´ tq2dt, (1.7)

and the following two bounds hold:
ˇ

ˇRxn,ipyq
ˇ

ˇ ď
1

6
} B

3
yh

x
n,i }8 |y|

3
“

1

6
}f3}8|y|

3 (1.8)
ˇ

ˇRxn,ipyq
ˇ

ˇ ď } B
2
yh

x
n,i }8 y

2
“ }f2}8y

2. (1.9)

The first bound follows by bounding B3
yh

x
n,i in (1.7) by its supremum norm, while for the

second bound we first perform an integration by parts and write the remainder as

Rxn,ipyq “ ´
1

2
B

2
yh

x
n,ip0qy

2
`

ż y

0
B

2
yh

x
n,iptqpy ´ tq dt,

and then bound the B2
yh

x
n,i by its supremum norm. Let us introduce the notation

rξ, ωsi :“ pξn,1, ..., ξn,i´1, ωn,i`1, ..., ωn,nq,

then each difference (1.5) writes as

h
rξ,ωsi
n,i pξiq ´ h

rξ,ωsi
n,i pωiq “

#

h
rξ,ωsi
n,i p0q `

´

Byh
rξ,ωsi
n,i p0q

¯

ξn,i `
1

2

´

B
2
yh
rξ,ωsi
n,i

¯

p0q ξ2
n,i `R

x
n,ipξn,iq

+

´

#

h
rξ,ωsi
n,i p0q `

´

Byh
rξ,ωsi
n,i p0q

¯

ωn,i `
1

2

´

B
2
yh
rξ,ωsi
n,i

¯

p0qω2
n,i `R

x
n,ipωn,iq

+
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Taking, at first, only expectation over the ξn,i, and ωn,i variables, which we will denote by
Ei and working with the easier assumption that ξn,i’s and ωn,i’s have matching first and
second moments (we leave the details in the case of the more general condition (1.1) as an
exercise), we have

Ei
”

h
rξ,ωsi
n,i pξiq

ı

´ E
”

h
rξ,ωsi
n,i pωiq

ı

“ Ei
”

R
rξ,ωsi
n,i pωn,iq

ı

´ Ei
”

R
rξ,ωsi
n,i pξn,iq

ı

So (1.5) is bounded by
n
ÿ

i“1

Ei
”
ˇ

ˇ

ˇ
R
rξ,ωsi
n,i pωn,iq

ˇ

ˇ

ˇ

ı

`

n
ÿ

i“1

Ei
”
ˇ

ˇ

ˇ
R
rξ,ωsi
n,i pξn,iq

ˇ

ˇ

ˇ

ı

.

We will estimate the first term, the second one being identical. For this, we denote by
Cf :“ maxt}f2}8, }f

3
}8u and we have by estimates (1.8), (1.9) that

n
ÿ

i“1

Ei
”ˇ

ˇ

ˇ
R
rξ,ωsi
n,i pωn,iq

ˇ

ˇ

ˇ

ı

ď Cf

n
ÿ

i“1

E
”

mintω2
n,i,

1
6 |ωn,i|

3
u

ı

“ Cf

n
ÿ

i“1

E
”

mintω2
n,i,

1
6 |ωn,i|

3
u ; |ωn,i| ě ε

ı

` Cf

n
ÿ

i“1

E
”

mintω2
n,i,

1
6 |ωn,i|

3
u ; |ωn,i| ă ε

ı

ď Cf

n
ÿ

i“1

E
”

ω2
n,i; |ωn,i| ě ε

ı

` ε
6Cf

n
ÿ

i“1

E
”

ωn,i|
2
ı

and the first term converges to zero by the Lindeberg assumption, while the second can be
made arbitrarily small by choosing ε small enough. �

1.2. Efron-Stein inequality and applications. The Efron-Stein inequality is
a discrete version of the Poincaré inequality. The latter states that if f : Rn Ñ R is, let us
assume, “smooth” and if ξ :“ pξ1, ..., ξnq is a standard normal vector then

Varpfpξqq ď Er |∇fpξq |2s.

The Efron-Stein inequality is as follows

Theorem 1.2 (Efron-Stein). Let ω “ pω1, ω2, ..., ωnq be a vector of i.i.d. variables and
f : Rn Ñ R. Let also Ti for i “ 1, ..., n be the operator which acts on ω by resampling
independently the ith coordinate of the vector ω. This means that

Ti ω “ pω1, ..., ωi´1, ω̃i, ωi`1, ..., ωnq,

where ω̃i is a random variable independent of ω1, ..., ωn but with the same distribution. Then
the following inequality holds

Varpfpωqq ď
1

2

n
ÿ

i“1

E
”

`

fpωq ´ fpTiωq
˘2
ı

Proof. The proof follows the same telescoping argument as used in the proof of Lindeberg’s
theorem. Let us recall the notation ω “ pω1, ..., ωnq and let us start by

Varpfpωqq “ E
“

fpωq2
‰

´ E
“

fpωq
‰2
“ E

“

fpωq2
‰

´ E
“

fpωqfpω̃q
‰

“ E
“

fpωq
`

fpωq ´ fpω̃q
˘ ‰
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Let us now telescope the difference

fpωq ´ fpω̃q “
n
ÿ

i“1

´

fpT1 ¨ ¨ ¨Ti´1 ωq ´ fpT1 ¨ ¨ ¨Ti ωq
¯

and write

fpωq
´

fpωq ´ fpω̃q
¯

“

n
ÿ

i“1

fpωq
´

fpT1 ¨ ¨ ¨Ti´1 ωq ´ fpT1 ¨ ¨ ¨Tiωq
¯

.

and

E
”

fpωq
´

fpωq ´ fpω̃q
¯ı

“

n
ÿ

i“1

E
”

fpωq
´

fpT1 ¨ ¨ ¨Ti´1 ωq ´ fpT1 ¨ ¨ ¨Tiωq
¯ı

. (1.10)

Notice now that

fpωq
´

fpT1 ¨ ¨ ¨Ti´1 ωq ´ fpT1 ¨ ¨ ¨Ti ωq
¯

“
d fpTi ωq

´

fpT1 ¨ ¨ ¨Ti ωq ´ fpT1 ¨ ¨ ¨Ti´1 ωq
¯

,

which is just a consequence of switching ω̃i and ωi. So (1.10) can be written as

E
”

fpωq
´

fpωq ´ fpω̃q
¯ı

“
1

2

n
ÿ

i“1

E
” ´

fpωq ´ fpTi ωq
¯´

fpT1 ¨ ¨ ¨Ti´1 ωq ´ fpT1 ¨ ¨ ¨Tiωq
¯ı

Applying, now, Cauchy-Schwarz we bound this by

1

2

n
ÿ

i“1

E
” ´

fpωq ´ fpTi ωq
¯2ı1{2

E
”´

fpT1 ¨ ¨ ¨Ti´1 ωq ´ fpT1 ¨ ¨ ¨Tiωq
¯2ı1{2

“
1

2

n
ÿ

i“1

E
” ´

fpωq ´ fpTi ωq
¯2ı

where in the last step we replaced variables ω̃1, ..., ω̃i´1 by ω1, ..., ωi´1. The proof is now
complete. �

We will now present an application of the Efron-Stein inequality to a model that has
attracted much interest in probability and statistical mechanics called first passage percolation.
The model is defined as follows: Consider pωi,jq1ďi,jďn to be an array of i.i.d. random variables
with finite second moment. Then the first passage percolation time is defined to be

τn :“ min
π : p1,1qÑpn.nq

ÿ

pi,jqPπ

ωi,j ,

where the minimum is taken over all nearest neighbour directed up-right paths from p1, 1q
to pn, nq.

Proposition 1.3. Assume that pωi,jqi,jďn is a family of i.i.d., non negative random variables
with finite second moments. Then there is a constant C such that

Var
`

τn
˘

ď Cn.

Proof. Let us for notational convenience denote by x “ pi, jq. Then by the Efron-Stein
inequality we have that

Var
`

τn
˘

ď
1

2

ÿ

x

E
”

`

τnpωq ´ τnpTxωq
˘2
ı

. (1.11)
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Let ω̃x be the resampled value of disorder at site x in Txω. By symmetry (and assuming
without loss of generality that ωx as a continuous distribution), we have that the right hand
side of (1.11) equals

1

2

ÿ

x

E
”

`

τnpωq ´ τnpTxωq
˘2
ı

“
1

2

ÿ

x

E
”

`

τnpωq ´ τnpTxωq
˘2

; ωx ď ω̃x

ı

`
1

2

ÿ

x

E
”

`

τnpωq ´ τnpTxωq
˘2

; ωx ě ω̃x

ı

“
ÿ

x

E
”

`

τnpωq ´ τnpTxωq
˘2

; ωx ď ω̃x

ı

Denoting by π˚pωq the optimal path, along which the min in τnpωq is achieved, we decompose
ÿ

x

E
”

`

τnpωq ´ τnpTxωq
˘2

; ωx ď ω̃x

ı

“
ÿ

x

E
”

`

τnpωq ´ τnpTxωq
˘2

; ωx ď ω̃x , 1xPπ˚pωq
ı

`
ÿ

x

E
”

`

τnpωq ´ τnpTxωq
˘2

; ωx ď ω̃x , 1xRπ˚pωq
ı

On the intersection of the events that x R π˚pωq and ωx ď ω̃x, we have that τnpωq “ τnpTxωq.
This is because if an optimal (min) path in the environment ω does not pass through point
x, then it will also not pass through when the environment at x is changed to a larger
value. On the other hand, in any case we have the bound

`

τnpωq ´ τnpTxωq
˘2
ď pω̃x ´ ωxq

2.
Therefore, we have that

ÿ

x

E
”

`

τnpωq ´ τnpTxωq
˘2

; ωx ď ω̃x

ı

ď
ÿ

x

E
”

`

ω̃x ´ ωxq
˘2

; ωx ď ω̃x , 1xPπ˚pωq
ı

ď
ÿ

x

E
”

ω̃2
x ; ωx ď ω̃x , 1xPπ˚pωq

ı

ď
ÿ

x

E
”

ω̃2
x ; 1xPπ˚pωq

ı

“
ÿ

x

E
”

ω̃2
x

ı

E
”

1xPπ˚pωq
ı

,

where in the last we used the independence between ω and ω̃x. Noting also that E
”

ω̃2
x

ı

is
independent of x, we obtain the bound

Varpτnq ď E
“

ω2
¨

‰

E
”

ÿ

x

1xPπ˚pωq
ı

“ 2N E
“

ω2
¨

‰

since the total length of the path is 2N . �

We should remark that this bound is far from optimal. In dimension two the predicted
order of the variance is Varpτnq « n2{3. This is based on prediction emerging from the
Kardar-Parisi-Zhang universality. The above proposition is due to Kesten [K93] and even
though far from what expected it remained for very long time the best bound until the
improvement of Benjamini-Kalai-Schramm [BKS03], where it was tinily but importantly
improved, in the case of Bernoulli variables, to N{ logN making use of Talagrand’s improved
Poincaré inequalities and averaging ideas. The extension of this bound to variables with
general distributions was done by Benaim and Rossignol [BR08].
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1.3. The notion of influence. In both the Lindeberg theorem and the Efron-Stein
inequality an important feature was the “influence” that a single variable has on the overall
random function. In other words, “how much” does the random function change if we change,
e.g. by resampling, one of its (random) variables.

This motivates the need of putting the notion of influence in a mathematical context. We
thus define

Definition 1.4. Let pωxqxPS be a family of i.i.d. real valued variables indexed by a countable
set S and f : RS

Ñ R a function of this family of variables. The influence of entry x P S is
defined as

Infxpfq :“ E
”

Varpfpωq
ˇ

ˇ tωyuy‰xq
ı

.

Let us look at some examples:

‚ Central Limit Theorem. In the CLT we consider a function

fpω1, ..., ωnq “
1
?
n

n
ÿ

i“1

ωi.

The influence of entry a P t1, ..., nu is easily computed to be 1{n. Thus, each entry has
an asymptotically negligible influence. This is consistent with the idea of Lindeberg,
which says that the CLT should hold as long as all entries have negligible contribution.

‚ Multilinear polynomials. Multilinear polynomials will play an important role later
on. Multilinear polynomials also go under the name discrete chaos due to their
continuum counterpart called Wiener chaos. For a family of i.i.d. random variables
pωxqxPS indexed by a countable set S and a family of coefficients cI , I Ă S, we define
multilinear polynomials as

fpωq “
ÿ

IĂS

cI
ź

xPI

ωx,

where the sum is over all finite subsets of S and were we understand that all terms in
the product are taken to be different. To compute the influence of an entry y P S, let
us assume that the random variables have mean zero and variance one. We then write

fpωq “ ωy
ÿ

IQy

cI
ź

xPI,x‰y

ωx `
ÿ

ISy

cI
ź

xPI

ωx.

Since the second term does not depend on ωy and the random variables are independent
with mean zero and variance one, we can easily see that

Varpfpωq
ˇ

ˇ tωxux‰yq “
´

ÿ

IQy

cI
ź

xPI,x‰y

ωx

¯2
.

and thus that

Infypfq :“ E
”

Varpfpωq
ˇ

ˇ tωxux‰yq
ı

“
ÿ

IQy

c2
I .

Actually, in the case of multilinear polynomials we can provide another expression for
influence by noticing that

ÿ

IQy

c2
I “ Var

´

Bfpωq

Bωy

¯

.
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This expression can also be recast in the format

Infypfq “ Var
´

Bfpωq

Bωy

¯

,

which offers a more intuitive perspective on the idea of “how much the function f
depends on its y-entry”.

Let us at this point notice that the Efron-Stein inequality can also be written in terms of
influences as

Var
´

fpωq
¯

ď
ÿ

aPS

Infapfq.

To see this, we use the fact that if X, X̃ are two independent, identically distributed random
variables, then for any measurable function f it holds that

VarpfpXqq “
1

2
E
”

`

fpXq ´ fpX̃q
˘2
ı

.

and then we write that

Var
´

fpωq
¯

ď
ÿ

aPS

1

2
E
”

`

fpωq ´ fpTa ωq
˘2
ı

“
ÿ

aPS

1

2
E

«

E
”

`

fpωq ´ fpTa ωq
˘2

ˇ

ˇ

ˇ
tωxux‰a

ı

ff

“
ÿ

aPS

E

«

Var
´

fpωq
ˇ

ˇ

ˇ
tωxux‰a

¯

ff

“
ÿ

aPS

Infapfq.

1.4. Multilinear polynomials and hypercontractivity. Let us formally
define multilinear polynomials as follows. Consider a family of i.i.d. random variables
ξ :“ pξxqxPS indexed by a countable set S Let Pfin

pSq :“ tI Ă S : |I| ă 8u, the set of all
finite subsets of S. Consider a (multi-index) function ψ : Pfin

pSq Ñ R. Then a multilinear
polynomial of disorder ξ, associated to ψ is defined as

Ψpξq :“
ÿ

IPPfin
pSq

ψpIqξI , where ξI :“
ź

aPI

ξa, with ξH :“ 1. (1.12)

Assuming that Erξas “ 0 and Varpξaq “ 1, it is easy compute the variance of Ψpξq as

VarpΨpξqq “ σ2
Ψ :“

ÿ

IPPfin
pSq,I‰H

ψpIq2.

As we have already said, the influence of entry a P S in this case equals

Infa
`

Ψ
˘

“
ÿ

IQa

ψpIq2.

Let us now discuss the notion of hypercontractivity. More details on hypercontractivity
can be found in [S98] and for hypercontractivity on Gaussian spaces [J97]. As we saw the
variance of a multilinear polynomial can be easily computed. This is, of course, not the
case for higher (especially non integer) moments, which may and will arise naturally. In
this situation hypercontractivity comes very handy as it allows to estimate higher than two
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moments of a multilinear polynomial in terms of just the second moment. The following
definition of hypercontractivity actually captures this useful property that multi-linear
polynomials have.

Definition 1.5. Let Ψpξq :“
ř

IPPfin
pSq
ψpIqξI be a multi-linear polynomial of the family of

random variables ξ “ pξaqaPS.
For % ą 0, define the operator T% acting on the multilinear polynomial as

`

T%Ψ
˘

pξq :“
ÿ

IPPfin
pSq

%|I| ψpIq ξI ,

where |I| denotes the cardinality of the set |I|. For % ě 1 and 1 ď p ď q ă 8, we will say
that the family ξ is pp, q, 1

%q´hypercontractive if

}Ψ}q ď }T%Ψ }p.

for all multi-linear polynomials Ψ.

The question now is to classify when hypercontractivity holds. We will be mostly interested
in the case of p2, q, 1

%q-hypercontractivity. In the simplest case of linear polynomials, that
is of the form a ` X where X is a real valued random variable, the above definition of
hypercontractivity can be recast as that a random variable X is pp, q, 1

%q-hypercontractive if

}a`X}q ď }a` %X}p, for all a P R.

It is not difficult to see that for q ą 2, a random variable X is p2, q, 1
%q-hypercontractive if

and only if }X}q ă 8.
Bernoulli variables which take the value ˘1 with probability 1{2 turn out to be p2, q, pq´

1q1{2q-hypercontractive [B70, B75]. The hypercontractivity bound for Bernoullis can be used
to derive a hypercontractivity bound for general random variables with finite q ě 2 moment.
This is the content of the next proposition which is proved in [S98] Proposition 2.20 and
[MOO10] Proposition 3.16.

Proposition 1.6. Let X be a mean zero random variable with finite qth-moment with q ě 2.
Then X is p2, q, 1

%q
q-hypercontractive with %q “ 2pq ´ 1q1{2 }X}q{}X}2.

Proof. The proof uses a symmetrisation trick, which then allows to obtain a hypercontractive
estimate via the hypercontractivity of the Bernoulli variables. In particular, let us denote by
X̃ an independent copy of the variable X and it symmetrised version Y :“ X ´ X̃. Since
Y is symmetric, we have that Y has the same distribution as εY , where ε is a symmetric,
Bernoulli ˘1 random variable.

The goal will be to show that for any number a it holds that
›

›a` 1
%q
X
›

›

L
q ď

›

›a`X
›

›

L
2 .

Let us start from the left hand side and get by Jensen inequality that
›

›a` 1
%q
X
›

›

L
q ď

›

›a` 1
%q
Y
›

›

L
q . (1.13)
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This is not difficult to see since

›

›a` 1
%q
Y
›

›

L
q “

´

ż ż

ˇ

ˇa` 1
%q
pX ´ X̃q

ˇ

ˇ

q
P pdXqP pdX̃q

¯

1
q

ě

´

ż

ˇ

ˇ

ˇ

ż

`

a` 1
%q
pX ´ X̃q

˘

P pdX̃q
ˇ

ˇ

ˇ

q
P pdXq

¯

1
q

“

´

ż

ˇ

ˇa` 1
%q
X
ˇ

ˇ

q
P pdXq

¯

1
q

“
›

›a` 1
%q
X
›

›

L
q ,

where in the second equality we used the fact that X̃ has mean zero. Continuing now
from (1.13) and using the equality in distribution between Y and εY , followed by the
p2, q, pq ´ 1q1{2q Bernoulli hypercontractivity, we have that

›

›a` 1
%q
X
›

›

L
q ď

›

›a` 1
%q
Y
›

›

L
q “

›

›a` 1
%q
εY

›

›

L
q
pdε dY q

ď

›

›

›

›

›a`
a

q ´ 1 1
%q
εY

›

›

L
2
pdεq

›

›

›

L
q
pdY q

“

›

›

›
a2
` pq ´ 1q 1

%
2
q

Y 2
›

›

›

1{2

L
q{2
pdY q

ď

c

a2
` pq ´ 1q 1

%
2
q

}Y }2Lq ,

and inserting the value of %q “ 2pq ´ 1q1{2}X}Lq{}X}L2 we have that the above equals
!

a2
`
` }Y }Lq

2}X}Lq

˘2
¨ }X}2

L
2

)1{2
ď

!

a2
` }X}2

L
2

)1{2
“ }a`X}

L
2 ,

where we use that by triangle inequality }Y }
L

2 ď 2}X}Lq . �

We should note that the hypercontractivity constant that appears in Proposition 1.6
is not optimal since when q Ñ 1 the constant converges to 2, while one would expect it
to converge to 1. In [CSZ18b] it was shown that the optimal p2, q, 1

%
˚
q
q-hypercontractivity

constant for a random variable with finite q-moment does indeed converge to 1 when q Ñ 2.

Having a hypercontractivity bound for a single random variable, the question now is
whether this bound can be “tensorized” to cover the multi-linear case. Indeed, this is the
case and this tensorization is the subject of the next proposition

Proposition 1.7. Let ξ “ pξaqaPS, ζ “ pζaqaPS be two families of pp, q, 1
%q-hypercontractive

families. Then the concatenated family ξ\ ζ :“ tξauaPS
Ť

tζauaPS is also pp, q, 1
%q-hypercontractive.

Proof. Let us consider the multilinear polynomial Ψpξ \ ζq on the concatenated family
ξ \ ζ. We have
›

›

`

T1{%Ψ
˘

pξ \ ζq
›

›

q
“

›

›

›

ÿ

I,J

%´|I|´|J | ψpI Y Jq ξI ζJ
›

›

›

q
“

›

›

›
T1{%

ÿ

J

´

ÿ

I

%´|I| ψpI Y Jq ξI
¯

ζJ
›

›

›

q

where the Lq :“ Lqpdζ d xiq norm is with respect to the product measure of the joint law of
pξ, ζq. We will now consider successively the expectations, first with respect to the law of ζ
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and use the pp, q, 1
%q-hypercontractivity for the ζ variables and then with respect to the law

of ξ and use the pp, q, 1
%q-hypercontractivity for the ζ variables. In this fashion we have that

›

›

`

T1{%Ψ
˘

pξ \ ζq
›

›

L
q
pdζ dξq

“

›

›

›

›

›T1{%

ÿ

J

´

ÿ

I

%´|I| ψpI Y Jq ξI
¯

ζJ
›

›

L
q
pdζq

›

›

›

L
q
pdξq

ď

›

›

›

›

›

ÿ

J

´

ÿ

I

%´|I| ψpI Y Jq ξI
¯

ζJ
›

›

L
p
pdζq

›

›

›

L
q
pdξq

, (1.14)

where we used the hypercontractivity with respect to the ζ variables. We will now use
Minkowski’s inequality (to interchange the norms with respect to the ζ and ξ variables
and thus facilitate the application of the hypercontractivity with respect to ξ ). We recall
that the Minkowski inequality is an integral version of the triangle inequality for Lp spaces.
More precisely, if X ,Y two measure spaces with measures µpdxq, νpdyq, respectively, then
for p ě 1, it holds that

´

ż

Y

ˇ

ˇ

ˇ

ż

X
F px, yqµpdxq

ˇ

ˇ

ˇ

p
νpdyq

¯

1
p
ď

ż

X

´

ż

Y

ˇ

ˇF px, yq
ˇ

ˇ

p
νpdyq

¯

1
p
µpdxq.

Applying the Minkowski inequality to (1.14) and noting that in there q ě p (thus allowing
the application of Minkowski on the Lq{ppdξq space), we have that (1.14) is bounded by
›

›

›

›

›

ÿ

J

´

ÿ

I

%´|I| ψpI Y Jq ξI
¯

ζJ
›

›

L
q
pdξq

›

›

›

L
p
pdζq

“

›

›

›

›

›

ÿ

I

%´|I|
´

ÿ

J

ψpI Y Jq ζJ
¯

ξI
›

›

L
q
pdξq

›

›

›

L
p
pdζq

Applying the hypercontractivity of the ξ variables, we bound the above by
›

›

›

›

›

ÿ

I

´

ÿ

J

ψpI Y Jq ζJ
¯

ξI
›

›

L
p
pdξq

›

›

›

L
p
pdζq

“

›

›

›

ÿ

I,J

ψpI Y Jq ζJ ξI
›

›

›

L
p
pdζ dξq

establishing that for any multilinear polynomial Ψ it holds that
›

›

`

T1{%Ψ
˘

pξ \ ζq
›

›

q
ď

›

›

›

ÿ

I,J

ψpI Y Jq ξI ζJ
›

›

›

p
“ }Ψpξ \ ζq }p

which is equivalent to the definition of pp, q, 1
%q-hypercontractivity by just setting Ψ to be

T% Ψ. �

1.5. Lindeberg theorem for multilinear polynomials. We have the follow-
ing theorem

Theorem 1.8. Let ζ “ pζaqaPS and ξ “ pξaqaPS be two families of independent ran-
dom variables with mean zero, variance one and uniformly integrable second moment.
Let Ψpξq,Ψpζq be associated multilinear polynomials as defined in (1.12) and assume that
σ2

Ψ :“
ř

H‰IPPfin
pSq
ψpIq2 is finite.

Then for every f P C3
b pRq and any ε ą 0, there exists Cε depending not only on ε but also

on }f 1}8, }f
2
}8, }f

3
}8 and σ2

Ψ, such that
ˇ

ˇ

ˇ
E
“

f
`

Ψpξq
˘‰

´ E
“

f
`

Ψpζq
˘‰

ˇ

ˇ

ˇ
ď ε` Cε

b

max
aPS

InfapΨq. (1.15)

The above theorem was proved in [CSZ17a] and it is a sharp improvement of a theorem in
[MOO10], where in the latter the Lindeberg principle for multilinear polynomials was proved
under the assumption of finite third moments. The above theorem captures an optimal, in
terms of moments, condition. In [CSZ17a] a more quantitative expression of the right hand
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side on (1.15) was provided. Moreover, in [CSZ17a] a statement of the Lindeberg principle
for non mean zero variables was also stated.

A direct consequence of the above theorem is that if one has a sequence of multi-linear
functionals Ψn for which it holds that

max
aPS

InfapΨnq ÝÝÝÑ
nÑ8

0,

then the asymptotic distribution of Ψnpξq and Ψnpζq are the same assuming that the families
ξ and ζ have mean zero, variance one (these two conditions can be relaxed to matching first
and second moments) and uniformly integrable second moments.

Proof of Theorem 1.8. The proof of this theorem starts with the same telescoping proce-
dure as done in the proof of the standard Lindeberg theorem. Without loss of generality we
will assume that the index set S is finite and for notational simplicity we identify it with
t1, ..., nu. More crucially, we will assume that Ψ has degree ` which stays bounded in n, that
is

Ψpξq “
ÿ

IĂS , |I|ď`

ψpIq ξI .

This assumption can be justified by a simple truncation argument (exercise). For a function
f P C3

b pRq we denote

gpx1, ..., xnq :“ fpΨpxqq,

and

hX
j

n,jpyq :“ gpζ1, ..., ζj´1, y, ξj`1, ..., ξnq, with Xj :“ pζ1, ..., ζj´1, ξj`1, ..., ξnq, (1.16)

and we have that

fpΨpξqq ´ fpΨpζqq “
n
ÿ

j“1

`

hX
j

n,jpξjq ´ h
X
j

n,jpζjq
˘

.

We now perform the same Taylor expansion as done in (1.6) and employ the matching
moment assumption to have the estimate

ˇ

ˇ

ˇ
ErfpΨpξqqs ´ ErfpΨpζqqs

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

E
”

RX
j

n,jpξjq ´R
X
j

n,jpζjq
ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď

N
ÿ

j“1

E
”

|RX
j

n,jpζjq|
ı

`

N
ÿ

j“1

E
”

|RX
j

n,jpξjq|
ı

.

where we recall that the error R x
n,jpyq of the Taylor expansion, which was also defined in

(1.7), has the form

Rxn,jpyq “
1

2

ż y

0

`

B
3
yh

x
n,iptq

˘

py ´ tq2dt,

and satisfies the bound
ˇ

ˇRxn,jpyq
ˇ

ˇ ď min
!1

6
}B

3
yh

x
n,i}8 |y|

3 , }B2
yh

x
n,i}8 y

2
)

.
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The derivatives of hxj p¨q are computed as:
`

B
m
y h

x
j

˘

pyq “ f pmq
´

Ψpx1, . . . , xj´1, y, xj`1, . . . , xN q
¯´

ByΨpx1, . . . , xj´1, y, xj`1, . . . , xN q
¯m

“ f pmq
´

Ψpx1, . . . , xj´1, y, xj`1, . . . , xN q
¯ ´

ÿ

IQj

ψpIqxIztju
¯m

.

Defining

Ljpxq :“
ÿ

IQj

ψpIqxI ,

we obtain the bound
N
ÿ

j“1

E
”

|RX
j

n,jpζjq|
ı

ď Cf

N
ÿ

j“1

E
”

ϕpLjpX
j
qq

ı

, with (1.17)

Cf “ maxt}f 1}8, }f
p2q
}8, }f

p3q
}8u and ϕpxq :“ min

 |x|3

6
, |x|2

(

. (1.18)

To proceed with a sharp estimate on (1.17) under only the assumption of uniformly integrable
second moments, we need to truncate the random variables in a way that also respects an
orthogonality. The general truncation is described as follows:

Truncation procedure : Fix M P p0,8q. We can decompose any real-valued random
variable Y with zero mean and finite variance as

Y “ Y ´ ` Y ` , (1.19)

where Y ´, Y ` are functions of Y and possibly of some extra randomness, such that

ErY ´s “ ErY `s “ 0 , Y ´Y ` “ 0 ,

|Y ´| ď |Y | 1t|Y |ďMu , ErpY `q2s ď 2ErY 21t|Y |ąMus .
(1.20)

We postpone the proof of the truncation properties (1.20) until the end of the proof of
this theorem. Assuming these properties, we proceed by denoting by Xj´ the vector Xj

from (1.16) with all its entries truncated as above and also Xj` :“ Xj
´Xj´. Noting the

elementary inequality for φ (defined in (1.18))

ϕpa` bq ď 2a2
`

4

3
|b|3, for real a, b,

we have that the bound in (1.17) can be extended to

E
“

ϕpLjpX
j
qq
‰

ď 4E
”

`

LjpX
j
q ´ LjpX

j´
q
˘2
ı

`
4

3
E
“

|LjpX
j´
q|

3‰. (1.21)

Estimate on the first term in (1.21): To estimate the first term in (1.21) we write

LjpX
j
q ´ LjpX

j´
q “

ÿ

IQj

ψpIq
`

Xj´
`Xj`˘I

´
ÿ

IQj

ψpIq
`

Xj´˘I

“
ÿ

IQj

ψpIq
ÿ

ΓĎI, |Γ|ě1

pXj`
q
Γ
pXj´

q
IzΓ ,

where the second equality comes from a simple binomial expansion of the first term and a
cancellation with the second one. By (1.20) the random variables Xj´

1 , Xj`
1 , Xj´

2 , Xj`
2 , . . .
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are orthogonal. Setting σ2
˘,i :“ ErpXj˘

i q
2
s and observing that σ2

´,i ` σ2
`,i “ VarpXj

i q “ 1,
we obtain

E
“`

LjpX
j
q ´ LjpX

j´
q
˘2‰

“
ÿ

IQj

ψpIq2
ÿ

ΓĎI, |Γ|ě1

pσ2
`q

Γ
pσ2
´q

IzΓ (1.22)

“
ÿ

IQj

ψpIq2
`

1´ pσ2
´q

I˘
ď

ÿ

IQj

ψpIq2
`

1´ p1´ σ2
`q
|I|˘ ,

where

σ2
` :“ max

i“1,...,N
σ2
`,i “ max

i“1,...,n
ErpXj`

i q
2
s ď 2 max

i“1,...,n
ErpXj

i q
2 1
t|X

j
i |ąMu

s ď 2mąM
2 ,

having used (1.20) and having defined

mąM
2 :“ sup

XPtζi,ξiuiě1

E
“

X21|X|ěM
‰

.

Using the estimate 1´ p1´ σ2
`q
|I|
ď |I| σ2

` in (1.22) we have that
n
ÿ

j“1

E
“`

LjpX
j
q ´ LjpX

j´
q
˘2‰

ď 2mąM
2

ÿ

j

˜

ÿ

IQj

|I|ψpIq2
¸

ď 2 mąM
2 `2

ÿ

I

ψpIq2 ,

where we recall that ` is the degree of Ψ.

Estimate on the second term in (1.21): For the second term we will use hypercon-
tractivity bound from Propositions 1.6 and 1.7. This implies that

}LjpX
j´
q}3 ď pB3q

`
}LjpX

j´
q}2 , (1.23)

where

B3 :“ 2
?

2 max
iďn

}Xj´
i }3

}Xj´
i }2

.

Since for every i we have that |Xj´
i | ď |X

j
i | 1|Xj´

i |ďM
, by (1.20), we have

}Xj´
i }3 ď E

“

|Xj
i |

3 1
t|X

j
i |ďMu

‰1{3
ď

`

mďM
3

˘1{3
,

with mďM
3 being the maximum truncated third moment of variables ξi, ζi, i ě 1. On the

other hand, again by (1.20), we have that for every i

}Xj´
i }

2
2 “ }X

j
i }

2
2 ´ }X

j`
i }

2
2 “ ErpXj

i q
2
s ´ ErpXj`

i q
2
s ě ErpXj

i q
2
s ´ 2ErpXj

i q
21
t|X

j
i |ąMu

s

“ 1´ 2ErpXj
i q

21
t|X

j
i |ąMu

s ě 1´ 2mąM
2 ,

hence

B3 ď 2
?

2

`

mďM
3

˘1{3

b

1´ 2mąM
2

ď 4
`

mďM
3

˘1{3
,

provided mp2q
ąM ď 1

4 , which can be achieved by choosing M large enough, thanks to the
uniform integrability of the second moment. Therefore, (1.23) yields

E
”

|LjpX
j´
q|

3
ı

ď 64`
`

mďM
3

˘`
E
”

LjpX
j´
q
2
ı3{2

.
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Note that, since ErpXj´
i q

2
s ď ErpXj

i q
2
s “ 1, we have

E
”

LjpX
j´
q
2
ı

“
ÿ

IQj

ψpIq2
ź

iPI

ErpXj´
i q

2
s ď

ÿ

IQj

ψpIq2 “ InfjrΨs .

Therefore
N
ÿ

j“1

E
”

|LjpX
j´
q|

3
ı

ď 64`
`

mďM
3

˘`
´

max
i

a

InfirΨs
¯

ÿ

j

ÿ

IQj

ψpIq2

ď ` 64`
`

mďM
3

˘`
´

max
i

a

InfirΨs
¯

ÿ

|I|ď`

ψpIq2 .

(1.24)

Proof of truncation properties (1.20). Let M ą 0. If ErY 1t´MďYďMus “ 0 we
are done: just choose Y ´ :“ Y 1t´MďYďMu and Y ` :“ Y ´ Y ´. If, on the other hand,
ErY 1t´MďYďMus ą 0 (the strictly negative case is analogous), we set

T :“ suptT P r0,M s : ErY 1t´MďYďT us ď 0u P r0,M s .

Note that ErY 1
t´MďYďT us ě 0, because T ÞÑ ErY 1t´MďYďT us is right-continuous. If

ErY 1
t´MďYďT us “ 0, defining Y ´ :“ Y 1

t´MďYďT u and Y
` :“ Y ´ Y ´, all the properties

in (1.20) are clearly satisfied, except the last one that will be checked below. Finally, we
consider the case ErY 1

t´MďYďT us ą 0 (then necessarily T ą 0). Since ErY 1
t´MďYăT us ď 0

by definition of T , we must have PpY “ T q ą 0. Then take a random variable U uniformly
distributed in p0, 1q and independent of Y , and define

Y ´ :“ Y
`

1
t´MďYăT u ` 1

tY“T , Uď%u

˘

, where % :“
´ErY 1

t´MďYăT us

T PpY “ T q
P p0, 1q .

Setting Y ` :“ Y ´ Y ´, all the properties (1.20) but the last one are clearly satisfied.
For the last property, we write

ErpY `q2s “ ErpY `q21t|Y |ąMus ` ErpY `q21t|Y |ďMus “ ErY 21t|Y |ąMus ` ErpY `q21t|Y |ďMus ,

because Y ` “ Y on the event t|Y | ą Mu. For the second term, since 0 ď Y ` ď M

on the event t|Y | ď Mu, we can write pY `q2 ď MY ` (no absolute value needed). Since
Y ´ “ Y ´1t|Y |ďMu has zero mean by (1.20), we obtain

ErpY `q21t|Y |ďMus ďM ErY `1t|Y |ďMus “M ErpY ` ` Y ´q1t|Y |ďMus

“M ErY 1t|Y |ďMus “M p´ErY 1t|Y |ąMusq ď ErY 21t|Y |ąMus ,

where we have used the fact that ErY s “ 0 by assumption, and Markov’s inequality. The
last relation in (1.20) is proved. �

2. Fourth moment theorems

A fourth moment theorem roughly says that certain projections of square integrable
functions of many independent variables converge to normal distribution if their normalised
fourth moment converges to 3. An important such class of function are multi-linear functions
of independent variables.
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2.1. Fourth moment theorems in the 20th century. Fourth moment theorem
turn out to have quite a long history dating back to the 1960s, although it seems that they
were rediscovered in the 21st century. For quadratic forms of gaussian variables it seems that
a fourth moment theorem dates back to Sevast’yanov [S61] and then extended by Rotar’ in
[R74] to the case of i.i.d. variables.

Proposition 2.1. Let ξ “ pξiqiě1 be a family of i.i.d. standard normal random variables and
consider the quadratic polynomial Ψnpξq “

ř

1ďi,jďn ψnpi, jqξiξj, associated to a symmetric
kernel ψn. The multilinearity assumption forces the condition ψpi, iq “ 0 for all i. Denote by
σ2
n :“ Var

`

Ψpξq
˘

. If

1

σ4
n

E
”

`

Ψnpξq
˘4

ı

ÝÝÝÑ
nÑ8

3, (2.1)

then 1
σn

Ψn converges in distribution to a standard normal.

Proof. We will denote by m2r “ p2r ´ 1q!! the p2rqth moment of a standard normal. Let
us for simplicity also denote by ξ to be just the vector pξ1, ..., ξnq and by Ψn the matrix
Ψn :“

`

ψnpi, jq
˘

1ďi,j,ďn
. We can then write the sum

ř

1ďi,jďn ψnpi, jqξiξj in the matrix

form ξΨnξ
T. Since Ψn is symmetric it can be diagonalised as Ψn “ Un diagpµ1, ..., µnqU

T
n ,

where diagpµ1, ..., µnq is the diagonal matrix with entries the eigenvalues of Ψn and Un is
the associated orthogonal matrix. We then have that

ξΨn ξ
T
“ ξUn diagpµ1, ..., µnqU

T
n ξ

T
“

`

ξUn
˘

diagpµ1, ..., µnq
`

ξUn
˘T

Since ξ is a standard normal vector and Un is orthogonal, the vector ξUn is also distributed
as a standard normal vector, which we denote by pY1, ..., Ynq and then we have that

ξΨn ξ
T
“
d

n
ÿ

i“1

µiY
2
i .

This is now in the standard central limit theorem form of a sum of independent random
variables. Lindeberg’s condition in Theorem (1.1) is implied by the condition

1

σ4
n

n
ÿ

i“1

µ4
i ÝÝÝÑ
nÑ8

0. (2.2)

We will now check that the latter condition is satisfied if (2.1) holds. To this end, we first
compute the variance

σ2
n “ Varp

n
ÿ

i“1

µiY
2
i q “

n
ÿ

i“1

µ2
i VarpY 2

i q “

n
ÿ

i“1

µ2
i

`

m4 ´ 1
˘

“ 2
n
ÿ

i“1

µ2
i .

and the fourth moment

E
”

`

ξΨn ξ
T˘4

ı

“ E
”

`

n
ÿ

i“1

µiY
2
i

˘4
ı

“
ÿ

1ďi,j,k,`ďn

µiµjµkµ` E
“

Y 2
i Y

2
j Y

2
k Y

2
`

‰
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which by considering all possible matchings of indices i, j, k, ` is written as

E
”

`

ξΨn ξ
T˘4

ı

“m8

ÿ

i

µ4
i ` 3m2

4

ÿ

i‰j

µ2
iµ

2
j ` 6m4

ÿ

i‰j‰k‰i

µiµjµ
2
k (2.3)

` 4m6m2

ÿ

i‰j

µ3
iµj `m

4
2

ÿ

i‰j‰k‰`‰i

µiµjµkµ`

We will use the fact that ψpi, iq “ 0 implies that the trace of matrix Ψn is zero and thus
řn
i“1 µi “ 0. Thus,

ÿ

i‰j‰k‰`‰i

µiµjµkµ` “
`

ÿ

i

µi
˘4
´
ÿ

i

µ4
i ´ 3

ÿ

i‰j

µ2
iµ

2
j ´ 6

ÿ

i‰j‰k‰i

µiµjµ
2
k ´ 4

ÿ

i‰j

µ3
iµj

“ ´
ÿ

i

µ4
i ´ 3

ÿ

i‰j

µ2
iµ

2
j ´ 6

ÿ

i‰j‰k‰i

µiµjµ
2
k ´ 3

ÿ

i‰j

µ3
iµj

and inserting into (2.3) we have that

E
”

`

ξΨn ξ
T˘4

ı

“ pm8 ´ 1q
ÿ

i

µ4
i ` 3pm2

4 ´ 1q
ÿ

i‰j

µ2
iµ

2
j ` 6pm4 ´ 1q

ÿ

i‰j‰k‰i

µiµjµ
2
k

` 4pm6m2 ´ 1q
ÿ

i‰j

µ3
iµj

Removing the inequality constraints in the above summations, we can write (2.3) as

E
”

`

ξΨn ξ
T˘4

ı

“ pm8 ´ 1q
ÿ

i

µ4
i ` 3pm2

4 ´ 1q
!

`

ÿ

i

µ2
i

˘2
´
ÿ

i

µ4
i

)

` 6pm4 ´ 1q
!

p
ÿ

i

µiq
2
ÿ

k

µ2
k ´ 2

ÿ

i

µi
ÿ

k

µ2
k ` 2

ÿ

i

µ4
i ´

´

ÿ

i

µ2
i

¯2)

` 4pm6m2 ´ 1q
!

ÿ

i

µ3
i

ÿ

j

µj ´
ÿ

i

µ4
i

)

and using again the fact that
ř

i µi “ 0 we have that for a specific constant C ‰ 0 (which
can be explicitly computed)

E
”

`

ξΨn ξ
T˘4

ı

“ C
ÿ

i

µ4
i ` 3

`

2
ÿ

i

µ2
i

˘2
“ C

ÿ

i

µ4
i ` 3 ¨ σ4

n

Dividing both sides by σ2
n we have that
C

σ4
n

ÿ

i

µ4
i “

1

σ4
n

E
”

`

ξΨn ξ
T˘4

ı

´ 3,

which converges to zero, as n Ñ 8, by (2.1) and thus Lindeberg’s condition (2.2) is
satisfied. �

The following theorem fourth moment theorem for generalized quadratic forms was proved
by de Jong [dJ87]

Theorem 2.2. Let pωiqiě1 be a family of independent, real variables and wpnqi,j p¨, ¨q be a
family of Borel measurable functions on R2 and consider the generalized quadratic form

Wnpωq “
ÿ

1ďi,jďn

w
pnq
i,j pωi, ωjq “

ÿ

1ďiďjďn

Wi,j , (2.4)
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where, denoting by Wi,j :“ w
pnq
i,j pωi, ωjq ` w

pnq
j,i pωj , ωiq, we assume that

E
“

Wi,j

ˇ

ˇωi
‰

“ 0, a.s. for all i, j ď n. (2.5)

Denote by σ2
n the variance of Wnpωq and by σ2

i,j the variance of Wi,j. Then, the assumptions:

paq
1

σ2
n

max
1ďiďn

ÿ

1ďjďn

σ2
i,j ÝÝÝÑ

nÑ8
0, (2.6)

pbq
1

σ4
n

E
“

Wnpωq
4‰
ÝÝÝÑ
nÑ8

3, (2.7)

imply that 1
σn
Wnpωq converges in distribution to a standard normal random variable.

Let us make some remarks on the assumptions of the theorem.

‚ Assumption (2.5) is satisfied in the multilinear case when ωi have mean zero.

‚ Assumption (2.6) is sort of a Lindeberg “uniform smallness” assumption. It says that
no row in the array pWi,jq1ďi,jďn has a dominant contribution to the total variance.
For example it rules out situations of the form Wnpωq “

ř

1ăjďn ω1ωj , where clearly
the asymptotic distribution is determined by ω1.

‚ The necessity of the fourth moment condition is seen by situation like
ř

1ďiăjďn ωiωj
where even though the Lindeberg condition (2.6) is satisfied the asymptotic distribution
is chi-square. This can be seen by writing

2
ÿ

1ďiăjďn

ωiωj “
`

ÿ

i

ωi
˘2
´
ÿ

i

ω2
i «

`

Gaussian
˘2
` l.o.t.

The proof of Theorem 2.2 is based on the central limit theorem for martingales:

Theorem 2.3 (Martingale central limit theorem). Let pXnqně0 be a sum of martingale
differences Xn “

řn
i“1 Yi with respect to a filtration tFn : n ě 0u, satisfying

E
“

|Yi|
2`2δ‰

ă 8, for some δ P p0, 1s.

Let

σ2
i :“ E

“

Y 2
i |Fi´1

‰

and s2
n :“

n
ÿ

i“1

Erσ2
i s.

Then, the central limit theorem holds for 1
sn
Xn, if the following two conditions hold:

paq 1

s
2`2δ
n

n
ÿ

i“1

E
“

|Yi|
2`2δ ‰

ÝÝÝÑ
nÑ8

0, (2.8)

pbq E
”

ˇ

ˇ

1

s
2
n

n
ÿ

i“1

Y 2
i ´ 1

ˇ

ˇ

1`δ
ı

ÝÝÝÑ
nÑ8

0, (2.9)

In [HB70] conditions (2.8) and (2.9) are actually translated to quantitative bounds on
the speed of convergence to the normal disitribution.
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The proof of the Fourth Moment Theorem 2.2 proceeds by writing the generalized bilinear
form Wnpωq as a sum of martingale differences as:

Wnpωq “
n
ÿ

j“1

Uj,n, with Uj,n :“ 1
σn

ÿ

1ďiăj

Wi,j .

and then applying the Martingale Central Limit Theorem 2.3 with Yk :“ Uk,n and δ chosen
to be equal to 1. The idea is similar to that of the proof of Proposition 2.1, except that it
does not make sense to employ a diagonalisation argument since on the one hand we do not
have a quadratic form and on the other hand if the random variables are not normal their
distribution will change after and orthogonal transformation. However, we can still proceed
by expanding the fourth moment of Wnpωq “

řn
k“1 Uk,n and after grouping appropriately

terms together, it turns out that conditions (2.6) and (2.7) imply conditions (2.8) and (2.9).
The computations required for the proof of Theorem 2.2 in the generalized quadratic case

are quite more complicated than that of Proposition 2.1 and we refer the reader to [dJ87].
However, if we reduce ourselves to the standard quadratic case, then we can use Lindeberg’s
principle for multi-linear polynomials as of Theorem 1.8 to reduce to the situation of a
quadratic forms of normal variables and thus get ourselves into the context of Proposition
2.1.

Theorem 2.2 was extended by de Jong [dJ90] to the case of what is known as homogeneous
sums. To define this notion, let us consider a family random variables pωiqiěq and denote
by FI the σ-algebra generated by tωi : i P Iu for I Ă t1, ..., nu. We consider a family of FI -
measurable random variables tW pnq

I uIĂt1,...,nu with the properties (for notational convenience
we will drop the superscript pnq):

ErWI s “ 0, ErW 2
I s “: σ2

I ă 8, ErWIWJ s “ 0 if I ‰ J

A d-homogeneous sum associated to the family pWIq and random variables pωiq is defined as

Wnpωq :“
ÿ

IĂt1,...,nu
|I|“d

WI .

The fourth moment theorem for homogeneous sums reads as

Theorem 2.4. Let Wnpωq be a sequence of homogeneous sums of fixed degree d and let
σ2
n :“ VarpWnpωqq and for I Ă t1, ..., nu let σ2

I :“ VarpWIq. Suppose that

paq
1

σ2
n

max
i

ÿ

IQi

σ2
I ÝÝÝÑ
nÑ8

0,

pbq
1

σ4
n

E
“

Wnpωq
4 ‰
ÝÝÝÑ
nÑ8

3,

then 1
σn
Wnpωq converges in distribution to a standard normal.

The proof of Theorem 2.4 follows the same spirit as that of the fourth moment for
generalized quadratic forms: on writes the homogeneous sum as a sum of martingale
differences and then expands the fourth moment and regroups the summands so that the
assumptions of the Martingale central limit theorem are satisfied.

We would like to close this subsection by commenting on how the proof of the martingale
central limit theorem goes about. It makes use of the useful idea of embedding theorems,
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whose origins go back to Skorokhod and often called Skorokhod embedding theorems. Theorem
2.3 makes in particular use of a version of the embedding theorem for martingale differences
due to Strassen [S67] (the original Skorokhod embedding was related to i.i.d. variables):

Theorem 2.5. Let pXnqně1 be a sequence of random variables such that, for every n ě 1,
it holds that

E
“

X2
n

ˇ

ˇXn´1, ..., X1

‰

ă 8, and E
“

Xn

ˇ

ˇXn´1, ..., X1

‰

“ 0, a.s.

Then there exists a Brownian motion Bp¨q and a sequence of nonegative stopping times with
respect to the σ-algebra generated by the Brownian motion, such that a.s.

n
ÿ

i“1

Xi “ B
`

n
ÿ

i“1

Ti
˘

.

Moreover, it holds a.s. that

E
“

Tn
ˇ

ˇFn´1

‰

“ E
“

X2
n

ˇ

ˇXn´1, ..., X1

‰

.

2.2. Hoeffding’s decomposition. Homogeneous sums are important as they form
a sort of Fourier basis for expansion of square integrable random variables. In particular, we
have Hoeffding’s expansion [H48]:

Theorem 2.6. Let pωiqiě1 a family of independent random variables and let W be a square
integrable random variable measurable with respect to tωauaPS indexed by a finite set S. Then
W can be decomposed uniquely as

W “
ÿ

IĂS

WI ,

where tWIuIĂS is defined as above, in particular is FI-measurable,

ErWI |FJ s “ 0, a.s. unless I Ă J,

and E
“

WIWJ

‰

“ 0, if I ‰ J.

Proof. We will use the notation

E
“

W
ˇ

ˇ I
‰

:“ E
“

W
ˇ

ˇ tωauaPI
‰

and WI :“
ÿ

AĂI

p´1q|I|´|A| E
“

W |A
‰

.

We can represent W as
ř

IĂSWI . Indeed, we have that
ÿ

IĂS

WI “
ÿ

IĂS

ÿ

AĂI

p´1q|I|´|A| E
“

W |A
‰

“
ÿ

AĂS

E
“

W |A
‰

ÿ

IĄA

p´1q|I|´|A|

“W `
ÿ

AĂS , A‰S

E
“

W |A
‰

ÿ

IĄA

p´1q|I|´|A|

“W `
ÿ

AĂS , A‰S

E
“

W |A
‰

p´1` 1q|SzA|

“W.

We will now show that if I is not a subset of J then ErWI |FJ s “ 0. To see this, let us
denote by C :“ I X J and assume that IzC ‰ H. Then

ErWI |FJ s “
ÿ

AĂI

p´1q|I|´|A| E
”

E
“

W |A
‰

ˇ

ˇ

ˇ
J
ı

“
ÿ

AĂI

p´1q|I|´|A| E
“

W |AX C
‰

. (2.10)



DISCRETE STOCHASTIC ANALYSIS 21

The second equality is because if A “ A1 Y A2 with A1 Ă C and A2 Ă IzC, then the
conditional expectation E

“

¨ |A
‰

will fix the variables in A “ A1 YA2 and average over the
rest, but then the expectation E

“

¨ |J
‰

will average over the variables which are not included
in J and in particular it will average the variables in A2. So the only fixed variables will be
those in A1 “ AX C. We can continue writing (2.10) as

ÿ

A1ĂC ,A2ĂIzC

p´1q|I|´|A1|´|A2|E
“

W |A1

‰

“
ÿ

A1ĂC

p´1q|I|´|A1|E
“

W |A1

‰

ÿ

A2ĂIzC

p´1q|A2|,

and the last sum equals p´1` 1q|IzC| “ 0 if IzC ‰ H.
From this fact, the orthogonality relation

E
“

WIWJ

‰

“ 0, if I ‰ J,

follows easily by conditioning over either I or J . Since I ‰ J we cannot have both I Ă J
and J Ă I and so one of the two conditional expectations will be zero. �

2.3. Fourth Moment Theorems in the 21st centrury. In the 21st century
the fourth moment theorem was rediscovered in the setting of Wiener chaos by Nualart
and Peccati [NP05]. The method used in [NP05] was actually the continuous analogue of
de Jong’s proof, which boils down to writing the iterated Itô integral as a martingale and
then employing the Dambis-Dumbins-Schwarz theorem (instead of Strassen’s theorem 2.5,
which says that a continuous martingale pMtqtą0 is a time change of a Brownian motion,
i.e. it can be written as Mt “ BxMyt , for some Brownian motion, with xMyt being the
quadratic variation of Mt. We will not expand on this approach, which parallels very much
the approach exposed earlier but we would rather sketch new approaches that the rediscovery
of the fourth moment theorem motivated via use of Malliavin calculus and Stein’s method.

Basics of Stein’s method. Let us start with the basic principles of Stein’s method,
which is a quantitative and robust method to prove central limit theorems. The starting
point of Stein’s method is that the normal distribution on R is the only distribution that
satisfies the equation

E
“

ZfpZq
‰

“ E
“

f 1pZq
‰

, (2.11)

for every f P C1
b pRq. The fact that the normal distribution satisfies the above equation is an

easy consequence of integration by parts. The idea of integration by parts will actually play
an important role in what follows.

Stein’s equation is the equation that given a (bounded) function h, asks for an a.e.
differentiable function f such that

hpxq ´ ErhpZqs “ f 1pxq ´ xfpxq, for x P R,

where Z is a standard normal random variable. The fact that this equation has a solution,
together with certain bounds is the content of what is called Stein’s lemma, which we will
not present here. In practice, one is interested in choosing hpxq to be the indicator function
1p´8,zqpxq, so that for a probability distribution µ on R, one can estimate

µp´8, zq ´ PpZ ă zq “

ż

`

1p´8,zqpxq ´ Er1p´8,zqpZqs
˘

µpdxq “

ż

`

f 1pxq ´ xfpxq
˘

µpdxq,
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so, in particular, we have that the total variation distance between a random variable X
with distribution µ and a standard normal Z, which is defined as

2dTV pX,Zq :“ sup
!

E
“

upXq ´ upZq
‰
ˇ

ˇ : }u}8 ď 1
)

,

can be estimated as

dTV pX,Zq ď sup
f

ˇ

ˇE
“

f 1pXq ´XfpXq
‰ˇ

ˇ, (2.12)

where, as a consequence of Stein’s lemma and the estimates therein, the supremum is taken
over all piecewise continuously differentiable functions f , which are bounded by

a

π{2 and
their first derivative is bounded by 2.

Basics of Wiener chaoses and statement of the Fourth Moment Theorem on
Wiener chaoses. Let us start by defining the notion of White noise on Rn.

Definition 2.7. White W p¨q defined on an abstract probability space pΩ,F ,Pq is a Gaussian
process on Rd, such that

‚ for every A Ă Rd, the random variable W pAq is distributed as a normal with mean
zero and variance the Lebesque measure of A, denoted by |A|,

‚ for A,B Ă Rd such that AXB “ H, the variables W pAq,W pBq are independent,

‚ for A1, A2, ... disjoint Borel sets of Rd it holds a.s. that W pY8i“1Aiq “
ř8

i“1W pAiq.

Given a symmetric function f in L2`
pRdqq

˘

, that vanishes on the diagonals we define the
iterated Wiener integral as

Iqpfq “

ż

pRdqq
fpx1, ..., xqqW pdx1q ¨ ¨ ¨W pdxqq

In the case that d “ 1, these are the usual iterated Itô integrals.

It is known [J97, N06] that any function F P L2
pPq has a unique expansion of the form

F “
8
ÿ

q“0

Iqpfqq. (2.13)

This is called the Wiener chaos expansion. The space spanned by the q-fold iterated integrals
tIqpfq : f P L

2`
pRdqq

˘

u is called the homogeneous chaos of order q.

Let us notice that iterated integrals Iqpfq are the continuous versions of the homogeneous
multilinear polynomials considered in previous sections. In particular, a homogeneous
multilinear polynomial

Ψpωq :“
ÿ

IĂpZdqq

ψpIq
ź

xPI

ωx

with pωxqxPZd being i.i.d. standard normal can be seen as the iterated Wiener integral

1

q!

ż

pRdqq
ψext

px1, ..., xqqW pdx1q ¨ ¨ ¨W pdxqq

by setting ωx “ |Cx|
´1{2W pCxq, where for x P Zd we denote by Cx the unit cube of Rd with

“bottom-left” corner at x P Zd and ψext
px1, ..., xqq the symmetric, piecewise constant function
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on pRdqk which takes the value ψptx1, ..., xquq in Cx1
ˆ ¨ ¨ ¨Cxq . Moreover, the Wiener chaos

expansion (2.13) should be viewed as the continuous analogue of Hoeffding’s decomposition.

The Nualart-Peccati theorem [NP05] is as follows:

Theorem 2.8. Consider a sequence Zn :“ Iqpfnq of random variables in a fixed Wiener
chaos of order q, such that VarpZnq Ñ 1, as nÑ8. Then Zn converges in distribution to a
standard normal if and only if ErZ4

ns Ñ 3.

We should note that this type of theorem can be extended to random variables, which
belong to mixed chaoses of bounded order.

We will present here a more quantitative version of this theorem due to Nourdin and
Peccati [NP09]. Even though this theorem is stated for homogeneous chaoses of order 2, it
can be extended to homogeneous chaoses of general order.

Theorem 2.9. Let pZnqně1 be a sequences of random variables belonging to the second
homogeneous Wiener chaos and Z be a standard normal random variable. Then

dTV pZn, Zq ď 2

d

1

6

ˇ

ˇ

ˇ
E
“

Z4
n

‰

´ 3
‰

ˇ

ˇ

ˇ
`

3` E
“

Z2
n

‰

2

ˇ

ˇ

ˇ
ErZ2

ns ´ 1
ˇ

ˇ

ˇ
.

In particular, we see that if the sequence Zn belongs to a fixed Wiener chaos and is
such that the second moments converge to 1 and the third moments to 3, then the central
limit theorem is valid and the above theorem provides also information on the speed of
convergence.

Basics of Malliavin calculus. We will now present the essential notions of Malliavin
calculus in the simplest case of iterated Wiener-Itô chaos expansions. These notions can be
generalised to abstract Hilbert space settings. To keep things more direct we will not pay
attention in detailing specific convergence assumptions and functional spaces and simply
assume that things make sense in some L2 space, which will be easy to identify.

We start with the basic notion of Malliavin derivative, which is denoted by D. If
F P L2

ppΩ,F ,Pqq has the Wiener chaos expansion F “
ř

qě0 Iqpfqq, then DF can be
identified as an element of L2

pΩˆ Rdq defined as

DapF q :“
ÿ

qě1

qIq´1pfqp ¨, ..., ¨
loomoon

n´1

, aqq. (2.14)

For example, if

F “

ż

R2
fpx1, x2qW pdx1qW pdx2q,

then

DaF “ 2

ż

R
fpx, aqW pdxq “

ż

R
fpx, aqW pdxq `

ż

R
fpa, xqW pdxq,

where the last equality just highlights the fact that the factor 2 (or in general the factor q
in (2.14)) comes from the symmetry assumption on the kernels fq. The Malliavin derivative
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D satisfies a chain rule: If φ : Rn Ñ R is a smooth function and F1, ..., Fn P L
2
pPq, then

DφpF1, ..., Fnq “
n
ÿ

i“1

BiφpF1, ..., FnqDFi. (2.15)

There are two more operators of central significance: The one is the adjoint operator of
D (also called Skorokhod integral), which is defined via

E
“

F δpuq
‰

“ E
“

xDF, uy
L

2
pRdq

‰

.

An easy exercise shows that if F “
ř

qě0 Iqpfqq, then

δDF “ ´
ÿ

qě0

qIqpfqq. (2.16)

This motivates the second operator of significance

L :“ ´
ÿ

qě0

qJq,

where Jq denotes the projection operator on the qth-homogeneous Wiener chaos; that is, if
F “

ř

qě0 Iqpfqq, then JqF :“ Iqpfqq. So relation (2.16) can be concisely written as

δD “ ´L. (2.17)

Finally, we note that L has an inverse operator

L´1
“ ´

ÿ

qě1

q´1 Jq.

This is an inverse to L since it can be easily verified that

LL´1Z “ Z ´ ErZs, for any Z P L2
pPq. (2.18)

The crux of the matter of the Malliavin calculus in relation to central limit and fourth
moment theorems is the product rule formula, which reads as

δpFuq “ Fδpuq ´ xDF, uy
L

2
pRdq

, (2.19)

which together with the chain rule (2.15) leads to the following integration by parts
formula, which is to be thought of as an infinite dimensional version of the Gaussian
integration by parts formula :

E
“

FfpF q
‰

“ E
“

f 1pF q xDF,´DL´1F y
L

2
pRdq

‰

, (2.20)

for F P L2
pPq mean zero and f : RÑ R smooth. Indeed, this can be easily verified:

E
“

f 1pF q xDF,´DL´1F y
L

2
pRdq

‰

“ E
“

xf 1pF qDF,´DL´1F y
L

2
pRdq

‰

“ E
“

xDfpF q,´DL´1F y
L

2
pRdq

‰

“ E
“

fpF q p´1qδDL´1F
‰

“ E
“

fpF qLL´1F
‰

“ E
“

fpF qF
‰

,

where the sequence of equalities follows: chain rule (second equality), definition of ad-
joint operator (third equality), property (2.17) (fourth equality) and property (2.18) (final
equality).
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Applications of Stein’s method and Malliavin calculus to fourth moment
theorems.

Theorem 2.10 (Theorem 3.1 and Proposition 3.2 in [NP09]). Let Z be a standard
normal variable and F P L2

pPq with ErF s “ 0. Then

dTV pF,Zq ď 2E
”´

1´ xDF,´DL´1F y
L

2
pRdq

¯2ı1{2
.

Moreover, if F “ Iqpfq, then

E
”´

1´ xDF,´DL´1F y
L

2
pRdq

¯2ı

“ E
”´

1´ 1
q }DF }

2

L
2
pRdq

¯2ı

.

Proof. By (2.12) we have that

dTV pX,Zq ď sup
f

ˇ

ˇE
“

f 1pXq ´XfpXq
‰ˇ

ˇ,

where the supremum is over functions f which are bounded by
a

π{2 and with first derivative
bounded by 2. By the integration by parts formula we can write

E
“

f 1pXq ´XfpXq
‰

“ E
”

f 1pXq
`

1´ xDF,´DL´1LF y
L

2
pRdq

˘

ı

,

and by Cauchy-Schwarz this is bounded by

E
”

f 1pXq2
ı1{2

E
”

`

1´ xDF,´DL´1LF y
L

2
pRdq

˘2
ı1{2

ď 2E
”

`

1´ xDF,´DL´1LF y
L

2
pRdq

˘2
ı1{2

,

if }f 1}8 ď 2, giving the desired bound on the total variation distance.
Now, if F “ Iqpfq, then L´1F “ q´1IqpF q “ q´1F and so the second claim of the

theorem follows immediately. �

Lemma 2.11 (Multiplication formula). For two functions f P L2
ppRdqpq and g P

L2
ppRdqqq we define the contraction to be

`

f br g
˘

px1, ..., xp`q´2rq :“

ż

pRdqr
fpx1, ..., xp´r, y1, ..., yrq gpxp´r`1, ..., xp`q´2r, y1, ..., yrqdy1 ¨ ¨ ¨ dyr,

and we denote by f b̃rg its canonical symmetrisation†. Then the product IppfqIqpgq admits
the Wiener chaos decomposition

IppfqIqpgq “

p^q
ÿ

r“0

r!

ˆ

p

r

˙ˆ

q

r

˙

Ip`q´2rpf b̃r gq. (2.21)

Let us just see how this formula writes for p “ q “ 1. In this case we have that
`

f b0 g
˘

px1, x2q “ fpx1qgpx2q and
`

f b̃0 g
˘

px1, x2q “
1

2!

`

fpx1qgpx2q ` fpx2qgpx1q
˘

and
`

f b1 g
˘

“

ż

fpyqgpyqdy.

†for a function fpx1, ..., xnq we define its canonical symmetrisation to be
ř

σ
1
n!
fpxσp1q, ..., xσpnqq, with

the sum running over all permutations



26 N.ZYGOURAS

Then

I1pfqI1pgq “ I2pf b̃2 gq ` I0pf b1 gq

“

ż ż

tx1‰x2u

fpx1qgpx2qW pdx1qW pdx2q `

ż

fpxqgpxqdx.

To understand what is behind this multiplication formula, it is instructive to view it in a
(very) simple discrete setting. Suppose that we have two discrete, homogeneous chaoses of
degree one:

I1pfq :“
ÿ

x

fpxqωx and I1pgq :“
ÿ

x

gpxqωx,

where pωxqxPS is a family of i.i.d. mean zero, variance one random variables. Then we can
write the product I1pfqI1pgq as

I1pfqI1pgq “
ÿ

x,y

fpxqgpyqωxωy.

The issue now is that when x “ y the term
ř

x fpxqgpxqω
2
x is not a mean zero variable and

homogeneous chaoses, of degree greater than zero, are supposed to be mean zero. To remedy
this, we can centre and write the above as

I1pfqI1pgq “
ÿ

x,y

fpxqgpyq
`

ωxωy ´ Erωxωys
˘

`
ÿ

x

fpxqgpxqErω2
xs

“
ÿ

x,y

fpxqgpyq
`

ωxωy ´ Erωxωys
˘

`
ÿ

x

fpxqgpxq,

where in the last step we used the assumption that Erω2
xs “ 1.

Proof of Theorem 2.9. For conciseness we will denote } ¨ } “ } ¨ }
L

2
pRdq

and also denote

Zn, for generic n, by F “ I2pfq for some f P L2
ppRdq2q, since it is assumed that Zn belongs

to the second homogeneous Wiener chaos. By Theorem 2.10 we need to estimate

E
”

`

1´ 1
2}DF }

2 ˘2
ı

“ 1´ E
“

}DF }2
‰

` 1
4E

”

}DF }4
ı

(2.22)

and so we need to compute the moments of DF . Using the multiplication formula (2.21),
we have that

F 2
“ I2pfq

2
“ I4pf b fq ` 4I2pf b1 fq ` ErF 2

s, (2.23)

and from this we have that

LpF 2
q “ ´4I4pf b fq ´ 8I2pf b1 fq. (2.24)

We also have that

DaF “ 2I1pfp¨, aqq, for every a P Rd,

and using again the multiplication formula we have that
`

DaF
˘2
“ 4I1pfp¨, aqq

2
“ 4I2

`

fp¨, aq b fp¨, aq
˘

` 4

ż ż

fpx, aq2 dxda

“ 4I2

`

fp¨, aq b fp¨, aq
˘

` E
“

}DF }2
‰

(2.25)
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since

E
“

}DF }2
‰

“ 4E
”

ż

`

ż

fpx, aqW pdxq
˘2

da
ı

“ 4

ż

E
”

`

ż

fpx, aqW pdxq
˘2

ı

da

“ 4

ż ż

fpx, aq2dxda. (2.26)

Let us now compute Er}DF }4s, which, to start with, we will write as Er}DF }2xDF,DF ys
and we will use the product rule (2.19) to write

E
“

}DF }4
‰

“ E
“

}DF }2xDF,DF y
‰

“ E
“

}DF }2pF δDF ´ δpFDF qq
‰

and using FDF “ 1
2DpF

2
q from the general chain rule (2.15) we have that

E
“

}DF }4
‰

“ E
“

}DF }2pF δDF ´
1

2
δpDpF 2

q qq
‰

.

Using now that δDF “ ´LF “ 2F , with the second equality since F belongs to the second
homogeneous chaos, and also using that δDF 2

“ ´LF 2, we get that

E
“

}DF }4
‰

“ 2E
“

}DF }2F 2‰
`

1

2
E
“

}DF }2 LpF 2
q
‰

.

Inserting into this formula relations (2.23) and (2.24) and performing a simple algebra,
taking also into account the orthogonality between chaoses of different order, we obtain that

E
“

}DF }4
‰

“ E
“

}DF }2F 2‰
` E

“

F 2 ‰E
“

}DF }2
‰

. (2.27)

The penultimate step is to make use of the following formula

E
“

F s}DF }2
‰

“
q

s` 1
E
“

F s`2 ‰,

which is valid for every F in a homogeneous chaos of order q and s P Zě0, and apply to the
first term in (2.27) with q “ 2 and s “ 2 to get that

E
“

}DF }4
‰

“
2

3
E
“

F 4‰
` 2E

“

F 2 ‰2
. (2.28)

Inserting (2.26) and (2.28) to (2.22) and after a simple algebra we have that

E
”

`

1´ 1
2}DF }

2 ˘2
ı

“
1

6

`

E
“

F 4
s ´ 3

˘

`
`

E
“

F 2‰
´ 1

˘

´1

2
ErF 2

s ´
3

2

¯

ď
1

6

ˇ

ˇE
“

F 4
s ´ 3

ˇ

ˇ`
ˇ

ˇE
“

F 2‰
´ 1

ˇ

ˇ

ErF 2
s ` 3

2
,

which completes the proof by inserting this estimate into the estimate of Theorem 2.10. �

3. Applications to disordered systems

We will now show some applications of the previously discussed Lindeberg principles and
fourth moment central limit theorems in the study of scaling limits of disordered systems.
The discussion here is based on works [CSZ17a, CSZ17b, CSZ18a, CSZ18b, CSZ18+].
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3.1. Disorder relevance. Let us start with a description of the notion of a disordered
system. Consider an open set Ω Ď Rd and define the lattice 
δ :“ pδZqdXΩ, for δ ą 0 which
is the support of a “random field” σ “ pσxqxP
δ whose law is determined by a probability
measure, which we denote by Pref


δ . Typically the field takes values σx P t0, 1u or t˘1u. Even
though it also sensible to consider fields that take non binary values, currently the treatment
of such fields is out of the scope of the methods we will describe.

Some examples of such fields can be:

‚ Random walks. In this case, 
δ is typically Zd ˆ t0, 1, ..., Nu for N ě 1 and δ is
really to be thought of as being 1{N . The field σ “ pσn,xqnďN,xPZd in this case is
σn,x “ 1tSn“xu, where pSnqně1 is the trajectory of a random walk, which may or may
not be simple. Pref


δ represents the law of the random.

‚ Ising models. In this case, 
δ :“ pδZqd X Ω with δ representing the mesh of the grid
on Ω Ă Rd and σx P t˘1u. The measure Pref


δ is the Ising measure given by

Pref

δ pσq “

1

Zref

δ

e J
ř

x„y σxσy ,

where x „ y means that sites x, y are nearest neighbour, i.e. connected by an edge
of Zd, J is a coupling constant, which represents the strength of interaction between
neighbouring values of the filed σ and

Zref

δ “

ÿ

σ

e J
ř

x„y σxσy ,

is called the partition function and it is the normalisation needed to have a probability
distribution.

A disordered system arises when on the lattice 
δ, on top of the reference field σ, there
exists an additional randomness, ω :“ pωxqxP
δ modelled in the form of an i.i.d. collection,
which typically is assumed to be of mean zero, variance one and having exponential moments
(although it is sensible to relax the exponential moment assumption and consider heavy
tailed fields, in which case new phenomena often arise, see for example [DZ16]). We will call
the randomness ω disorder and we will denote its law by P and expectation with respect to
it by E.

Given a realisation of the disorder ω the disordered model is defined as the following
probability measure Pω
δ;λ,h for the field σ “ pσxqxP
δ :

Pω
δ;β,hpσq :“
e
ř

xP
δ
pβωx`hqσx

Zω
δ;β,h
Pref

δ pσq , (3.1)

where now the partition function is defined by

Zω
δ;β,h :“ Eref

δ

“

e
ř

xP
δ
pβωx`hqσx

‰

. (3.2)

and we remark that in this case it is itself a random variable, depending on the realisation
ω.

A question of central interest in statistical physics but often very poorly understood is

Q. “ does an arbitrarily small amount of disorder change the statistical mechanics properties
of the reference field ? ”
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In the 70s A.B. Harris [H74] proposed the following criterion, which is known as Harris
criterion:

Harris criterion: If d is the dimension and γ is the correlation length exponent of
the reference model, then if γ ă d

2 , then the model is disorder irrelevant, meaning that
sufficiently small amount of disorder is not sufficient to change its statistical properties. If
γ ą d

2 , then the model is disorder relevant, meaning that any arbitrarily small amount of
disorder does change its statistical properties.

Let us first define what we mean by a correlation length exponent here: Consider the
(what is called) k-point function to be:

ψ
pkq
δ px1, ..., xkq :“ Eref


δ rσx1
¨ ¨ ¨σxks.

Then the correlation length exponent can be defined as the exponent γ such that

pδ´γqk ψ
pkq

δ
px1, . . . , xkq ÝÝÑ

δÓ0
ψ
pkq
Ω px1, . . . , xkq. (3.3)

where the limit is to be thought of as pointwise, although stronger forms such L2
pΩk

q will
be needed for the framework we will develop.

Even though very simple, actually rigorously verifying the Harris criterion in concrete
examples is often difficult and requires a careful case by case analysis (although one can
transfer some intuition and a set of “general principles” between different problems). In
[CSZ17a] we proposed a different point of view for the Harris criterion using as a platform the
Lindeberg principles for multilinear polynomials and focusing on the existence of non-trivial
(i.e. random) scaling limits of the partition functions when β, h are suitably scaled to zero
as δ Ñ 0. The question can be phrased as:

Q. Consider the partition function of a disordered model as defined in (3.2). Can we
choose β “ βδ and h “ hδ, converging to zero as δ Ñ 0, such that Zω
δ;βδ,hδ converges in
distribution to a random (i.e. finite and not constant) random variable ZW

Ω;β̂,ĥ
?

Here W denotes white noise on Rd and we request that the limit should be a non trivial
function of an underlying white noise.

We will now describe how we can answer this question using the Lindeberg principle for
multilinear polynomials. Although it makes sense to consider a general value of h, we will
for the purposes of this exposition restrain ourselves to the choice of h “ ´λpβq, where
λpβq :“ logEreβωxs. We denote the partition function associated to this choice by Zω
δ;β .

The starting point is to write the partition function in the form of a multilinear polynomial.
We do this via what is called in statistical mechanics high temperature or Mayer expansion,
which goes by writing

Zω
δ;β “ Eref

δ

«

ź

xP
δ

`

1` βσxζx
˘

ff

, where ζx :“
epβωx´λpβqq ´ 1

β
. (3.4)

and then by expanding the product and interchanging the (finite) summation with the
expectation Eref


δ , so that to have

Zω
δ;β “ 1`
8
ÿ

k“1

βk
ÿ

x1,...,xkP
δ

Eref

δ

“

σx1
¨ ¨ ¨σxk

‰

k
ź

i“1

ζxi ,
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where the inner sum is taken over k-tuples over distinct x1, ..., xk P 
δ (and so the sum
over k even though written as an infinite sum it is in fact finite). With ψpkqδ px1, ..., xkq :“

Eref

δ rσx1

¨ ¨ ¨σxks we write

Zω
δ;β “ 1`
8
ÿ

k“1

pβδγqk
ÿ

x1,...,xkP
δ

pδ´γqk ψ
pkq
δ px1, ..., xkq

k
ź

i“1

ζxi , (3.5)

where we have inserted the scaling of the k-point correlation function. Note that the random
variables pζxq are mean zero precisely due to the choice of the parameter h to be equal to
´λpβq.

At this point the need of a Lindeberg principle comes: suppose that we can replace the
random variables pζxq, from (3.4), by standard normal variables, which we denote by pξxq. If
so, then we could model this new collection of i.i.d. normal via a White noise W p¨q on Rd as

ξx “ |Cx,δ|
´1{2W

`

Cx,δ
˘

,

where Cx,δ is the cube in pδZqd with side length δ, “bottom-left” corner equal to x and
volume |Cx,δ| “ δd and consider the partition function

ZW
δ;β “ 1`
8
ÿ

k“1

`

βδ γ´
d
2
˘k

ÿ

x1,...,xkP
δ

pδ´γqk ψ
pkq
δ px1, ..., xkq

k
ź

i“1

W pCxi,δq, (3.6)

which can also be written as an iterated Wiener-Itô integral as

ZW
δ;β “ 1`
8
ÿ

k“1

`

βδ γ´
d
2
˘k

ż

¨ ¨ ¨

ż

Ω
k
pδ´γqk ψ

pk,extq
δ px1, ..., xkq

k
ź

i“1

W pdxiq,

where ψpk,extq
δ is the piecewise constant function on Ωk, which takes the constant value ψpkqδ

on the cubes Cx1,δ
ˆ ¨ ¨ ¨ ˆ Cxk,δ.

Choosing now

β “ βδ “ β̂ δ
d
2´γ , (3.7)

ones sees via an easy L2
pPq estimate and using assumption (3.3) (strengthened to hold in

an L2
pΩk

q sense) that

ZW
δ;β̂
L

2
pPq

ÝÝÝÑ
δÓ0

1`
8
ÿ

k“1

β̂k
ż

¨ ¨ ¨

ż

Ω
k
ψpkqpx1, ..., xkq

k
ź

i“1

W pdxiq. (3.8)

We should also remark at the consistency with the Harris criterion: the scaling of β in
(3.7) is consistent with the requirement that βδ Ñ 0 with δ Ñ 0 (thus disorder is gradually
smaller) if γ ă d{2. In the case that γ ą d{2 it turns out that any scaling of β tending to
zero as δ Ñ 0 will always lead to be a trivial, i.e. non random and in fact constant, limit.

As we see, the main point in obtaining the scaling limit of the disordered partition function
is justifying the passage (in the limit δ Ñ 0) from (3.5) to (3.6). This step is precisely
achieved with the Lindeberg principle as of Theorem 1.8. Let us note that if h in (3.2) is
taken to be different than ´λpβq, then the random variables pζxq are not mean zero and
in this case one needs to be more careful as one needs to handle issues of convergence of
the series (when going to the limit) in (3.5). Moreover, one needs an extension of Lindeberg
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theorem 1.8 that will cover the situation of non-mean-zero variables. These issues were
settled and suitable extensions of Theorem 1.8 were achieved in [CSZ17a].

3.2. Marginal relevance or critical dimension. We have seen that the Harris
criterion classifies disorder as “relevant” or “irrelevant” according to whether d{2 ą γ or d{2 ă
γ. However, the Harris criterion is inconclusive when d{2 “ γ. This case is called marginal
and disorder can then be either relevant or irrelevant depending on the finer details of the
system. A situation where the disorder relevant/irrelevant and marginally relevant/irrelelvant
regimes have been succesfully classified (but only after a large number of works a small
sample of which can be represented by [A08, AZ09, BL16, DGLT09, GLT11, T07]) is the
case of the random pinning model an overview of which is contained in [G11].

The point of view described in the previous section, classifying relevance or irrelevance via
the existence of a non trivial scaling limit of the partition function, also fails in the marginal
case. The reason for this is that the natural candidate (3.8) which represents the scaling
limit in the relevant case does not make sense at the marginal case. This is best manifested
by looking at the case of the pinning model. The partition function for this model is

Zpin
N,β :“ E

”

e
řN
n“1pβωn´λpβqq1tSn“0u

ı

, (3.9)

where pSnqně1 is a one dimensional, simple random walk. We note that it is sensible for
this model to consider a more general class of Markov processes, so that the transition
between relevance and irrelevance is observed while moving through this class. However, the
simple random walk corresponds to the marginal case, in which disorder also turns out to
be marginally relevant (but without exhausting the class of processes for which disorder is
marginally relevant). In this case, if one adopted the point of view described in the previous
section, taking into account that PpSn “ 0q „ 1{

?
2πn for n Ñ 8, one would guess the

scaling limit

1`
ÿ

kě1

`

β
2π

˘k
ż

¨ ¨ ¨

ż

0ăt1ă¨¨¨ătkă1

1
?
t1
?
t2 ´ t1 ¨ ¨ ¨

?
tk ´ tk´1

k
ź

i“1

W pdtiq,

which clearly does not make sense since the kernel
`

t1pt2 ´ t1q ¨ ¨ ¨ ptk ´ tk´1q
˘´1{2 is not L2

integrable.

To handle the marginal case a different point of view was necessary [CSZ17b] and in the
course of implementing this new approach the fourth moment theorem played an important
role.

But before turning to describe the approach let us point out that the notion of marginal
disorder turns out to be identical to the notion of criticality in stochastic PDEs [H14, GIP15]
and in renormalization theory [K14]. It turns out that the notion of sub-criticality for singular
SPDEs (or super-renormalizability in renormalization theory) matches with the notion of
disorder relevance, while criticality corresponds to the case where the effect of disorder
is marginal. Let us illustrate this fact by looking at the example of the Stochastic Heat
Equation (SHE), whose solution can be actually seen, via the stochastic Feynman-Kac
formula, as the partition function of a continuum random polymer model. The stochastic
heat equation writes as

Btu “
1

2
∆u` 9W u, t ą 0, x P Rd (3.10)
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where 9W “ W pdtdxq{dtdx, with W being a space-time white noise. We note that due to
the irregularity of the noise 9W the product 9Wu is not well defined and giving a meaning to
a solution to SHE is not straightforward. In dimension 1 this problem can be circumvented
but in dimension 2 (which turns out to be critical) a proper notion of solution is not trivial.

To understand where the difficulty arises one resorts to a renormalization procedure. This
is a standard first step (or heuristic) in the course of understanding regularity properties,
and in the simplest case amounts to a change of variables such as

pt, xq “ Tεpt̃, x̃q :“ pε2 t̃, ε x̃q .

Using the gaussian scaling property of the white noise, it is not difficult to see that
ũpt̃, x̃q :“ upTεpt̃, x̃qq formally solves the SPDE

Bũ

Bt̃
“

1

2
∆ũ` βε1´ d

2
9̃W ũ, (3.11)

where W̃ is a new space-time White noise obtained fromW via scaling. Therefore, space-time
renormalization has the effect of changing the strength of the noise to ε1´ d

2β.
We now see that if d ă 2, then, as εÑ 0, the strength of the noise in the renormalized

equation goes to zero, which means that the noise will have a gradually decreasing effect on
the regularity of the solution to the SHE and thus a solution can be suitably defined. On
the other hand, for d ą 2 the noise should crucially affect the solution as its strength after
renormalization increases. Contrary to the previous cases, one sees that d “ 2 is a critical
dimension as the renormalization leaves the noise invariant and thus no conclusion can be
drawn on the effect of noise to the existence and regularity of a solution.

In terms of disordered systems, one is interested in large scale effects and so it is meaningful
to consider the reciprocal change of variables (renormalization) pt, xq “ T

ε
´1pt̃, x̃q. This

will result to a renormalized equation where now the strength of the noise is ε
d
2
´1β. The

conclusion in this case is that: for d ă 2, then noise (disorder) has a prevailing effect
(amounting to disorder relevance), while for d ą 2 the effect of the noise vanishes, amounting
to disorder irrelevance. However, again, when d “ 2 the renormalization leaves the noise
invariant and no conclusion can be drawn on the effect of noise. This is the marginal case.

To understand the structure in the marginal case (and how the fourth moment theorem
enters), let us look at the example of the pinning partition function (3.9) and expand it in
the form of a multilinear polynomial, as described in the previous section, as:

Zpin
N,β “ 1`

ÿ

kě1

βk
ÿ

1ďn1ă¨¨¨ănkďN

k
ź

i“1

qni´ni´1

k
ź

i“1

ζni , (3.12)

where ζn :“ β´1`eβωn´λpβq ´ 1
˘

and qn :“ PpSn “ 0q.
To see what the suitable choice of β should be, we look at the variance of the first

non-constant term:

Var
´

β
N
ÿ

n“1

qnζn

¯

“ β2
N
ÿ

n“1

q2
n Var

`

ζn
˘

« β2
N
ÿ

n“1

q2
n « β2

N
ÿ

n“1

1

2πn
«
β2

2π
logN (3.13)

since, as it is easy to check, Varpζnq « 1 for β « 0 and since for a one-dimensional simple
random walk qn :“ PpSn “ 0q « 1{

?
2πn. This indicates that in order to ensure a non

trivial limit, β should be chosen as β̂
a

2π{ logN , so that the variance stays of order 1. This
choice turns out to also ensure that each one of the remaining terms in the expansion is also
of order 1.
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A second information that this variance computation provides is on the correct time scale
at which one should observe the system. To understand this, notice that the asymptotic
variance (3.13) remains unchanged if we sum over a time horizon tN , for any arbitrary but
fixed time variable t. On the other hand, if we considered a time horizon N t with t ą 0 fixed,
then the asymptotic variance will indeed change when varying t. Therefore, the correct time
scale is N t. To incorporate this observation, we decompose the summations over n1, ..., nk

in the multilinear expansion (3.12) over intervals nj ´ nj´1 P Iij , with Iij “
`

N
ij´1

M , N
ij
M
‰

,
ij P t1, ...,Mu and with M being a coarse graining parameter (which will eventually tend to
infinity). We can then rewrite the k-th term in the expansion (3.12) as

β̂k

Mk{2

ÿ

1ďi1,...,ikďM

ΘN,M
i1,...,ik

where (3.14)

ΘN,M
i1,...,ik

:“

ˆ

2πM

logN

˙k{2
ÿ

nj´nj´1P Iij
for j“1,...,k

k
ź

j“1

qnj´nj´1
ζnj .

We now observe that if an index ij is a running maximum for the k-tuple i :“ pi1, ..., ikq,

i.e. ij ą maxti1, ..., ij´1u then
`

N
ij´1

M , N
ij
M
‰

Q nj " nr P
`

N
ir´1

M , N
ir
M
‰

, for all r ă j †.
This implies that qnj´nj´1

« qnj for nj P Iij and nj´1 P Iij´1
. Decomposing the sequence

i :“ pi1, ..., ikq according to its running maxima, i.e. i “ pip1q, ..., ipmpiqqq with iprq :“
pi`r , ..., i`r`1

´ 1q and with i1 “ i`1 ă i`2 ă ¨ ¨ ¨ ă i`m being the successive running maxima,
it can be shown that (3.14) asymptotically factorizes for large N as

β̂k

M
k
2

ÿ

iPt1,...,Mu
k
7

ΘN ;M

i
p1q ΘN ;M

i
p2q ¨ ¨ ¨Θ

N ;M

i
pmq . (3.15)

The heart of the matter is to show that all the ΘN ;M

i
pjq converge jointly, when N Ñ 8 to

standard normal variables. This is where the fourth moment theorem is used.

Checking that the fourth moment of each of the ΘN ;M

i
pjq actually converges to 3, reduces to

a combinatorial problem: Expanding the fourth power of the summation defining ΘN ;M

i
pjq , see

(3.14), produces a fourfold product
śk
i“1 ζaj

śk
i“1 ζbj

śk
i“1 ζcj

śk
i“1 ζdj and when considering

the expectation Er¨s then one looks at all possible combinatorial matchings among this list
of ζ variables. It turns out (and towards this a crucial role is played by the logarithmic
growth of the variance (3.13) as well as the exponential time scale N t that it imposes) that
the main contributions comes from three possible matchings: either all the ζa’s will match
with the ζb’s (meaning that ai “ bi and thus ζai “ ζbi for i “ 1, ..., k ) and the ζc’s with
the ζd’s or all the ζa’s will match with the ζc’s and the ζb’s with the ζd’s or all the ζa’s will
match with the ζd’s and the ζb’s with the ζc’s. These three main ways of matching lead to
the value 3 for the asymptotic fourth moment of ΘN ;M

i
pjq . The details of this argument (in

a more general setting than just the pinning model) is the subject of Proposition 5.2 in
[CSZ17b].

†Strictly speaking, for this inequality to be valid uniformly, we need to restrict to values of i P t1, ...,Muk7 :“

ti P t1, ...,Mu
k
: |ij ´ ik| ą 1u, but this is a minor technical point that be easily taken care of.
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Having identified (with the help of the fourth moment theorem) the asymptotic behaviour
of the building block ΘN ;M

i
pjq , we can identify the asymptotic behaviour of the partition

function when β “ βN “ β̂
a

2π{ logN via (3.12), (3.14) and (3.15). Let us remark that
along the way certain re-summations are performed and for this it is important that β̂ ă 1,
a choice that also marks a phase transition.

We can summarise the final result in its general form, which also shows a universality in
the behaviour of marginal models.

Theorem 3.1 ([CSZ17b]). Let Zmarginal
N,βN

be a multilinear polynomial (typically a partition
function) of the form

Zmarginal
N,βN

“ 1`
N
ÿ

k“1

βkN
ÿ

1ďn1ă¨¨¨ănkďN

x1,...,xkPZ
d

k
ź

i“1

qni´ni´1
pxi ´ xi´1q ζni,xi ,

where pζn,xqnPN,xPZd is a collection of i.i.d. mean zero, variance one random variables with
exponential moments and the kernel pqnpxqqnPN,xPZd satisfies that

RN :“
N
ÿ

n“1

ÿ

xPZd

qnpxq
2 grows to infinity as a slowly varying function. (3.16)

Then if βN :“ β̂{
?
RN , it holds that

ZωN,βN
pdq

ÝÝÝÝÑ
NÑ8

Z β̂ :“

#

exp
`

σβ̂X´
1
2σ

2
β̂

˘

if β̂ ă 1

0 if β̂ ě 1
. (3.17)

where X is a standard normal variable with variance σ2
β̂
“ logp1´ β̂2

q
´1.

Condition (3.16), which is essentially derived via a computation of the form (3.13), can
be used as a quantitative criterion for marginal relevance and it is what in statistical physics
is called overlap. The kernel qnpxq may not have a dependence in x P Zd, as that was the
case in the pinning model. One can also possibly consider situations where Zd is replaced by
other lattices or more general sets. In the particular case that d “ 2 and qnpxq “ PpSn “ xq

with pSnq being a two dimensional simple random walk, then Zmarginal
N,β corresponds to

the partition function of a two-dimensional directed polymer and the above theorem can
be used to give a meaning to the two-dimensional SHE, after mollification of the noise
9W ε
pt, xq :“

ş

R2 jεpx´ yq 9W pyqdy with jεpxq “ ε´2jpx{εq and proper renormalization

Btuε “
1

2
∆uε ` β̂

d

2π

log 1
ε

9W ε uε, t ą 0, x P R2 (3.18)

and fully characterise the limit of the solution uε in the subcritical regime β̂ ă 1.
Via a Hopf-Cole transformation hεpt, xq “ log uεpt, xq and a suitable approximation

scheme this approach also leads to a characterisation of the renormalized two-dimensional
KPZ:

Bthε “
1

2
∆hε ` β̂

d

2π

log 1
ε

|∇hε|
2
` 9W ε,
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which, for β̂ ă 1, turns out to be a gaussian, log-correlated field, [CSZ18b].
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