DISCRETE STOCHASTIC ANALYSIS

NIKOS ZYGOURAS

ABSTRACT. These are notes of series of lectures given at National Taiwan University and
the University of Warwick.

Part of the classical stochastic analysis is devoted to the analysis of the so-called
Wiener chaos, which is used to express L? random variables as a series expansion of
iterated Wiener-It6 integrals. Theories like Malliavin calculus, hypercontractivity, Wick
normalisation etc. play a significant role in the analysis of these expansions and associated
gaussian spaces.

From the point of view of statistical mechanics of disordered systems or theoretical
computer science and boolean functions, one is motivated to look at discrete analogues
of Wiener chaos and develop tools that will allow to analyse these discrete structures.
Furthermore, one is interested in scaling limits, which amounts to establishing convergence
of the discrete structure to the continuum objects.

We use the term “Discrete Stochastic Analysis” to describe a set of tools that fall into
this framework. The topics we will expose in these lectures cover

e general Lindeberg principles

e convergence of multilinear polynomials of random variables to Wiener chaoses
e Hoeffding decomposition

e the Fourth Moment Theorem

e elements of Malliavin calculus

e Stein’s method

e discrete versions of general functional (such as Poincaré) inequalities

e applications
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1. LINDEBERG THEOREMS

1.1. LINDEBERG’S CENTRAL LIMIT THEOREM.

Theorem 1.1. Let (w, ;j)1<j<n be an i.i.d. triangular array satisfying

n

Ew,; =0 , > Ew:;=1 and (1.1)
=1
n
2
for every e >0 Z; Elwni; lwnil > €] — 0. (1.2)
1=

Then Z, = wy 1+ Wy, converges in distribution to a standard Gaussian random variable.

Before getting into the proof, let us make a few remarks. First, let us see how this applies
to the standard central limit theorem. In this situation the triangular array is w,, ; = w;//n.
The Lindeberg condition writes as

%Z Efw;; |wil > ev/n] = E[w”; |w| > ev/n],
i=1

which converges to zero by the assumption on finite second moment and dominated conver-
gence.

The Lindeberg condition says that the CLT holds whenever no random variable in the
sum is exceedingly large. So the Lindeberg condition is to be thought as a uniform smallness
assumption. This is in contrast with the Poisson convergence where typically all variables are
negligible except very few ones which are “large”. For example if (w,, ;) are {0,1} — valued
variables with

Pni =Plw,; =1)=1-P(w,,; =0), an,i—’)‘>0 and  max p,; —— 0,
i—1

) ) n—00 1<i<n 7 n—o0
n . . .
then >" | w,; converges, as n — 0, to a Poisson random variable with parameter A (check
this as an exrecise).

Our final remark, which is also a preparation for the proof is that the Lindeberg theorem
can be thought as a perturbation argument. This is to be understood as follows: the CLT is
obvious when (w,, ;) are Gaussian variables (since the sum of Gaussian variables is Gaussian).
Lindeberg’s uniform smallness condition allows to say that for large n the limit that one
has for general i.i.d variables is asymptotically the same if one had Gaussian variables.

Proof of Lindeberg’s theorem. Let f € C(R) and for a triangular array (w,, ;) denote
Tn(Wntseo Wy ) i= f(wml + 4 wmn). (1.3)

We will also consider the i.i.d. sequence of Gaussian variables &, &, ... and consider (1.3)
but with w,, ;,wy, 9, ... replaced with &, ; := n71/2§i for i = 1,2,.... By the definition of weak
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convergence, it suffices to show that
2

_z
e 2 dux,

1
Elflwnt, s wpn)| — — x
[f( ,1 ,)] 00 \/ﬂfRf()
and since this limit is trivially valid for E[ Tl ,fn’n)], it suffices to show that
‘E fn nl)“' nn)]_E[fn(én,la7£n,n)]}m0 (14)

The perturbation argument alluded to in the above remarks will be done through a telescoping
argument, where we will successively change the array (w,, 1, ..., w, ) one by one, until we
change all the array to (&, 1,...,§,,,)- In this way, we can bound the left hand side of
(the “bound” just amounts to simple use of the triangle inequality) by

n
2 ‘ E[fn(én,l yreey én,i—l ) gn,i y Whidtd s wn,n )] -
i=1

- E[fn(fn,l PR fn,i—l ) wn,i ) wn,i+1 PR wn,n )] ) (15)

where we notice that in the above difference there is only a discrepancy at the it coordinate.
We will Taylor expand in that coordinate. For this, let us introduce, for a sequence z, ..., z,,,
the function

hfm(y) = f(T1 s T, Yy Tty ey Ty

The Taylor expansion is as follows:

x x €T 1 €T X
B i(y) = B 4(0) + (01:0) )y + 5 (03hs ) (07 + B3i(w), (1.6)
where the remainder term has the expression
1 (v
Rii) = 5 | (Enea0) (w07t (17)
0
and the following two bounds hold:
o 1 x 1
| R i(w)| < g8 Leo ol = 21" ol (18)
| Ry ) | < | 0ghni ooy = 11" looy” (1.9)

The first bound follows by bounding o3 hm» in by its supremum norm, while for the
second bound we first perform an 1ntegrat10n by parts and write the remainder as

Ria() = =50k + [ 807000 - .

and then bound the 05]12’1- by its supremum norm. Let us introduce the notation

[57 w]z’ = (gn,lv ] gn,i—la wn,i+17 cee wn,n)>
then each difference (|1.5)) writes as

() - bl w»=%ﬁﬁ<>(@%f<0@l (%Eﬁﬂ)@fuuxm%

—{ﬁﬂ()(@%ﬂwn%z @Z%ﬂmm&+mm%»}
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Taking, at first, only expectation over the &, ;, and w, ; variables, which we will denote by
E, and working with the easier assumption that &, ;’s and w,, ;’s have matching first and
second moments (we leave the details in the case of the more general condition as an
exercise), we have

B hlh (6| — B[ i) | = B B () | - B[ RE () |
So is bounded by
Y[ e |
=1

We will estimate the first term, the second one bemg identical. For this, we denote by
Cs :=max{| f"|o0. | /"] 0} and we have by estimates (.8), (L.9) that

iEi[ RE’LW] W) ] i [mln{wnl,6‘w ]
=1
; ‘wn,i’ = 5]

n
=Cy Z E[min{wi,i, Hw, s 3

n

||+ 26|

é"n l)

n
. 2 3
+Cy Z E[mln{wn’i, %\wn’i\ s lwnil < 8]

L n
<Gy Z E[wi,i; |wni| = 5] +£C Z E[wn,i‘Z]
=1 i=1

and the first term converges to zero by the Lindeberg assumption, while the second can be
made arbitrarily small by choosing € small enough. O

1.2. EFRON-STEIN INEQUALITY AND APPLICATIONS. The Efron-Stein inequality is
a discrete version of the Poincaré inequality. The latter states that if f: R” — R is, let us
assume, “smooth” and if & := (£, ...,&,) is a standard normal vector then

Var(f(£)) < E[|Vf(€) |2]

The Efron-Stein inequality is as follows

Theorem 1.2 (Efron-Stein). Let w = (wy,wsy, ...,w,) be a vector of i.i.d. variables and
f:R" — R. Let also T, for i = 1,...,n be the operator which acts on w by resampling
independently the i coordinate of the vector w. This means that

Tiw = (wl) "'7wi—17aji7wi+l’ "'7wn)7

where w; is a random variable independent of wy, ..., w,, but with the same distribution. Then
the following inequality holds

Var(f

l\.')\»—\

)< 5 e[ -]

Proof. The proof follows the same telescoping argument as used in the proof of Lindeberg’s
theorem. Let us recall the notation w = (wy, ...,w,,) and let us start by

Var(f(w)) = E[f(w)*] — E[f(@)]* = E[f ()] — E[f(@) (&) ] = E[f() (f(w) — £(@))]
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Let us now telescope the difference
n

flw) = f(@) :Z (f(Tl"'Tiflw)_f(Tl"'Tiw)>

i=1

and write

F) (£ = £@) = S 7@ (FT -+ Tuyw) = f(Ty T,

=1

and

E| £@) (@) = £@) | = D F@ (AT Tigw) = f(T--Tw) ) | (110)

i=1

Notice now that
F@)(FTreTigw) = f(TyeTiw) ) = (M) Ty Tiw) = STy Tiw) )
which is just a consequence of switching @; and w;. So (1.10]) can be written as

[ 1) (1)~ 1@)] = 2 S E[ (1) = FTo)) (FT1- o) = £ T )|
=1

Applying, now, Cauchy-Schwarz we bound this by

;éE[ (f(w> - f(Tiw))Q]l/QE[(f(T1 e Tiqw) — f(Ty- "Tz‘w))Q]l/Q
-3 2 (s - sme)’]

where in the last step we replaced variables @y, ...,0;_; by wy,...,w;_1. The proof is now
complete. O

We will now present an application of the Efron-Stein inequality to a model that has
attracted much interest in probability and statistical mechanics called first passage percolation.
The model is defined as follows: Consider (w; j)1<; j<n to be an array of i.i.d. random variables
with finite second moment. Then the first passage percolation time is defined to be

Ty 1= min Z Wi 5y
m: (1,1)—(n.n) (i-f)er
where the minimum is taken over all nearest neighbour directed up-right paths from (1,1)
to (n,n).

Proposition 1.3. Assume that (w; ;); j<n 15 a family of i.i.d., non negative random variables
with finite second moments. Then there is a constant C' such that

Var (Tn) < Cn.

Proof. Let us for notational convenience denote by = = (i, 7). Then by the Efron-Stein
inequality we have that

Var (Tn) < fEE[(Tn(w) — Tn(me))Q]. (1.11)
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Let @, be the resampled value of disorder at site x in T, w. By symmetry (and assuming
without loss of generality that w, as a continuous distribution), we have that the right hand

side of equals
;gE[m(w) r(Te0))”] = 5 D[ (rule0) = 7o (Tut0))”s o < ]

Denoting by 7, (w) the optimal path, along which the min in 7,,(w) is achieved, we decompose

Y LE| (7(@) = (o) s wo < @5 | = Y (7w@) = 7a(Ta))*s o < @0s Ly, )]

x

+ Z E[(Tn(w) - Tn(wa))2; Wy S (Dx7 1m¢7r*(w):|

On the intersection of the events that x ¢ 7, (w) and w, < &,, we have that 7, (w) = 7,,(T,w).
This is because if an optimal (min) path in the environment w does not pass through point
x, then it will also not pass through when the environment at x is changed to a larger

value. On the other hand, in any case we have the bound (7, (w) — 7'n(-|'gcw))2 < (@ — wy)?
Therefore, we have that

Z E[(Tn(w) - Tn<wa))2; Wy S a)a:] < 2 E_(a)m - wx))2; Wy S (:]xv 19567r*(w)]

x

< D E|@ Lieny o)
= > |22 | E|Licn, |-

where in the last we used the independence between w and @,. Noting also that E[in] is

independent of z, we obtain the bound
Var(r,) < E[w?] E[Z lmeﬁ*(w)] =2N E[w?]
x

since the total length of the path is 2/NV. O

We should remark that this bound is far from optimal. In dimension two the predicted
order of the variance is Var(7,) ~ n??. This is based on prediction emerging from the
Kardar-Parisi-Zhang universality. The above proposition is due to Kesten [K93| and even
though far from what expected it remained for very long time the best bound until the
improvement of Benjamini-Kalai-Schramm [BKS03|, where it was tinily but importantly
improved, in the case of Bernoulli variables, to N/log N making use of Talagrand’s improved
Poincaré inequalities and averaging ideas. The extension of this bound to variables with
general distributions was done by Benaim and Rossignol [BROS].
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1.3. THE NOTION OF INFLUENCE. In both the Lindeberg theorem and the Efron-Stein
inequality an important feature was the “influence” that a single variable has on the overall
random function. In other words, “how much” does the random function change if we change,
e.g. by resampling, one of its (random) variables.

This motivates the need of putting the notion of influence in a mathematical context. We
thus define

Definition 1.4. Let (w,),es be a family of i.i.d. real valued variables indexed by a countable

set'S and f: R° >R a function of this family of variables. The influence of entry x € S is
defined as

Inf(f) = E| Var(f(w) [ {w,}ye) |

Let us look at some examples:

e Central Limit Theorem. In the CLT we consider a function

f(wla "-7wn) = \}ﬁ Z Wi
i=1

The influence of entry a € {1, ...,n} is easily computed to be 1/n. Thus, each entry has
an asymptotically negligible influence. This is consistent with the idea of Lindeberg,
which says that the CLT should hold as long as all entries have negligible contribution.

e Multilinear polynomials. Multilinear polynomials will play an important role later
on. Multilinear polynomials also go under the name discrete chaos due to their
continuum counterpart called Wiener chaos. For a family of i.i.d. random variables
(wy)zes indexed by a countable set S and a family of coefficients ¢;, I = S, we define

multilinear polynomials as
f(w) = Z Clnwm
IcS  zel

where the sum is over all finite subsets of S and were we understand that all terms in
the product are taken to be different. To compute the influence of an entry y € S, let
us assume that the random variables have mean zero and variance one. We then write

f(w)zwchI 1_[ wm—I—ZcIme.
Iy  zelx#y Iy zel

Since the second term does not depend on w,, and the random variables are independent
with mean zero and variance one, we can easily see that

Var(F() [ {wdosy) = (Der T )
Isy  xel,x#y
and thus that
Inf, (f) i= E| Var(f() [ {whasy) | = 2.
Iy

Actually, in the case of multilinear polynomials we can provide another expression for
influence by noticing that

Sieh=ver (7).

Isy
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This expression can also be recast in the format

Inf,(f) = Var <M>,

Ow,
which offers a more intuitive perspective on the idea of “how much the function f

depends on its y-entry”.

Let us at this point notice that the Efron-Stein inequality can also be written in terms of
influences as

Var (f(w)) < 3 Inf,(f).

a€esS

To see this, we use the fact that if X, X are two independent, identically distributed random
variables, then for any measurable function f it holds that

Var(F(X)) = 2E[ (£(X) — £(%))°]
and then we write that

Var (f(w)) <y %E[(f(w) — f(Taw) )2]

a€esS

a€esS

= E[ Var (f(w) ’ {wz}$;ﬁa>]

a€esS

= 2 Infa(f)'

a€esS

= 2 ;E[E[(f(w) - f(Taw))Q ‘ {wx}m?&a]]

1.4. MULTILINEAR POLYNOMIALS AND HYPERCONTRACTIVITY. Let us formally
define multilinear polynomials as follows. Consider a family of i.i.d. random variables
€ = (&,),es indexed by a countable set S Let PT(S) := {I < S: |I| < oo}, the set of all
finite subsets of S. Consider a (multi-index) function ): Pﬁn(S) — R. Then a multilinear
polynomial of disorder &, associated to v is defined as

U(g) = Z Q,Z)(I)fl, where fl = Hfa, with 5@ = 1. (1.12)
1eP™(S) ael
Assuming that E[{,] = 0 and Var(§,) = 1, it is easy compute the variance of ¥ (&) as
Var(U(9) = oy = 3 (D)™
IeP™™(S), 1%
As we have already said, the influence of entry a € S in this case equals
Inf, (¥) = Y 9(1)*
I3a

Let us now discuss the notion of hypercontractivity. More details on hypercontractivity
can be found in [S98] and for hypercontractivity on Gaussian spaces [J97|. As we saw the
variance of a multilinear polynomial can be easily computed. This is, of course, not the
case for higher (especially non integer) moments, which may and will arise naturally. In
this situation hypercontractivity comes very handy as it allows to estimate higher than two
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moments of a multilinear polynomial in terms of just the second moment. The following
definition of hypercontractivity actually captures this useful property that multi-linear
polynomials have.

Definition 1.5. Let ¥(§) := Zlepﬁn(s) @ZJ(I)&I be a multi-linear polynomial of the family of

random variables & = (&,)aes-
For ¢ > 0, define the operator T, acting on the multilinear polynomial as

1eP™ ()

where |I| denotes the cardinality of the set |I|. For o =1 and 1 < p < q < o0, we will say
that the family & is (p, q, %)—hypercontmctive if

[Wlg < [T, |-
for all multi-linear polynomials W.

The question now is to classify when hypercontractivity holds. We will be mostly interested
in the case of (2, ¢, é)—hypereontractivity. In the simplest case of linear polynomials, that
is of the form a + X where X is a real valued random variable, the above definition of
hypercontractivity can be recast as that a random variable X is (p, q, %)—hypercontractive if

la+ X, <lla+ oX|,, forall aeR.

It is not difficult to see that for ¢ > 2, a random variable X is (2, ¢, %)—hypercontractive if
and only if | X, < oo.

Bernoulli variables which take the value +1 with probability 1/2 turn out to be (2, q, (¢ —
1)1/ 2)—hypercontlractive [B70L B75]. The hypercontractivity bound for Bernoullis can be used
to derive a hypercontractivity bound for general random variables with finite ¢ > 2 moment.

This is the content of the next proposition which is proved in [S98| Proposition 2.20 and
IMOO10] Proposition 3.16.

Proposition 1.6. Let X be a mean zero random variable with finite qth—moment with ¢ = 2.
Then X is (2,q, E%)—hypercontmctz‘ve with o, = 2(q — 1)1/2 X[ g/I1X |2
q

Proof. The proof uses a symmetrisation trick, which then allows to obtain a hypercontractive
estimate via the hypercontractivity of the Bernoulli variables. In particular, let us denote by
X an independent copy of the variable X and it symmetrised version Y := X — X. Since
Y is symmetric, we have that Y has the same distribution as €Y, where € is a symmetric,
Bernoulli +1 random variable.

The goal will be to show that for any number « it holds that

la+ 2, X[ o < fla+ X2
Let us start from the left hand side and get by Jensen inequality that

o+ ginHLq <fa+ quYHLq' (1.13)
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This is not difficult to see since

fj‘a+ (X — X)|” P(AX)P (dX))1

o+ 5, Y] =

Qq

WV
—~ —~
_
—
i h
_l’_
‘»—-
»
|
5
a
5
’5:
>
~
Q=

where in the second equality we used the fact that X has mean zero. Continuing now
from ([1.13) and using the equality in distribution between Y and €Y, followed by the

(2,q,(q— 1)1/ 2) Bernoulli hypercontractivity, we have that

o+ 3, Xlpe <oty YHLQ—HCL+ 2 Y oo

(dedY)
1/2
2 1 2
= —1)3Y
Ha + (g )gﬁ L7?(dy)

<\ o+ @DV
q

and inserting the value of o, = 2(¢q — 1)1/2]

2 1Y [ga \2 2 /2 2 2 /2
(o + Gt XU} < {a® 4 1X0e ] = o+ X1

where we use that by triangle inequality [V 2 < 2] X[ 4. O

| X e/ X] 2 we have that the above equals

We should note that the hypercontractivity constant that appears in Proposition
is not optimal since when ¢ — 1 the constant converges to 2, while one would expect it
to converge to 1. In [CSZI18b| it was shown that the optimal (2 q, *) hypercontractivity

constant for a random variable with finite g-moment does indeed converge to 1 when ¢ — 2.

Having a hypercontractivity bound for a single random variable, the question now is
whether this bound can be “tensorized’ to cover the multi-linear case. Indeed, this is the
case and this tensorization is the subject of the next proposition

Proposition 1.7. Let £ = (£,)4es,C = ((4)aes be two families of (p,q, %)-hypercontmctive
families. Then the concatenated family § L ¢ := {&, }aes | U{C4 taes 15 also (p, q, %)—hypercontmctive.

Proof. Let us consider the multilinear polynomial ¥({ U () on the concatenated family
& U (. We have

|73, 0) (€ 0 O, = [ e Mo ) = HTl/QZ (Z@ Mo ne )|
1,J

where the LY := L?(d¢ d xi) norm is with respect to the product measure of the joint law of
(&,¢). We will now consider successively the expectations, first with respect to the law of ¢
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and use the (p, g, %)—hypercontractivity for the ¢ variables and then with respect to the law
of £ and use the (p, q, %)—hypercontractivity for the ¢ variables. In this fashion we have that

“ (Tl/g‘I’) (€ Q) HLq(dCdf) - H H Tl/@; (ZI] Q_M (v J) fI)CJ HLq(dC)
I3 (G D) g

where we used the hypercontractivity with respect to the ¢ variables. We will now use
Minkowski’s inequality (to interchange the norms with respect to the ¢ and £ variables
and thus facilitate the application of the hypercontractivity with respect to £ ). We recall
that the Minkowski inequality is an integral version of the triangle inequality for L” spaces.
More precisely, if X', two measure spaces with measures u(dz), v(dy), respectively, then
for p = 1, it holds that

([, remmaafoan)? < [ ([ 17 poan)

Applying the Minkowski inequality to ((1.14) and noting that in there ¢ = p (thus allowing
the application of Minkowski on the LY?(d¢) space), we have that (1.14)) is bounded by

[ X (XMoo ne ) g |, =112 (X w0 e )e g
J 1 I J

Applying the hypercontractivity of the £ variables, we bound the above by
T\ 1 _ J oI
DI OICERIL LY Pl P PILCERII:

establishing that for any multilinear polynomial ¥ it holds that
I -J
(T )€ O, < | X e one ] =jeeEuql,
1,J

L(dg)

(1.14)

LY(d¢)’

=

p(dz).

LP(d¢)

LP(d¢ de)

which is equivalent to the definition of (p, g, %)—hypercontractivity by just setting ¥ to be
T,¥. O
1.5. LINDEBERG THEOREM FOR MULTILINEAR POLYNOMIALS. We have the follow-
ing theorem

Theorem 1.8. Let ¢ = ((y)ees and & = (&,)aes be two families of independent ran-
dom wariables with mean zero, variance one and uniformly integrable second moment.
Let W(),W(C) be associated multilinear polynomials as defined in (1.12) and assume that
2 2 . .
oy = Z®¢Iepﬁn(s) W(I)” is finite.
Then for every f € Cg(R) and any € > 0, there exists C, depending not only on € but also
/ /" n 2
on [ f oo [/ Moo [/ oo and oy, such that

ELF ()]~ E[F(¥(0)] | < & + Co, fmaxTnd, (¥). (1.15)

The above theorem was proved in [CSZ17a] and it is a sharp improvement of a theorem in
[MOO10|, where in the latter the Lindeberg principle for multilinear polynomials was proved
under the assumption of finite third moments. The above theorem captures an optimal, in
terms of moments, condition. In [CSZ17a| a more quantitative expression of the right hand
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side on was provided. Moreover, in [CSZ17a] a statement of the Lindeberg principle
for non mean zero variables was also stated.

A direct consequence of the above theorem is that if one has a sequence of multi-linear
functionals W, for which it holds that

max Inf,(V,) — 0,

then the asymptotic distribution of ¥,,(§) and W,,({) are the same assuming that the families
¢ and ¢ have mean zero, variance one (these two conditions can be relaxed to matching first
and second moments) and uniformly integrable second moments.

Proof of Theorem [I.8. The proof of this theorem starts with the same telescoping proce-
dure as done in the proof of the standard Lindeberg theorem. Without loss of generality we
will assume that the index set S is finite and for notational simplicity we identify it with
{1,...,n}. More crucially, we will assume that ¥ has degree ¢ which stays bounded in n, that
is

vE) = > eI
IcS,|I|<¢

This assumption can be justified by a simple truncation argument (exercise). For a function
f € C2(R) we denote

9(3717 7xn) = f(\II(:L’))’

and

h’i;(:y) = g(Cb "'7Cj—17y7§j+17 "'7€n)7 Wlth X] = (Clv "'7Cj—17£j+17 "'7€n)7 (116)

and we have that
F(E) — F(Q) = Y (&) — ().
j=1

We now perform the same Taylor expansion as done in (1.6) and employ the matching
moment assumption to have the estimate

where we recall that the error R, ;(y) of the Taylor expansion, which was also defined in

(1.7), has the form
T Y 3rx 2
Rn,j (y) =35 0 (ayhn,z(t)) (y - t) dtv

and satisfies the bound

: 1 3 3 2 2
| B30 | < min { Z103R5 o Il 10305 1o v |-
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The derivatives of hj(-) are computed as:
(0y'h7) (y) = Fm) (\Il(xl, T Yy Ty ,a:N)> <8y\11(:v1, T Yy Ty ,JJN))
= f(m) (\Il(xlv e i1 Yy X1y xN)) <Z¢(D$I\U})

I35

)= ()’

I35

Defining

we obtain the bound
]Zj: [|R i (G5) ] < ]Zjl [ ], with (1.17)

3
oz
0y = max{]f loos 112 oor 17D} and () := mln{‘g,lwl2}- (1.18)

To proceed with a sharp estimate on ([1.17]) under only the assumption of uniformly integrable
second moments, we need to truncate the random variables in a way that also respects an
orthogonality. The general truncation is described as follows:

Truncation procedure : Fix M € (0,00). We can decompose any real-valued random
variable Y with zero mean and finite variance as

Y=Y +Y7, (1.19)
where Y7, Y™ are functions of Y and possibly of some extra randomness, such that
E[Y ]=E[Y*]=0, Y Y"=0,

Yo <Y1 E[(Y")?] < 2E[YV%1 (1.20)
Y7 <Y 1gyi<my s [(Y7)] < 2E[Y lgysan]-

We postpone the proof of the truncation properties (|1 until the end of the proof of
this theorem Assuming these properties, we proceed by denotlng by X’ the vector X’
from with all its entries truncated as above and also X’ := X/ — X?”. Noting the
elementary inequality for ¢ (defined in )

ola +b) < 2d° + §|b\3, for real a, b,
we have that the bound in can be extended to
E[io(L;(X7))] < 4E[ (L;(X7) - L;(xX77)*| + % E[1L;(xX7)1]. (1.21)
Estimate on the first term in : To estimate the first term in we write
Li(X7) — Ly(x77) = Y o) (X7 + X7 = N1 (x7°

Iaj JEY]
=Y D, (xIHTxIH,
I35 rcr,|r=1

where the second equality comes from a simple binomial expansion of the first term and a
cancellation with the second one. By ([1.20]) the random variables X{, X{Jr, X7, X%Jr, ...
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are orthogonal. Setting ai’i = E[(Xiji)Q] and observing that Jii + ai’i = Var(Xij) =1,
we obtain

E[(L;(X7) = L;(X7)* ] = 2w()?* Y (6D (@)™ (1.22)
Isj rci,|r=1
=Y w1 -(02)) < Y e -a-7)"),
I35 VEY]
where
o= max ol = max E[(X]")") <2 max E[(X]) L] <2mz",

having used ([1.20) and having defined

m2>M = sup E[X21|X‘2M:|
Xe{(i&itiz1

Using the estimate 1 — (1 — Ei)m < |1 7 in (1.22) we have that
3 el - 1,00 )] < 2 5 Doty
Jj=1 J \I3j

<2mz ™ 2 p(1)?
I

where we recall that £ is the degree of W.

Estimate on the second term in : For the second term we will use hypercon-
tractivity bound from Propositions [T and - This implies that

HLj(XJ s < (Bs) IL; (X7 7))z, (1.23)
where

jf
By = 273 e XLl
i< |X7 ],

Since for every i we have that \Xij_| < \Xf\ 1|X4-_|<M, by (L.20), we have

]1/3 < (msM)1/3

1% [l < E[1X7" 1 3

{1x7|<M) ’
with m?M being the maximum truncated third moment of variables §;,(;, ¢ = 1. On the

other hand, again by ((1.20)), we have that for every i

IX7715 = 1715 = 1X7 15 = B[] = BN = BN — 2E[(X)* L x50 0
=1- 2E[(Xg)21ﬂXg|>M}] >1—2m;™,

hence
<M)1/3

By < 2V/2 (m;

A/1—2m7M
2)

provided m_;, < 4, which can be achieved by choosmg M large enough, thanks to the
uniform mtegrablhty of the second moment. Therefore, (1.23) yields

3/2

< 4(m§M)1/3 :

E[|Lj(Xj*)|3] 64" (m <M)£E[Lj(Xj’)2]
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Note that, since E[(Xij*)2] < E[(Xij)Z] =1, we have

E[ ] S TTENXIT)?] < Y o) = Tnt;[¥].

I35 el I35

Therefore

i E[1;(x)P | < 64° (m5™)" (max /Inf;[¥] )ZEw

=1 7157 (1.24)
<64’ (m?M)Z (max \/Inf;[U] ) Z (I

|[I|<e

Proof of truncation properties (1.20). Let M > 0. If E[Y1(_pcy<pny] = 0 we

are done: just choose Y := Y1 p<y<py and YT := Y — Y. If, on the other hand,
E[Y1(_p<v<my] > 0 (the strictly negative case is analogous), we set

T :=sup{T € [0, M]: E[Y1{_pcy<r] <0} €[0,M].

Note that E[Yl{—Msst}] > 0, because T' — E[Y'1( j/<y<py] is right-continuous. If
E[Y1 _nggf}] = 0, defining Y~ := Yl{—MsYgT} and Y := Y — Y, all the properties
in ([1.20]) are clearly satisfied, except the last one that will be checked below. Finally, we
consider the case E[Yl{_nggf}] > 0 (then necessarily T' > 0). Since E[Yl{—M<Y<T}] <0

by definition of T', we must have P(Y = T) > 0. Then take a random variable U uniformly
distributed in (0, 1) and independent of Y, and define

Y=Yl yayery + Yy—rusy),  Where  oi= €01

Setting Y* := Y — Y, all the properties (1.20) but the last one are clearly satisfied.
For the last property, we write

E[(Y")?] = E[(Y ")’ Lyisan] + E[Y ) Lyi<an] = EV gy man] + ELV ) Ly <an ],

because Y = Y on the event {|Y| > M}. For the second term, since 0 < Y < M
on the event {|Y| < M}, we can write (Y 1)> < MY (no absolute value needed). Since
Y™ =Y 1jy|<my has zero mean by (1.20 -, we obtain

E[(Y ") 1y 1ean]) < ME[Y "Ly ican] = ME[(Y " + Y 7)1y <]
= ME[Y1yj<an] = M (—E[Y 1y an]) < EVAyi=an]

where we have used the fact that E[Y] = 0 by assumption, and Markov’s inequality. The
last relation in ((1.20)) is proved. O

2. FOURTH MOMENT THEOREMS

A fourth moment theorem roughly says that certain projections of square integrable
functions of many independent variables converge to normal distribution if their normalised
fourth moment converges to 3. An important such class of function are multi-linear functions
of independent variables.
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2.1. FOURTH MOMENT THEOREMS IN THE 20" CENTURY. Fourth moment theorem
turn out to have quite a long history dating back to the 1960s, although it seems that they
were rediscovered in the 21 century. For quadratic forms of gaussian variables it seems that
a fourth moment theorem dates back to Sevast’yanov [S61] and then extended by Rotar’ in
[R74] to the case of i.i.d. variables.

Proposition 2.1. Let § = (&;);>1 be a family of i.i.d. standard normal random variables and
consider the quadratic polynomial ¥, (§) = X1 <; i<y, ¥uli, 1)&;, associated to a symmetric
kernel 1,,. The multilinearity assumption forces the condition 1 (i,i) = 0 for all i. Denote by

op = Var (U(€)). If
SE[(v,0)' | —3 (2.1)

then Jillfn converges in distribution to a standard normal.

Proof. We will denote by m,, = (2r — D)!! the (2r)”* moment of a standard normal. Let
us for simplicity also denote by £ to be just the vector (i, ...,§,) and by ¥, the matrix
= (¢n(i,j))1<i7j7s”. We can then write the sum Zlgi,jgn Py, (7, 5)&;€; in the matrix

form £¥,¢". Since ¥, is symmetric it can be diagonalised as ¥,, = U, diag(peq, ..y fhy) U,
where diag(pq, ..., pt,) is the diagonal matrix with entries the eigenvalues of ¥, and U, is
the associated orthogonal matrix. We then have that

EW,, & = U, diag(ug, ., tt) Un €' = (EU,,) diag(pay, ooy 1) (€U,) "

Since £ is a standard normal vector and U,, is orthogonal, the vector £U,, is also distributed
as a standard normal vector, which we denote by (Y7,...,Y;,) and then we have that

n

Ew, & =13 Y

This is now in the standard central limit theorem form of a sum of independent random
variables. Lindeberg’s condition in Theorem (1.1]) is implied by the condition

i4 D (2.2)

i=1
We will now check that the latter condition is satisfied if (2.1]) holds. To this end, we first

compute the variance

n

n
2
Unzvar(Z:ui i Z,LLZV&I‘ Z m4_1 _2Z:U'Z
i=1 i=1 =1
and the fourth moment

E|(cw,¢")'| - [Zu” U= X g B Y VYY)

1<i4,j,k,0<n
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which by considering all possible matchings of indices 1, j, k, £ is written as

[(5 @, &) ] msZuz +3mEY it + 6my > g, (2.3)
i#j ik jrkAi

3 4
+ dmgm, Z Hi fbj + 1Mo Z Hoi g Foge fog
1#] 1#JERALAT
We will use the fact that ¢ (7,7) = 0 implies that the trace of matrix W¥,, is zero and thus
Z?:l Ky = 0. ThUS,

> umjukue=(2m Zm—32um]—6 Do mimmk =4 Hiny

it jEkAlE j i#j i kAl i#j

— _Z“Z —SZMZMJ —6 Z mujui—i"zlﬁﬂj

i#] i1#j#k#1 1#]
and inserting into ([2.3) we have that
T4 2
E[(f‘I'né )] (mg—1) Zm+3 mi—1) Y piui +6(my—1) > papup
i#] 1#jEkFEL

+4(mgmy — 1 Z Wi 1
i#j

Removing the inequality constraints in the above summations, we can write (2.3)) as

e (62 ")'] = ms — 1) Suf+ 30md - D (Sd)* - L]
ORI YD VISR WA WL ST WER OV
+4(m6m2—1){zm ZM‘ZW}

and using again the fact that )., ; = 0 we have that for a specific constant C # 0 (which
can be explicitly computed)

E|(ew,¢N)'| = C Xt +3 (@) = C Pl 430
Dividing both sides by cr we have that

Zm— [swna)]

which converges to zero, as n — o0, by and thus Lindeberg’s condition (2.2) is
satisfied. O

The following theorem fourth moment theorem for generalized quadratic forms was proved
by de Jong [dJ87]

Theorem 2.2. Let (w;);>1 be a family of independent, real variables and w(j)(, ) be a

family of Borel measurable functions on R? and consider the generalized quadratic form

Sowwwy) = D Wy, (2.4)

1<i,j<n 1<i<j<n
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where, denoting by W, ; = (]) (wi, w;) + w( )(wj,w ), we assume that

E[W;;|wi] =0, a.s. forall  i,j<n. (2.5)
Denote by J,21 the variance of W, (w) and by 0 j the variance of W; ;. Then, the assumptions:
(a) : 2 0, (2.6)
) 0121 lr%aél 1<j<n0 M oo .
1 4
) E[W@] 8 27

n

imply that C%Wn(w) converges in distribution to a standard normal random variable.

Let us make some remarks on the assumptions of the theorem.

e Assumption ([2.5)) is satisfied in the multilinear case when w; have mean zero.

e Assumption (2.6) is sort of a Lindeberg “uniform smallness” assumption. It says that
no row in the array (W; ;)i<; j<n has a dominant contribution to the total variance.
For example it rules out situations of the form W, (w) = >3, j<n w1w;, where clearly
the asymptotic distribution is determined by w;.

e The necessity of the fourth moment condition is seen by situation like >}, ;_ j<n Wik;
where even though the Lindeberg condition (2.6 is satisfied the asymptotic distribution
is chi-square. This can be seen by writing

2 Z ww; = (Zwi)Q — Zw? A (Gaussian)2 + lo.t.

1<i<j<n
The proof of Theorem [2.2]is based on the central limit theorem for martingales:

Theorem 2.3 (Martingale central limit theorem). Let (X,,),,>¢ be a sum of martingale
differences X,, = >, | Y; with respect to a filtration {F,,: n = 0}, satisfying

E[ |Yi|2+25] < o0, for some ¢ € (0,1].

Let

ol = E[Yi2|]:i,1] and s> Z

Then, the central limit theorem holds for %Xn, if the following two conditions hold:

n

(a) = ) E[[Vi*™*] —0, (2.8)

n—o0

=1
(b) [| L iy —1|1+‘5] ——0, (2.9)

In [HB70] conditions (2.8)) and (2.9) are actually translated to quantitative bounds on
the speed of convergence to the normal disitribution.
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The proof of the Fourth Moment Theorem [2.2] proceeds by writing the generalized bilinear
form W, (w) as a sum of martingale differences as:

n
Wo(w) = Y Ujps with U= 2= >0 Wi
j=1 1<i<y

and then applying the Martingale Central Limit Theorem with Y}, := Uy, and § chosen
to be equal to 1. The idea is similar to that of the proof of Proposition [2.1] except that it
does not make sense to employ a diagonalisation argument since on the one hand we do not
have a quadratic form and on the other hand if the random variables are not normal their
distribution will change after and orthogonal transformation. However, we can still proceed
by expanding the fourth moment of W, (w) = Zzzl U, ,, and after grouping appropriately
terms together, it turns out that conditions and imply conditions and .

The computations required for the proof of Theorem [2.2]in the generalized quadratic case
are quite more complicated than that of Proposition and we refer the reader to [dJ87].
However, if we reduce ourselves to the standard quadratic case, then we can use Lindeberg’s
principle for multi-linear polynomials as of Theorem [I.§ to reduce to the situation of a
quadratic forms of normal variables and thus get ourselves into the context of Proposition

21

Theorem [2.2| was extended by de Jong [dJ90] to the case of what is known as homogeneous
sums. To define this notion, let us consider a family random variables (w;);>, and denote
by F; the o-algebra generated by {w;: i € I} for I < {1,...,n}. We consider a family of F-
measurable random variables {Wl(n)} 1c{1,....,n} With the properties (for notational convenience
we will drop the superscript (n)):

E[W;]=0, E[W}]=:07<co, E[WW,;]=0 ifl=+J

A d-homogeneous sum associated to the family (WW;) and random variables (w;) is defined as
W, (w) = Z Wr.

Ic{1,..,n}
[|=d

The fourth moment theorem for homogeneous sums reads as

Theorem 2.4. Let W, (w) be a sequence of homogeneous sums of fized degree d and let
o2 :=Var(W,(w)) and for I c {1,...,n} let o7 := Var(W}). Suppose that

1 2

a — max » o7 —— 0,
1

(0) —E[ W (w)'] —3

n

then %Wn(w) converges in distribution to a standard normal.

The proof of Theorem [2.4] follows the same spirit as that of the fourth moment for
generalized quadratic forms: on writes the homogeneous sum as a sum of martingale
differences and then expands the fourth moment and regroups the summands so that the
assumptions of the Martingale central limit theorem are satisfied.

We would like to close this subsection by commenting on how the proof of the martingale
central limit theorem goes about. It makes use of the useful idea of embedding theorems,
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whose origins go back to Skorokhod and often called Skorokhod embedding theorems. Theorem
2:3] makes in particular use of a version of the embedding theorem for martingale differences
due to Strassen [S67| (the original Skorokhod embedding was related to i.i.d. variables):

Theorem 2.5. Let (X,,),>1 be a sequence of random variables such that, for everyn > 1,
1t holds that

E[X2 | X, 1, X1 ] < 0, and  E[X,|Xp 1,0 X1] =0, as.

Then there ezists a Brownian motion B(-) and a sequence of nonegative stopping times with
respect to the o-algebra generated by the Brownian motion, such that a.s.

2 Xi=B(T).
i=1 i=1
Moreover, it holds a.s. that
E[T, | Fn1] = E[X2| Xn1,-n X1 |-

2.2. HOEFFDING’S DECOMPOSITION. Homogeneous sums are important as they form
a sort of Fourier basis for expansion of square integrable random variables. In particular, we
have Hoeffding’s expansion [H4§]:

Theorem 2.6. Let (w;);>1 a family of independent random variables and let W be a square
integrable random variable measurable with respect to {w,}qes indexed by a finite set S. Then
W can be decomposed uniquely as

W= > Wy,
IcS

where {Wr}ics is defined as above, in particular is Fr-measurable,
E[W;|F;] =0, a.s. unless I < J,
and E[W;W;]=0,  ifl#J.
Proof. We will use the notation
E[W[I]:=E[W [{wa}aer] and Wy:= > (-7 E[W 4]
Acl
We can represent W as > ;_g W;. Indeed, we have that

S W= 3 S )E WAl = S E[wA] S (-

IcS IcS AcI AcS DA

=W+ > E[wA] Y (-l
AcS, A#S IDA
=W+ > E[WI]A](-1+ 1)
AcS | A#S
=W
We will now show that if I is not a subset of J then E[ W;|F;] = 0. To see this, let us
denote by C := I n J and assume that I\C' # ¢J. Then

E[W; | F] = Y ()M E[E[wa]| 7] = X (0T E[wianc] 210)
Acl Acl
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The second equality is because if A = A; U Ay with Ay < C and Ay < I\C, then the
conditional expectation E[ | A] will fix the variables in A = A; U A, and average over the
rest, but then the expectation E[~ | J ] will average over the variables which are not included

in J and in particular it will average the variables in A5. So the only fixed variables will be
those in A; = A n C. We can continue writing (2.10) as

Z (_1)|I\—|A1|—\A2|E[W‘A1] _ 2 (_1)|I|—|A1\E[W’A1] Z (_1>|A2\,

AcC,Ay,cI\C AcC A,cI\C

and the last sum equals (—1 + 1)'1\0‘ =0if I\C # .
From this fact, the orthogonality relation

E[W/W;] =0, ifI=#J,

follows easily by conditioning over either I or J. Since I # J we cannot have both I < J
and J < I and so one of the two conditional expectations will be zero. O

2.3. FOURTH MOMENT THEOREMS IN THE 21 CENTRURY. In the 21% century
the fourth moment theorem was rediscovered in the setting of Wiener chaos by Nualart
and Peccati [NP05]. The method used in [NPO5| was actually the continuous analogue of
de Jong’s proof, which boils down to writing the iterated It6 integral as a martingale and
then employing the Dambis-Dumbins-Schwarz theorem (instead of Strassen’s theorem
which says that a continuous martingale (M,),~( is a time change of a Brownian motion,
Le. it can be written as M; = By, , for some Brownian motion, with (M), being the
quadratic variation of M,. We will not expand on this approach, which parallels very much
the approach exposed earlier but we would rather sketch new approaches that the rediscovery
of the fourth moment theorem motivated via use of Malliavin calculus and Stein’s method.

BAsSICS OF STEIN’S METHOD. Let us start with the basic principles of Stein’s method,
which is a quantitative and robust method to prove central limit theorems. The starting
point of Stein’s method is that the normal distribution on R is the only distribution that
satisfies the equation

E[2f(2)] =E[f(2)], (2.11)

for every f € C’g (R). The fact that the normal distribution satisfies the above equation is an
easy consequence of integration by parts. The idea of integration by parts will actually play
an important role in what follows.

Stein’s equation is the equation that given a (bounded) function h, asks for an a.e.
differentiable function f such that

h(z) —E[M(Z)] = f'(z) — zf(z),  for z€R,

where Z is a standard normal random variable. The fact that this equation has a solution,
together with certain bounds is the content of what is called Stein’s lemma, which we will
not present here. In practice, one is interested in choosing h(x) to be the indicator function
1(—c,2)(), so that for a probability distribution x on R, one can estimate

H(—o0,2) —P(Z < 2) = j (L opm) () = E[L(_op)(2)]) pdar) = j (F'(2) — of (@) (da),
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so, in particular, we have that the total variation distance between a random variable X
with distribution p and a standard normal Z, which is defined as

2dry (X, Z) := sup {E[u(X) —u(2)]|: Julo < 1},
can be estimated as
drv (X, Z) <Sl;p\E[f'(X)—Xf(X)]\, (2.12)
where, as a consequence of Stein’s lemma and the estimates therein, the supremum is taken

over all piecewise continuously differentiable functions f, which are bounded by +/7/2 and
their first derivative is bounded by 2.

Basics oF WIENER CHAOSES AND STATEMENT OF THE FOURTH MOMENT THEOREM ON
WIENER CHAOSES. Let us start by defining the notion of White noise on R".

Definition 2.7. White W (-) defined on an abstract probability space (Q, F,P) is a Gaussian
process on Rd, such that

o for every A c Rd, the random variable W (A) is distributed as a normal with mean
zero and variance the Lebesque measure of A, denoted by |A|,

o for A, B < R? such that A~ B = &, the variables W(A), W(B) are independent,
o for Ay, Ao, ... disjoint Borel sets of R? it holds a.s. that W(UiZ 1 Ay) = D2 W(A;).

Given a symmetric function f in Lz((Rd)q), that vanishes on the diagonals we define the
iterated Wiener integral as

I(f) = j(Rd)q f(zy, oz )W(dey) - - - W(dzy)

In the case that d = 1, these are the usual iterated It integrals.

It is known [J97, NO6] that any function F € L*(P) has a unique expansion of the form
0

F=>Y"1,f,) (2.13)
q=0

This is called the Wiener chaos expansion. The space spanned by the ¢-fold iterated integrals
{1,(f): fe Lz((Rd)q)} is called the homogeneous chaos of order q.

Let us notice that iterated integrals I,(f) are the continuous versions of the homogeneous
multilinear polynomials considered in previous sections. In particular, a homogeneous

multilinear polynomial
V(w) = > (D] Jw.
]C(Zd)q xel
with (Wx)xezd being i.i.d. standard normal can be seen as the iterated Wiener integral

1

p o wext(:nl, . CUq)W(dxl) . W(dxq)

by setting w,, = \C’m\_lﬂ W(C,), where for z € Z* we denote by C,, the unit cube of R? with
“bottom-left” corner at z € Z% and weXt (71, ..., z,) the symmetric, piecewise constant function
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on (RM)* which takes the value ¢({z, ..., Tq}) in Cp, % -+ Cy,- Moreover, the Wiener chaos
expansion ([2.13)) should be viewed as the continuous analogue of Hoeffding’s decomposition.

The Nualart-Peccati theorem [NP05| is as follows:

Theorem 2.8. Consider a sequence Z, := I,(f,) of random variables in a fized Wiener
chaos of order q, such that Var(Z,)) — 1, as n — oo. Then Z, converges in distribution to a
standard normal if and only if E[Zf{] — 3.

We should note that this type of theorem can be extended to random variables, which
belong to mized chaoses of bounded order.

We will present here a more quantitative version of this theorem due to Nourdin and
Peccati [NP09|. Even though this theorem is stated for homogeneous chaoses of order 2, it
can be extended to homogeneous chaoses of general order.

Theorem 2.9. Let (Z,),>1 be a sequences of random variables belonging to the second
homogeneous Wiener chaos and Z be a standard normal random variable. Then

3+E
iretzn2) <2 izl + 21D e |

In particular, we see that if the sequence Z,, belongs to a fixed Wiener chaos and is
such that the second moments converge to 1 and the third moments to 3, then the central
limit theorem is valid and the above theorem provides also information on the speed of
convergence.

BAsics OF MALLIAVIN CALCULUS. We will now present the essential notions of Malliavin
calculus in the simplest case of iterated Wiener-It6 chaos expansions. These notions can be
generalised to abstract Hilbert space settings. To keep things more direct we will not pay
attention in detailing specific convergence assumptions and functional spaces and simply
assume that things make sense in some L? space, which will be easy to identify.

We start with the basic notion of Malliavin derivative, which is denoted by D. If
F € L*((, F,P)) has the Wiener chaos expansion F = Yg=014(fy), then DF can be

identified as an element of LQ(Q X Rd) defined as

= S ALy (fy (o)), (2.14)

q=1 n—1

For example, if
F = | fanaa)W (o)W (dey)
R
then
D,F = QJRf(x,a)W(da:) = JRf(x,a)W(dx) + JRf(a,x)W(dx),

where the last equality just highlights the fact that the factor 2 (or in general the factor ¢
in (2.14)) comes from the symmetry assumption on the kernels f,. The Malliavin derivative
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D satisfies a chain rule: If ¢: R” — R is a smooth function and Fy, ..., F}, € LQ(P)7 then
D¢(F, ..., F,) = > 0;¢(Fy, ..., F,) DF;. (2.15)
i=1

There are two more operators of central significance: The one is the adjoint operator of
D (also called Skorokhod integral), which is defined via

E[Fé(u)] = E[(DF, U>L2(Rd)].
An easy exercise shows that if F'= > o 1,(f,), then
SDF = = > qI,(f,). (2.16)
q=0

This motivates the second operator of significance

L= —Zqu,

q=0

where J;, denotes the projection operator on the qth—homogeneous Wiener chaos; that is, if

F =3 5014(fy); then J F := I,(f,). So relation (2.16) can be concisely written as
5D = —L. (2.17)

Finally, we note that L has an inverse operator
-1 -1
L™ ==>q"J,
q=1

This is an inverse to L since it can be easily verified that
LL™'Z =7 —E[Z], forany Ze L*(P). (2.18)

The crux of the matter of the Malliavin calculus in relation to central limit and fourth
moment theorems is the product rule formula, which reads as

O(Fu) = Fo(u) — (DF,u) 2, (2.19)

R’

which together with the chain rule (2.15)) leads to the following integration by parts
formula, which is to be thought of as an infinite dimensional version of the Gaussian
integration by parts formula :

E[Ff(F)] = E[f(F)(DF,—~DL™'F),> & ) (2.20)

for F e L2(P) mean zero and f: R — R smooth. Indeed, this can be easily verified:

! -1 / -1 -1
E[f(F)(DF,-DL F>L2(Rd)] = E[{f'(F)DF,-DL F>L2(Rd)] =E[{Df(F),-DL F>L2(Rd)]
= E[f(F)(-1)0DL™'F| =E[f(F)LL™'F]
=E[f(F)F],
where the sequence of equalities follows: chain rule (second equality), definition of ad-

joint operator (third equality), property (2.17) (fourth equality) and property ([2.18)) (final
equality).

F)
F)
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APPLICATIONS OF STEIN’S METHOD AND MALLIAVIN CALCULUS TO FOURTH MOMENT
THEOREMS.

Theorem 2.10 (Theorem 3.1 and Proposition 3.2 in [NP09]). Let Z be a standard
normal variable and F € L*(P) with E[F] = 0. Then

dpy (F, Z) < 2E[<1 —(DF,=DL™"F) ;2 e )2] "
Moreover, if F'= 1,(f), then
e[ (1—(DF,~DL™'F) 2 )2] €[ (1= 4DF |22 )2]

Proof. By we have that
dry(X,Z) < Sgp\E[f'(X) ~ Xf(X)]

)

where the supremum is over functions f which are bounded by 4/7/2 and with first derivative
bounded by 2. By the integration by parts formula we can write

E[f(X) - Xf(X)] = E[f’(X) (1—(DF,~DL™'LF) 2 ) ]

and by Cauchy-Schwarz this is bounded by

1/

E[f’(X)Q]l/QE[ (1—(DF, —DL_lLF>L2(Rd))2] ’ < 2E[ (1-(DF, —DL‘lLF>L2(Rd))2]1/2,

if |f'|., <2, giving the desired bound on the total variation distance.
Now, if F' = I,(f), then L'F = qillq(F) — ¢ 'F and so the second claim of the
theorem follows immediately. O

Lemma 2.11 (Multiplication formula). For two functions f € Lz((Rd)p) and g €
L2((RN) we define the contraction to be

(f ®r g)(xl,...,xpﬂ_%) = J

(Rd)T f(xlv o Lpps Yty "'7y7“) g(xp—r-i-h w0y Tptq—2r5 Y1 "')yr) dyl e dyru

and we denote by f®,g its canonical symmetrisatiorﬂ. Then the product I,(f)I,(g) admits
the Wiener chaos decomposition

L0 = 2 (1) (£) - 7810 (221

Let us just see how this formula writes for p = ¢ = 1. In this case we have that

(f ®09) (x1,22) = f(z1)g(z2) and  (f&og) (w1,22) = %(f(v’ﬂl)g(@) + fx9)g(xy))

and

(f®19) = Jf(y)g(y)dy-

ffor a function f(x1,...,z,,) we define its canonical symmetrisation to be ), %f(xa(l), s T (ny), With
the sum running over all permutations



26 N.ZYGOURAS

Then
L)1 (g) = L(f®29) + Io(f ®1 9)

jf 951 $2)W(d»"31 d952 ff
{z1#z0}

To understand what is behind this multiplication formula, it is instructive to view it in a
(very) simple discrete setting. Suppose that we have two discrete, homogeneous chaoses of
degree one:

L(f)=) f@w, and  I(g) =) g(x)w,

where (w,)zes is a family of i.i.d. mean zero, variance one random variables. Then we can
write the product I1(f)I;(g) as
I g) = Z f(x)g(y)wxwy
x’y

The issue now is that when = = y the term ) f(z) g(z)w? is not a mean zero variable and
homogeneous chaoses, of degree greater than zero, are supposed to be mean zero. To remedy
this, we can centre and write the above as

Ii(9) = X F(@)g(y) (wowy — Elwawy]) + Y f(2)g()E[w}]
= Zf(x)g(y> (wmwy - E[wxwy]) + 2 f(a:)g(x)

where in the last step we used the assumption that E[w?] = 1.

Proof of Theorem 2.9 For conciseness we will denote | - | and also denote

‘ = H ) HLQ(Rd)
Z,, for generic n, by F = I,(f) for some f € L*((R%)?), since it is assumed that Z, belongs
to the second homogeneous Wiener chaos. By Theorem [2.10] we need to estimate

E| (1 $IDFIP)*| = 1~ E[IDFI*] + {E[IDF|| (2.22)

and so we need to compute the moments of DF'. Using the multiplication formula (2.21)),
we have that

F? = L(f)* = L(f ® f) + 41,(f ® [) + E[F?], (2.23)

and from this we have that

L(F?) = —4I,(f ® f) — 8L,(f ®, f). (2.24)
We also have that
D,F = 2I,(f(-,a)), for every a € R,

and using again the multiplication formula we have that

(DuF)’ = 10, 0)* = 4B 0)® () + 1 [ [ Flz,0)* doda
= 41,(f(-,a) ® f(-,a)) + E[|DF|?] (2.25)
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since

E[|DF|*] = 4E” (ff(x,a)W(dx))Zda] - 4JE[(ff(x,a)W(dx))2] da
= 4fff(x,a)2dxda. (2.26)

Let us now compute E[| DF||*], which, to start with, we will write as E[| DF||*(DF, DF)]
and we will use the product rule (2.19)) to write

E[|DF||'] = E[|DF|*(DF, DF)] = E[|DF|*(F §DF — §(FDF))]
and using FDF = $D(F %) from the general chain rule (2.15) we have that
1
E[|DF|") = E[|DF|*(F 6DF — S6(D(F?)))].

Using now that DF = —LF = 2F, with the second equality since F' belongs to the second
homogeneous chaos, and also using that § DF 2 _LF 2, we get that

E[|DF|"] = 2E[|DF|*F?] + %E[|\DFH2L(F2)].

Inserting into this formula relations (2.23) and (2.24) and performing a simple algebra,
taking also into account the orthogonality between chaoses of different order, we obtain that

E[|DF|'] = E[|DF|*F?] + E[ F* [E[|DF|?]. (2.27)
The penultimate step is to make use of the following formula

E[F*|DF|?] = H%E[FS“],

which is valid for every F'in a homogeneous chaos of order ¢ and s € Z, and apply to the
first term in (2.27)) with ¢ = 2 and s = 2 to get that

E[|DF|*] = %E[Fﬂ +2E[ F?]%. (2.28)

Inserting (2.26) and (2.28]) to (2.22) and after a simple algebra we have that

E|(1- 3IDFI*)?| = é(E[F4] —3) + (E[F?] - 1) (%E[F2] = g)
2
< é\E[F‘*] — 3| + |E[F?] - 1] E[Fz]”’

which completes the proof by inserting this estimate into the estimate of Theorem [2.10] [

3. APPLICATIONS TO DISORDERED SYSTEMS

We will now show some applications of the previously discussed Lindeberg principles and
fourth moment central limit theorems in the study of scaling limits of disordered systems.

The discussion here is based on works [CSZ17al, I(CSZ17b, [CSZ18al [CSZ18bl, [CSZ18+].
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3.1. DISORDER RELEVANCE. Let us start with a description of the notion of a disordered
system. Consider an open set Q = R? and define the lattice 5 := (62)? A Q, for § > 0 which
is the support of a “random field” o = (0,)ge , whose law is determined by a probability

measure, which we denote by Pre&f. Typically the field takes values o, € {0,1} or {£1}. Even
though it also sensible to consider fields that take non binary values, currently the treatment
of such fields is out of the scope of the methods we will describe.

Some examples of such fields can be:
e Random walks. In this case, 4 is typically z4 x {0,1,..., N} for N > 1 and ¢ is
really to be thought of as being 1/N. The field o = (0,,) _ . ¢ in this case is
One = Lis —zy, Where (S,),>1 is the trajectory of a random walk, which may or may

not be simple. Pre; represents the law of the random.
o Ising models. In this case, 5:= (6Z) ~Q with & representing the mesh of the grid
on Q ¢ R and o, € {+1}. The measure Preéf is the Ising measure given by
1
Zref

é

Pref(a_) _ I iy Uwoy,

8

e

where x ~ y means that sites x,y are nearest neighbour, i.e. connected by an edge
of Zd, J is a coupling constant, which represents the strength of interaction between
neighbouring values of the filed o and

ref I OaC
Zazze e,
ag

is called the partition function and it is the normalisation needed to have a probability
distribution.

A disordered system arises when on the lattice s, on top of the reference field o, there
exists an additional randomness, w := (w,),e , modelled in the form of an i.i.d. collection,
which typically is assumed to be of mean zero, variance one and having exponential moments
(although it is sensible to relax the exponential moment assumption and consider heavy
tailed fields, in which case new phenomena often arise, see for example [DZ16]). We will call
the randomness w disorder and we will denote its law by P and expectation with respect to
it by E.

Given a realisation of the disorder w the disordered model is defined as the following
probability measure P¥ ., ;, for the field o = (0,)e

Zgge 5 (:sz +h)gz

e i
PY 5,(0) = P (o), (3.1)
57/87 Zwé;ﬁ’h §
where now the partition function is defined by
Zwé;ﬂ,h = reéf[eZwe é(ﬁwz+h)0'z] . <32)

and we remark that in this case it is itself a random variable, depending on the realisation
w.

A question of central interest in statistical physics but often very poorly understood is

Q. “ does an arbitrarily small amount of disorder change the statistical mechanics properties
of the reference field ? 7
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In the 70s A.B. Harris [H74] proposed the following criterion, which is known as Harris
criterion:

Harris criterion: If d is the dimension and v is the correlation length exponent of
the reference model, then if v < %, then the model is disorder irrelevant, meaning that
sufficiently small amount of disorder is not sufficient to change its statistical properties. If
v > %, then the model is disorder relevant, meaning that any arbitrarily small amount of
disorder does change its statistical properties.

Let us first define what we mean by a correlation length exponent here: Consider the
(what is called) k-point function to be:

1/1§k)(x1, ey .Tk) - Ereéf[le . O-mk]'

Then the correlation length exponent can be defined as the exponent v such that

@ "y, ) o W (@, ). (3.3)
where the limit is to be thought of as pointwise, although stronger forms such LQ(Qk) will
be needed for the framework we will develop.

Even though very simple, actually rigorously verifying the Harris criterion in concrete
examples is often difficult and requires a careful case by case analysis (although one can
transfer some intuition and a set of “general principles” between different problems). In
[CSZ17al we proposed a different point of view for the Harris criterion using as a platform the
Lindeberg principles for multilinear polynomials and focusing on the existence of non-trivial
(i.e. random) scaling limits of the partition functions when (3, h are suitably scaled to zero
as & — 0. The question can be phrased as:

Q. Consider the partition function of a disordered model as defined in (3.2)). Can we
choose B = Bs and h = hg, converging to zero as § — 0, such that Zw5;567h6 converges in

distribution to a random (i.e. finite and not constant) random variable Zgﬁ 57

Here W denotes white noise on R? and we request that the limit should be a non trivial
function of an underlying white noise.

We will now describe how we can answer this question using the Lindeberg principle for
multilinear polynomials. Although it makes sense to consider a general value of h, we will
for the purposes of this exposition restrain ourselves to the choice of h = —A(f3), where

A(B) := log E[¢"“*]. We denote the partition function associated to this choice by Z% .8

The starting point is to write the partition function in the form of a multilinear polynomial.
We do this via what is called in statistical mechanics high temperature or Mayer expansion,
which goes by writing

w ref e(ﬁwz—k(ﬁ)) -1
795 =B [[ 0+B0,()|,  where (= — (3.4)
€ 5
and then by expanding the product and interchanging the (finite) summation with the
. ref
expectation E™_, so that to have

0

Zap=1+ 28" X Elow o]

k=1 Tq,..,.TLE §

Cayo

K3

.
Il >
—_ :
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where the inner sum is taken over k-tuples over distinct xq,...,x;, € s (and so the sum
over k even though written as an infinite sum it is in fact finite). With @Z)((Sk) (T1y ooy ) 1=
Eref [O‘

s -0, ] We write

xl..

0 k
= gw oo @ e @) [ G (3.5)

X1, TRE § i=1

where we have inserted the scaling of the k-point correlation function. Note that the random
variables ((,) are mean zero precisely due to the choice of the parameter h to be equal to

—A(B).
At this point the need of a Lindeberg principle comes: suppose that we can replace the
random variables ((,), from (3.4]), by standard normal variables, which we denote by (&,). If

so, then we could model this new collection of i.i.d. normal via a White noise W(-) on R? as
= |Cogl ™2 W (Cas)

where C,, 5 is the cube in (5Z)d with side length §, “bottom-left” corner equal to x and
volume |C,, 5| = 5% and consider the partition function

k

2V s=1+)) (557—%1)’“ S @ e @) [[W(Cs),  (3.6)

k=1 T1,TRE § i=1

which can also be written as an iterated Wiener-It6 integral as

k
66 =1+ Z 5’}’ 2 f f keXt)(.iUl,...,LUk) HW(d-ﬁUJ,
k=1

i=1

where v (Sk ) i the piecewise constant function on QF , which takes the constant value wgk)

on the cubes Cy 5 x -+ x Cy 5

Choosing now

B =fs=p627, (3.7)

ones sees via an easy L*(P) estimate and using assumption (3.3) (strengthened to hold in
an L*(QF) sense) that

L*(P A k
z" #Ol 1+ ,kafﬂk P (zy, .., 2p) HW(dxi). (3.8)
k=1 =1
We should also remark at the consistency with the Harris criterion: the scaling of 5 in
is consistent with the requirement that S5 — 0 with 6 — 0 (thus disorder is gradually
smaller) if v < d/2. In the case that v > d/2 it turns out that any scaling of 8 tending to
zero as § — 0 will always lead to be a trivial, i.e. non random and in fact constant, limit.

As we see, the main point in obtaining the scaling limit of the disordered partition function
is justifying the passage (in the limit 6 — 0) from (3.5) to (3.6)). This step is precisely
achieved with the Lindeberg principle as of Theorem Let us note that if A in is
taken to be different than —A(/3), then the random variables ({,) are not mean zero and
in this case one needs to be more careful as one needs to handle issues of convergence of
the series (when going to the limit) in . Moreover, one needs an extension of Lindeberg
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theorem that will cover the situation of non-mean-zero variables. These issues were
settled and suitable extensions of Theorem were achieved in [CSZ1T7al.

3.2. MARGINAL RELEVANCE OR CRITICAL DIMENSION. We have seen that the Harris
criterion classifies disorder as “relevant” or “irrelevant” according to whether d/2 > ~ or d/2 <
~. However, the Harris criterion is inconclusive when d/2 = ~. This case is called marginal
and disorder can then be either relevant or irrelevant depending on the finer details of the
system. A situation where the disorder relevant /irrelevant and marginally relevant /irrelelvant
regimes have been succesfully classified (but only after a large number of works a small
sample of which can be represented by [A08, [AZ09, [BL16, [DGLT09, IGLT1I [T07]) is the
case of the random pinning model an overview of which is contained in [G11].

The point of view described in the previous section, classifying relevance or irrelevance via
the existence of a non trivial scaling limit of the partition function, also fails in the marginal
case. The reason for this is that the natural candidate which represents the scaling
limit in the relevant case does not make sense at the marginal case. This is best manifested
by looking at the case of the pinning model. The partition function for this model is

) N
Z]Iifl,nﬁ — E[ezn:1(ﬂwn—>\(ﬂ))1{sn:0}]7 (3.9)

where (S,,),>1 is a one dimensional, simple random walk. We note that it is sensible for
this model to consider a more general class of Markov processes, so that the transition
between relevance and irrelevance is observed while moving through this class. However, the
simple random walk corresponds to the marginal case, in which disorder also turns out to
be marginally relevant (but without exhausting the class of processes for which disorder is
marginally relevant). In this case, if one adopted the point of view described in the previous
section, taking into account that P(S,, = 0) ~ 1/4/2mn for n — oo, one would guess the
scaling limit

k
k 1
1+ Y (£ ff W(dt,),
];1(271’) \/E\/tQ_tl"'\/tk_tk_lg i
Z O<ty <--<tg<l ¢
which clearly does not make sense since the kernel (t;(ty —t1) - (t, — tk_l))fl/ % is not L?

integrable.

To handle the marginal case a different point of view was necessary [CSZ17b| and in the
course of implementing this new approach the fourth moment theorem played an important
role.

But before turning to describe the approach let us point out that the notion of marginal
disorder turns out to be identical to the notion of criticality in stochastic PDEs [H14l [GIP15]
and in renormalization theory [K14]. It turns out that the notion of sub-criticality for singular
SPDEs (or super-renormalizability in renormalization theory) matches with the notion of
disorder relevance, while criticality corresponds to the case where the effect of disorder
is marginal. Let us illustrate this fact by looking at the example of the Stochastic Heat
Equation (SHE), whose solution can be actually seen, via the stochastic Feynman-Kac
formula, as the partition function of a continuum random polymer model. The stochastic
heat equation writes as

1 :
Oy = iAu + W, t>0,zeR (3.10)
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where W = W (dtdz)/dtdz, with W being a space-time white noise. We note that due to
the irregularity of the noise W the product Wu is not well defined and giving a meaning to
a solution to SHE is not straightforward. In dimension 1 this problem can be circumvented
but in dimension 2 (which turns out to be critical) a proper notion of solution is not trivial.

To understand where the difficulty arises one resorts to a renormalization procedure. This
is a standard first step (or heuristic) in the course of understanding regularity properties,
and in the simplest case amounts to a change of variables such as

(t,x) = T.(F, &) := (21, %)
Using the gaussian scaling property of the white noise, it is not difficult to see that
u(t,z) := u(T.(t,z)) formally solves the SPDE
ou 1
ot 2

where T is a new space-time White noise obtained from W via scaling. Therefore, space-time

Ad+ BT W (3.11)

renormalization has the effect of changing the strength of the noise to 51_g5 i

We now see that if d < 2, then, as € — 0, the strength of the noise in the renormalized
equation goes to zero, which means that the noise will have a gradually decreasing effect on
the regularity of the solution to the SHE and thus a solution can be suitably defined. On
the other hand, for d > 2 the noise should crucially affect the solution as its strength after
renormalization increases. Contrary to the previous cases, one sees that d = 2 is a critical
dimension as the renormalization leaves the noise invariant and thus no conclusion can be
drawn on the effect of noise to the existence and regularity of a solution.

In terms of disordered systems, one is interested in large scale effects and so it is meaningful
to consider the reciprocal change of variables (renormalization) (t,z) = TS—I(E, z). This

will result to a renormalized equation where now the strength of the noise is 5%_1 8. The
conclusion in this case is that: for d < 2, then noise (disorder) has a prevailing effect
(amounting to disorder relevance), while for d > 2 the effect of the noise vanishes, amounting
to disorder irrelevance. However, again, when d = 2 the renormalization leaves the noise
invariant and no conclusion can be drawn on the effect of noise. This is the marginal case.

To understand the structure in the marginal case (and how the fourth moment theorem
enters), let us look at the example of the pinning partition function (3.9) and expand it in
the form of a multilinear polynomial, as described in the previous section, as:

k k
in k
ZRy =1+ ) B D [ Tan—n,, [ 1S (3.12)
k=1 1<n <-<ny<N i=1 i=1
where ¢, 1= /8_1(6’8“”_’\(6) —1) and g, := P(S,, = 0).
To see what the suitable choice of 8 should be, we look at the variance of the first
non-constant term:

N N N
Var (4 2 1) = 5 2 anvar () ~ 6 3 o,

since, as it is easy to check, Var((,) ~ 1 for 8 ~ 0 and since for a one-dimensional simple
random walk ¢, := P(S,, = 0) ~ 1/v/27n. This indicates that in order to ensure a non
trivial limit, 8 should be chosen as B\/Qﬂ'/ log N, so that the variance stays of order 1. This
choice turns out to also ensure that each one of the remaining terms in the expansion is also
of order 1.

2

N 2
2 1 B
— ~~—1log N 3.13
B 227771 2 8 ( )

n=1
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A second information that this variance computation provides is on the correct time scale
at which one should observe the system. To understand this, notice that the asymptotic
variance remains unchanged if we sum over a time horizon tN, for any arbitrary but
fixed time variable ¢. On the other hand, if we considered a time horizon N* with ¢ > 0 fixed,
then the asymptotic variance will indeed change when varying t. Therefore, the correct time

. t . . . .
scale is N". To incorporate this observation, we decompose the summations over nq, ..., n
[ -—1 L

in the multilinear expansion (3.12)) over intervals n; —n;_; € Ii]-7 with I , (N ey , N W]],
i; € {1,..., M} and with M being a coarse graining parameter (which will eventually tend to
infinity). We can then rewrite the k-th term in the expansion (3.12) as

A~

k
g N.M

W Z O, i, where (3.14)
M 1<1177Zk<M

o M\ F/2 k
@i\lrMZk = <lo7;N> Z qu” —n;

n;—mn; 16[ for j=1,....k

We now observe that if an index 7; is a runnlng maximum for the k- tuple T = (ig,... zk)

—1
i.e. i; > max{iy,...,i;_1} then (NM NM] 3mn; »mn, € (N s NM] for all r <]

This implies that Unj—n,_, = Gn, for n; € Ij and n;_; € Ij71 Decomposing the sequence

]

i := (iy,...,1) according to its running maxima, i.e. ¢ = (i(l),...,i(m(i))) with i) =
(g, s tg,,, — 1) and with iy =4, <y <--- <1, being the successive running maxima,
it can be shown that (3.14) asymptotically factorizes for large N as

Bk N;M o N;M N;M
Mg Z Giu) @i@) "'@i(m) . (3.15)
ie{l,...M}E

The heart of the matter is to show that all the @]\(/]5\4 converge jointly, when N — o0 to
K
standard normal variables. This is where the fourth moment theorem is used.

Checking that the fourth moment of each of the @]\{”M actually converges to 3, reduces to
1

a combinatorial problem: Expanding the fourth power of the summation defining G)]\(Z)M , see

(3-14), produces a fourfold product HZ 1Ca; HZ 1 G, HZ 1 G, ]_L  Ca, and when considering
the expectation E[-] then one looks at all p0581ble comblnatorlal matchlngs among this list

of ¢ variables. It turns out (and towards this a crucial role is played by the logarithmic
growth of the variance as well as the exponential time scale N* that it imposes) that
the main contributions comes from three possible matchings: either all the {,’s will match
with the (,’s (meaning that a; = b; and thus ¢,, = ¢, for i = 1,...,k ) and the (.’s with
the (;’s or all the (,’s will match with the (.’s and the (;’s with the (;’s or all the (,’s will
match with the (;’s and the (;’s with the (.’s. These three main ways of matching lead to
the value 3 for the asymptotic fourth moment of oV (]) . The details of this argument (in

a more general setting than just the pinning model) is the subject of Proposition 5.2 in
[CSZ1Th).

TStrictly speaking, for this inequality to be valid uniformly, we need to restrict to values of 7 € {1, ..., M}g =
{ie{l,.. M}": |i; — 4| > 1}, but this is a minor technical point that be easily taken care of.
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Having identified (with the help of the fourth moment theorem) the asymptotic behaviour
of the building block @]\{]’>M, we can identify the asymptotic behaviour of the partition
1

function when 8 = By = B/\/QT(/ log N via (3.12)), (3.14) and (3.15). Let us remark that

along the way certain re-summations are performed and for this it is important that B <1,
a choice that also marks a phase transition.

We can summarise the final result in its general form, which also shows a universality in
the behaviour of marginal models.

Theorem 3.1 (|[CSZ17b]). Let Zﬁaﬁr]gvmal be a multilinear polynomial (typically a partition
function) of the form

N k
inal k
25 DI D VR [ [N C R S o
k=1

1<ny<--<np<N 1=1
d
Ty, Tp€L

where (¢, ) a 1s a collection of i.i.d. mean zero, variance one random variables with
T/ neN,xeZ ’

exponential moments and the kernel (g, (z)) a satisfies that

neN,zeZ

N
Ry := Z Z qn(fn)2 grows to infinity as a slowly varying function. (3.16)
n=1 74

Then if By := B/v/Ry, it holds that

(d) 7. . eXp(O'BX—%O'E) if/%<1'
p 0 ifB=1

ZK{,,BN (3.17)

N—oo

where X s a standard normal variable with variance 0?5, = log(1 — BQ)_l.

Condition , which is essentially derived via a computation of the form , can
be used as a quantitative criterion for marginal relevance and it is what in statistical physics
is called overlap. The kernel g, (z) may not have a dependence in z € Zd, as that was the
case in the pinning model. One can also possibly consider situations where z% s replaced by
other lattices or more general sets. In the particular case that d = 2 and ¢, (z) = P(S,, = x)
with (S,) being a two dimensional simple random walk, then Zﬁ’aﬁrginal corresponds to
the partition function of a two-dimensional directed polymer and the above theorem can
be used to give a meaning to the two-dimensional SHE, after mollification of the noise
We(t, z) == Sz Je(x — y)W (y)dy with j.(z) = ¢ %j(z/e) and proper renormalization

2

1 .
pu. = ;Au, + By | —
log <

5 Weu.,, t>0,zeR? (3.18)

and fully characterise the limit of the solution u, in the subcritical regime B<1.

Via a Hopf-Cole transformation h_(t,z) = logu.(t,z) and a suitable approximation
scheme this approach also leads to a characterisation of the renormalized two-dimensional
KPZ:

2
log %

1 ~ .
Oph. = §Ahs +A IVh|* + W,
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which, for 3 < 1, turns out to be a gaussian, log-correlated field, [CSZ18D)].
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