An efficient multigrid preconditioner for edge element discretization of Maxwell's equations in micromagnetism.

L’ubomír Baňas

Department of Mathematics Heriot-Watt University, Edinburgh

http://www.ma.hw.ac.uk/~lubomir
L.Banas@hw.ac.uk

Joint work with A. Prohl and S. Bartels

Maxwell's equations

$$
\begin{aligned}
\varepsilon_{0} \mathbf{E}_{t}-\nabla \times \mathbf{H}+\sigma \mathbf{E} & =-\mathbf{J} & \text { in } \Omega_{T}:=(0, T) \times \Omega \\
\mathbf{B}_{t}+\nabla \times \mathbf{E} & =\mathbf{0} & \text { in } \Omega_{T}
\end{aligned}
$$

- H magnetic field
- \mathbf{B} magnetic induction $(\nabla \cdot \mathbf{B}=\mathbf{0})$
- E electric field
- J electric current, ε_{0} permitivity of vacuum, σ conductivity

Constitutive relations B-H

- vacuum $\mathbf{B}=\mu_{0} \mathbf{H}$
- linear materials $\mathbf{B}=\mu \mathbf{H}, \mu(\mathbf{x})$ is a 3×3 tensor
- ferromagnetic materials $\mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{m})$

Introduction

Landau-Lifshitz-Gilbert (LLG) equation
Landau-Lifshitz formulation

$$
\mathbf{m}_{t}=\mathbf{m} \times \mathbf{H}_{\mathrm{eff}}-\alpha \mathbf{m} \times\left(\mathbf{m} \times \mathbf{H}_{\mathrm{eff}}\right)
$$

Gilbert formulation

$$
\mathbf{m}_{t}+\alpha \mathbf{m} \times \mathbf{m}_{t}=\left(1+\alpha^{2}\right) \mathbf{m} \times \mathbf{H}_{\mathrm{eff}}
$$

Both formulations are equivalent for smooth \mathbf{m}.

- m magnetization vector, $|\mathbf{m}|=1$
- $\mathbf{H}_{\text {eff }}$ effective field (nonlinear)
- α damping constant

Exact solution

Take $\mathbf{H}_{\text {eff }}=\mathbf{h}=(0,0,1)$, then LLG reduces to an ODE.

- $\boldsymbol{m}_{t}=\boldsymbol{h} \times \boldsymbol{m}$ (precession)
- $\boldsymbol{m}_{t}=\boldsymbol{m} \times(\boldsymbol{h} \times \boldsymbol{m})$ (phenomenological damping)
- $\boldsymbol{m}_{t}=\boldsymbol{h} \times \boldsymbol{m}+\boldsymbol{m} \times(\boldsymbol{h} \times \boldsymbol{m})$ (precession and damping)

Effective (total) field

Free energy - magnetic field energy, exchange energy, Zeeman energy, anisotropy energy, magnetomechanical energy.
Effective field

$$
\boldsymbol{H}_{e f f}=-\frac{\partial E}{\partial \boldsymbol{m}}=\boldsymbol{H}+\boldsymbol{H}_{e x}+\boldsymbol{H}_{a p p}+\boldsymbol{H}_{a n}+\boldsymbol{H}_{m s}
$$

- Magnetic field \mathbf{H} coupling with Maxwell's equations
- Exchange $\boldsymbol{H}_{e x}=\Delta \boldsymbol{m}$
- Applied field $\boldsymbol{H}_{a p p}$ constant in space and time
- Anisotropy $\boldsymbol{H}_{a n}=(\boldsymbol{p} \cdot \boldsymbol{m}) \boldsymbol{p}$
- Magnetostriction field coupling with elastodynamics

Maxwell-LLG system

$$
\begin{array}{rlrl}
\varepsilon_{0} \mathbf{E}_{t}-\nabla \times \mathbf{H}+\sigma \chi_{\omega} \mathbf{E} & =-\mathbf{J} & \text { in } \Omega_{T} \\
\mu_{0} \mathbf{H}_{t}+\nabla \times \mathbf{E} & =-\mu_{0} \chi_{\omega} \mathbf{m}_{t} & \text { in } \Omega_{T} \\
\mathbf{m}_{t}+\alpha \mathbf{m} \times \mathbf{m}_{t} & =\left(1+\alpha^{2}\right) \mathbf{m} \times \mathbf{H}_{\mathrm{eff}} & & \text { in } \omega_{T}:=(0, T) \times \omega .
\end{array}
$$

Boundary conditions

$$
\partial_{\mathbf{n}} \mathbf{m}=0 \quad \text { on } \partial \omega_{T}, \quad \mathbf{E} \times \mathbf{n}=0 \quad \text { on } \partial \Omega_{T} .
$$

Initial conditions $\left(\nabla \cdot\left(\mathbf{H}_{0}+\chi_{\omega} \mathbf{m}_{0}\right)=0=\nabla \cdot \mathbf{B} \quad\right.$ in $\left.\Omega\right)$

$$
\mathbf{m}(0, \cdot)=\mathbf{m}_{0} \quad \text { in } \omega, \quad \mathbf{E}(0, \cdot)=\mathbf{E}_{0}, \quad \mathbf{H}(0, \cdot)=\mathbf{H}_{0} \quad \text { in } \Omega .
$$

Energy ($\sigma=0, \mathbf{J}=\mathbf{0}$):

$$
\frac{\mu_{0}}{2} \int_{\omega}|\nabla \mathbf{m}|^{2} \mathrm{~d} \mathbf{x}-\mu_{0} \int_{\omega}\left(\mathbf{m} \cdot \mathbf{H}_{a p p}\right) \mathrm{d} \mathbf{x}+\int_{\Omega}\left[\frac{\mu_{0}}{2}|\mathbf{H}|^{2}+\frac{\varepsilon_{0}}{2}|\mathbf{E}|^{2}\right] \mathrm{d} \mathbf{x} .
$$

Magnetostaic formulation

Take the stationary Maxwell's equations and $\sigma=0$, i.e.:

$$
\mathbf{E}_{t}=\mathbf{B}_{t}=\mathbf{J}=\mathbf{0},
$$

we get

$$
\begin{array}{rll}
\nabla \times \mathbf{H} & = & \mathbf{0}, \\
\nabla \times \mathbf{E} & = & \mathbf{0}, \\
\nabla \cdot \mathbf{B} & = & \mathbf{0}, \\
\mathbf{B} & =\mu_{0}(\mathbf{H}+\mathbf{m}) .
\end{array}
$$

We look for $\mathbf{H}=\nabla \phi$ (i.e. $\nabla \times(\nabla \phi)=\mathbf{0}$), then the above reduces to

$$
\mu_{0} \nabla \cdot(\nabla \phi+\mathbf{m})=\mathbf{0} \quad \text { in } \quad \Omega,
$$

with an interface condition on $\partial \omega$

$$
(\nabla \phi+\mathbf{m}) \cdot \boldsymbol{n}=\mathbf{B} \cdot \boldsymbol{n}=0 .
$$

Notation

- $(\mathbf{f}, \mathbf{g})=\int_{\Omega}\langle\mathbf{f}, \mathbf{g}\rangle \mathrm{dx}$
- mass lumping $(\boldsymbol{\phi}, \mathfrak{Z})_{h}=\int_{\omega} \boldsymbol{\mathcal { I }}_{\mathbf{v}_{\mathbf{h}}}(\langle\boldsymbol{\phi}, \mathfrak{Z}\rangle) \mathrm{d} \mathbf{x}=\sum_{\ell \in L} \beta_{\ell}\left\langle\boldsymbol{\phi}\left(\mathbf{x}_{\ell}\right), \mathfrak{Z}\left(\mathrm{x}_{\ell}\right)\right\rangle$.
- $d_{t} \varphi^{j}:=k^{-1}\left(\varphi^{j}-\varphi^{j-1}\right)$
- $\bar{\varphi}^{j+1 / 2}:=\frac{1}{2}\left(\varphi^{j+1}+\varphi^{j}\right)$
- $\tilde{\Delta}_{h}: W^{1,2}\left(\omega ; \mathbb{R}^{3}\right) \rightarrow \mathbf{V}_{h}$ is a discrete Laplace operator $\left(-\tilde{\Delta}_{h} \boldsymbol{\phi}, \boldsymbol{\chi}_{h}\right)_{h}=$ $\left(\nabla \boldsymbol{\phi}, \nabla \chi_{h}\right) \quad \forall \chi_{h} \in \mathbf{V}_{h}$.
- projection $\mathbf{P}_{\mathbf{V}_{h}}: L^{2}\left(\omega, \mathbb{R}^{3}\right) \rightarrow \mathbf{V}_{h}$ is defined as $\left(\mathbf{P}_{\mathbf{V}_{h}} \mathbf{u}, \boldsymbol{\varphi}_{h}\right)_{h}=\left(\mathbf{u}, \boldsymbol{\varphi}_{h}\right)$

Implicit finite element approximation

Fully discrete system nonlinear and coupled [LB, Bartels, Prohl (2008)]

$$
\begin{aligned}
& \left(d_{t} \mathbf{m}_{h}^{j+1}, \boldsymbol{\phi}_{h}\right)_{h}+\alpha\left(\mathbf{m}_{h}^{j} \times d_{t} \mathbf{m}_{h}^{j+1}, \boldsymbol{\phi}_{h}\right)_{h} \\
& \quad=\left(1+\alpha^{2}\right)\left(\overline{\mathbf{m}}_{h}^{j+1 / 2} \times\left(\tilde{\Delta}_{h} \overline{\mathbf{m}}_{h}^{j+1 / 2}+\mathbf{P}_{\mathbf{V}_{h}} \overline{\mathbf{H}}_{h}^{j+1 / 2}\right), \boldsymbol{\phi}_{h}\right)_{h} \quad \forall \boldsymbol{\phi}_{h} \in \mathbf{V}_{h}, \\
& \varepsilon_{0}\left(d_{t} \mathbf{E}_{h}^{j+1}, \boldsymbol{\varphi}_{h}\right)-\left(\overline{\mathbf{H}}_{h}^{j+1 / 2}, \nabla \times \boldsymbol{\varphi}_{h}\right)+\sigma\left(\chi_{\omega} \overline{\mathbf{E}}_{h}^{j+1 / 2}, \boldsymbol{\varphi}_{h}\right)=\mathbf{0} \quad \forall \boldsymbol{\varphi}_{h} \in \mathbf{X}_{h}, \\
& \mu_{0}\left(d_{t} \mathbf{H}_{h}^{j+1}, \boldsymbol{Z}_{h}\right)+\left(\nabla \times \overline{\mathbf{E}}_{h}^{j+1 / 2}, \mathfrak{Z}_{h}\right)=-\mu_{0}\left(\chi_{\omega} d_{t} \mathbf{m}_{h}^{j+1}, \mathfrak{Z}_{h}\right) \quad \forall \mathfrak{Z}_{h} \in \mathbf{Y}_{h} .
\end{aligned}
$$

Finite element spaces

- $\mathbf{V}_{h}=\left\{\phi_{h} \in C\left(\bar{\omega} ; \mathbb{R}^{3}\right):\left.\left.\phi_{h}\right|_{K} \in \mathcal{P}_{1}\left(K ; \mathbb{R}^{3}\right) \quad \forall K \in \mathcal{T}_{h}\right|_{\omega}\right\}$,
- $\mathbf{X}_{h}=\left\{\varphi_{h} \in \mathbf{H}_{0}(\mathbf{c u r l} ; \Omega):\left.\varphi_{h}\right|_{K} \in \mathcal{P}_{1}\left(K ; \mathbb{R}^{3}\right) \quad \forall K \in \mathcal{T}_{h}\right\}$,
- $\mathbf{Y}_{h}=\left\{\mathfrak{Z}_{h} \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right):\left.\mathfrak{Z}_{h}\right|_{K} \in \mathcal{P}_{0}\left(K ; \mathbb{R}^{3}\right) \quad \forall K \in \mathcal{T}_{h}\right\}$.

Stability

Lemma 1. Suppose that $\left|\mathbf{m}_{h}^{0}\left(\mathbf{x}_{\ell}\right)\right|=1$ for all $\ell \in L$. Then the sequence $\left\{\left(\mathbf{m}_{h}^{j}, \mathbf{E}_{h}^{j}, \mathbf{H}_{h}^{j}\right)\right\}_{j \geq 0}$ satisfies for all $j \geq 0$

$$
\begin{align*}
& \left|\mathbf{m}_{h}^{j+1}\left(\mathbf{x}_{\ell}\right)\right|=1 \quad \forall \ell \in L, \tag{i}\\
& \mathcal{E}_{h}\left(\left\{\mathbf{m}_{h}^{j+1}, \mathbf{H}_{h}^{j+1}, \mathbf{E}_{h}^{j+1}\right\}\right)+k \sum_{\ell=0}^{j} \frac{\alpha \mu_{0}}{1+\alpha^{2}}\left\|d_{t} \mathbf{m}_{h}^{\ell+1}\right\|_{h}^{2}+\sigma\left\|\overline{\mathbf{E}}_{h}^{\ell+1 / 2}\right\|_{L^{2}(\omega)}^{2} \\
& \quad=\mathcal{E}_{h}\left(\left\{\mathbf{m}_{h}^{0}, \mathbf{H}_{h}^{0}, \mathbf{E}_{h}^{0}\right\}\right)-k \sum_{\ell=0}^{j}\left(\overline{\mathbf{J}}_{h}^{\ell+1 / 2}, \overline{\mathbf{E}}_{h}^{\ell+1 / 2}\right)
\end{align*}
$$

where
$\mathcal{E}_{h}\left(\left\{\mathbf{m}_{h}^{j}, \mathbf{H}_{h}^{j}, \mathbf{E}_{h}^{j}\right\}\right)=\frac{\mu_{0}}{2} \int_{\omega}\left|\nabla \mathbf{m}_{h}^{j}\right|^{2}-2\left(\mathbf{m}_{h}^{j} \cdot \mathbf{H}_{a p p}\right) \mathrm{d} \mathbf{x}+\int_{\Omega}\left[\frac{\mu_{0}}{2}\left|\mathbf{H}_{h}^{j}\right|^{2}+\frac{\varepsilon_{0}}{2}\left|\mathbf{E}_{h}^{j}\right|^{2}\right] \mathrm{d} \mathbf{x}$.

Convergence

Theorem 1. [LB, Bartels, Prohl (2008)] Suppose that we have $\left|\mathbf{m}_{h}^{0}\left(\mathbf{x}_{\ell}\right)\right|=1$ for all $\ell \in L$ and let $\left\{\left(\mathbf{m}_{h}^{j}, \mathbf{E}_{h}^{j}, \mathbf{H}_{h}^{j}\right)\right\}_{j \geq 0}$ be the finite element solution. Assume that $\mathbf{m}_{h}^{0} \rightarrow \mathbf{m}_{0}$ in $W^{1,2}(\omega)$ and $\left(\tilde{\mathbf{H}}_{h}^{0}, \tilde{\mathbf{E}}_{h}^{0}\right) \rightarrow\left(\mathbf{H}_{0}, \mathbf{E}_{0}\right)$ in $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$ as $h \rightarrow 0$ and let $T>0$ be a fixed constant. As $k, h \rightarrow 0$, a subsequence of $(\tilde{\mathbf{m}}, \tilde{\mathbf{H}}, \tilde{\mathbf{E}})$ converges weakly to $(\mathbf{m}, \mathbf{H}, \mathbf{E})$ in $\left[L^{\infty}\left(0, T ; W^{1,2}\left(\omega, \mathbb{S}^{2}\right)\right) \cap W^{1,2}\left(\omega_{T}, \mathbb{R}^{3}\right)\right] \times\left[L^{\infty}\left((0, T) ; L^{2}\left(\Omega, \mathbb{R}^{3}\right)\right)\right]^{2}$, and $(\mathbf{m}, \mathbf{H}, \mathbf{E})$ is a weak solution.

Where ($\tilde{\mathbf{m}}, \tilde{\mathbf{H}}, \tilde{\mathbf{E}})$ are defined as

$$
\tilde{\boldsymbol{\xi}}(t, \mathbf{x}):=\frac{t-t_{j}}{k} \xi_{h}^{j+1}(\mathbf{x})+\frac{t_{j+1}-t}{k} \boldsymbol{\xi}_{h}^{j}(\mathbf{x}) .
$$

Solution of the nonlinear system

Fixed-point iterations

$$
\begin{aligned}
& \frac{2}{k}\left(\mathbf{w}_{h}^{\ell+1}, \boldsymbol{\phi}_{h}\right)_{h}-\frac{2 \alpha}{k}\left(\mathbf{w}_{h}^{\ell+1} \times \tilde{\mathbf{m}}_{h}^{j}, \boldsymbol{\phi}_{h}\right)_{h} \\
& \quad-\left(1+\alpha^{2}\right)\left(\mathbf{w}_{h}^{\ell+1} \times\left(\tilde{\Delta}_{h} \mathbf{w}_{h}^{\ell}+\mathbf{P}_{\mathbf{V}^{h}} \mathbf{G}_{h}^{\ell}\right), \boldsymbol{\phi}_{h}\right)_{h}=\frac{2}{k}\left(\tilde{\mathbf{m}}_{h}^{j}, \boldsymbol{\phi}_{h}\right)_{h}, \\
& \frac{2 \varepsilon_{0}}{k}\left(\mathbf{F}_{h}^{\ell+1}, \boldsymbol{\varphi}_{h}\right)-\left(\mathbf{G}_{h}^{\ell+1}, \nabla \times \boldsymbol{\varphi}_{h}\right)+\sigma\left(\chi_{\omega} \mathbf{F}_{h}^{\ell+1}, \boldsymbol{\varphi}_{h}\right)=\frac{2 \varepsilon_{0}}{k}\left(\tilde{\mathbf{E}}_{h}^{j}, \boldsymbol{\varphi}_{h}\right)-\left(\overline{\mathbf{J}}_{h}^{j+1 / 2}, \boldsymbol{\varphi}_{h}\right), \\
& \frac{2 \mu_{0}}{k}\left(\mathbf{G}_{h}^{\ell+1}, \mathbf{Z}_{h}\right)+\left(\nabla \times \mathbf{F}_{h}^{\ell+1}, \mathbf{Z}_{h}\right)+\frac{2 \mu_{0}}{k}\left(\mathbf{w}_{h}^{\ell+1}, \mathbf{Z}_{h}\right)=\frac{2 \mu_{0}}{k}\left(\tilde{\mathbf{H}}_{h}^{j}, \boldsymbol{Z}_{h}\right)+\frac{2 \mu_{0}}{k}\left(\tilde{\mathbf{m}}_{h}^{j}, \mathbf{Z}_{h}\right),
\end{aligned}
$$

where $\mathbf{w}_{h}:=\overline{\mathbf{m}}_{h}^{j+1 / 2}, \mathbf{F}_{h}:=\overline{\mathbf{E}}_{h}^{j+1 / 2}$ and $\mathbf{G}_{h}:=\overline{\mathbf{H}}_{h}^{j+1 / 2}$.
Stopping criterion

$$
\left\|\tilde{\Delta}_{h}\left(\mathbf{w}_{h}^{\ell+1}-\mathbf{w}_{h}^{\ell}\right)\right\|_{h}+\left\|\mathbf{G}_{h}^{\ell+1}-\mathbf{G}_{h}^{\ell}\right\|_{L^{2}} \leq \varepsilon .
$$

Time step restriction $k=\mathcal{O}\left(h^{2}\right)$.

Solution of the discrete Maxwell system

Matrix notation

$$
\left(\begin{array}{cc}
\mathbf{A} & -\mathbf{C}^{T} \\
\mathbf{C} & \mathbf{B}
\end{array}\right)\binom{\overline{\mathbf{e}}}{\overline{\mathbf{h}}}=\binom{\overline{\mathbf{f}}}{\overline{\mathbf{g}}},
$$

$\overline{\mathbf{e}}, \overline{\mathbf{h}}$ vectors of unknown finite element coefficients.
Matrix definitions

$$
\mathbf{A}_{i j}=\frac{2 \varepsilon_{0}}{k}\left(\varphi_{h}^{i}, \varphi_{h}^{j}\right), \quad \mathbf{B}_{i j}=\frac{2 \mu_{0}}{k}\left(\boldsymbol{Z}_{h}^{i}, \boldsymbol{\mathcal { Z }}_{h}^{j}\right), \quad \mathbf{C}_{i j}=\left(\nabla \times \boldsymbol{\varphi}_{h}^{j}, \boldsymbol{3}_{h}^{i}\right),
$$

Preconditioned Uzawa algorithm solves Schur complement formulation

$$
\left(\mathbf{C}^{T} \mathbf{B}^{-1} \mathbf{C}+\mathbf{A}\right) \overline{\mathbf{e}}=\overline{\mathbf{f}}+\mathbf{C}^{T} \mathbf{B}^{-1} \overline{\mathbf{g}} .
$$

Two sub-steps:

1. $\overline{\mathbf{h}}^{n}=\mathbf{B}^{-1}\left(\overline{\mathbf{g}}-\mathbf{C} \overline{\mathbf{e}}^{n}\right)$
2. $\overline{\mathbf{e}}^{n+1}=\overline{\mathbf{e}}^{n}+\rho \mathbf{S}^{-1}\left(\overline{\mathbf{f}}+\mathbf{C}^{T} \overline{\mathbf{h}}^{n}-\mathbf{A} \overline{\mathbf{e}}^{n}\right)$

Preconditioner

Preconditioning dramatically reduces the number of Uzawa iterations. We need:

$$
\mathbf{S}^{-1} \approx\left[\mathbf{C}^{T} \mathbf{B}^{-1} \mathbf{C}+\mathbf{A}\right]^{-1}
$$

Auxiliary problem edge elements $\mathbf{X}_{h} \subset \mathbf{H}_{0}(\mathbf{c u r l} ; \Omega)$
$\frac{2 \varepsilon_{0}}{k}\left(\mathbf{F}_{h}^{*}, \boldsymbol{\varphi}_{h}\right)+\frac{k}{2 \mu_{0}}\left(\nabla \times \mathbf{F}_{h}^{*}, \nabla \times \boldsymbol{\varphi}_{h}\right)=\left(\mathbf{f}_{h}, \boldsymbol{\varphi}_{h}\right)+\frac{k}{2 \mu_{0}}\left(\nabla \times \mathbf{g}_{h}, \boldsymbol{\varphi}_{h}\right) \quad \forall \boldsymbol{\varphi}_{h} \in \mathbf{X}_{h}$.
with $\mathbf{g}_{h}=\sum_{i}\{\overline{\mathbf{g}}\}_{i} \boldsymbol{\varphi}_{h, i}$.
In matrix notation $\mathbf{S}=\mathbf{M}+\mathbf{R}$, with

$$
\mathbf{M}_{i j}=\frac{2 \varepsilon_{0}}{k}\left(\varphi_{h}^{i}, \varphi_{h}^{j}\right), \quad \mathbf{R}_{i j}=\frac{k}{2 \mu_{0}}\left(\nabla \times \varphi_{h}^{i}, \nabla \times \varphi_{h}^{j}\right) .
$$

\mathbf{S}^{-1} needs to be approximated effectively, e.g., by multigrid.

Multigrid algorithm

Multigrid components

- grid hierarchy
- prolongation \mathbf{I}_{k-1}^{k} [eg. Bossavit, Rapetti 2005],
- restriction $\mathbf{I}_{k}^{k-1}=\left(\mathbf{I}_{k-1}^{k}\right)^{T}$,
- smoother (Gauss-Seidel type iterative scheme)

Two-grid scheme

- pre smoothing m smoothing iterations
- coarse grid correction solve the coarse problem exactly
- post smoothing m smoothing iterations

Smoothers for edge elements

Hybrid smoother one smoothing steps consists of one loop over all edges followed by one loop over all vertices [Hiptmair (1998)]

Patch smoother smooth several edges simultaneously [Arnold, Falk, Winther (2000)]

Figure 1: Local smoothing patch

Numerical experiments

Blow-up of MLLG

Figure 2: Plot of $t \mapsto\left\|\nabla \mathbf{m}_{h}(t, \cdot)\right\|_{\infty}$ and $t \mapsto\left\|\nabla \mathbf{m}_{h}(t, \cdot)\right\|_{2}$

Numerical experiments

Blow-up of MLLG

Figure 3: Magnetization at times $t=0,0.01,0.015,0.020,0.030,0.214$ for $h=1 / 2^{4}$

Numerical experiments

Blow-up of MLLG

Figure 4: Details of the magnetization near the singularity times $t=0,0.01,0.015,0.020,0.030,0.214$ for $h=1 / 2^{4}$.

Numerical experiments

μ-mag standard problem 4: $\mu_{0} \mathbf{H}_{\text {app }}=(-24.6,4.3,0), \omega=500 \times 125 \times 3 \mathrm{~nm}$, $h=3.90625 \times 10^{-9}, \tau=1.13 \times 10^{-13}$ ([d'Aquino, Serpico, Miano (2005)] used $\tau=2.5 \times 10^{-12}$)

Initial condition S-state

Figure 5: Initial condition \mathbf{m}^{0}.

Numerical experiments

Unstructured grid

Figure 6: Mesh for the domain Ω at $x_{3}=0$ (left) and zoom at the mesh for the domain ω at $x_{3}=0$ (right).

Numerical experiments

Figure 7: MLLG: solution at $|\omega|^{-1} \int_{\omega} \mathbf{m}_{x}=0$.

Numerical experiments

Figure 8: Magnetostatic formulation: solution at $|\omega|^{-1} \int_{\omega} \mathbf{m}_{x}=0$.

Numerical experiments

Figure 9: Evolution of $|\omega|^{-1} \int_{\omega} \mathbf{m}_{x(y)}$.

Numerical experiments

Figure 10: Evolution of $|\omega|^{-1} \int_{\omega} \mathbf{m}_{x(y)}$.

End

Thank you for your attention!

