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A sound-soft scattering problem

∆u + k2u = 0 in C\Ω
u = 0 on ∂Ω

∂us
∂r
− ikus = o(r−1/2)

ui : Incident Wave
us : Scattered Field
u = ui + us : Full Field



Domain decomposition

I Ei ∩ Ej = ∅ for all i 6= j

I
⋃

i Ei = Ωe

I Γi ∩ ∂Ω consists of two straight lines whose origin is the
corner at pi

I The intersection Γij = Γi ∩ Γj is a connected analytic curve



Basis functions in Ei

Close to corner with angle π/α:

u(r , θ) =
∞∑
j=1

γjJαj(kr) sinαjθ, γj ∈ C

In Ei define local approximation space

Vi := {g : g(r , θ) =

Ni∑
j=1

cjJαj(kr) sinαjθ, cj ∈ C}

In Ei approximate full field u



Approximating the solution towards infinity
On Γe choose absorbing boundary conditions.

I Simple approximation: ∂u
∂n − iku = 0

I Hankel function expansion: u(r , θ) ≈
∑N

j=0 cjH
(1)
j (r , θ)e ijθ

I Boundary Integral Equations

Here, use fundamental solutions:
Γi : Closed analytic Jordan curve in Ωe

u(x) =

∫
Γi

H
(1)
0 (k |x − y |)g(y)dy , x ∈ Ω+

e

Ansatz: g(y) =
N∑
j=1

cjδ(y − yj)

Ve := {g : g(x) =
Ne∑
j=1

cjH
(1)
0 (k |x − yj |), cj ∈ C}

In Ω+
e approximate scattered field us



A least-squares formulation

Def.: v ∈ V if v |Ei
∈ Vi and v |Ω+

e
∈ Ve

Define

J(v) :=
∑
i<j

∫
Γi∩Γj

|[∇v ](x)|2ds + k2|[v ](x)|2ds

+
r∑

i=1

∫
Γi∩Γe

|[∇(ûinc + v)](x)|2 + k2|[ûi + v ](x)|2ds

with

ûinc(x) :=

{
uinc(x) x ∈ Ω+

e

0 x ∈ Ωe

Least-Squares FEM [Sto98, MW99]

vLS = arg min
v∈V

J(v)



Formulating the numerical least-squares problem

Choose quadrature points ξj , j = 1, . . . ,m and corresponding
weights ωj .
Define (A)ij = φj(ξi ), W = diag(ω1, . . . , ωm), bj = f (ξj).∫

Γ
|

n∑
j=1

φj(ξ)xj − f (ξ)|2dξ ≈ xHAHWAx − 2Re{xHAHWb}+ bHWb

= ‖W 1/2(Ax − b)‖2
2

Solving least-squares problem ‖W 1/2(Ax − b)‖2 directly
numerically more stable than solving AHWAx = AHWb.



Convergence of J(v)

Estimate J(v) by

J(v) ≤ C1

{
‖∇us −∇v‖2

L2(Γe) + k2‖us − v‖2
L2(Γe)

}
+ k2C2

∑
i

‖v − u‖2
L∞(Ei )

+
∑
i<j

‖∇v −∇u‖2
L∞(Γij )


I Estimate L∞ convergence in interior elements

I Estimate L2 convergence on Γe .



Estimates on interior elements

Theorem [Vekua]: Fix z0 ∈ Ω. Then there exists a unique
function Φ holomorphic in Ω with Φ(z0) real such that for u with
Lu = 0 and L elliptic operator with analytic coefficients

u = Re{V [Φ; z0]}

For ∆u = 0:
u(x , y) = Re{Φ(z)}

For −∆u = k2u:

u(x , y) = Re{Φ(z)−
∫ z

z0

Φ(t)
∂

∂t
J0(k

√
(z − t)(z̄ − z̄0))dt}



Estimates on interior elements...

The fractional degree polynomial

pN(z) :=
N∑
j=0

i ãjz
αj , ãj ∈ R.

is mapped to the particular solution

Re{V [pN ; 0]} =
N∑
j=1

ajJαj(kr) sinαjθ

We have

‖u − Re{V [pN ; ·}]‖L∞(Ei ) ≤ ‖V ‖L∞(Ei )‖Φ− pN‖L∞(Ei ).

For full convergence analysis see [Bet07]



Estimates on interior elements...

Theorem: There exists ρi > 1 such that for any 1 < τ < ρi

min
v∈Vi

‖u − v‖L∞(Ei ) = O(τ−Ni ), Ni →∞

I Same exponential bounds for derivatives on element
boundaries

I Estimate asymptotic for Ni →∞
I Constants depend on k



Fundamental solutions estimates

Assume Γe = {z ∈ C| |z | = R0}, Γi = {z ∈ C : |z | = R}

v ∈ Ve ⇔ v(x) =
Ne∑
j=1

cjH
(1)
0 (k |x − yj |), yj = Re i

2πj
N



Fundamental solutions estimates...

Define
t(Ne) := min

v∈Ve

‖u − v‖L2(Γe)

Theorem: Let ρ := max
i

R0

|pi |
. For any ε > 0 it holds that

t(Ne) =

 O

((
R0
R − ε

)−Ne
)
, R0

R < ρ
1
2

O
(

(ρ− ε)−
Ne
2

)
, R0

R > ρ
1
2

I Estimates asymptotic for fixed k and Ne →∞
I Large radius R0 leads to faster exponential convergence of

MFS



Convergence for the square scatterer

1 1.5 2 2.5 3
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

r

ω

0 10 20 30 40 50 60
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

N

J(
v

LS
)

 

 

R=2.5
0.74−N

optimal

r: radius of outer circle
ω: Overall exponential rate of convergence
k = 1, N Bessel fct. in Ei , 2N fund. sol. in Ω+

e .



From sound-soft to sound-hard scattering

Full Field (Real Part)
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Ni∑
j=1

cjJαj (kr) sinαjθ →
Ni∑
j=0

cjJαj (kr) cosαjθ



A snowflake domain
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k N m NV t[vLS ] time
50 70 1980 1071 3 · 10−8 8 s

100 90 2460 1377 4 · 10−9 15 s
200 130 3660 1989 5 · 10−9 44 s
500 260 8700 3978 2 · 10−7 7 m



The structure of A

I A numerically singular

I Use backward stable least-squares solver [BB10]



Rate of Convergence
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Convergence for k = 100



A cavity
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k=100: 14 seconds for setup and solution (t[vLS ] ≈ 3 · 10−8). 46
seconds for plotting on 6 · 104 grid points.



MPSPACK
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A MATLAB toolbox to solve Helmholtz PDE
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MPSpack is a user-friendly and fully object-oriented MATLAB
toolbox that implements the method of particular solutions,
nonpolynomial FEM, and related boundary methods (e.g.
fundamental solutions, layer potentials) for efficient and highly
accurate solution of Laplace eigenvalue problems,
interior/exterior Helmholtz boundary-value problems (e.g.
wave scattering), and related PDE problems, on piecewise-
homogeneous 2D domains.

We have now released Version 1.0.

Please see the Downloads page for a gzipped tar archive of
the package, the manual which has installation instructions,
and the all-important tutorial. See the Source page for how
to download via svn (subversion)

This material is based upon work supported by the National
Science Foundation under grant DMS-0811005 and
Engineering and Physical Sciences Research Council Grant
EP/F06795X/1.

Below is an example image showing scattering from a
square, accurate to 10 digits, computed in a few seconds.
Spectral convergence is achieved using the following
ingredients: decomposition into subdomains (nonpolynomial
FEM), fractional-order Fourier-Bessel expansions around
corner singularities, and an exterior fundamental solutions
representation. With MPSpack this needs no more than 20
lines of code.
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I Object-Oriented Matlab
Toolbox

I Simple and fast solution of
many interior and exterior
Helmholtz and Laplace
problems

I Extensive tutorial available

I All examples in this talk
implemented in MPSPACK

I Manual mesh generation (to
be changed in the future)



Multiply connected domains

Full Field (Real Part)
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k=100: Setup and solve around 7.5 min, t[vLS ] ≈ 4 · 10−7
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