A fast nonpolynomial FEM for scattering from polygons

Timo Betcke
t.betcke@reading.ac.uk

Department of Mathematics
University of Reading

> May 20, 2010
> Joint work with A.H. Barnett (Dartmouth)

Supported by Engineering and Physical Sciences Research Council Grant EP/H00409/1

A sound-soft scattering problem

$$
\begin{aligned}
\Delta u+k^{2} u & =0 \quad \text { in } \mathbb{C} \backslash \Omega \\
u & =0 \quad \text { on } \partial \Omega \\
\frac{\partial u_{s}}{\partial r}-i k u_{s} & =o\left(r^{-1 / 2}\right)
\end{aligned}
$$

u_{i} : Incident Wave
u_{s} : Scattered Field
$u=u_{i}+u_{s}$: Full Field

Domain decomposition

- $E_{i} \cap E_{j}=\emptyset$ for all $i \neq j$
- $\bigcup_{i} \overline{E_{i}}=\overline{\Omega_{e}}$
- $\Gamma_{i} \cap \partial \Omega$ consists of two straight lines whose origin is the corner at p_{i}
- The intersection $\Gamma_{i j}=\Gamma_{i} \cap \Gamma_{j}$ is a connected analytic curve

Basis functions in E_{i}

Close to corner with angle π / α :

$$
u(r, \theta)=\sum_{j=1}^{\infty} \gamma_{j} J_{\alpha j}(k r) \sin \alpha j \theta, \gamma_{j} \in \mathbb{C}
$$

In E_{i} define local approximation space

$$
V_{i}:=\left\{g: g(r, \theta)=\sum_{j=1}^{N_{i}} c_{j} J_{\alpha j}(k r) \sin \alpha j \theta, c_{j} \in \mathbb{C}\right\}
$$

$\ln E_{i}$ approximate full field u

Approximating the solution towards infinity

On Γ_{e} choose absorbing boundary conditions.

- Simple approximation: $\frac{\partial u}{\partial n}-i k u=0$
- Hankel function expansion: $u(r, \theta) \approx \sum_{j=0}^{N} c_{j} H_{j}^{(1)}(r, \theta) e^{i j \theta}$
- Boundary Integral Equations

Here, use fundamental solutions:
Γ_{i} : Closed analytic Jordan curve in Ω_{e}

$$
u(x)=\int_{\Gamma_{i}} H_{0}^{(1)}(k|x-y|) g(y) d y, x \in \Omega_{e}^{+}
$$

Ansatz: $g(y)=\sum_{j=1}^{N} c_{j} \delta\left(y-y_{j}\right)$

$$
V_{e}:=\left\{g: g(x)=\sum_{j=1}^{N_{e}} c_{j} H_{0}^{(1)}\left(k\left|x-y_{j}\right|\right), c_{j} \in \mathbb{C}\right\}
$$

$\ln \Omega_{e}^{+}$approximate scattered field u_{s}

A least-squares formulation

Def.: $v \in V$ if $\left.v\right|_{E_{i}} \in V_{i}$ and $\left.v\right|_{\Omega_{e}^{+}} \in V_{e}$
Define

$$
\begin{aligned}
J(v): & =\sum_{i<j} \int_{\Gamma_{i} \cap \Gamma_{j}}|[\nabla v](\mathbf{x})|^{2} d s+k^{2}|[v](\mathbf{x})|^{2} d s \\
& +\sum_{i=1}^{r} \int_{\Gamma_{i} \cap \Gamma_{e}}\left|\left[\nabla\left(\hat{u}_{i n c}+v\right)\right](\mathbf{x})\right|^{2}+k^{2}\left|\left[\hat{u}_{i}+v\right](\mathbf{x})\right|^{2} d s
\end{aligned}
$$

with

$$
\hat{u}_{\text {inc }}(\mathbf{x}):=\left\{\begin{array}{cc}
u_{\text {inc }}(\mathbf{x}) & \mathbf{x} \in \Omega_{e}^{+} \\
0 & \mathbf{x} \in \Omega_{e}
\end{array}\right.
$$

Least-Squares FEM [Sto98, MW99]

$$
v_{L S}=\arg \min _{v \in V} J(v)
$$

Formulating the numerical least-squares problem

Choose quadrature points $\xi_{j}, j=1, \ldots, m$ and corresponding weights ω_{j}.
Define $(A)_{i j}=\phi_{j}\left(\xi_{i}\right), W=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{m}\right), b_{j}=f\left(\xi_{j}\right)$.

$$
\begin{aligned}
\int_{\Gamma}\left|\sum_{j=1}^{n} \phi_{j}(\xi) x_{j}-f(\xi)\right|^{2} d \xi & \approx x^{H} A^{H} W A x-2 \operatorname{Re}\left\{x^{H} A^{H} W b\right\}+b^{H} W b \\
& =\left\|W^{1 / 2}(A x-b)\right\|_{2}^{2}
\end{aligned}
$$

Solving least-squares problem $\left\|W^{1 / 2}(A x-b)\right\|_{2}$ directly numerically more stable than solving $A^{H} W A x=A^{H} W b$.

Convergence of $J(v)$

Estimate $J(v)$ by

$$
\begin{aligned}
J(v) & \leq C_{1}\left\{\left\|\nabla u_{s}-\nabla v\right\|_{L^{2}\left(\Gamma_{e}\right)}^{2}+k^{2}\left\|u_{s}-v\right\|_{L^{2}\left(\Gamma_{e}\right)}^{2}\right\} \\
& +k^{2} C_{2}\left\{\sum_{i}\|v-u\|_{L^{\infty}\left(E_{i}\right)}^{2}+\sum_{i<j}\|\nabla v-\nabla u\|_{L^{\infty}\left(\Gamma_{i j}\right)}^{2}\right\}
\end{aligned}
$$

- Estimate L^{∞} convergence in interior elements
- Estimate L^{2} convergence on Γ_{e}.

Estimates on interior elements

Theorem [Vekua]: Fix $z_{0} \in \Omega$. Then there exists a unique function Φ holomorphic in Ω with $\Phi\left(z_{0}\right)$ real such that for u with $L u=0$ and L elliptic operator with analytic coefficients

$$
u=\operatorname{Re}\left\{V\left[\Phi ; z_{0}\right]\right\}
$$

For $\Delta u=0$:

$$
u(x, y)=\operatorname{Re}\{\Phi(z)\}
$$

For $-\Delta u=k^{2} u$:

$$
u(x, y)=\operatorname{Re}\left\{\Phi(z)-\int_{z_{0}}^{z} \Phi(t) \frac{\partial}{\partial t} J_{0}\left(k \sqrt{(z-t)\left(\bar{z}-\bar{z}_{0}\right)}\right) \mathrm{dt}\right\}
$$

Estimates on interior elements...

The fractional degree polynomial

$$
p_{N}(z):=\sum_{j=0}^{N} i \tilde{a}_{j} z^{\alpha j}, \quad \tilde{a}_{j} \in \mathbb{R} .
$$

is mapped to the particular solution

$$
\operatorname{Re}\left\{V\left[p_{N} ; 0\right]\right\}=\sum_{j=1}^{N} a_{j} J_{\alpha j}(k r) \sin \alpha j \theta
$$

We have

$$
\left\|u-\operatorname{Re}\left\{V\left[p_{N} ; \cdot\right\}\right]\right\|_{L^{\infty}\left(E_{i}\right)} \leq\|V\|_{L^{\infty}\left(E_{i}\right)}\left\|\Phi-p_{N}\right\|_{L^{\infty}\left(E_{i}\right)} .
$$

For full convergence analysis see [Bet07]

Estimates on interior elements...

Theorem: There exists $\rho_{i}>1$ such that for any $1<\tau<\rho_{i}$

$$
\min _{v \in V_{i}}\|u-v\|_{L^{\infty}\left(E_{i}\right)}=O\left(\tau^{-N_{i}}\right), N_{i} \rightarrow \infty
$$

- Same exponential bounds for derivatives on element boundaries
- Estimate asymptotic for $N_{i} \rightarrow \infty$
- Constants depend on k

Fundamental solutions estimates

Assume $\Gamma_{e}=\left\{z \in \mathbb{C}| | z \mid=R_{0}\right\}, \Gamma_{i}=\{z \in \mathbb{C}:|z|=R\}$

$$
v \in V_{e} \Leftrightarrow v(x)=\sum_{j=1}^{N_{e}} c_{j} H_{0}^{(1)}\left(k\left|x-y_{j}\right|\right), y_{j}=R e^{i \frac{2 \pi j}{N}}
$$

Fundamental solutions estimates...

Define

$$
t^{\left(N_{e}\right)}:=\min _{v \in V_{e}}\|u-v\|_{L^{2}\left(\Gamma_{e}\right)}
$$

Theorem: Let $\rho:=\max _{i} \frac{R_{0}}{\left|p_{i}\right|}$. For any $\epsilon>0$ it holds that

$$
t^{\left(N_{e}\right)}=\left\{\begin{array}{cl}
O\left(\left(\frac{R_{0}}{R}-\epsilon\right)^{-N_{e}}\right), & \frac{R_{0}}{R}<\rho^{\frac{1}{2}} \\
O\left((\rho-\epsilon)^{-\frac{N_{e}}{2}}\right), & \frac{R_{0}}{R}>\rho^{\frac{1}{2}}
\end{array}\right.
$$

- Estimates asymptotic for fixed k and $N_{e} \rightarrow \infty$
- Large radius R_{0} leads to faster exponential convergence of MFS

Convergence for the square scatterer

r : radius of outer circle
ω : Overall exponential rate of convergence $k=1, \mathrm{~N}$ Bessel fct. in $E_{i}, 2 \mathrm{~N}$ fund. sol. in Ω_{e}^{+}.

From sound-soft to sound-hard scattering

Full Field (Real Part)

$$
\sum_{j=1}^{N_{i}} c_{j} J_{\alpha_{j}}(k r) \sin \alpha j \theta \rightarrow \sum_{j=0}^{N_{i}} c_{j} J_{\alpha_{j}}(k r) \cos \alpha j \theta
$$

A snowflake domain

k	N	m	N_{V}	$t\left[v_{L S}\right]$	time
50	70	1980	1071	$3 \cdot 10^{-8}$	8 s
100	90	2460	1377	$4 \cdot 10^{-9}$	15 s
200	130	3660	1989	$5 \cdot 10^{-9}$	44 s
500	260	8700	3978	$2 \cdot 10^{-7}$	7 m

The structure of A

- A numerically singular
- Use backward stable least-squares solver [BB10]

Rate of Convergence

Convergence for $k=100$

A cavity

$\mathrm{k}=100$: 14 seconds for setup and solution $\left(t\left[v_{L S}\right] \approx 3 \cdot 10^{-8}\right) .46$ seconds for plotting on $6 \cdot 10^{4}$ grid points.

MPSPACK

- Object-Oriented Matlab Toolbox
- Simple and fast solution of many interior and exterior Helmholtz and Laplace problems
- Extensive tutorial available
- All examples in this talk implemented in MPSPACK
- Manual mesh generation (to be changed in the future)

Multiply connected domains

$\mathrm{k}=100$: Setup and solve around $7.5 \mathrm{~min}, t\left[v_{L S}\right] \approx 4 \cdot 10^{-7}$

References I

A. Barnett and T. Betcke.

An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons.
SIAM J. Sci. Comp., to appear, 2010.
T T. Betcke.
A GSVD formulation of a domain decomposition method for planar eigenvalue problems.
IMA J. Numer. Anal., 27:451-478, 2007.
圊 P. Monk and Da-Qing Wang.
A least-squares method for the Helmholtz equation.
Comput. Methods Appl. Mech. Engrg., 175(1-2):121-136, 1999.

References II

目
Małgorzata Stojek.
Least-squares Trefftz-type elements for the Helmholtz equation. Intern. J. Numer. Methods Eng., 41(5):831-849, 1998.

Thanks!

