A fast nonpolynomial FEM for scattering from polygons

Timo Betcke t.betcke@reading.ac.uk

Department of Mathematics University of Reading

May 20, 2010

Joint work with A.H. Barnett (Dartmouth)

Supported by Engineering and Physical Sciences Research Council Grant EP/H00409/1

A sound-soft scattering problem

$$\Delta u + k^2 u = 0 \text{ in } \mathbb{C} \setminus \Omega$$

$$u = 0 \text{ on } \partial \Omega$$

$$\frac{\partial u_s}{\partial r} - iku_s = o(r^{-1/2})$$

 u_i : Incident Wave u_s : Scattered Field $u = u_i + u_s$: Full Field

Domain decomposition

- ▶ $E_i \cap E_j = \emptyset$ for all $i \neq j$
- $\blacktriangleright \bigcup_i \overline{E_i} = \overline{\Omega_e}$
- ▶ $\Gamma_i \cap \partial \Omega$ consists of two straight lines whose origin is the corner at p_i
- ▶ The intersection $\Gamma_{ij} = \Gamma_i \cap \Gamma_j$ is a connected analytic curve

Basis functions in E_i

Close to corner with angle π/α :

$$u(r,\theta) = \sum_{i=1}^{\infty} \gamma_i J_{\alpha j}(kr) \sin \alpha j \theta, \gamma_j \in \mathbb{C}$$

In E_i define local approximation space

$$V_i := \{g: g(r,\theta) = \sum_{i=1}^{N_i} c_j J_{\alpha j}(kr) \sin \alpha j \theta, c_j \in \mathbb{C}\}$$

In E_i approximate full field u

Approximating the solution towards infinity

On Γ_e choose absorbing boundary conditions.

- ▶ Simple approximation: $\frac{\partial u}{\partial n} iku = 0$
- ▶ Hankel function expansion: $u(r,\theta) \approx \sum_{i=0}^{N} c_j H_i^{(1)}(r,\theta) e^{ij\theta}$
- ► Boundary Integral Equations

Here, use fundamental solutions:

 Γ_i : Closed analytic Jordan curve in Ω_e

$$u(x) = \int_{\Gamma_i} H_0^{(1)}(k|x-y|)g(y)dy, \ x \in \Omega_e^+$$

Ansatz:
$$g(y) = \sum_{i=1}^{N} c_i \delta(y - y_i)$$

$$V_e := \{g: g(x) = \sum_{i=1}^{N_e} c_j H_0^{(1)}(k|x - y_j|), c_j \in \mathbb{C}\}$$

In Ω_e^+ approximate scattered field u_s

A least-squares formulation

Def.: $v \in V$ if $v|_{E_i} \in V_i$ and $v|_{\Omega_e^+} \in V_e$

Define

$$J(v) := \sum_{i < j} \int_{\Gamma_i \cap \Gamma_j} |[\nabla v](\mathbf{x})|^2 ds + k^2 |[v](\mathbf{x})|^2 ds$$
$$+ \sum_{i=1}^r \int_{\Gamma_i \cap \Gamma_e} |[\nabla (\hat{u}_{inc} + v)](\mathbf{x})|^2 + k^2 |[\hat{u}_i + v](\mathbf{x})|^2 ds$$

with

$$\hat{u}_{inc}(\mathbf{x}) := \left\{ egin{array}{ll} u_{inc}(\mathbf{x}) & \mathbf{x} \in \Omega_e^+ \ 0 & \mathbf{x} \in \Omega_e \end{array}
ight.$$

Least-Squares FEM [Sto98, MW99]

$$v_{LS} = \arg\min_{v \in V} J(v)$$

Formulating the numerical least-squares problem

Choose quadrature points ξ_j , $j=1,\ldots,m$ and corresponding weights ω_j .

Define $(A)_{ij} = \phi_j(\xi_i)$, $W = \text{diag}(\omega_1, \dots, \omega_m)$, $b_j = f(\xi_j)$.

$$\int_{\Gamma} |\sum_{j=1}^{n} \phi_{j}(\xi) x_{j} - f(\xi)|^{2} d\xi \approx x^{H} A^{H} W A x - 2 \operatorname{Re} \{ x^{H} A^{H} W b \} + b^{H} W b$$

$$= \|W^{1/2} (A x - b)\|_{2}^{2}$$

Solving least-squares problem $||W^{1/2}(Ax - b)||_2$ directly numerically more stable than solving $A^HWAx = A^HWb$.

Convergence of J(v)

Estimate J(v) by

$$J(v) \leq C_1 \left\{ \|\nabla u_s - \nabla v\|_{L^2(\Gamma_e)}^2 + k^2 \|u_s - v\|_{L^2(\Gamma_e)}^2 \right\}$$

$$+ k^2 C_2 \left\{ \sum_i \|v - u\|_{L^{\infty}(E_i)}^2 + \sum_{i < j} \|\nabla v - \nabla u\|_{L^{\infty}(\Gamma_{ij})}^2 \right\}$$

- ightharpoonup Estimate L^{∞} convergence in interior elements
- ▶ Estimate L^2 convergence on Γ_e .

Estimates on interior elements

Theorem [Vekua]: Fix $z_0 \in \Omega$. Then there exists a unique function Φ holomorphic in Ω with $\Phi(z_0)$ real such that for u with Lu=0 and L elliptic operator with analytic coefficients

$$u = \operatorname{Re}\{V[\Phi; z_0]\}$$

For $\Delta u = 0$:

$$u(x,y) = \text{Re}\{\Phi(z)\}$$

For $-\Delta u = k^2 u$:

$$u(x,y) = \operatorname{Re}\{\Phi(z) - \int_{z_0}^{z} \Phi(t) \frac{\partial}{\partial t} J_0(k\sqrt{(z-t)(\bar{z}-\bar{z}_0)}) dt\}$$

Estimates on interior elements...

The fractional degree polynomial

$$p_N(z) := \sum_{i=0}^N i \tilde{a}_j z^{\alpha j}, \quad \tilde{a}_j \in \mathbb{R}.$$

is mapped to the particular solution

$$Re\{V[p_N; 0]\} = \sum_{j=1}^{N} a_j J_{\alpha j}(kr) \sin \alpha j\theta$$

We have

$$||u - \text{Re}\{V[p_N;\cdot\}]||_{L^{\infty}(E_i)} \le ||V||_{L^{\infty}(E_i)} ||\Phi - p_N||_{L^{\infty}(E_i)}.$$

For full convergence analysis see [Bet07]

Estimates on interior elements...

Theorem: There exists $\rho_i > 1$ such that for any $1 < \tau < \rho_i$

$$\min_{v\in V_i}\|u-v\|_{L^{\infty}(E_i)}=O(\tau^{-N_i}),\ N_i\to\infty$$

- Same exponential bounds for derivatives on element boundaries
- ▶ Estimate asymptotic for $N_i \to \infty$
- Constants depend on k

Fundamental solutions estimates

$$\Omega_e^+$$
 Γ_e Ω Γ

Assume
$$\Gamma_e=\{z\in\mathbb{C}|\ |z|=R_0\},\ \Gamma_i=\{z\in\mathbb{C}:\ |z|=R\}$$

$$v \in V_e \Leftrightarrow v(x) = \sum_{j=1}^{N_e} c_j H_0^{(1)}(k|x-y_j|), \ y_j = Re^{irac{2\pi j}{N}}$$

Fundamental solutions estimates...

Define

$$t^{(N_e)} := \min_{v \in V_e} \|u - v\|_{L^2(\Gamma_e)}$$

Theorem: Let $\rho := \max_{i} \frac{R_0}{|p_i|}$. For any $\epsilon > 0$ it holds that

$$t^{(N_e)} = \begin{cases} O\left(\left(\frac{R_0}{R} - \epsilon\right)^{-N_e}\right), & \frac{R_0}{R} < \rho^{\frac{1}{2}} \\ O\left(\left(\rho - \epsilon\right)^{-\frac{N_e}{2}}\right), & \frac{R_0}{R} > \rho^{\frac{1}{2}} \end{cases}$$

- lacktriangle Estimates asymptotic for fixed k and $N_e o\infty$
- Large radius R₀ leads to faster exponential convergence of MFS

Convergence for the square scatterer

r: radius of outer circle

 ω : Overall exponential rate of convergence

k = 1, N Bessel fct. in E_i , 2N fund. sol. in Ω_e^+ .

From sound-soft to sound-hard scattering

$$\sum_{j=1}^{N_i} c_j J_{\alpha_j}(kr) \sin \alpha j \theta \to \sum_{j=0}^{N_i} c_j J_{\alpha_j}(kr) \cos \alpha j \theta$$

A snowflake domain

The structure of A

- ► A numerically singular
- ▶ Use backward stable least-squares solver [BB10]

Rate of Convergence

Convergence for k=100

A cavity

k=100: 14 seconds for setup and solution ($t[v_{LS}] \approx 3 \cdot 10^{-8}$). 46 seconds for plotting on $6 \cdot 10^4$ grid points.

MPSPACK

- Object-Oriented Matlab Toolbox
- Simple and fast solution of many interior and exterior Helmholtz and Laplace problems
- Extensive tutorial available
- All examples in this talk implemented in MPSPACK
- Manual mesh generation (to be changed in the future)

Multiply connected domains

k=100: Setup and solve around 7.5 min, $t[v_{LS}] \approx 4 \cdot 10^{-7}$

References I

A. Barnett and T. Betcke.

An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons. SIAM J. Sci. Comp., to appear, 2010.

T. Betcke.

A GSVD formulation of a domain decomposition method for planar eigenvalue problems.

IMA J. Numer. Anal., 27:451-478, 2007.

P. Monk and Da-Qing Wang.

A least-squares method for the Helmholtz equation.

Comput. Methods Appl. Mech. Engrg., 175(1-2):121–136, 1999.

References II

Małgorzata Stojek.

Least-squares Trefftz-type elements for the Helmholtz equation.

Intern. J. Numer. Methods Eng., 41(5):831-849, 1998.

Thanks!