Cell centered Galerkin methods

Daniele A. Di Pietro

IFP, daniele-antonio.di-pietro@ifp.fr

EFEF, Warwick, May 20-21 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An essential bibliography I

- Multi-point Finite Volume methods [Aavatsmark et al.], [Edwards et al.]
- Mimetic Finite Difference methods [Brezzi, Lipnikov, Shashkov, Simoncini, Beirão da Vega, Boffi, Buffa, Cangiani, Kuznetsov, Manzini, Russo *et al.*]
- Variational Finite Volume methods [Eymard, Gallouët, Herbin, Agélas, DP, Droniou *et al.*]
- Cell centered Galerkin methods [DP, 2010]
- And, for inspiration, [Houston & Süli, 2001], [Burman & Zunino, 2006], [DP, Ern & Guermond, 2008], [Buffa & Ortner, 2009], [DP & Ern, 2010], [Agélas, Droniou, & DP, 2010]

The L-construction to recover gradients and traces

The S ω IP-ccG method

The S_h -ccG method

Numerical examples

Model problem

- Let Ω be a poly{gonal,hedral} domain in \mathbb{R}^d
- Let κ be a uniformly positive, piecewise constant tensor field
- For $f \in L^2$, consider the problem

$$-\nabla \cdot (\kappa \nabla u) = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

 Denote by *T_h* a poly{gonal,hedral}, possibly nonconforming mesh of Ω with (hyper)planar faces

Cell centered Galerkin methods

Fix the algebraic space of DOFs, in our case

$$\mathbb{V} \stackrel{\mathsf{def}}{=} \mathbb{R}^{\mathcal{T}_i}$$

• Reconstruct a gradient $(S_h = T_h \text{ or submesh of } T_h)$

$$\mathfrak{G}_h:\mathbb{R}^{\mathcal{T}_h}\to [\mathbb{P}^0_d(\mathcal{S}_h)]^d$$

▶ Let
$$\Im_h : \mathbb{R}^{\mathcal{T}_h} \to \mathbb{P}^1_d(\mathcal{S}_h)$$
 be s.t., for all $\mathbf{v} \in \mathbb{R}^{\mathcal{T}_h}$,

 $\forall S \in \mathcal{S}_h, \ S \subset \mathcal{T}_S \in \mathcal{T}_h, \quad \mathfrak{I}_h(\mathbf{v})|_{\mathcal{T}_S} \left(x \right) = v_{\mathcal{T}_S} + \mathfrak{G}_h(\mathbf{v})|_{\mathcal{T}_S} \cdot \left(x - x_{\mathcal{T}_S} \right)$

Define the incomplete polynomial space

$$V_h \stackrel{\mathsf{def}}{=} \mathfrak{I}_h(\mathbb{R}^{\mathcal{T}_h}) \subset \mathbb{P}^1_d(\mathcal{S}_h)$$

► Use V_h as a trial/test space

The L-construction I

 $\begin{array}{l} \mathcal{T}_h \hspace{0.2cm} \text{general poly}\{\text{gonal,hedral}\} \hspace{0.2cm} \text{mesh} \\ \mathcal{F}_h \hspace{0.2cm} \text{set of faces, } \mathcal{F}_h = \mathcal{F}_h^i \cup \mathcal{F}_h^b \\ \mathcal{F}_T \hspace{0.2cm} \text{faces of } \mathcal{T} \in \mathcal{T}_h \\ \mathcal{T}_F \hspace{0.2cm} \text{elements sharing } F \in \mathcal{F}_h \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The L-construction II

$$\mathbf{v} \in \mathbb{R}^{\mathcal{T}_h} \to \xi_{\mathbf{v}} \text{ s.t. } \xi_{\mathbf{v}}(x_T) = v_T \text{ and } \xi_{\mathbf{v}}(x_{T_i}) = v_{T_i}, i \in \{1, 2\}$$

 $\begin{cases} \kappa_T \ \nabla \xi_{\mathbf{v}}|_T \cdot \mathbf{n}_{F_1} = \kappa_{T_1} \ \nabla \xi_{\mathbf{v}}|_{T_1} \cdot \mathbf{n}_{F_1} \\ \xi_{\mathbf{v}}|_T (x) = \xi_{\mathbf{v}}|_{T_1} (x) \quad \forall x \in F \end{cases} \qquad \begin{cases} \kappa_T \ \nabla \xi_{\mathbf{v}}|_T \cdot \mathbf{n}_{F_2} = \kappa_{T_2} \ \nabla \xi_{\mathbf{v}}|_{T_2} \cdot \mathbf{n}_{F_2} \\ \xi_{\mathbf{v}}|_T (x) = \xi_{\mathbf{v}}|_{T_2} (x) \quad \forall x \in F \end{cases}$ $x_T \stackrel{\text{def}}{=} \int_T x/|T|, \ T \text{ star-shaped w.r.t } x_T$

・ロト ・ 通 ト ・ 目 ト ・ 目 ・ の へ ()・

Gradient reconstruction

▶ For all
$$F \in \mathcal{F}_h$$
, let $x_F \stackrel{\text{def}}{=} \int_F x/|F|$

We can infer an injective trace reconstruction operator \mathfrak{T}

$$\begin{split} \mathfrak{T} : \mathbb{R}^{\mathcal{T}_h} &\to \mathbb{R}^{\mathcal{F}_h} \\ \mathbb{R}^{\mathcal{T}_h} \ni \mathbf{v} &\mapsto (v_{\mathcal{T}_F} + \mathcal{G}_{\mathcal{T}_F}(\mathbf{v}) \cdot (x_F - x_{\mathcal{T}_F}))_{F \in \mathcal{F}_h} \in \mathbb{R}^{\mathcal{F}_h} \end{split}$$

• The gradient reconstruction operator \mathfrak{G}_h is then defined as

 $\mathfrak{G}_h: \mathbb{R}^{\mathcal{T}_h} \to [\mathbb{P}^0_d(\mathcal{T}_h)]^d, \qquad \mathbb{R}^{\mathcal{T}_h} \ni \mathbf{v} \mapsto \mathfrak{G}_h(\mathbf{v}) \in [\mathbb{P}^0_d(\mathcal{T}_h)]^d,$

where, setting $(v_F)_{F \in \mathcal{F}_h} = \mathfrak{T}(\mathbf{v})$,

$$\forall T \in \mathcal{T}_h, \qquad \mathfrak{G}_h(\mathbf{v})|_T = \frac{1}{|T|} \sum_{F \in \mathcal{F}_T} |F| (v_F - v_T) \mathbf{n}_{F,T}$$

The discrete space I

Define the injective operator

$$\mathfrak{I}_h: \mathbb{R}^{\mathcal{T}_h} o \mathbb{P}^1_d(\mathcal{T}_h), \qquad \mathbb{R}^{\mathcal{T}_h} \ni \mathbf{v} \mapsto \mathbf{v}_h \in \mathbb{P}^1_d(\mathcal{T}_h)$$

where, for all $T \in \mathcal{T}_h$ and all $x \in T$,

$$\mathbf{v}_{h}|_{T}(x) = \mathbf{v}_{T} + \mathfrak{G}_{h}(\mathbf{v})|_{T} \cdot (x - x_{T})$$

The discrete space is defined as

$$V_h = \mathfrak{I}_h(\mathbb{R}^{\mathcal{T}_h}) \subset \mathbb{P}^1_d(\mathcal{T}_h)$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

$S\omega IP$ -ccG method

Introduce the spaces

$$V_{\dagger} \stackrel{\mathrm{def}}{=} H^1_0(\Omega) \cap H^2(\mathcal{T}_h), \qquad V_{\dagger h} \stackrel{\mathrm{def}}{=} V_h + V_{\dagger}$$

• Define on $V_{\dagger h} \times V_h$

$$a_{h}(w, v_{h}) = \int_{\Omega} \kappa \nabla_{h} w \cdot \nabla_{h} v_{h} + \sum_{F \in \mathcal{F}_{h}} \frac{\gamma_{F}}{h_{F}} \eta \int_{F} \llbracket w \rrbracket \llbracket v_{h} \rrbracket$$
$$- \sum_{F \in \mathcal{F}_{h}} \int_{F} [\{\kappa \nabla_{h} w\}_{\omega} \cdot \mathsf{n}_{F} \llbracket v_{h} \rrbracket + \llbracket w \rrbracket \{\kappa \nabla_{h} v_{h} \}_{\omega} \cdot \mathsf{n}_{F}]$$

 Average operators and stabilization term are tailored to have coercivity/boundedness constants independent of the heterogeity of κ

Implementation

- All the integrals in a_h can be evaluated using barycenters
- \blacktriangleright The general bilinear term ${\mathfrak T}$ can be recast into the form

$$\mathfrak{T} = \chi \mathcal{A}_\mathfrak{T}(\mathbf{u}) \mathcal{L}_\mathfrak{T}(\mathbf{v}), \qquad \mathbf{u}, \, \mathbf{v} \in \mathbb{R}^{\mathcal{T}_h},$$

where χ is a real coefficient and

$$\mathcal{A}_{\mathfrak{T}}(\mathbf{u}) = \alpha_0 + \sum_{T \in \mathcal{T}_{\mathcal{A}}} \alpha_T u_T, \qquad \mathcal{L}_{\mathfrak{T}}(\mathbf{v}) = \sum_{T \in \mathcal{T}_{\mathcal{L}}} \lambda_T v_T$$

The corresponding local contribution is

$$\mathbf{M}_{\mathfrak{T}} = \chi \left[\lambda_{T} \alpha_{T'} \right]_{T \in \mathcal{T}_{\mathcal{L}}, \ T' \in \mathcal{T}_{\mathcal{A}}}, \qquad \mathbf{r}_{\mathfrak{T}} = \chi \left(\lambda_{T} \alpha_{\mathbf{0}} \right)_{T \in \mathcal{T}_{\mathcal{L}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Convergence to smooth solutions

Theorem (Error estimate for smooth exact solutions) *There holds*

$$|||u-u_h|||_{\kappa} \leq \left(1+\frac{C_{bnd}}{C_{sta}}\right) \inf_{w_h \in V_h} |||u-w_h|||_{\kappa,*}.$$

Corollary (Convergence rate) Assuming further regularity on u^1 , there holds

$$||\!| u - u_h ||\!|_{\kappa} \leq Ch,$$

with C independent of h and of κ .

¹See [Agélas, DP & Droniou 2010]

Convergence to solutions in $H_0^1(\Omega)$

Theorem (Convergence to minimal regularity solutions) Let $(u_h)_{h \in \mathcal{H}}$ denote the sequence of discrete solutions on the admissible mesh family $(\mathcal{T}_h)_{h \in \mathcal{H}}$. Then, there exists $u \in H_0^1$ solution of the continuous problem s.t.

$$u_h \rightarrow u$$
 strongly in $L^2(\Omega)$,
 $\nabla_h u_h \rightarrow \nabla u$ strongly in $[L^2(\Omega)]^d$,
 $|u_h|_{J,\kappa} \rightarrow 0$.

Proof. A fortiori from [DP & Ern,2010].

A first balance

- Local reconstruction handling heterogeneities
- Galerkin method on general meshes in arbitrary dimension based on an incomplete polynomial space
- Easy to implement in existing dG codes (ongoing work on the Life/Feel platform by C. Prud'homme)
- The procedure virtually extends to every problem for which a dG method has been conceived

Main drawback: large stencil

Support of S ω IP-ccG basis functions

Minimal (blue) and maximal (blue+red) support for $\varphi_T = \Im_h(\mathbf{e}_T)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reducing the stencil: The S_h -ccG method I

 $\mathcal{S}_h = \{\mathcal{P}_{T,F}\}_{T \in \mathcal{T}_h, F \in \mathcal{F}_T}, \qquad \mathcal{S}_T = \text{lateral pyramid faces in } T$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reducing the stencil: The S_h -ccG method II

- ► The L-construction naturally yields a gradient in each face-based pyramid P_{T,F}
- ► We therefore consider the alternative gradient reconstruction

$$\mathfrak{G}_h: \mathbb{R}^{\mathcal{T}_h} \to [\mathbb{P}^0_d(\mathcal{S}_h)]^d, \qquad \mathbf{v} \mapsto \mathfrak{G}_h(\mathbf{v}),$$

where, for all $T \in \mathcal{T}_h$ and all $F \in \mathcal{F}_T$

$$\mathfrak{G}_h(\mathbf{v})|_{\mathcal{P}_{T,F}} = G_{\mathcal{P}_{T,F}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

No need for trace reconstructions this time!

Reducing the stencil: The S_h -ccG method III

Define the injective operator

 $\mathfrak{I}_h: \mathbb{R}^{\mathcal{T}_h} o \mathbb{P}^1_d(\mathcal{S}_h), \qquad \mathbb{R}^{\mathcal{T}_h} \ni \mathbf{v} \mapsto \mathbf{v}_h = \mathfrak{I}_h(\mathbf{v}) \in \mathbb{P}^1_d(\mathcal{S}_h),$

where, for all $T \in \mathcal{T}_h$, all $F \in \mathcal{F}_T$, and all $x \in \mathcal{P}_{T,F}$,

$$|\mathbf{v}_h|_{\mathcal{P}_{T,F}}(x) = v_T + \mathfrak{G}_h(\mathbf{v})|_{\mathcal{P}_{T,F}} \cdot (x - x_T)$$

As before, we set

$$V_h \stackrel{\mathsf{def}}{=} \mathfrak{I}_h(\mathbb{R}^{\mathcal{T}_h}) \subset \mathbb{P}^1_d(\mathcal{S}_h)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Reducing the stencil: The S_h -ccG method IV

Minimal (blue) and maximal (blue+red) support for $\varphi_T = \Im_h(\mathbf{e}_T)$ (left panel: S_h -ccG, right panel: S ω IP-ccG)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A second method with subgrid stabilization

Based on the bilinear form

$$a_{h}(w, v_{h}) \stackrel{\text{def}}{=} \int_{\Omega} \kappa \nabla_{h} w \cdot \nabla_{h} v_{h}$$

+ $\sum_{T \in \mathcal{T}_{h}} \sum_{S \in \mathcal{S}_{T}} \int_{S} \frac{\eta k_{S}}{h_{S}} \llbracket w \rrbracket \llbracket v_{h} \rrbracket + \sum_{F \in \mathcal{F}_{h}^{b}} \int_{F} \frac{\eta k_{F}}{h_{F}} w v_{h}$
- $\sum_{T \in \mathcal{T}_{h}} \sum_{S \in \mathcal{S}_{T}} \int_{S} (\kappa \{\nabla_{h} w\} \cdot \mathbf{n}_{S} \llbracket v_{h} \rrbracket + \kappa \{\nabla_{h} v_{h}\} \cdot \mathbf{n}_{S} \llbracket w \rrbracket)$
- $\sum_{F \in \mathcal{F}_{h}^{b}} \int_{F} (\kappa \nabla w \cdot \mathbf{n}_{F} v_{h} + \kappa \nabla v_{h} \cdot \mathbf{n}_{F} w).$

(ロ)、(型)、(E)、(E)、 E) の(の)

Similar theoretical results as for the S ω IP-ccG method

Numerical examples I

$card(\mathcal{T}_h)$	$\ u-u_h\ _{L^2(\Omega)}$	order	$\ u-u_h\ _{\kappa}$	order	stencil		
SωIP-ccG							
3584	3.4013e-04	_	1.9112e-02	_	25.3		
14336	8.5152e-05	2.00	9.5397e-03	1.00	25.72		
57344	2.1298e-05	2.00	4.7656e-03	1.00	26.11		
229376	5.3253e-06	2.00	2.3821e-03	1.00	26.10		
S _h -ccG							
3584	9.5453e-04	_	2.4299e-02	_	15.02		
14336	2.4312e-04	1.97	1.1908e-02	1.03	15.15		
57344	6.1328e-05	1.99	5.8797e-03	1.02	15.22		
229376	1.5420e-05	2.00	2.9466e-03	1.00	15.25		

Homogeneous isotropic test case

Numerical examples II

$card(\mathcal{T}_h)$	$\ u-u_h\ _{L^2(\Omega)}$	order	$\ u-u_h\ _{\kappa}$	order	stencil		
SωIP-ccG							
3584	5.2227e-04	-	2.8501e-02	_	25.26		
14336	1.2926e-04	2.01	1.4194e-02	1.01	25.73		
57344	3.2545e-05	1.99	7.1126e-03	1.00	26.11		
229376	7.9803e-06	2.03	3.5293e-03	1.01	26.10		
3584	1.3027e-03	_	4.5746e-02	_	15.03		
14336	3.1039e-04	2.07	2.2608e-02	1.02	15.16		
57344	8.6435e-05	1.84	1.1581e-02	0.97	15.22		
229376	1.9971e-05	2.11	5.6241e-03	1.04	15.25		

Heterogeneous test case (heterogeneity ratio = 1000)

Numerical examples III

$card(\mathcal{T}_h)$	$\ u-u_h\ _{L^2(\Omega)}$	order	$\ u-u_h\ _{\kappa}$	order	stencil		
SωIP-ccG							
806	4.0093e-03	-	4.8250e-02	_	25.33		
3162	1.7803e-03	1.17	2.7231e-02	0.83	26.35		
12632	4.9217e-04	1.85	1.3674e-02	0.99	26.85		
50548	1.3945e-04	1.82	6.9776e-03	0.97	27.12		
S _h -ccG							
806	6.2131e-03	_	9.0381e-02	_	14.69		
3162	1.7417e-03	1.83	4.5942e-02	0.98	15.25		
12632	5.7562e-04	1.60	2.2897e-02	1.00	15.38		
50548	1.4492e-04	1.99	1.1341e-02	1.01	15.52		

Anisotropic test case (anisotropy ratio = 1000)

Application to the incompressible Navier-Stokes problem I

$card(\mathcal{T}_h)$	$ u - u_h $	$\ _{[L^2(\Omega)]^d}$	ord	$\ p-$	$p_h \ _{L^2(\Omega)}$	ord
224	1.528	8e-01	_	2.56	93e-01	_
896	4.169	1e-02	1.87	1.08	47e-01	1.24
3584	1.111	5e-02	1.91	4.02	51e-02	1.43
14336	2.926	1e-03	1.93	1.74	87e-02	1.20
57344	7.662	2e-04	1.93	8.70	05e-03	1.01
_	$card(\mathcal{T}_h)$	∥ (<i>u</i> –	$u_h, p-p$	h)∥sto	ord	
	224	4.	5730e-01	_	_	
	896	2.	1185e-01	L	1.11	
	3584	1.	0319e-01	L	1.04	
	14336	5.	1495e-02	2	1.00	
	57344	2.	6540e-02)	0.96	

Kovasznay's problem, IP-ccG method inspired by [DP & Ern, 2010]

Application to the incompressible Navier-Stokes problem II

Kovasznay's problem, velocity magnitude and pressure

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Application to the incompressible Navier-Stokes problem III

Lid-driven cavity problem, Re=1000,7500, velocity magnitude

Application to the incompressible Navier-Stokes problem IV

Lid-driven cavity problem, Re=1000, comparison with [Erturk, Corke, Gökçöl, 2005]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで