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C. Carstensen, C. Löbhard, R.H.W. Hoppe

Humboldt-Universität zu Berlin

19.05.2010

1 

 
 
 
 
Guidelines for Applicants 
 
These guidelines should help you as you think about applying to the Berlin Mathe-
matical School (BMS). We are pleased that you are considering BMS, and offer you 
encouragement along with a few words of advice. 
 
The Berlin Mathematical School presents exceptional opportunities offering students 
the academic and intellectual resources of three universities. However, before apply-
ing for admission you should determine that the BMS program actually meets your 
interests and needs. Make sure that our program has scholars working actively in the 
mathematical fields that you are interested in.  
 
Consult with your previous professors; faculty members here in Berlin may also be of 
help to you. Visit us on the web where you will find important information about the 
BMS study program, current seminars, and ongoing activities as well as the home 
pages of many of our individual faculty members and current students. It is in your 
interest, as well as ours, that the most highly qualified and motivated candidates find 
the best match for their research interests.  
 
Working towards a Ph.D. is more than a continuation of your previous studies. During 
your graduate education you will develop the capacity for independent research by 
working closely with a scholar, or a small group of scholars, whose work can serve 
as a model. It is a transition period at the end of which you will have become a col-
league to your professors. Achieving this requires more than completing courses, 
accumulating credits, and passing prescribed examinations. Such a position is 
earned by commitment to the difficult, but fulfilling, craft of independent research 
through which you demonstrate the ability to make an original contribution to knowl-
edge. 
 
Meeting this challenge requires personal sacrifice—of time, of leisure, of immediate 
rewards. But the achievement is well worth the cost in terms of intellectual satisfac-
tion and the opportunity to expand the boundaries of knowledge. 
 
Before resolving to set out on the path to a doctoral degree, do reflect on the com-
mitment that will be required. If you think you have this commitment—sufficient to 
sustain you through several years of intense and concentrated work and study—we 
welcome your application. 
 
Jürg Kramer, Christof Schütte, Günter M. Ziegler 
 

1we know of
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Model Example

Flux or stress field p in equilibrium equation g + div p = 0 is approximated
by piecewise constant p` and yields equilibrium residual

Res(v) :=

∫
Ω

(g · v − p` : D`v) dx for v ∈ V := H1
0 (Ω; Rm)

Endow V with norm ‖v‖V := ‖Dv‖L2(Ω) s.t. V ∗ ≈ H−1(Ω) and

‖ div(p − p`)‖V ∗ = ‖Res ‖V ∗ := sup
v 6=0

Res(v)

‖v‖V

Estimation by edge residuals ηE := |E |(p`|T+ · νT+ + p`|T− · νT−) on each
interior edge E = ∂T+ ∩ ∂T− with outer unit normals νT±

ηE :=

(∑
E∈E
|ηE |2

)1/2
p`|T+

p`|T−

νT−
νT+

E
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Estimation of Equilibrium Error

Up to data oscillation osc(g , ·), edge estimator ηE is reliable & efficient

‖Res ‖V ∗ ≈ ηE ± osc(g , elements ∪ edges)

Remark: Edge residual estimator is equivalent to many others
(cf. Ainsworth/Oden, Babuška/Strouboulis, Verfürth)

Example: For triangulation of Ω ⊂ R2 and first-order conforming or
nonconforming FEM

p` := D`u` and V c
` := P1(T`; Rm) ∩ V ⊂ ker Res
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Schemes & Applications
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Unified Analysis of. . .

applications:
Laplace, Stokes, Navier-Lamé, Maxwell equations. . .

schemes:
(all?!) conforming, nonconforming, tri/quad, mixed, mortar elements,
dG, hanging nodes. . .
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Goals of Unified Analysis

Generalise analysis to cover many different discretisation schemes
and applications in one framework

Reduce repetition of similar mathematical arguments and focus on
specific properties/difficulties

No optimal constants but common point of departure and guiding
principles
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A Unified Approach

Generic Approach

For each Application: Verify ‖error‖ ≈ ‖residual‖∗
For each Scheme: Determine discrete space V` ⊂ ker(residual)
and design computable lower/upper bounds of ‖residual‖∗

Topics

Mixed Setting for Unified A Posteriori Error Control

Unified Equilibrium Estimator

Analysis of Consistency Residual

Applications: Poisson, Lamé, Stokes, . . .
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Mixed Setting for Unified Analysis

Abstract problem formulation:

Given X` × Y` ⊂ X × Y , A : X × Y → (X × Y )∗

` := `X + `Y ∈ (X × Y )∗, find (x , y) ∈ X × Y s.t.

(PM) A(x , y)(ξ, η) = `(ξ, η) for all (ξ, η) ∈ X × Y

Given a ∈ (X × X )∗, Λ : Y → X , b ∈ (X × Y )∗ with b(·, v) := a(Λv , ·)
c ∈ (Y × Y )∗, A(x , y) := a(x , ·)− b(·, y) + b(x , ·) + c(y , ·)
(PM) then reads

a(x , ξ)− b(ξ, y) = `X (ξ) for all ξ ∈ X

b(x , η) + c(y , η) = `Y (η) for all η ∈ Y
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Errors & Residuals in Unified Analysis

Given approx. (x`, ỹ`) ∈ X` × Y to (x , y), define Res := ResX + ResY

(consistency) ResX := `X − a(x`, ·) + b(·, ỹ`) = `X − a(x` − Λỹ`)

(equilibrium) ResY := `Y − b(x`, ·)− c(ỹ`, ·)

Remarks:

ỹ` ∈ Y close to y`, not necessarily discrete

ResX involves piecewise gradient D`(y` − ỹ`) of y` − ỹ` /∈ Y

Since A isomorphism, ‖error‖ ≈ ‖residual‖∗, i.e.

‖x − x`‖X + ‖y − ỹ`‖Y ≈ ‖ResX ‖X∗ + ‖ResY ‖Y ∗
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[Preparation] Generic Equilibrium Error Analysis

Two discrete spaces V c
` ⊂ V and V nc

` ⊂ H1(T`; Rm) with

V
J−→ V c

`
Π−→ V nc

`

(H1) ∃ H1-stable Clément-type operator J : V → V c
` into (conforming)

subspace V c
` ⊆ V with first-order approximation property

(H2) V c
` and V nc

` piecewise smooth w.r.t. shape-regular T`
(H3) For p` ∈ L2(Ω; Rm×n) ∃Π : V c

` → V nc
` s.t. ∀v` ∈ V c

` ∀T ∈ T`

‖D(Πv`)‖L2(T ) . ‖Dv`‖L2(ωT )∫
T

v` dx =

∫
T

Πv` dx∫
Ω

p` : D`v` dx =

∫
Ω

p` : D`(Πv`) dx
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[Result] Generic Equilibrium Error Analysis

Thm.[CEHL10 +]: Suppose RT ∈ L2(T`), RE ∈ L2(
⋃
E`) and

Res : V nc
` + V → R reads

Res(v) :=

∫
Ω

RT · v dx +

∫
S
E`

RE · 〈v〉 ds

Suppose (H1)-(H3) and V nc
` ⊂ ker Res

Then

η` :=

∑
E∈E`

hE‖RE‖2
L2(E)

1/2

= ‖h1/2
E RE‖L2(

S
E`)

is reliable and efficient in the sense

η` − osc(RT , T`)− osc(RE , E`) . ‖Res ‖V ∗ . η` + osc(RT , {ωz : z ∈ K`})
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Analysis of Consistency Error

Thm.[CEHL10 +]:

Given X = L2(Ω), x` = D`y` ∈ X` = P0(T`; Rn),

Y = H1
0 (Ω), y` ∈ Y` = CR1(T`) and

µ` := minη∈Y ‖x` − Dη‖L2(Ω)

µ` ≈ min
η`∈P1(T`)∩Y

‖x` − D`η`‖L2(Ω)

≈ min
η`∈P1(T`)∩Y

‖h−1
T (y` − η`)‖L2(Ω)

≈ ‖h−1
T (y` − Sy`)‖L2(Ω)

≈ ‖h−1/2
E [y`]‖L2(

S
E`)

≈ ‖h1/2
E [D`y` · τE ]‖L2(

S
E`)

M. Eigel (Humboldt) Unified Error Analysis EFEF, Warwick 2010 12 / 22



Analysis of Consistency Error

Thm.[CEHL10 +]:

Given X = L2(Ω), x` = D`y` ∈ X` = P0(T`; Rn),

Y = H1
0 (Ω), y` ∈ Y` = CR1(T`) and

µ` := minη∈Y ‖x` − Dη‖L2(Ω)

µ` ≈ min
η`∈P1(T`)∩Y

‖x` − D`η`‖L2(Ω)

≈ min
η`∈P1(T`)∩Y

‖h−1
T (y` − η`)‖L2(Ω)

≈ ‖h−1
T (y` − Sy`)‖L2(Ω)

≈ ‖h−1/2
E [y`]‖L2(

S
E`)

≈ ‖h1/2
E [D`y` · τE ]‖L2(

S
E`)

M. Eigel (Humboldt) Unified Error Analysis EFEF, Warwick 2010 12 / 22



[Application] Laplace Equation

Poisson model problem:

∆u = g in Ω and u = 0 on ∂Ω

leads to primal mixed formulation with

a(p, q) :=

∫
Ω

p · q dx , Λu := D`u, b(q, u) =

∫
Ω

D`u · q dx

Given g ∈ L2(Ω), find (p, u) ∈ X × Y := L2(Ω; Rn)× H1
0 (Ω) s.t.

A(p, u)(q, v) = (g , v)L2(Ω) for all (q, v) ∈ X × Y

Since A isomorphism

‖p − p`‖L2 + ‖u − ũ`‖H1 ≈ ‖ResX ‖X∗ + ‖ResY ‖Y ∗
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[Application (cont.)] Laplace Equation

Treatment of different schemes in the unified framework:

Conforming FEM Discrete solution u` = ũ` ∈ Y defines discrete flux
p` := Λu` = Du`. Consistency error vanishes, equilibrium
residual treated as suggested previously.

Nonconforming FEM Discrete solution u` defines discrete flux p` := D`u`.
Same analysis for equilibrium residual while consistency
residual ‖p` − Dũ`‖L2(Ω) can be bounded as before.

Mixed FEM Discrete solution is discrete flux p` and u` /∈ Y is Lagrange
multiplier. Equilibrium residual reduces to osc(g , elements),
consistency residual minũ`∈H1

0 (Ω) ‖p` − Dũ`‖L2(Ω) can be

bounded as in [Carstensen, Math. Comp. 1997].
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[Application] Stokes Equations

Let a(u, v) := −
∫

Ω uv dx , Λu := div u, c(u, v) :=
∫

Ω 2µε(u) : ε(v) dx

`X (p, q) := −
∫

Ω pq dx and X := L2
0(Ω; Rn), Y := H1

0 (Ω; Rn)

With ε(v) := symDv and deviatoric operator dev σ := σ − 1
n (tr(σ))1

the linear operator A : X × Y → (X × Y )∗ reads

A(σ, u)(τ, v) :=
1

2µ
(dev σ, dev τ)L2(Ω) − (σ, ε(v))L2(Ω) − (τ, ε(u))L2(Ω)

A isomorphism. . .
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[Application (cont.)] Stokes Equations

Stokes problem: Given g ∈ L2(Ω; Rn), find (σ, u) ∈ X × Y s.t.

A(σ, u)(τ, v) = (g , v)L2(Ω) for all (τ, v) ∈ X × Y

Conforming or nonconforming FEM yield u` and p` with
σ = 2µε(u)− p1 and σ` = 2µε`(u`)− p`1

Error control: Given FE solution (σ`, u`) to (σ, u), then

‖σ − σ`‖L2(Ω) . min
ũ`∈Y

2µ‖ε`(u` − ũ`)‖L2(Ω) + ‖ResY ‖Y ∗ + ‖ div` u`‖L2(Ω)

Examples: all known conforming and nonconforming FEM
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[Application] Linear Elasticity

Fourth-order elasticity tensor for λ, µ > 0,

Cτ := λ tr(τ)1 + 2µτ for all τ ∈ Rn×n

Let a(σ, τ) :=
∫

Ω(C−1σ) : τ dx , Λu := Cε(u) and

X := L2(Ω; Rn×n
sym ), Y := H1

0 (Ω; Rn)

The linear operator A : X × Y → (X × Y )∗ then reads

A(σ, u)(τ, v) := (C−1σ, τ)L2(Ω) − (σ, ε(v))L2(Ω) − (τ, ε(u))L2(Ω)

A isomorphism, λ-independent operator norms of A and A−1
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[Application (cont.)] Linear Elasticity

Navier-Lamé problem: Given g ∈ L2(Ω; Rn), find (σ, u) ∈ X × Y s.t.

A(σ, u)(τ, v) = (g , v)L2(Ω) for (τ, v) ∈ X × Y

For conforming or nonconforming FEM, σ = Cε(u) and σ` = Cε`(u`)

Error control: Given FE solution (σ`, u`) to (σ, u),

‖σ − σ`‖L2(Ω) . min
ũ`∈Y

‖ε`(u` − ũ`)‖L2(Ω) + ‖ResY ‖Y ∗

is robust for λ→∞

Examples: Conforming FEM, Kouhia&Stenberg, PEERS
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Conclusions for Unified Analysis

Framework for unified a posteriori analysis covers large class of
applications & discretisation schemes

Similarities are exposed and encountered obstacles/challenges guide
development of specific error estimators

Approach doesn’t strive for most accurate/efficient estimators but
rather provides an initial line of attack for as many problems as
possible
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Wrap-Up of Unified A Posteriori Analysis

C. Carstensen: A unifying theory of a posteriori finite element error
control (Numer. Math. 2005)

C. Carstensen, Jun Hu, A. Orlando: Framework for the a posteriori
error analysis of nonconforming finite elements (SINUM 2007)

C. Carstensen, Jun Hu: A Unifying Theory of A Posteriori Error
Control for Nonconforming FEM (Numer. Math. 2007)

C. Carstensen, ME, R.H.W. Hoppe, C. Löbhard: A Unifying Theory of
A Posteriori Error Control (2010 +)

M. Eigel (Humboldt) Unified Error Analysis EFEF, Warwick 2010 20 / 22



Extensions of Unified Analysis

Unified Analysis has also been applied/extended to

Maxwell Equations [C. Carstensen, R.H.W. Hoppe 2009]

Mortar FEM and higher order FEM

dG FEM [C. Carstensen, T. Gudi, M. Jensen 2009]

Hanging nodes [C. Carstensen, Jun Hu 2008]
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