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Model Problem

Let Q Cc RY, d = 2,3, open polygonal domain and T > 0.
Consider the problem

Onwu—V - (aVu)=f in Q x (0, T]
u=up in Q x {0}
Uy = U in Q x {0}
u=0 ondQx(0,T]

for a = a(x) € C(Q) with 0 < amin < @ < amax and f € L(0, T; L2(Q))
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Onwu—V - (aVu)=f in Q x (0, T]
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Uy = U in Q x {0}
u=0 ondQx(0,T]

for a = a(x) € C(Q) with 0 < amin < @ < amax and f € L(0, T; L2(Q))
Problem in variational form: Find u as above such that

(Oreu,v) 4+ (aVu, Vv) = (f,v) Vv e H(Q),



Literature review

A posteriori error bounds for FEM for wave problems

@ Johnson ('93), Siili ('96,'97) duality methods for wave problem as 1st order system.
@ Akrivis, Makridakis & Nochetto ('06) time-discrete schemes for 1st order systems.
@ Adjerid (102), Bernardi & Siili (‘05) L°°(H')-error a posteriori estimates.

Surprisingly few a posteriori results for FEM for 2nd order hyperbolic problems...



Literature review

A posteriori error bounds for FEM for wave problems

@ Johnson ('93), Siili ('96,'97) duality methods for wave problem as 1st order system.
@ Akrivis, Makridakis & Nochetto ('06) time-discrete schemes for 1st order systems.

@ Adjerid (102), Bernardi & Siili (‘05) L°°(H')-error a posteriori estimates.
Surprisingly few a posteriori results for FEM for 2nd order hyperbolic problems...

We are concerned with a posteriori bounds for the L>°(L?)-error.



Semi-discrete FEM: Find U € V:
<Utt’ V> + a(U, V) = <f, V> vV e Vh,
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<Ut‘t7 V>+3(U V):<f. V> VVE \/h7

where a(U, V) = (aVU,VV).
Fully-discrete FEM: for n=1,..., N, find U" € V"
(Q*U™, V) +a(U™, V) = (f", V) YV eV,
where " := f(t",-), k, = t™™! — t" and
yn — yn-1
Q*U" =

kn VO = 70y, for n =0,

with U° := 70up, and 70 : L?(2) — V? suitable projection.

n __ n—1 =
ou" —ou ’ 8U”:—{ P , forn=1,2,...

(1)



Dealing with “lower-than-energy” norms

Semi-discrete case We shall make use the ideas of reconstruction, introduced by

Makridakis & Nochetto ('03), whereby

u—U= uvu—-w + w-—-U
S~ N~——
“evolution error” “elliptic error”

with w € H}(Q) the elliptic reconstruction of U.

“Dual” concept of the Ritz projection (a.k.a elliptic projection, Wheeler's Trick)
idea in a-priori analysis of evolution problems.
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Dealing with “lower-than-energy” norms

Semi-discrete case We shall make use the ideas of reconstruction, introduced by

Makridakis & Nochetto ('03), whereby

u—U= uvu—-w + w-—-U
S~ N~——
“evolution error” “elliptic error”

with w € H}(Q) the elliptic reconstruction of U.

“Dual” concept of the Ritz projection (a.k.a elliptic projection, Wheeler's Trick)
idea in a-priori analysis of evolution problems.

A priori error bounds in the L°°(L?) norm can be found in Baker (76), utilising Ritz
projection along with a special choice of test function.

Fully-discrete case

Suitable space-time reconstruction (cf. Lakkis & Makridakis ('06)), together with
(classical) Baker's techinique Baker ('76).



Elliptic Reconstruction

Definition

We define the elliptic reconstruction w € H}(2) of U to be the solution of the
elliptic problem

a(w,v) = (AU —Tf +f,v) Vv € H3(Q),

where M : L2(Q) — Vj, denotes the orthogonal L2-projection on the finite element
space V}, and

A:VhHVh,

denotes the (space-)discrete operator defined by

for Z€ Vi, (—AZ,V)=a(Z,V) YV E V.




We decompose the error:

e=U—-u=p—e¢€ wheree:=w— U, and p:=w — u,
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Error equation for p

We decompose the error:

e=U—-u=p—¢, wheree:=w—U, and p:=w — u,

Lemma
We have

(Owee,v) + a(p,v) =0
for all v € H} ()

or
<att,0, V> + a(pa V) = <att63 V>

Baker's technique: set v = v(t,) = / o(s,)ds
t

Baker ('76)



Abstract a-posteriori bound

Theorem

The following error bound holds:

llell L= (o, 7:12(02)) <Il€llLo=(o,7;12()) + \/§(||Uo = U()| + ||€(0)||)

.
+2 [ el + Corlla = U(O)],
0

where C, 1 := min{2T, \/2Cq/cmin}, where Cq is the PF constant.




Abstract a-posteriori bound

Theorem
The following error bound holds:

lelle= o, m:e2(@)) <llelloe(o, m:2(0) + \/§(||Uo - V()] + ||€(0)||)
T
2 [ el + Carlln - GO
0

where C, 1 := min{2T, \/2Cq/cmin}, where Cq is the PF constant.

Controlling ¢, ¢;: use L?-norm a posteriori bounds for elliptic problems
llell <€ (U, AU — Nf + £, 7).
lleel|<Er2(Ue, (AU — NF + £)e, T).
e.g., Verfiirth ('96), Ainsworth & Oden ('01)...
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Time reconstruction

Ideally we want time-reconstruction U(t) € C1(0, tV) such that

Utt - 82 Un

We cannot have that...

Define

t— n—1 n_ ¢ t_tnfl th — ¢t
U(t) — t un + t Unfl _ ( )( )

k, kn kn

2
run,
forte (t" 1 t", n=1,...,N.

Note: U(t) € C1(0,tN) and U(t") = U™ and U,(t") = OU" and...



we have )
Utt = (1 -+ ,u"(t))a u"



we have
U = (1 + p"(t))0*U"
with 1
G e LG



Time reconstruction (cont’d)

we have
Ue = (1 + p"(2))0*U"
with

1
2

pi(t) = 6k, Yt — "), "

Remark (vanishing moment property)

The remainder p"(t) satisfies

tﬂ
/ u"(t)dt =0,
t

n—1

1

= E(t" + " h
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Elliptic reconstruction

Definition

Let U", n=0,..., N, be the fully-discrete solution computed by the method,
N~ : L2(Q) — V[ be the orthogonal L2-projection, and A" : V* — V[ to be the
discrete operator defined by

forge V), (A"q,x)=a(q,x) VYxe V).
We define the elliptic reconstruction w" € H}(2) such that
a(w",v) = (g",v) Vv e H}Q),

with _
gn — AnUn_I‘Inf‘n+fﬂ’

where f0() := £(0,-) and f(-) := k;* f::,l f(t,-)dt forn=1,..., N. (Special
care for n =1, also)
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Elliptic reconstruction

Definition

Let U", n=0,..., N, be the fully-discrete solution computed by the method,
N~ : L2(Q) — V[ be the orthogonal L2-projection, and A" : V* — V[ to be the
discrete operator defined by

forge V), (A"q,x)=a(q,x) VYxe V).
We define the elliptic reconstruction w" € H}(2) such that
a(w",v) = (g",v) Vv e H}Q),

with _
gn — AnUn_I_Inf'"+f'ﬂ’

where f0() := £(0,-) and f(-) := k;* f::,l f(t,-)dt forn=1,..., N. (Special
care for n =1, also)

n—1 _ (t - tn_l)(tn — t)2 2 n
T w P k. o“w",
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A posteriori bound for the fully-discrete wave problem

Theorem

lelloaon <lell=tosrion + V2(Jluo = U]l + <(0)]])

+2(/0 ||et||+zn, ) + Conllen = V2,

where C, y 1= min{2t" \/2Cq/amin}-

()
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A posteriori bound for the fully-discrete wave problem

We have made use of the following notation:
mesh change indicator

m—1 t T
1(7) 1 = (1= TV)Ue|| + (1 =) Ul
ne)i=3 [ /

tm—1
m—1 ) ) i i
+ > (= )V = )oU | + 71 = ) V°(0)]
j=1

evolution error indicator

() = [ 1],
0
where G : (0, T] — R with G(sj-—1 4] := G,j=1,...,N and

: T VA v —t)* v —1t)3 :

. Ko ok c o
with j :=j_1 + 40g/ + 159°¢’, j=1,....,N, %0 =0;

13



A posteriori bound for the fully-discrete wave problem

data error indicator

1ml

AR ) ()

Jj=1

773(7' =

time reconstruction error indicator

m—1

tj . . / T /
)= 5= ([ o) ([ aamarumiE)”

Jj=1

14



A posteriori bound for the fully-discrete wave problem

Finally, we bound the € and €; terms using
Lemma
We have
lell oo o.ev:12(2)) + V20[€(0)]] < 81(Y) + V2Ca?®,

where

8ky

27

35 31 ki ; I
(27 * 7. 0% kj_l) Y (Cal’ + Caoiy||Ff — F ”)}’

61 (tN) = max{ Ca&(V°,08°,7°),

with & .= E(U, AW —TVF + £, T9), j=0,1,...,N.
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A posteriori bound for the fully-discrete wave problem

Lemma
We have

where

with

&= E(OU, AN — o(TVF) + of | T7),

N

t
/ leell < 62(tY),
0

(JOH\)

j=0,1,...

)

N
= 2@k + k1) (Calh + Caaghllof — oF1) ),
Jj=0

N.
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Outlook

Current work: (G., Lakkis & Makridakis, in preparation)

@ explicit methods for wave problem

@ high order time-stepping for wave problem
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