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We Are Getting There

• Shells

• Model Problems

• Locking

• Standard finite elements used here

• hp-Algorithm

• Remaining Challenges



Characteristic Scales

• Every solution can be considered as

• a linear combination of characteristic 
features each with its own length scale

• these may be boundary layers, internal 
layers or span the whole domain

• Layers are generated by boundaries, point 
or line loads, or non-continuous changes in 
curvature
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In these models the total energy of the shell is given by

F(u) =
1

2
A(u,u)− Q(u) (1)

where A represents the (possibly scaled) deformation energy, Q
denotes the load potential and u = (u, v ,w , θ, ψ) is the vector of

three translations and two rotations. The deformation energy is

further split into bending, membrane and transverse shear energy:

A(u,u) = t3AB(u,u) + tAM(u,u) + tAS(u,u). (2)

Here t denotes the thickness of the shell.

Shell Models



Numerical Locking:
Free Cylinder

•Energy distribution
•h-adaptive meshes

[Rank & al, 06]



p Bending/E Membrane/E Shear/E

1 0.02 40.8 59.1

2 1.36 92.2 6.44

3 94.2 5.5 0.32

4 99.4 0.56 0.03



Numerical Locking
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Bending vs Membrane
(or Plan to Throw One Away)

• Any successful scheme must determine the 
dominating mode before adaptive steps.

• Our solution is to probe first:

• Solve using a minimal mesh with 
sufficiently high p.

• No proof. 
Hint: Pitkäranta, Numer Math, 1993



Adaptive Algorithm

• Combination of

• bubble-mode error indicators

• Sobolev regularity estimation 
[Houston & Süli, 03]

• Refine/coarsen the mesh

• Raise/lower the elemental polynomial 
degree
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Sobolev Regularity



Let us first consider the reference interval (−1, 1) and a function
û ∈ L

2(−1, 1) with Legendre series

û(ξ) =
∞�

i=0

âi L̂i (ξ), (6)

where L̂i is a Legendre polynomial of degree i . Legendre
polynomials are orthogonal so the coefficients âi can be written as

âi =
2i + 1

2

� 1

−1
û(ξ)L̂i (ξ)dξ. (7)

Let us define a sequence {li}i≥2 using âi :

li =
log

�
2i+1
2|ai |2

�

2 log i
. (8)

If l = limi→∞ li exists and l > 1/2, then

u ∈ H
l−1/2−�
loc (−1, 1), 0 < � < l − 1/2.



Step by Step



1. Compute the elemental indicators

2. Estimate the highest p for every element

3. Divide the elements in sets: 

3.1. Split, Raise,Lower

4. Check choices made at the previous step:

4.1. For instance, if the elemental p is higher 
than that suggested now, lower p and 
split instead

5. Update elements and solve again
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It Works, but

• There is a wealth of a priori knowledge of 
the layers.

• What is the most efficient way to use it?

• Boundary layer meshes are difficult to 
modify.
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Error Indicators



Let us denote the solution space (without bubbles) with Uh and
the additional bubble modes with U+

h . Let uh be the discrete
solution: Find uh ∈ Uh such that

A(uh, v) = Q(v) ∀v ∈ Uh.

Taking uh as known, add bubbles u+h ∈ U+
h to the solution vector.

Thus the problem becomes: Find u+h ∈ U+
h such that

A(uh + u+h , v) = Q(v) ∀v ∈ U+
h . (1)

Since every bubble is supported by exactly one element, the
problem (1) can be solved element-by-element:

A(u+h , v)e = Q(v)e −A(uh, v)e ∀v ∈ U+
h , (2)

e = 1, . . . , emax .



Since the solution lies in a subspace of U we can transform (2)
with variational problem so that we end up with

A(u+h , v)e = A(u − uh, v)e ∀v ∈ U+
h (3)

The problem (3) can be interpreted so that the error uerr = u − uh
is approximated in subspace U+

h ⊂ U . Error is measured in the
energy norm, so the elemental error indicator is

η+e := |||u+h |||Ke (4)

and corresponding global indicator

η+ :=

��

e

(η+e )2. (5)



� κij , βij and ρi denote the bending, membrane and transverse
shear strains, respectively,

� ν is the Poisson number of the material.

� The integrals are calculated over the midsurface Ω of the shell
which is parametrized by the (generally curvilinear) principal
curvature coordinates αi .

� The metric of the shell surface is given by the Lamé
parameters Ai .

� Ri ’s are the principal radii of curvature of the shell at the
point (α1, α2).

Notation



• Geometry:  

•  

•  

•  

•

Naghdi Shell of 
Revolution

A1(x) = 1+ ( ′f (x))2

A2 (x) = f (x)

R1(x) = −
[A1(x)]

3

′′f (x)
R2 (x) = A1(x)A2 (x)

f (x), x ∈[−L,L]



t3AB(u,u) = t3 ·
�

Ω
{ν(κ11(u) + κ22(u))2

+(1− ν)
2�

i ,j=1

κij(u)2}A1A2 dα1dα2

tAM(u,u) = t · 12

�

Ω
{ν(β11(u) + β22(u))2

+(1− ν)
2�

i ,j=1

βij(u)2}A1A2 dα1dα2

tAS(u,u) = t · 6(1− ν)

�

Ω
{ρ1(u)2 + ρ2(u)2}A1A2 dα1dα2.
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Two Cylinders



•Symmetry
•Antisymmetry
•Clamped

Loading: Constant Pressure Transverse f(y)=cos(2y)

Membrane-Dominated Bending-Dominated


