hp-Adaptive Shell Solver

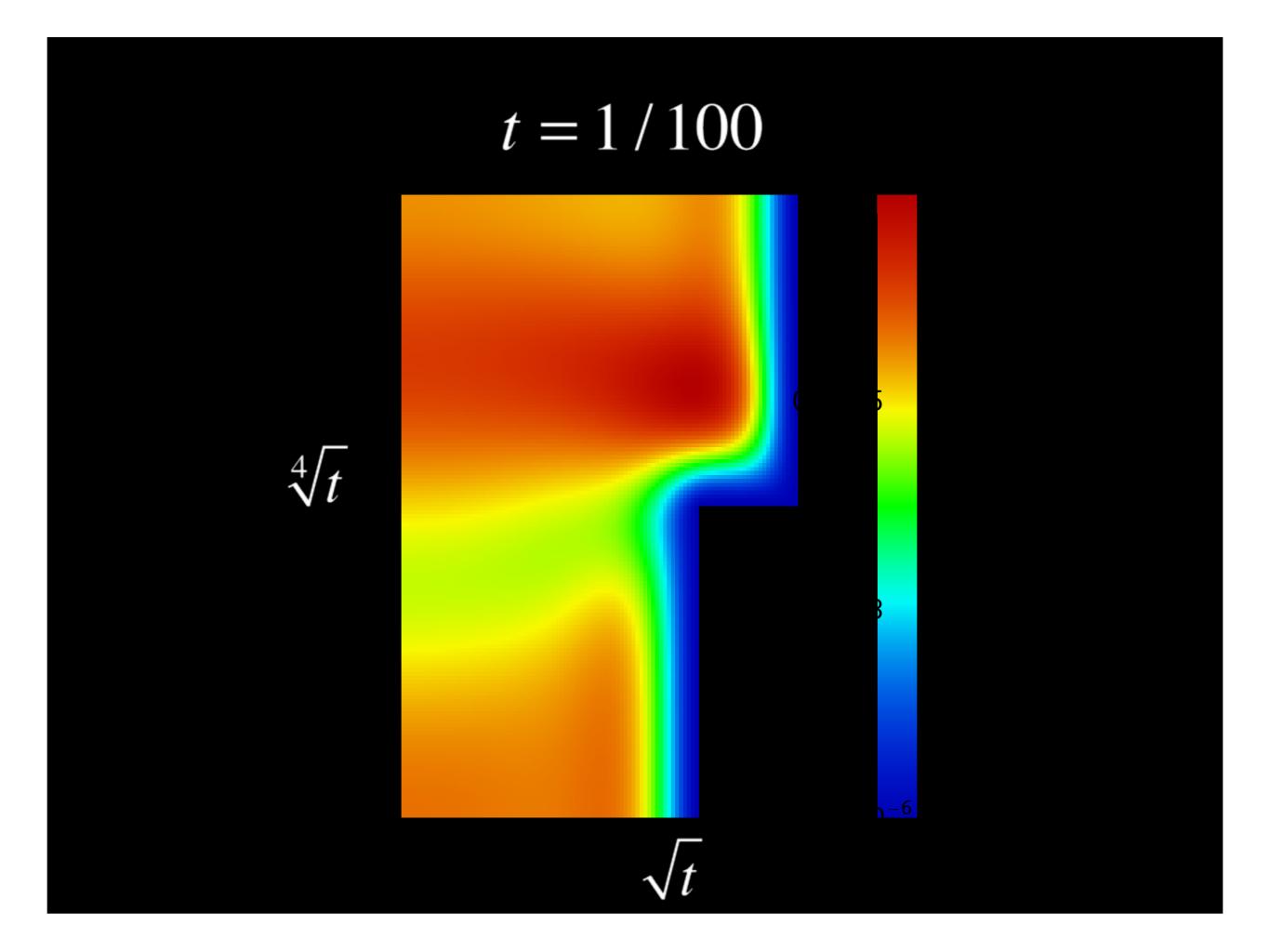
<u>Harri.Hakula@tkk.fi</u> and Tomi Tuominen Aalto University School of Science and Technology EFEF 2010, University of Warwick, 20-21 May 2010

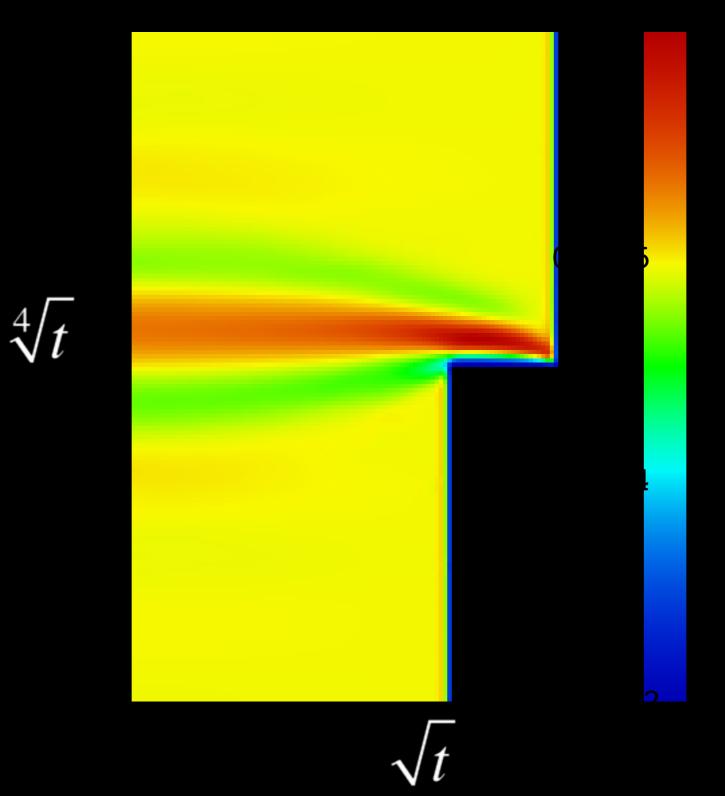
We Are Getting There

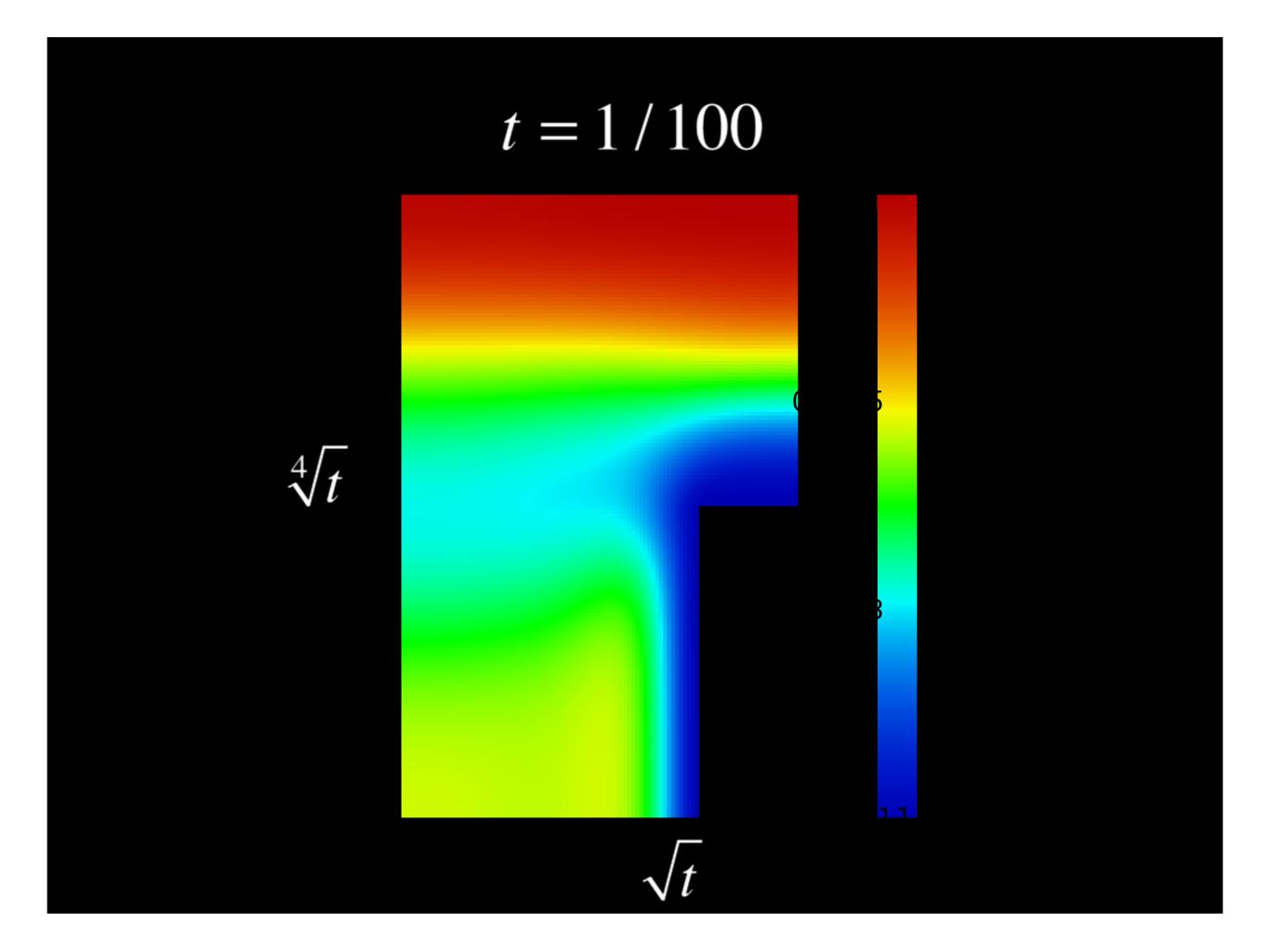
- Shells
- Model Problems
- Locking
 - Standard finite elements used here
- hp-Algorithm
- Remaining Challenges

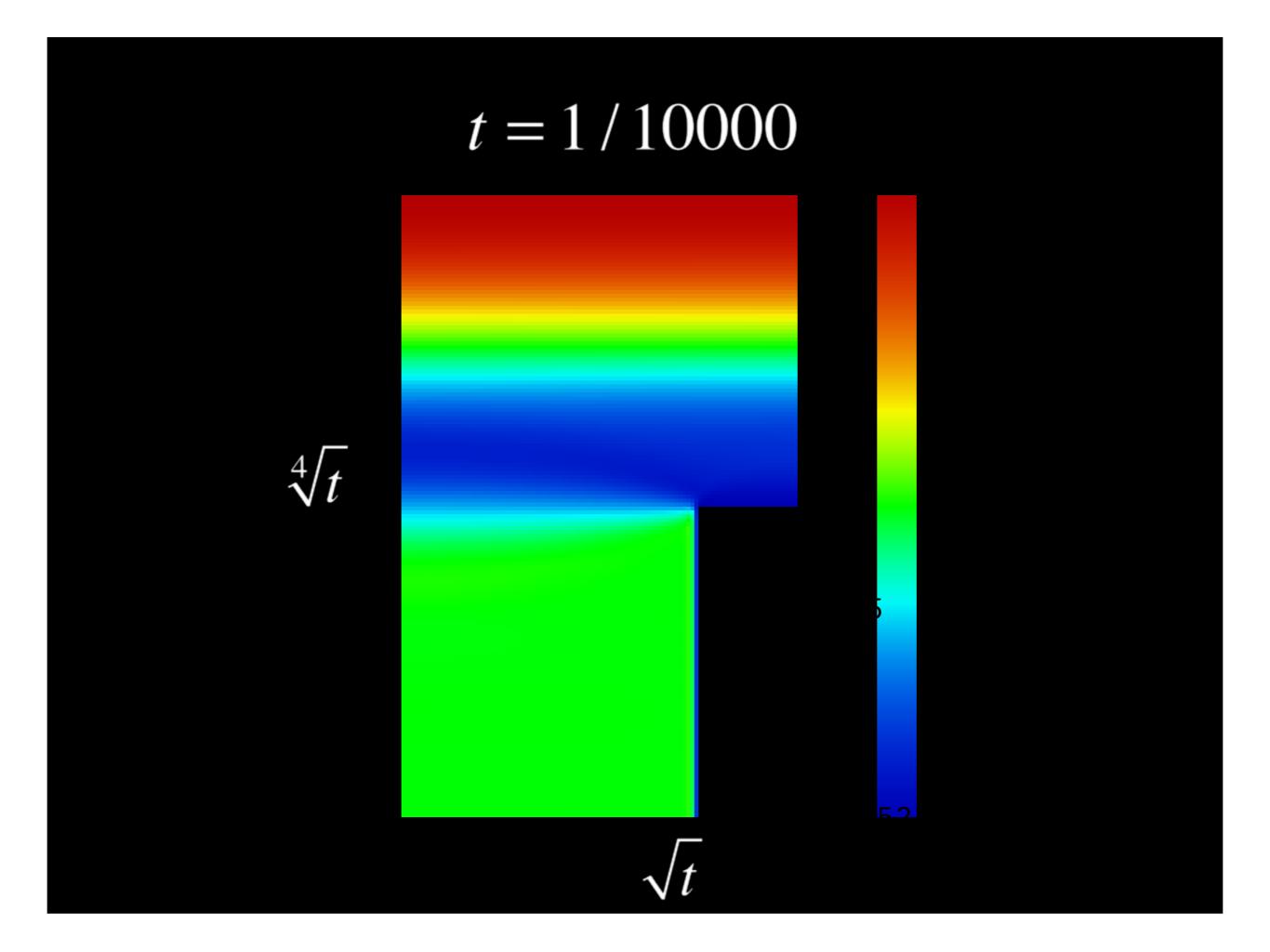
Characteristic Scales

- Every solution can be considered as
 - a linear combination of characteristic features each with its own length scale
 - these may be boundary layers, internal layers or span the whole domain
- Layers are generated by boundaries, point or line loads, or non-continuous changes in curvature









Shell Models

In these models the total energy of the shell is given by

$$\mathcal{F}(\mathbf{u}) = \frac{1}{2}\mathcal{A}(\mathbf{u},\mathbf{u}) - Q(\mathbf{u})$$
(1)

where \mathcal{A} represents the (possibly scaled) deformation energy, Q denotes the load potential and $\mathbf{u} = (u, v, w, \theta, \psi)$ is the vector of three translations and two rotations. The deformation energy is further split into bending, membrane and transverse shear energy:

$$\mathcal{A}(\mathbf{u},\mathbf{u}) = t^3 \mathcal{A}_B(\mathbf{u},\mathbf{u}) + t \mathcal{A}_M(\mathbf{u},\mathbf{u}) + t \mathcal{A}_S(\mathbf{u},\mathbf{u}).$$
(2)

Here t denotes the thickness of the shell.

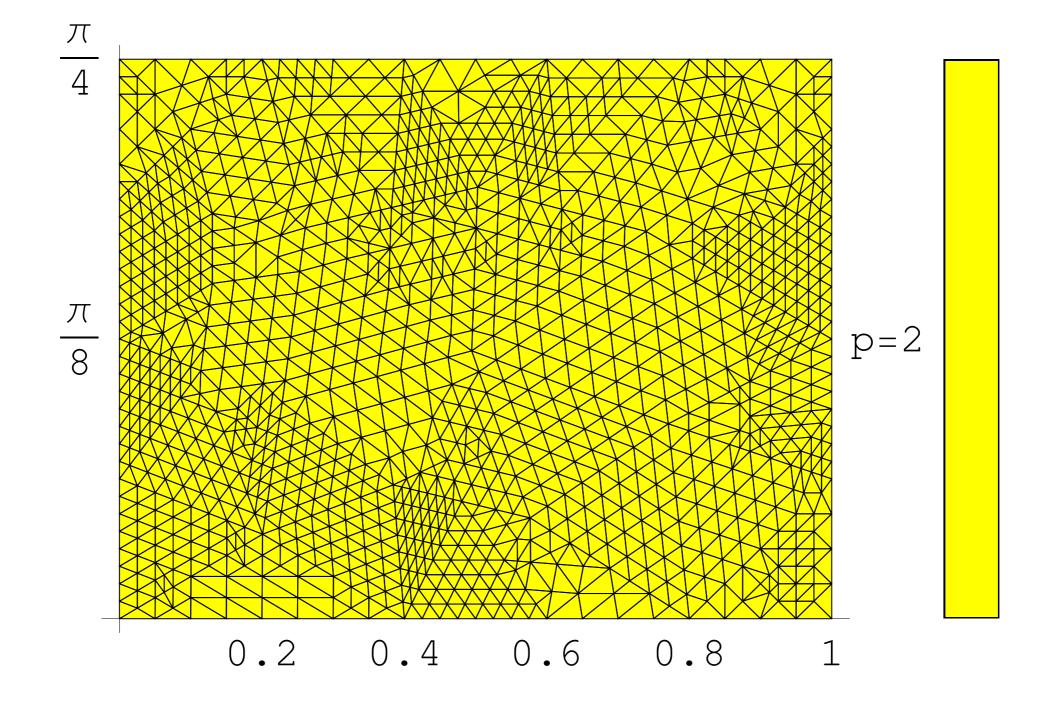
Numerical Locking: Free Cylinder

Energy distributionh-adaptive meshes

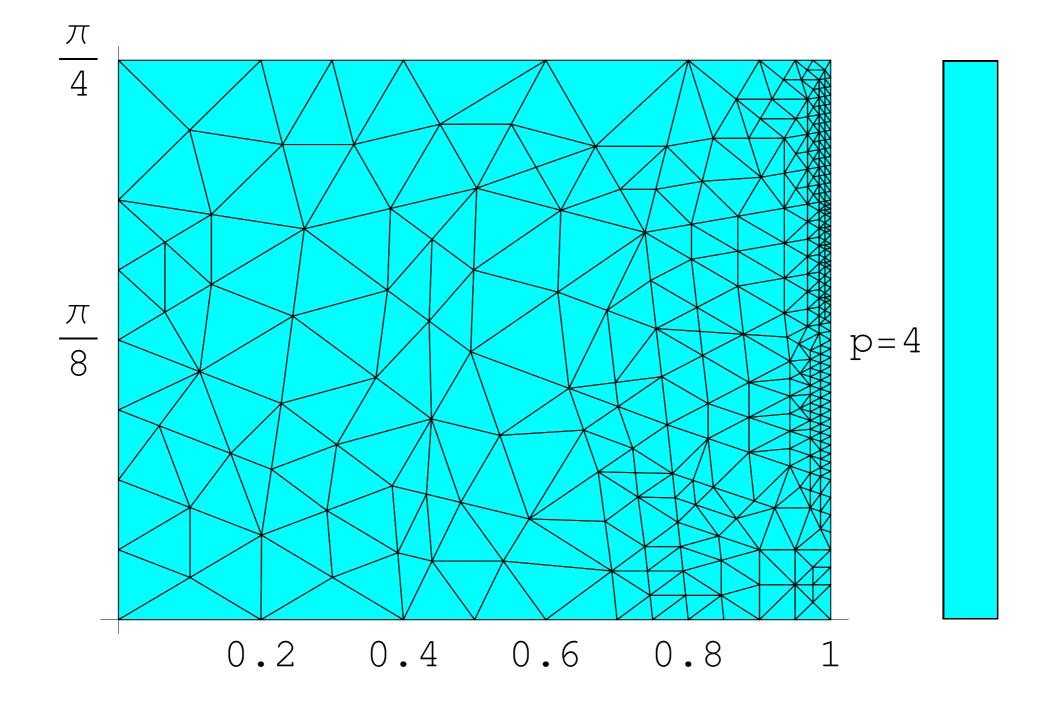
[Rank & al, 06]

Р	Bending/E	Membrane/E	Shear/E
I	0.02	40.8	59.I
2	I.36	92.2	6.44
3	94.2	5.5	0.32
4	99.4	0.56	0.03

Numerical Locking



Numerical Locking

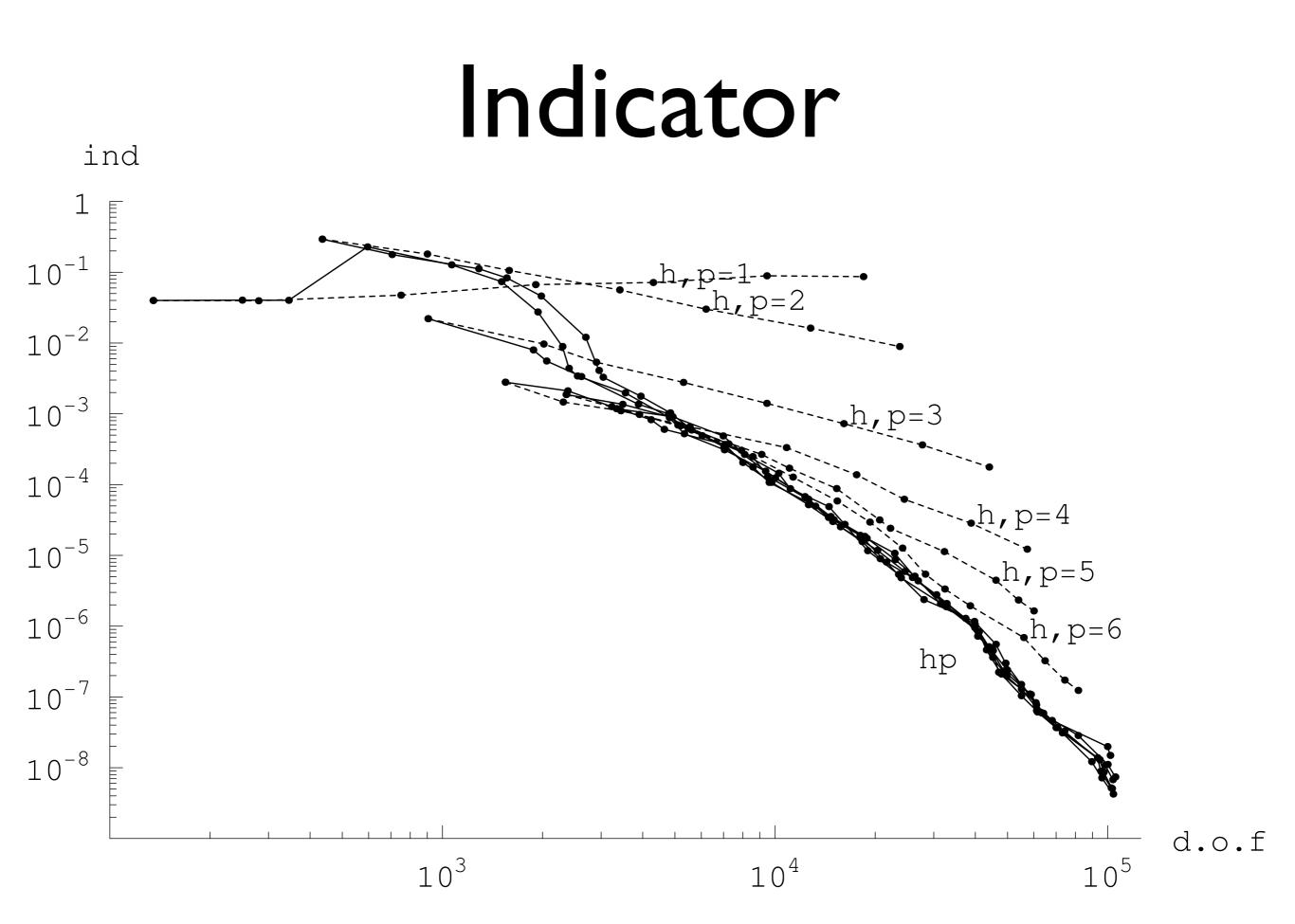


Bending vs Membrane (or Plan to Throw One Away)

- Any successful scheme must determine the dominating mode before adaptive steps.
- Our solution is to probe first:
 - Solve using a minimal mesh with sufficiently high p.
- No proof.
 Hint: Pitkäranta, Numer Math, 1993

Adaptive Algorithm

- Combination of
 - bubble-mode error indicators
 - Sobolev regularity estimation [Houston & Süli, 03]
- Refine/coarsen the mesh
- Raise/lower the elemental polynomial degree



Sobolev Regularity

Let us first consider the reference interval (-1, 1) and a function $\hat{u} \in L^2(-1, 1)$ with Legendre series

$$\hat{u}(\xi) = \sum_{i=0}^{\infty} \hat{a}_i \hat{L}_i(\xi), \qquad (6)$$

where \hat{L}_i is a Legendre polynomial of degree *i*. Legendre polynomials are orthogonal so the coefficients \hat{a}_i can be written as

$$\hat{a}_{i} = \frac{2i+1}{2} \int_{-1}^{1} \hat{u}(\xi) \hat{L}_{i}(\xi) d\xi.$$
(7)

Let us define a sequence $\{I_i\}_{i\geq 2}$ using \hat{a}_i :

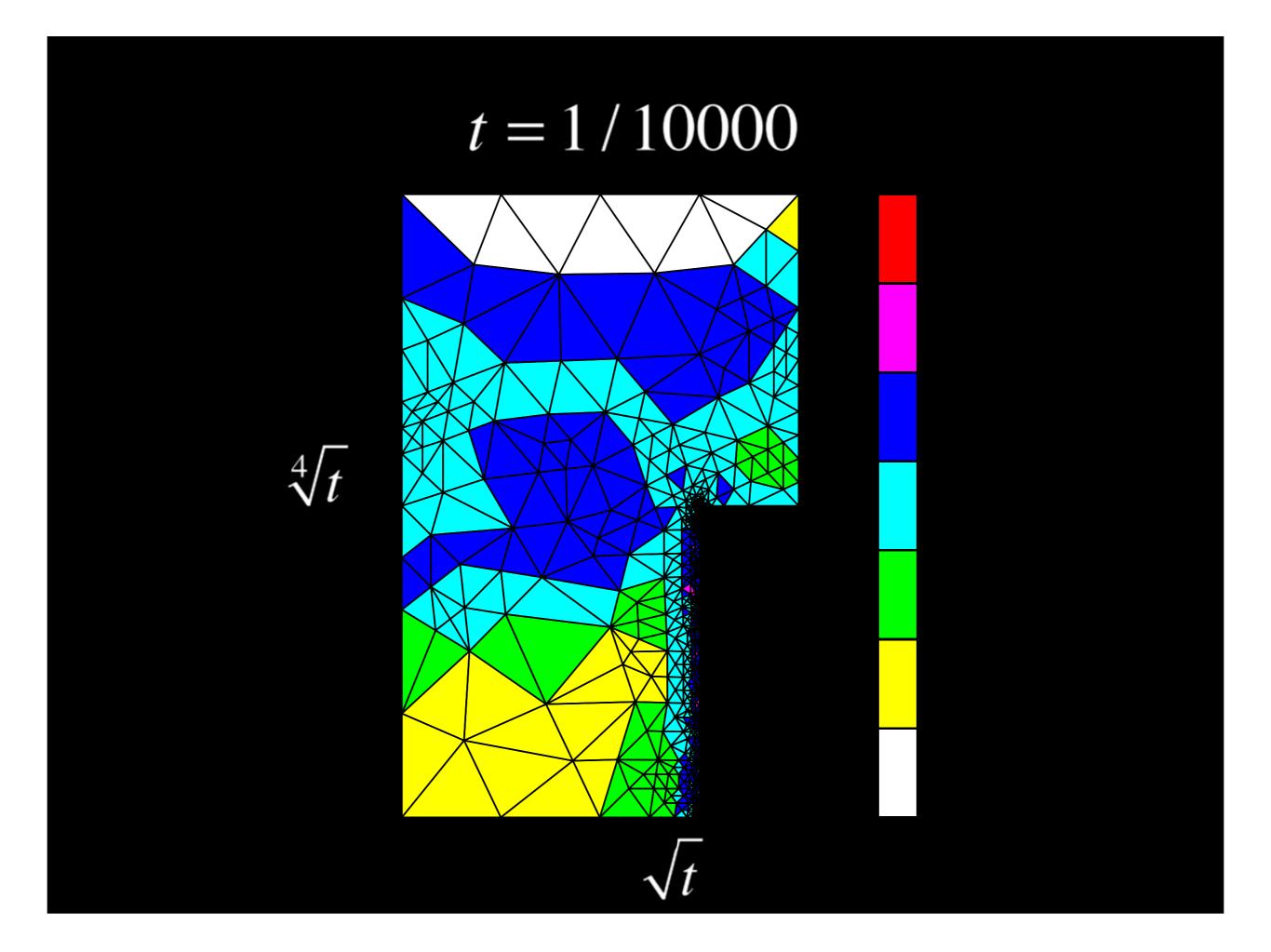
$$I_{i} = \frac{\log\left(\frac{2i+1}{2|a_{i}|^{2}}\right)}{2\log i}.$$
 (8)

If $I = \lim_{i \to \infty} I_i$ exists and I > 1/2, then

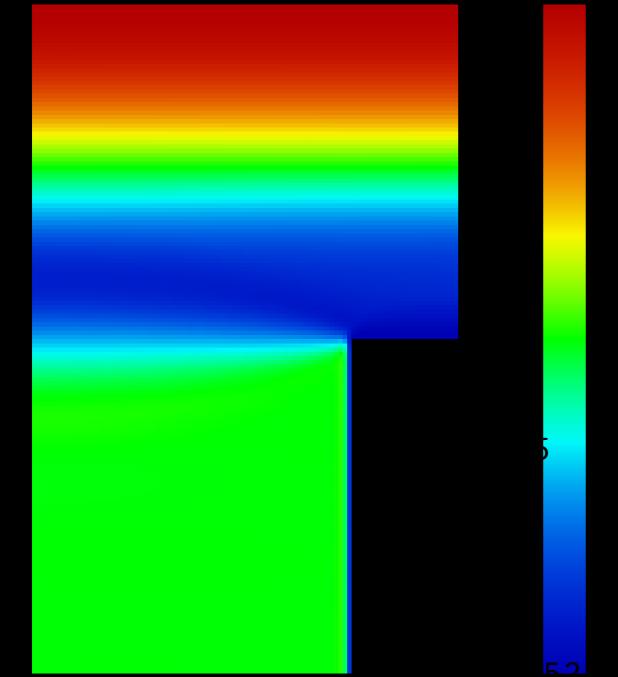
$$u \in H_{loc}^{l-1/2-\epsilon}(-1,1), \qquad 0 < \epsilon < l-1/2.$$

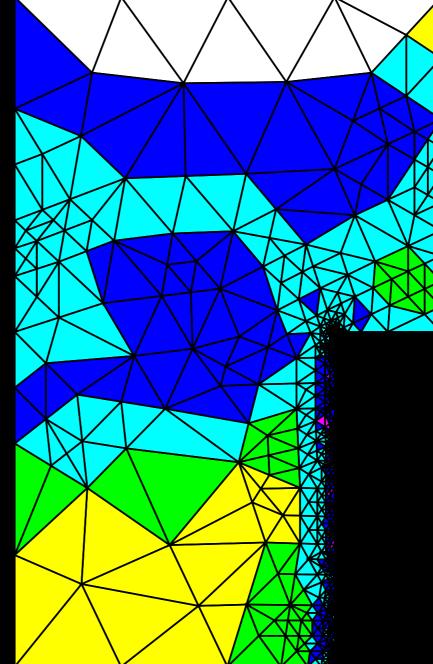
Step by Step

- I. Compute the elemental indicators
- 2. Estimate the highest p for every element
- 3. Divide the elements in sets:
 - 3.1. Split, Raise, Lower
- 4. Check choices made at the previous step:
 - 4.1. For instance, if the elemental p is higher than that suggested now, lower p and split instead
- 5. Update elements and solve again



t = 1 / 10000





It Works, but

- There is a wealth of a priori knowledge of the layers.
- What is the most efficient way to use it?

Boundary layer meshes are difficult to modify.

hp-Adaptive Shell Solver

<u>Harri.Hakula@tkk.fi</u> and Tomi Tuominen Aalto University School of Science and Technology EFEF 2010, University of Warwick, 20-21 May 2010

Error Indicators

Let us denote the solution space (without bubbles) with \mathcal{U}_h and the additional bubble modes with \mathcal{U}_h^+ . Let \underline{u}_h be the discrete solution: Find $\underline{u}_h \in \mathcal{U}_h$ such that

$$\mathcal{A}(\underline{u}_h, \underline{v}) = \mathcal{Q}(\underline{v}) \quad \forall \underline{v} \in \mathcal{U}_h.$$

Taking \underline{u}_h as known, add bubbles $\underline{u}_h^+ \in \mathcal{U}_h^+$ to the solution vector. Thus the problem becomes: Find $\underline{u}_h^+ \in \mathcal{U}_h^+$ such that

$$\mathcal{A}(\underline{u}_h + \underline{u}_h^+, \underline{v}) = \mathcal{Q}(\underline{v}) \quad \forall \underline{v} \in \mathcal{U}_h^+.$$
(1)

Since every bubble is supported by exactly one element, the problem (1) can be solved element-by-element:

$$\mathcal{A}(\underline{u}_{h}^{+},\underline{v})_{e} = \mathcal{Q}(\underline{v})_{e} - \mathcal{A}(\underline{u}_{h},\underline{v})_{e} \quad \forall \underline{v} \in \mathcal{U}_{h}^{+},$$
(2)

 $e = 1, ..., e_{max}.$

Since the solution lies in a subspace of \mathcal{U} we can transform (2) with variational problem so that we end up with

$$\mathcal{A}(\underline{u}_{h}^{+},\underline{v})_{e} = \mathcal{A}(u - \underline{u}_{h},\underline{v})_{e} \quad \forall \underline{v} \in \mathcal{U}_{h}^{+}$$
(3)

The problem (3) can be interpreted so that the error $\underline{u}_{err} = \underline{u} - \underline{u}_h$ is approximated in subspace $\mathcal{U}_h^+ \subset \mathcal{U}$. Error is measured in the energy norm, so the elemental error indicator is

$$\eta_e^+ := |||\underline{u}_h^+|||_{\mathcal{K}_e} \tag{4}$$

and corresponding global indicator

$$\eta^+ := \sqrt{\sum_e (\eta_e^+)^2}.$$
(5)

Notation

- ► κ_{ij} , β_{ij} and ρ_i denote the bending, membrane and transverse shear strains, respectively,
- $\blacktriangleright \nu$ is the Poisson number of the material.
- The integrals are calculated over the midsurface Ω of the shell which is parametrized by the (generally curvilinear) principal curvature coordinates α_i.
- The metric of the shell surface is given by the Lamé parameters A_i.
- *R_i*'s are the principal radii of curvature of the shell at the point (α₁, α₂).

Naghdi Shell of Revolution

• Geometry:
$$f(x), x \in [-L, L]$$

•
$$A_1(x) = \sqrt{1 + (f'(x))^2}$$

•
$$A_2(x) = f(x)$$

•
$$R_1(x) = -\frac{[A_1(x)]^3}{f''(x)}$$

•
$$R_2(x) = A_1(x)A_2(x)$$

$$t^{3}\mathcal{A}_{B}(\mathbf{u},\mathbf{u}) = t^{3} \cdot \int_{\Omega} \{\nu(\kappa_{11}(\mathbf{u}) + \kappa_{22}(\mathbf{u}))^{2} + (1-\nu)\sum_{i,j=1}^{2}\kappa_{ij}(\mathbf{u})^{2}\}A_{1}A_{2} d\alpha_{1}d\alpha_{2}$$
$$t\mathcal{A}_{M}(\mathbf{u},\mathbf{u}) = t \cdot 12 \int_{\Omega} \{\nu(\beta_{11}(\mathbf{u}) + \beta_{22}(\mathbf{u}))^{2} + (1-\nu)\sum_{i,j=1}^{2}\beta_{ij}(\mathbf{u})^{2}\}A_{1}A_{2} d\alpha_{1}d\alpha_{2}$$
$$t\mathcal{A}_{S}(\mathbf{u},\mathbf{u}) = t \cdot 6(1-\nu) \int_{\Omega} \{\rho_{1}(\mathbf{u})^{2} + \rho_{2}(\mathbf{u})^{2}\}A_{1}A_{2} d\alpha_{1}d\alpha_{2}.$$

Membrane

$$\beta_{11} = \frac{1}{A_1} \frac{\partial u}{\partial \alpha_1} + \frac{v}{A_1 A_2} \frac{\partial A_1}{\partial \alpha_2} + \frac{w}{R_1}$$

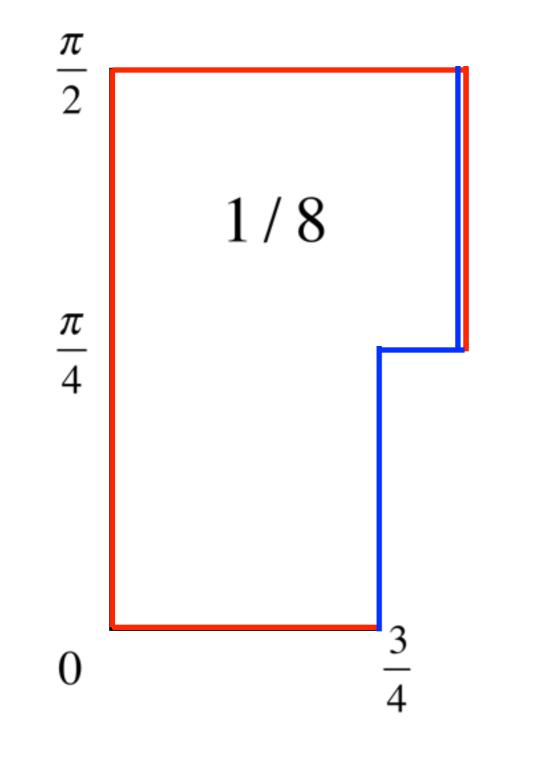
$$\beta_{22} = \frac{1}{A_2} \frac{\partial v}{\partial \alpha_2} + \frac{u}{A_1 A_2} \frac{\partial A_2}{\partial \alpha_1} + \frac{w}{R_2}$$

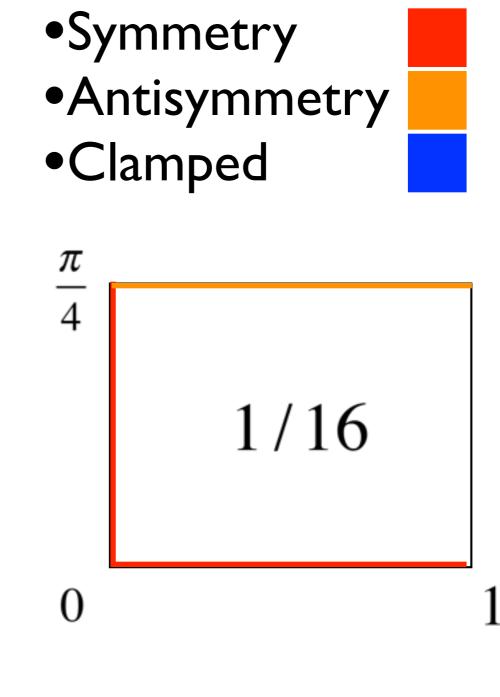
$$\beta_{12} = \frac{1}{2} \left(\frac{1}{A_1} \frac{\partial v}{\partial \alpha_1} + \frac{1}{A_2} \frac{\partial u}{\partial \alpha_2} - \frac{u}{A_1 A_2} \frac{\partial A_1}{\partial \alpha_2} - \frac{v}{A_1 A_2} \frac{\partial A_2}{\partial \alpha_1} \right) = \beta_{21}$$

Shallow

$$\beta_{11} = \frac{\partial u}{\partial \alpha_1} + aw, \ \beta_{22} = \frac{\partial v}{\partial \alpha_2} + bw, \ \beta_{12} = \frac{1}{2} \left(\frac{\partial v}{\partial \alpha_1} + \frac{\partial u}{\partial \alpha_2} \right) + cw = \beta_{21}$$

Two Cylinders





Loading: Constant Pressure

Membrane-Dominated

Transverse f(y)=cos(2y) Bending-Dominated