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About the inverse Poisson problem

• Occures in indirect measurement problems, where the
underlying physics can be modeled using the Poisson equation

• Finite number of direct measurements

• Ill-conditioned

• Some examples of applications are EEG, inverse ECG and
inverse heat flow problems
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The forward problem

• The forward problem models how the measured quantities
depend on the quantity of interest

• The physical model

−∆u = f x ∈ Ω
u = 0 x ∈ ∂Ω

• The measurements are modeled as linear functionals on the
function u

• The measurement vector

m =


h1(u)
h2(u)

...
hn(u)

 = Hu = HK−1f
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The inverse problem

• The problem: given a measurement m, find a reconstruction
of the loading function f .

• With suitable additional information of f in the form of
regularization and boundary conditions, the problem can be
reduced to a quadratic minimization problem

f r = argmin
f ∈F

‖HK−1f −m‖2 + b(f − f̄ , f − f̄ )

• A very common type of regularization is a smoothness prior,
for which it holds that

|b(f , g)| ≤ γ‖f ‖1‖g‖1 ∀f , g ∈ F

and
b(f , f ) ≥ α‖f ‖21 ∀f ∈ F
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Variational form

• The minimization problem is written as a variational problem:
find f r ∈ F such that

a(f r , g) = l(g) ∀g ∈ F ,

where
a(f , g) = (HK−1f )T (HK−1g) + b(f , g)

and
l(g) = mT (HK−1g) + b(f̄ , g)
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Properties of the bilinear form

• Continuity

|a(f , g)| ≤ |(HK−1f )T (HK−1g)|+ |b(f , g)|
≤ C‖H‖2−2‖K−1f ‖2‖K−1g‖2 + γ‖f ‖1‖g‖1
≤ C‖H‖2−2‖f ‖0‖g‖0 + γ‖f ‖1‖g‖1
≤ C‖H‖2−2‖f ‖1‖g‖1

• Coercivity
α‖f ‖21 ≤ b(f , f ) ≤ a(f , f )

• Unfortunately a(f , g) and l(g) cannot be evaluated directly



About the inverse Poisson problem Model problem A priori error analysis Numerical tests Conclusions

Modified problem

• Replace K−1f with the FE solution K−1h f

• Modified problem: find f̂ r ∈ F such that

â(f̂ r , g) = l̂(g) ∀g ∈ F ,

where
â(f , g) = (HK−1h f )T (HK−1h g) + b(f , g)

and
l̂(g) = mT (HK−1h g) + b(f̄ , g)
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Modified problem

• The differences in the bilinear and linear forms are

a(f , g) = â(f , g) + Ea(f , g)

and
l(g) = l̂(g) + El(g),

where

Ea(f , g) =(H(K−1 − K−1h )f )T (HK−1h g)+

(HK−1h f )T (H(K−1 − K−1h )g)+

(H(K−1 − K−1h )f )T (H(K−1 − K−1h )g)

and
El(g) = mT (H(K−1 − K−1h )g)
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Consistency error

• Using the definitions of f r and f̂ r and the operators Ea(f , g)
and El(g), one gets

a(f r − f̂ r , g) = El(g)− Ea(f̂ r , g) ∀g ∈ F

• Now

|El(g)| ≤ ‖m‖‖H(K−1 − K−1h )g‖
≤ C‖m‖‖H‖0‖K−1g − K−1h g‖0
≤ Ch2‖m‖‖H‖0‖g‖0

and

|Ea(f̂ r , g)| ≤ Ch2‖H‖20‖f̂ r‖0‖g‖0
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Consistency error

• The consistency error can now be estimated

α‖f r − f̂ r‖21 ≤ a(f r − f̂ r , f r − f̂ r )

≤ |El(f
r − f̂ r )|+ |Ea(f̂ r , f r − f̂ r )|

≤ Ch2(‖m‖‖H‖0 + ‖H‖20‖f̂ r‖0)‖f r − f̂ r‖0
≤ Ch2(‖m‖‖H‖0 + ‖H‖20‖f̂ r‖0)‖f r − f̂ r‖1

• Thus

‖f r − f̂ r‖1 ≤
C

α
h2(‖m‖‖H‖0 + ‖H‖20‖f̂ r‖0)
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Discretization error

• The modified variational problem is solved in a finite
dimensional subspace: find f̂ rh ∈ Fh such that

â(f̂ rh , g) = l̂(g) ∀g ∈ Fh

• Standard estimate

‖f̂ r − f̂ rh ‖1 ≤
C

α
h‖f̂ r‖2

• Nitsche’s trick

‖f̂ r − f̂ rh ‖0 ≤
C

α
h2‖f̂ r‖2
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Total error

• Combining the estimates

‖f r − f̂ rh ‖1 = ‖f r − f̂ r + f̂ r − f̂ rh ‖1
≤ ‖f r − f̂ r‖1 + ‖f̂ r − f̂ rh ‖1

≤ C

α
(h2(‖m‖‖H‖0 + ‖H‖20‖f̂ r‖0) + h‖f̂ r‖2)

≤ C

α
h‖f̂ r‖2

• For L2-norm

‖f r − f̂ rh ‖0 ≤ ‖f r − f̂ r‖1 + ‖f̂ r − f̂ rh ‖0

≤ C

α
h2(‖m‖‖H‖0 + ‖H‖20‖f̂ r‖0 + ‖f̂ r‖2)
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Test setting

• b(f , g) = α2‖f ‖1‖g‖1
• Original load as shown
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Reconstruction with α = 10−3
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Reconstruction with α = 10−2
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Convergence in H1-norm

blue: h1.01, green: h0.96
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Convergence in L2-norm

blue: h1.89, green: h2.01
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Conclusions & future work

• Regularized inverse Poisson problem is very similar to the
forward Poisson problem

• Consistency error is at most the same order of magnitude as
the discretization error

• Error is inversely proportional to the amount of regularization

• How about problems with limited regularity?
• A posteriori error estimation?

• What happens when measurement functionals are not in L2?


	About the inverse Poisson problem
	Model problem
	A priori error analysis
	Numerical tests
	Conclusions

