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Outline of the talk

The Brinkman problem

Motivation - why use H(div)-conforming elements

Problem setting - the non-conforming framework

Local postprocessing

A word on a posteriori

Hybridization of the system
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The Brinkman model

Describes the flow of a viscous fluid in a porous
medium

Applicable to materials of very high porosity, e.g.
Sands, porous stones, petroleum engineering
Heat pipes
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Reservoir modelling

Oil reservoirs are natural multi-scale problems
Field scale - 10 − 100 kilometres
Mesoscale - 10 − 100 metres
Microscale - laboratory sample size

Multiscale finite element methods or upscaling?
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Reservoir modelling

Typical properties of oil fields:
Long cracks, vugs
Rock of varying porosity

Large jumps in parameter values
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Example: realistic data

SPE10 comparative solution test based on actual data
from Tarbert / Upper Ness formations
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Example: realistic data

Permeability over 5000 millidarcy (void space)
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Example: realistic data

Permeability under 0.01 millidarcy (no-flow zone)
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The equations

The strong form

−t2∆u + u + ∇p = f , in Ω

div u = g, in Ω

The related weak formulation is

t2(∇u,∇v) + (u,v)
︸ ︷︷ ︸

a(u,v)

−(div v, p) − 〈
∂v

∂n
, p〉∂Ω = (f ,v)

−(div u, q) = (g, q)
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The problem setting

The Brinkman problem lies between the Stokes and
the Darcy problems

For the Darcy case, we have the pairing
H(div,Ω) × L2(Ω)

A non-conforming approximation for the Stokes part

Solution: Nitsche’s method to enforce tangential
continuity
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Motivation

H(div)-conforming approximation gives
An elementwise mass preserving method
Useful tools for the error analysis
Optimal convergence rate
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Motivation

H(div)-conforming approximation gives
An elementwise mass preserving method
Useful tools for the error analysis
Optimal convergence rate

Properties of the related pressure approximation
Low-order approximation → very few DOFs
Superconvergence → local postprocessing
Optimal convergence rate
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The FE spaces

We use the BDM spaces of order k

V BDM
h = {v ∈ H(div,Ω) | v|K ∈ [Pk(K)]n ∀K ∈ Kh},

Qh = {q ∈ L2(Ω) | q|K ∈ Pk−1(K) ∀K ∈ Kh}.

This pairing satisfies the equilibrium property
div Vh ⊂ Qh

Only the normal component of the flux is continuous
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Nitsche’s method

To get a stable formulation, a modified bilinear form
is introduced

ah(u,v) = (u,v) + t2
∑

K∈Kh

(∇u,∇v)K

+ t2
∑

E∈Eh

{
α

hK

〈[[u]], [[v]]〉E
︸ ︷︷ ︸

jump penalty

−〈{
∂u

∂n
}, [[v]]〉E

︸ ︷︷ ︸

symmetry

−〈{
∂v

∂n
}, [[u]]〉E}

︸ ︷︷ ︸

partial integration

.

Original idea due to Nitsche in the 70s
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The mesh dependent norms

For the flux u we use

|||u|||2t,h = ‖u‖2+t2
∑

K∈Kh

‖∇u‖2
0,K+t2

∑

E∈Eh

1

hE

‖[[u· τ ]]‖2
0,E .

For the pressure p

|||p|||2t,h =
∑

K∈Kh

h2
K

h2
K + t2

‖∇p‖2
0,K +

∑

E∈Eh

hE

h2
E + t2

‖[[p]]‖2
0,E

Idea: use the norms from primal mixed formulation
for the dual mixed formulation!
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A priori results

We have the following quasioptimal result

|||u − uh|||t,h + |||Php − ph|||t,h ≤ C|||u − Rhu|||t,h.

The constant C is independent of the parameter t

Assuming sufficient regularity, this gives optimal
convergence rates for all parameter values

Noteworthy: a superconvergence result for the
pressure
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The postprocessing method

Optimal order convergence for
|||u − uh|||t,h + |||p − p∗h|||t,h:

hk+1 rate in the pure Darcy case t = 0

hk rate in the case t > 0 → optimal rate for Stokes

Allows the use of residual-based a posteriori error
estimates

Performed elementwise, thus computationally cheap
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Convergence test

The problem changes numerically at t = h!
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SPE10: layer 67
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A word on a posteriori

We have developed a sharp and reliable
residual-based estimator

Analysis relies on
The saturation assumption
Interpolation properties of Rh

The equilibrium property div Vh ⊂ Qh

Definition of the postprocessing method
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Hybridization

Darcy: enforce normal continuity via Lagrange
multipliers

Symmetric, positive definite system

Nitsche adds connections for the flux variable
Add another Langrange multiplier for the jump

Makes domain decomposition easy

Adaptive skeleton mesh?
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Matrix after hybridization
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Conclusions

H(div)-conforming elements can be extended to
cover the case of viscous flow in the Brinkman model

Numerically light postprocessing scheme

Optimal a priori results

Reliable and sharp a posteriori indicator

Applications to multiscale FEM?
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