Unified Formulation of Galerkin and Runge-Kutta time discretization methods

Charalambos Makridakis
University of Crete and IACM - FORTH

makr@tem.uoc.gr
www.tem.uoc.gr/~makr

based on joint work with

- G. Akrivis (loannina) and R. Nochetto (Maryland)

Error Control

Problem: prove a posteriori estimates for the time dependent problem:

$$
u^{\prime}+A(u)=0 .
$$

The general problem: let U an approximation to u obtained by a numerical scheme. We would like to show

$$
\|u-U\| \leq \eta(U)
$$

such that

- the estimator $\eta(U)$ is a computable quantity which depends on the approximate solution U and the data of the problem;
- $\eta(U)$ decreases with optimal order for the lowest possible regularity permitted by our problem;

Our approach to error control: Reconstruction operators

- High order time-discrete schemes: Akrivis, M. and Nochetto: 2004 -08,...
- Space-discrete: M. and Nochetto 2003, Karakatsani and M. 2007, Georgoulis and Lakkis 2008...
- Fully discrete schemes: Lakkis and M. 2006, Demlow, Lakkis and M. 2009, Kyza 2009...

Given U, find an appropriate Reconstruction \hat{U} - (continuous object) and estimate

$$
u-\hat{U} \text { and } \hat{U}-U
$$

An example: Time discerization with Backward Euler

Let $0=t_{0}<t_{1}<\cdots<t_{N}=T$ be a partition of $[0, T]$,
$I_{n}:=\left(t_{n}, t_{n+1}\right]$, and $k_{n}:=t_{n+1}-t_{n}$.

$$
\frac{1}{k_{n}}\left(U^{n+1}-U^{n}\right)+A U^{n+1}=f_{k}^{n+1} .
$$

Here
(BE): $f_{k}^{n+1}=f\left(t_{n+1}\right)$
(dGO): $f_{k}^{n+1}=\frac{1}{k_{n}} \int_{I_{n}} f(s) d s$
One can considered the approximations to be piecewise constant in time. I.e. define U as the piecewise constant function and the projection $\Pi_{0} f$ of f :

$$
\left.U\right|_{I_{n}} \in \mathbb{P}_{0}\left(I_{n}\right),\left.\quad U\right|_{I_{n}}=U^{n+1}, \quad \Pi_{0} f=f_{k}^{n+1}
$$

Backward Euler reconstruction

a

- Let $\hat{U}(t)$ be the piecewise linear (in time) interpolant of U^{n}.
- Then in each $I_{n}: \hat{U}^{\prime}(t)=\frac{1}{k_{n}}\left(U^{n+1}-U^{n}\right)$

New way of writing the scheme

$$
\hat{U}^{\prime}(t)+A \hat{U}(t)=\Pi_{0} f+A[\hat{U}(t)-U(t)], \quad t \in I_{n} .
$$

Then

- $\hat{U}(t)-U(t)=\hat{U}(t)-U^{n+1}=\ell_{0}^{n}(t)\left(U^{n}-U^{n+1}\right)$
where $\hat{U}(t)=\ell_{0}^{n}(t) U^{n}+\ell_{1}^{n}(t) U^{n+1}$

[^0]
Error equation

- Let $\hat{e}=u-\hat{U}(t)$
then

$$
\hat{e}^{\prime}(t)+A \hat{e}(t)=\left(f-\Pi_{0} f\right)-A[\hat{U}(t)-U(t)], \quad t \in I_{n} .
$$

Finally

$$
\max _{0 \leq t \leq T}|\hat{e}|^{2}+\int_{0}^{T}\|\hat{e}\|^{2} d t \leq \alpha\left(\sum_{n=0}^{N-1} k_{n}\left\|A^{1 / 2}\left(U^{n+1}-U^{n}\right)\right\|^{2}+\int_{0}^{T}\left\|f-\Pi_{0} f\right\|_{\star}^{2} .\right)
$$

Semigroup approach : estimates via Duhamel's principle.

We shall use Duhamel's principle in the above error equation. Let $E_{A}(t)$ be the solution operator of the homogeneous equation

$$
u^{\prime}(t)+A u(t)=0, \quad u(0)=w
$$

i.e., $u(t)=E_{A}(t) w$. It is well known that the family of operators $E_{A}(t)$ has several nice properties, in particular it is a semigroup of contractions on H with generator the operator A. Duhamel's principle states $(f=0)$

$$
\hat{e}(t)=\int_{0}^{t} E_{A}(t-s)[A[U(t)-\hat{U}(t)]] d s .
$$

Time discretization methods

To define the methods it will be convenient to work with a general nonlinear problem:

$$
\left\{\begin{array}{l}
u^{\prime}(t)+F(t, u(t))=0, \quad 0<t<T, \\
u(0)=u^{0}
\end{array}\right.
$$

where $F(\cdot, t): D(A) \rightarrow H$ in general a (possibly) nonlinear operator.
Noation We consider piecewise polynomial functions in arbitrary partitions $0=t^{0}<t^{1}<\cdots<t^{N}=T$ of $[0, T]$, and let

$$
J_{n}:=\left(t^{n-1}, t^{n}\right]
$$

and

$$
k_{n}:=t^{n}-t^{n-1} .
$$

p.w. polynomial spaces

$$
\mathscr{V}_{q}^{\mathrm{d}}, \quad \text { and } \quad \mathscr{H}_{q}^{\mathrm{d}} \quad q \in \mathbb{N}_{0}
$$

the space of possibly discontinuous functions at the nodes t^{n} that are piecewise polynomials of degree at most q in time in each subinterval J_{n}, i.e., \mathscr{V}_{q}^{d} consists of functions $g:[0, T] \rightarrow D(A)$ (or H) of the form

$$
\left.g\right|_{J_{n}}(t)=\sum_{j=0}^{q} t^{j} w_{j}, \quad w_{j} \in D(A) \quad(\text { or } H)
$$

without continuity requirements at the nodes t^{n}; the elements of $\mathscr{V}_{q}^{\mathrm{d}}$ are taken continuous to the left at the nodes t^{n}. $\mathscr{V}_{q}\left(J_{n}\right)$ consist of the restrictions to J_{n} of the elements of $\mathscr{V}_{q}^{\mathrm{d}}$.

$$
\mathscr{V}_{q}^{\mathrm{c}} \quad \text { and } \quad \mathscr{H}_{q}^{\mathrm{c}}
$$

consist of the continuous elements of $\mathscr{V}_{q}^{\mathrm{d}}$ and $\mathscr{H}_{q}^{\mathrm{d}}$, respectively.

The general discretization method.

Π_{ℓ} will be a projection operator to piecewise polynomials of degree ℓ,

$$
\begin{aligned}
\Pi_{\ell}: C^{0}([0, T] ; H) & \rightarrow \oplus_{n=1}^{N} \mathscr{H}_{\ell}\left(J_{n}\right) \\
\widetilde{\Pi}: \mathscr{H}_{\ell}\left(J_{n}\right) & \rightarrow \mathscr{H}_{\ell}\left(J_{n}\right)
\end{aligned}
$$

is an operator mapping polynomials of degree ℓ to polynomials of degree ℓ.

We seek $U \in \mathscr{V}_{q}^{\text {C }}$ satisfying the initial condition $U(0)=u^{0}$ as well as the pointwise equation

$$
U^{\prime}(t)+\Pi_{q-1} F(t, \widetilde{\Pi} U(t))=0 \quad \forall t \in J_{n} .
$$

relation to Continuous Galerkin method (cG)

Recall that the continuous Galerkin method is: We seek $U \in \mathscr{V}_{q}^{\mathrm{C}}$ such that

$$
\int_{J_{n}}\left[\left\langle U^{\prime}, v\right\rangle+\langle F(t, U(t)), v\rangle\right] d t=0 \quad \forall v \in \mathscr{V}_{q-1}\left(J_{n}\right)
$$

The Galerkin formulation of our schemes is

$$
\int_{J_{n}}\left[\left\langle U^{\prime}, v\right\rangle+\left\langle\Pi_{q-1} F(t, \widetilde{\Pi} U(t)), v\right\rangle\right] d t=0 \quad \forall v \in \mathscr{V}_{q-1}\left(J_{n}\right),
$$

for $n=1, \ldots, N$.
i.e., $\Pi_{q-1}:=P_{q-1}$, with P_{ℓ} denoting the (local) L^{2} orthogonal projection operator onto $\mathscr{H}_{\ell}\left(J_{n}\right)$, for each n,

$$
\int_{J_{n}}\left\langle P_{\ell} w, v\right\rangle d s=\int_{J_{n}}\langle w, v\rangle d s \quad \forall v \in \mathscr{H}_{\ell}\left(J_{n}\right)
$$

The pointwise formulation of $c G$ is

$$
U^{\prime}(t)+P_{q-1} F(t, U(t))=0 \quad \forall t \in J_{n}
$$

One step methods $=c G+$ numer. integration The continuous Galerkin method is indeed the simplest method described in the above form with $\Pi_{q-1}=P_{q-1}, \widetilde{\Pi}=I$.

One thus may view the class of methods (1) as a sort of numerical integration applied to the continuous Galerkin method.

We will see that this formulation covers all important implicit single-step time stepping methods. In particular

- the cG method with $\Pi_{q-1}:=P_{q-1}$, and $\widetilde{\Pi}=I$,
- the RK collocation methods with $\Pi_{q-1}:=I_{q-1}$, with I_{q-1} denoting the interpolation operator at the collocation points, and $\widetilde{\Pi}=I$,
- all other interpolatory RK methods with $\Pi_{q-1}:=I_{q-1}$, and appropriate $\widetilde{\Pi}$
- the dG method with $\Pi_{q-1}:=P_{q-1}$ and $\widetilde{\Pi}=I_{q-1}$, where I_{q-1} is the interpolation operator at the Radau points.

RK and collocation methods

For $q \in \mathbb{N}$, a q-stage RK method is described by the constants $a_{i j}, b_{i}, \tau_{i}$, $i, j=1, \ldots, q$, arranged in a Butcher tableau,

a_{11}	\ldots	$a_{1 q}$	τ_{1}
\vdots		\vdots	\vdots
$a_{q 1}$	\ldots	$a_{q q}$	τ_{q}
b_{1}	\ldots	b_{q}	

Given an approximation U^{n-1} to $u\left(t^{n-1}\right)$, the n-th step of the RK method is

$$
\left\{\begin{aligned}
U^{n, i} & =U^{n-1}-k_{n} \sum_{j=1}^{q} a_{i j} F\left(t^{n, j}, U^{n, j}\right), \quad i=1, \ldots, q, \\
U^{n} & =U^{n-1}-k_{n} \sum_{i=1}^{q} b_{i} F\left(t^{n, i}, U^{n, i}\right) ;
\end{aligned}\right.
$$

here $U^{n, i}$ are the intermediate stages, which are approximations to $u\left(t^{n, i}\right)$.

Collocation Methods

It is well known that the collocation method: find $U \in \mathscr{V}_{q}^{C}$ such that

$$
U^{\prime}\left(t^{n, i}\right)+F\left(t^{n, i}, U\left(t^{n, i}\right)\right)=0, \quad i=1, \ldots, q
$$

for $n=1, \ldots, N$, is equivalent to the RK method with

$$
a_{i j}:=\int_{0}^{\tau_{i}} L_{j}(\tau) d \tau, \quad b_{i}:=\int_{0}^{1} L_{i}(\tau) d \tau, \quad i, j=1, \ldots, q,
$$

with L_{1}, \ldots, L_{q} the Lagrange polynomials of degree $q-1$ associated with the nodes $\tau_{1}, \ldots, \tau_{q}$, in the sense that $U\left(t^{n, i}\right)=U^{n, i}, i=1, \ldots, q$, and $U\left(t^{n}\right)=U^{n}$, Then, since U^{\prime} and $I_{q-1} F$ are polynomials of degree $q-1$ in each interval J_{n}, is written as

$$
U^{\prime}(t)+I_{q-1} F(t, U(t))=0 \quad \forall t \in J_{n},
$$

with I_{q-1} denoting the (local) interpolation operator onto $\mathscr{H}_{q-1}\left(J_{n}\right)$ at the points $t^{n, i}, i=1, \ldots, q$,

$$
I_{q-1} v \in \mathscr{H}_{q-1}\left(J_{n}\right): \quad\left(I_{q-1} v\right)\left(t^{n, i}\right)=v\left(t^{n, i}\right), \quad i=1, \ldots, q .
$$

RKC $=c G+$ Numer. Integration

$$
U^{\prime}(t)+I_{q-1} F(t, U(t))=0 \quad \forall t \in J_{n},
$$

Thus the RK Collocation (RK-C) class is a subclass of the general methods with $\Pi_{q-1}=I_{q-1}$ and $\widetilde{\Pi}=I$.

Note the relation to cG :

$$
\int_{J_{n}}\left[\left\langle U^{\prime}, v\right\rangle+\left\langle I_{q-1} F(t, U(t)), v\right\rangle\right] d t=0 \quad \forall v \in \mathscr{V}_{q-1}\left(J_{n}\right),
$$

Interpolatory RK and perturbed collocation methods

It is known, that a q-stage RK method with pairwise different $\tau_{1}, \ldots, \tau_{q}$ is equivalent to a collocation method with the same nodes, if and only if its stage order is at least q.

Nørsett and Wanner 1981:
$\widetilde{\Pi}: \mathscr{H}_{q}\left(J_{n}\right) \rightarrow \mathscr{H}_{q}\left(J_{n}\right)$, by

$$
\widetilde{\Pi} v(t)=v(t)+\sum_{j=1}^{q} N_{j}\left(\frac{t-t^{n-1}}{k_{n}}\right) v^{(j)}\left(t^{n-1}\right) k_{n}^{j}, \quad t \in J_{n}
$$

Here N_{j} are given polynomials of degree q.
Each interpolatory RK method with pairwise different $\tau_{1}, \ldots, \tau_{q}$ is equivalent to a perturbed collocation method of the form: find $U \in \mathscr{V}_{q}^{C}$ such that

$$
U^{\prime}\left(t^{n, i}\right)+F\left(t^{n, i},(\widetilde{\Pi} U)\left(t^{n, i}\right)\right)=0, \quad i=1, \ldots, q
$$

For a given RK method, the polynomials N_{j} needed in the construction of $\tilde{\Pi}$ can be explicitly constructed. It then follows, since U^{\prime} and $I_{q-1} F$ are polynomials of degree $q-1$ in each interval J_{n}, is written as

$$
U^{\prime}(t)+I_{q-1} F(t, \widetilde{\Pi} U(t))=0 \quad \forall t \in J_{n},
$$

Thus : $\Pi_{q-1}=I_{q-1}$ and $\widetilde{\Pi}$

The dG method

The time discrete $\mathrm{dG}(q)$ approximation V to the solution u is defined as follows: we seek $V \in \mathcal{V}_{q-1}^{\mathrm{d}}$ such that $V(0)=u(0)$, and

$$
\int_{J_{n}}\left[\left\langle V^{\prime}, v\right\rangle+\langle F(t, V), v\rangle\right] d t+\left\langle V^{n-1+}-V^{n-1}, v^{n-1+}\right\rangle=0 \quad \forall v \in \mathscr{V}_{q-1}\left(J_{n}\right),
$$

$n=1, \ldots, N$.
The approximations in the unified formulation are continuous piecewise polynomials; in contrast, the dG approximations may be discontinuous.

We need to associate discontinuous piecewise polynomials to continuous ones. To this end, we let $0<\tau_{1}<\cdots<\tau_{q}=1$ be the abscissae of the Radau quadrature formula in the interval $[0,1]$; this formula integrates exactly polynomials of degree at most $2 q-2$. These points are transformed to the Radau nodes in the interval J_{n} as $t^{n, i}:=t^{n-1}+\tau_{i} k_{n}, i=1, \ldots, q$.

dG Reconstruction

We introduce an invertible linear operator $\tilde{I}_{q}: \mathscr{V}_{q-1}^{d} \rightarrow \mathscr{V}_{q}^{c}$ as follows: To every
$v \in \mathscr{V}_{q-1}^{\mathrm{d}}$ we associate an element $\tilde{v}:=\tilde{I}_{q} v \in \mathscr{V}_{q}^{\mathrm{c}}$ defined by locally interpolating at the Radau nodes and at t^{n-1} in each subinterval J_{n}, i.e., $\left.\tilde{v}\right|_{J_{n}} \in \mathscr{V}_{q}\left(J_{n}\right)$ is such that

$$
\left\{\begin{array}{l}
\tilde{v}\left(t^{n-1}\right)=v\left(t^{n-1}\right) \\
\tilde{v}\left(t^{n, i}\right)=v\left(t^{n, i}\right), \quad i=1, \ldots, q
\end{array}\right.
$$

We will call \tilde{v} a reconstruction of $v(\mathrm{M}$. and Nochetto 2008)

Using the exactness of the Radau integration rule, we easily obtain

$$
\int_{J_{n}}\left\langle\tilde{v}-v, w^{\prime}\right\rangle d t=0 \quad \forall v, w \in \mathscr{V}_{q-1}\left(J_{n}\right),
$$

i.e.,

$$
\int_{J_{n}}\left\langle\tilde{v}^{\prime}, w\right\rangle d t=\int_{J_{n}}\left\langle v^{\prime}, w\right\rangle d t+\left\langle v^{n-1+}-v^{n-1}, w^{n-1+}\right\rangle \quad \forall v, w \in \mathscr{V}_{q-1}\left(J_{n}\right) ;
$$

Conversely, if $\tilde{v} \in \mathscr{V}_{q}^{\mathrm{C}}$ is given and I_{q-1} is the interpolation operator at the Radau nodes $t^{n, i}$, i.e., $\left(I_{q-1} \varphi\right)\left(t^{n, i}\right)=\varphi\left(t^{n, i}\right), i=1, \ldots, q$, we can recover v locally via interpolation, i.e., $v=I_{q-1} \tilde{v}$ in J_{n}; furthermore, $v(0)=\tilde{v}(0)$. Thus, $I_{q-1}=\tilde{I}_{q}^{-1}$.

Using the dG reconstruction $\widetilde{V} \in \mathscr{V}_{q}^{\mathrm{c}}$ of $V \in \mathscr{V}_{q-1}^{\mathrm{d}}$,

$$
\int_{J_{n}}\left[\left\langle\widetilde{V}^{\prime}, v\right\rangle+\langle F(t, V), v\rangle\right] d t=0 \quad \forall v \in \mathscr{V}_{q-1}\left(J_{n}\right)
$$

$n=1, \ldots, N$. Therefore

$$
\int_{J_{n}}\left[\left\langle\widetilde{V}^{\prime}, v\right\rangle+\left\langle F\left(t, I_{q-1} \widetilde{V}\right), v\right\rangle\right] d t=0 \quad \forall v \in \mathscr{V}_{q-1}\left(J_{n}\right)
$$

Pointwise formulation

$$
\widetilde{V}^{\prime}(t)+P_{q-1} F\left(t,\left(I_{q-1} \widetilde{V}\right)(t)\right)=0 \quad \forall t \in J_{n} .
$$

Here $\Pi_{q-1}=P_{q-1}$ and $\widetilde{\Pi}=I_{q-1}$, with I_{q-1}

We denote by $U=\widetilde{V}$ the continous in time approximation associated to the dG method:

$$
U^{\prime}(t)+P_{q-1} F\left(t,\left(I_{q-1} U\right)(t)\right)=0 \quad \forall t \in J_{n},
$$

where P_{q-1} and I_{q-1} as above.

[^0]: $\mathrm{a}_{\text {R. H. Nochetto, G. Savaré, and C. Verdi, Comm. Pure Appl. Math. } 53 \text { (2000) 525-589 }}$

