Unified Formulation of Galerkin and Runge-Kutta time discretization methods

Charalambos Makridakis
University of Crete and IACM - FORTH

makr@tem.uoc.gr

www.tem.uoc.gr/~makr

based on joint work with

• G. Akrivis (Ioannina) and R. Nochetto (Maryland)

Error Control

Problem: prove a posteriori estimates for the time dependent problem:

$$u' + A(u) = 0.$$

The general problem: let U an approximation to u obtained by a numerical scheme. We would like to show

$$||u-U|| \leq \eta(U)$$

such that

- the estimator $\eta(U)$ is a computable quantity which depends on the approximate solution U and the data of the problem;
- $\eta(U)$ decreases with optimal order for the lowest possible regularity permitted by our problem;

Our approach to error control: Reconstruction operators

- High order time-discrete schemes: Akrivis, M. and Nochetto: 2004 -08,...
- Space-discrete: M. and Nochetto 2003, Karakatsani and M. 2007, Georgoulis and Lakkis 2008...
- Fully discrete schemes: Lakkis and M. 2006, Demlow, Lakkis and M. 2009, Kyza 2009...

Given U, find an appropriate Reconstruction \hat{U} - (continuous object) and estimate

$$u - \hat{U}$$
 and $\hat{U} - U$

Previous use of time reconstructions for backward Euler: Nochetto Savare Verdi 2000, Picasso 98,

An example: Time discerization with Backward Euler

Let $0 = t_0 < t_1 < \cdots < t_N = T$ be a partition of [0, T], $I_n := (t_n, t_{n+1}]$, and $k_n := t_{n+1} - t_n$.

$$\frac{1}{k_n}(U^{n+1}-U^n)+AU^{n+1}=f_k^{n+1}.$$

Here

(BE):
$$f_k^{n+1} = f(t_{n+1})$$

(**dG0**):
$$f_k^{n+1} = \frac{1}{k_n} \int_{I_n} f(s) ds$$

One can considered the approximations to be piecewise constant in time. I.e. define U as the piecewise constant function and the projection $\Pi_0 f$ of f:

$$U|_{I_n} \in \mathbb{P}_0(I_n), \quad U|_{I_n} = U^{n+1}, \quad \Pi_0 f = f_k^{n+1}$$

a

- Let $\hat{U}(t)$ be the piecewise linear (in time) interpolant of U^n .
- Then in each I_n : $\hat{U}'(t) = \frac{1}{k_n}(U^{n+1} U^n)$

New way of writing the scheme

$$\hat{U}'(t) + A\hat{U}(t) = \Pi_0 f + A[\hat{U}(t) - U(t)], \qquad t \in I_n.$$

Then

•
$$\hat{U}(t) - U(t) = \hat{U}(t) - U^{n+1} = \ell_0^n(t)(U^n - U^{n+1})$$

where
$$\hat{U}(t) = \ell_0^n(t)U^n + \ell_1^n(t)U^{n+1}$$

^aR. H. Nochetto, G. Savaré, and C. Verdi, Comm. Pure Appl. Math. **53** (2000) 525–589

Error equation

• Let $\hat{e} = u - \hat{U}(t)$

then

$$\hat{e}'(t) + A \hat{e}(t) = (f - \Pi_0 f) - A [\hat{U}(t) - U(t)], \qquad t \in I_n.$$

Finally

$$\max_{0 \le t \le T} |\hat{e}|^2 + \int_0^T \|\hat{e}\|^2 dt \le \alpha \left(\sum_{n=0}^{N-1} k_n \|A^{1/2} (U^{n+1} - U^n)\|^2 + \int_0^T \|f - \Pi_0 f\|_{\star}^2 \right)$$

Semigroup approach : estimates via Duhamel's principle.

We shall use Duhamel's principle in the above error equation. Let $E_A(t)$ be the solution operator of the homogeneous equation

$$u'(t) + Au(t) = 0, \quad u(0) = w,$$

i.e., $u(t) = E_A(t)w$. It is well known that the family of operators $E_A(t)$ has several nice properties, in particular it is a semigroup of contractions on H with generator the operator A. Duhamel's principle states (f = 0)

$$\hat{e}(t) = \int_0^t E_A(t-s) \left[A \left[U(t) - \hat{U}(t) \right] \right] ds.$$

Time discretization methods

To define the methods it will be convenient to work with a general nonlinear problem:

$$\begin{cases} u'(t) + F(t, u(t)) = 0, & 0 < t < T, \\ u(0) = u^0, & \end{cases}$$

where $F(\cdot,t):D(A)\to H$ in general a (possibly) nonlinear operator.

Noation We consider piecewise polynomial functions in arbitrary partitions $0 = t^0 < t^1 < \cdots < t^N = T$ of [0, T], and let

$$J_n := (t^{n-1}, t^n]$$

and

$$k_n := t^n - t^{n-1}.$$

p.w. polynomial spaces

$$\mathscr{V}_q^{\mathsf{d}}, \quad \text{ and } \quad \mathscr{H}_q^{\mathsf{d}} \quad q \in \mathbb{N}_0,$$

the space of possibly discontinuous functions at the nodes t^n that are piecewise polynomials of degree at most q in time in each subinterval J_n , i.e., \mathscr{V}_q^d consists of functions $g:[0,T]\to D(A)$ (or H) of the form

$$g|_{J_n}(t) = \sum_{j=0}^q t^j w_j, \quad w_j \in D(A) \quad (\text{or } H),$$

without continuity requirements at the nodes t^n ; the elements of \mathcal{V}_q^d are taken continuous to the left at the nodes t^n .

 $\mathscr{V}_q(J_n)$ consist of the restrictions to J_n of the elements of $\mathscr{V}_q^{\mathsf{d}}$.

$$\mathscr{V}_q^{\mathsf{C}}$$
 and $\mathscr{H}_q^{\mathsf{C}}$

consist of the continuous elements of \mathscr{V}_q^d and \mathscr{H}_q^d , respectively.

The general discretization method.

 Π_{ℓ} will be a projection operator to piecewise polynomials of degree ℓ ,

$$\Pi_{\ell}: C^0([0,T];H) \to \bigoplus_{n=1}^N \mathscr{H}_{\ell}(J_n)$$

$$\widetilde{\Pi}:\mathscr{H}_\ell(J_n) o\mathscr{H}_\ell(J_n)$$

is an operator mapping polynomials of degree ℓ to polynomials of degree ℓ .

We seek $U\in \mathscr{V}_q^{\mathbf{C}}$ satisfying the initial condition $U(0)=u^0$ as well as the pointwise equation

$$U'(t) + \Pi_{q-1}F(t,\widetilde{\Pi}U(t)) = 0 \quad \forall t \in J_n.$$

relation to Continuous Galerkin method (cG)

Recall that the continuous Galerkin method is : We seek $U \in \mathscr{V}_q^{\mathbf{c}}$ such that

$$\int_{J_n} \left[\langle U', v \rangle + \langle F(t, U(t)), v \rangle \right] dt = 0 \quad \forall v \in \mathscr{V}_{q-1}(J_n),$$

The Galerkin formulation of our schemes is

$$\int_{J_n} \left[\langle U', v \rangle + \langle \Pi_{q-1} F(t, \widetilde{\Pi} U(t)), v \rangle \right] dt = 0 \quad \forall v \in \mathscr{V}_{q-1}(J_n),$$

for n = 1, ..., N.

i.e., $\Pi_{q-1} := P_{q-1}$, with P_{ℓ} denoting the (local) L^2 orthogonal projection operator onto $\mathscr{H}_{\ell}(J_n)$, for each n,

$$\int_{J_n} \langle P_\ell w, v \rangle \, ds = \int_{J_n} \langle w, v \rangle \, ds \quad \forall v \in \mathscr{H}_\ell(J_n).$$

The pointwise formulation of cG is

$$U'(t) + P_{q-1}F(t,U(t)) = 0 \quad \forall t \in J_n.$$

One step methods = cG + numer. integration The continuous Galerkin method is indeed the simplest method described in the above form with $\Pi_{q-1} = P_{q-1}, \widetilde{\Pi} = I$.

One thus may view the class of methods (1) as a sort of numerical integration applied to the continuous Galerkin method.

We will see that this formulation covers all important implicit single-step time stepping methods. In particular

- the cG method with $\Pi_{q-1}:=P_{q-1},$ and $\widetilde{\Pi}=I,$
- the RK collocation methods with $\Pi_{q-1}:=I_{q-1}$, with I_{q-1} denoting the interpolation operator at the collocation points, and $\widetilde{\Pi}=I$,
- all other interpolatory RK methods with $\Pi_{q-1}:=I_{q-1},$ and appropriate $\widetilde{\Pi}$
- the dG method with $\Pi_{q-1}:=P_{q-1}$ and $\widetilde{\Pi}=I_{q-1}$, where I_{q-1} is the interpolation operator at the Radau points.

RK and collocation methods

For $q \in \mathbb{N}$, a q-stage RK method is described by the constants $a_{ij}, b_i, \tau_i, i, j = 1, \dots, q$, arranged in a Butcher tableau,

Given an approximation U^{n-1} to $u(t^{n-1})$, the n-th step of the RK method is

$$\begin{cases} U^{n,i} = U^{n-1} - k_n \sum_{j=1}^{q} a_{ij} F(t^{n,j}, U^{n,j}), & i = 1, \dots, q, \\ U^n = U^{n-1} - k_n \sum_{i=1}^{q} b_i F(t^{n,i}, U^{n,i}); & i = 1, \dots, q, \end{cases}$$

here $U^{n,i}$ are the intermediate stages, which are approximations to $u(t^{n,i})$.

Collocation Methods

It is well known that the collocation method: find $U \in \mathscr{V}_q^{\mathbf{C}}$ such that

$$U'(t^{n,i}) + F(t^{n,i}, U(t^{n,i})) = 0, \quad i = 1, \dots, q,$$

for n = 1, ..., N, is equivalent to the RK method with

$$a_{ij} := \int_0^{ au_i} L_j(au) d au, \quad b_i := \int_0^1 L_i(au) d au, \quad i,j = 1, \dots, q,$$

with $L_1, ..., L_q$ the Lagrange polynomials of degree q-1 associated with the nodes $\tau_1, ..., \tau_q$, in the sense that $U(t^{n,i}) = U^{n,i}$, i = 1, ..., q, and $U(t^n) = U^n$;.

Then, since U' and $I_{q-1}F$ are polynomials of degree q-1 in each interval J_n , is written as

$$U'(t) + I_{q-1}F(t,U(t)) = 0 \quad \forall t \in J_n,$$

with I_{q-1} denoting the (local) interpolation operator onto $\mathcal{H}_{q-1}(J_n)$ at the points $t^{n,i}$, $i=1,\ldots,q$,

$$I_{q-1}v \in \mathscr{H}_{q-1}(J_n): \quad (I_{q-1}v)(t^{n,i}) = v(t^{n,i}), \quad i = 1, \dots, q.$$

RKC = cG + Numer. Integration

$$U'(t) + I_{q-1}F(t,U(t)) = 0 \quad \forall t \in J_n,$$

Thus the RK Collocation (RK-C) class is a subclass of the general methods with $\Pi_{q-1} = I_{q-1}$ and $\widetilde{\Pi} = I$.

Note the relation to cG:

$$\int_{J_n} \left[\langle U', v \rangle + \langle I_{q-1} F(t, U(t)), v \rangle \right] dt = 0 \quad \forall v \in \mathscr{V}_{q-1}(J_n),$$

Interpolatory RK and perturbed collocation methods

It is known, that a q-stage RK method with pairwise different τ_1, \ldots, τ_q is equivalent to a collocation method with the same nodes, if and only if its stage order is at least q.

Nørsett and Wanner 1981:

$$\widetilde{\Pi}:\mathscr{H}_q(J_n) o\mathscr{H}_q(J_n),$$
 by

$$\widetilde{\Pi}v(t) = v(t) + \sum_{j=1}^{q} N_j \left(\frac{t - t^{n-1}}{k_n}\right) v^{(j)}(t^{n-1}) k_n^j, \quad t \in J_n.$$

Here N_j are given polynomials of degree q.

Each interpolatory RK method with pairwise different τ_1, \dots, τ_q is equivalent to a perturbed collocation method of the form: find $U \in \mathscr{V}_q^{\mathbf{c}}$ such that

$$U'(t^{n,i}) + F\left(t^{n,i}, \left(\widetilde{\Pi}U\right)(t^{n,i})\right) = 0, \quad i = 1, \dots, q,$$

For a given RK method, the polynomials N_j needed in the construction of $\tilde{\Pi}$ can be explicitly constructed. It then follows, since U' and $I_{q-1}F$ are polynomials of degree q-1 in each interval J_n , is written as

$$U'(t) + I_{q-1}F(t, \widetilde{\Pi}U(t)) = 0 \quad \forall t \in J_n,$$

Thus : $\Pi_{q-1} = I_{q-1}$ and Π

The dG method

The time discrete dG(q) approximation V to the solution u is defined as follows: we seek $V \in \mathscr{V}_{q-1}^{\mathsf{d}}$ such that V(0) = u(0), and

$$\int_{J_n} \left[\langle V', v \rangle + \langle F(t, V), v \rangle \right] dt + \langle V^{n-1+} - V^{n-1}, v^{n-1+} \rangle = 0 \quad \forall v \in \mathcal{V}_{q-1}(J_n),$$

$$n = 1, ..., N$$
.

The approximations in the unified formulation are continuous piecewise polynomials; in contrast, the dG approximations may be discontinuous.

We need to associate discontinuous piecewise polynomials to continuous ones. To this end, we let $0 < \tau_1 < \cdots < \tau_q = 1$ be the abscissae of the Radau quadrature formula in the interval [0,1]; this formula integrates exactly polynomials of degree at most 2q-2. These points are transformed to the Radau nodes in the interval J_n as $t^{n,i} := t^{n-1} + \tau_i k_n$, $i = 1, \dots, q$.

dG Reconstruction

We introduce an invertible linear operator $\tilde{I}_q: \mathscr{V}_{q-1}^{\mathsf{d}} \to \mathscr{V}_q^{\mathsf{c}}$ as follows: To every $v \in \mathscr{V}_{q-1}^{\mathsf{d}}$ we associate an element $\tilde{v} := \tilde{I}_q v \in \mathscr{V}_q^{\mathsf{c}}$ defined by locally interpolating at the Radau nodes and at t^{n-1} in each subinterval J_n , i.e., $\tilde{v}|_{J_n} \in \mathscr{V}_q(J_n)$ is such that

$$\begin{cases} \tilde{v}(t^{n-1}) = v(t^{n-1}), \\ \tilde{v}(t^{n,i}) = v(t^{n,i}), \quad i = 1, \dots, q. \end{cases}$$

We will call \tilde{v} a reconstruction of v (M. and Nochetto 2008)

Using the exactness of the Radau integration rule, we easily obtain

$$\int_{J_n} \langle \tilde{v} - v, w' \rangle dt = 0 \quad \forall v, w \in \mathscr{V}_{q-1}(J_n),$$

i.e.,

$$\int_{J_n} \langle \tilde{v}', w \rangle dt = \int_{J_n} \langle v', w \rangle dt + \langle v^{n-1+} - v^{n-1}, w^{n-1+} \rangle \quad \forall v, w \in \mathcal{V}_{q-1}(J_n);$$

Conversely, if $\tilde{v} \in \mathscr{V}_q^{\mathbf{c}}$ is given and I_{q-1} is the interpolation operator at the Radau nodes $t^{n,i}$, i.e., $(I_{q-1}\varphi)(t^{n,i}) = \varphi(t^{n,i}), i = 1, \dots, q$, we can recover v locally via interpolation, i.e., $v = I_{q-1}\tilde{v}$ in J_n ; furthermore, $v(0) = \tilde{v}(0)$. Thus, $I_{q-1} = \tilde{I}_q^{-1}$.

Using the dG reconstruction $\widetilde{V} \in \mathscr{V}_q^{\mathsf{c}}$ of $V \in \mathscr{V}_{q-1}^{\mathsf{d}}$,

$$\int_{J_n} \left[\langle \widetilde{V}', v \rangle + \langle F(t, V), v \rangle \right] dt = 0 \quad \forall v \in \mathscr{V}_{q-1}(J_n),$$

 $n = 1, \dots, N$. Therefore

$$\int_{I_n} \left[\langle \widetilde{V}', v \rangle + \langle F(t, I_{q-1}\widetilde{V}), v \rangle \right] dt = 0 \quad \forall v \in \mathscr{V}_{q-1}(J_n),$$

Pointwise formulation

$$\widetilde{V}'(t) + P_{q-1}F\left(t, (I_{q-1}\widetilde{V})(t)\right) = 0 \quad \forall t \in J_n.$$

Here $\Pi_{q-1}=P_{q-1}$ and $\widetilde{\Pi}=I_{q-1}$, with I_{q-1}

We denote by $U = \widetilde{V}$ the continous in time approximation associated to the dG method:

$$U'(t) + P_{q-1}F\left(t, (I_{q-1}U)(t)\right) = 0 \quad \forall t \in J_n,$$

where P_{q-1} and I_{q-1} as above.