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Error Control

Problem: prove a posteriori estimates for the time dependent problem:
W' +A(u)=0.

The general problem: let U an approximation to u obtained by a numerical
scheme. We would like to show

lu=Ul| <n(U)

such that

e the estimator n(U) is a computable quantity which depends on the
approximate solution U and the data of the problem;

e 71(U) decreases with optimal order for the lowest possible regularity
permitted by our problem;



Our approach to error control: Reconstruction operators

e High order time-discrete schemes: Akrivis, M. and Nochetto: 2004 -08,...
e Space-discrete: M. and Nochetto 2003, Karakatsani and M. 2007, Georgoulis and Lakkis 2008...

e Fully discrete schemes: Lakkis and M. 2006, Demlow, Lakkis and M. 2009, Kyza 2009...

Given U, find an appropriate Reconstruction U - (continuous object)

and estimate



An example: Time discerization with Backward Euler

Let0=1y <t <--- <ty =T be a partition of [0,T],
I, .= (ty,ty1], and k, : =1, 1 — 1.

i(Un+1 . Un) +A Un—l—l frH—l .

n

Here

(BE): ™' = f(tus1)
(dGO): f/"' = £ [, f(s)ds

One can considered the approximations to be piecewise constant in time. l.e.
define U as the piecewise constant function and the projection I f of f:

Ul; €Po(ly), Ul =0, Iy f = f"+1



Backward Euler reconstruction

a

e Let U(z) be the piecewise linear (in time) interpolant of U”.

e Thenineachl,:U'(t) = ¢ (U™ —U")
New way of writing the scheme
U)+AU®@) =Tgf+A[UQL)-U®1)], tel,.

Then
° U(t) _U(t) — lA](t) —prtl = gg(t)(U” _Un—H)

where U (t) = (2 (t)U" + 07 (1)U

AR H. Nochetto, G. Savaré, and C. Verdi, Comm. Pure Appl. Math. 53 (2000) 525-589



Error equation

o Letée=u—-U(r)

then

() +Ae(t) = (f—Tof) —A[U() -U®)], t€l.

Finally

T N-1 7
5|2 51|12 1/2 /7 rn+1 ny |2 5
ma dt < oc( ko |AV (U —=U / —II )
0§r§XT|e| +/0 el < n;) nllAT )||©+ ) 1 —Tof1l%



Semigroup approach : estimates via Duhamel’s principle.

We shall use Duhamel’s principle in the above error equation. Let E4(z) be
the solution operator of the homogeneous equation

W (1) +Au(t) =0, u(0)=w,

l.e., u(t) = Ea(t)w. It is well known that the family of operators E4 () has
several nice properties, in particular it is a semigroup of contractions on H
with generator the operator A. Duhamel’s principle states (f = 0)

5(t) = /Ot Ex(t—3)[A[U ()~ 0(0)]] ds.



Time discretization methods

To define the methods it will be convenient to work with a general nonlinear
problem:
(W () +F(tu(t)=0, 0<t<T,

where F(-,t) : D(A) — H in general a (possibly) nonlinear operator.

Noation We consider piecewise polynomial functions in arbitrary partitions
0="<tl <... <N =T 0f [0,7], and let

Ty = ("1 "

and
kp :=1"— "1,



p.w. polynomial spaces

79, and S geN,

the space of possibly discontinuous functions at the nodes ¢" that are
piecewise polynomials of degree at most ¢ in time in each subinterval J,,, i.e.,
79 consists of functions g : [0,7] — D(A) (or H) of the form

.
g‘Jn(t) = Z l‘]Wj, w; € D(A) (or H),
j=0
without continuity requirements at the nodes ”; the elements of “//qd are taken

continuous to the left at the nodes 7.
7,(Jn) consist of the restrictions to J, of the elements of ”//qd.

"f/qc and %”qc

consist of the continuous elements of 7% and .7, respectively.



The general discretization method.
I1, will be a projection operator to piecewise polynomials of degree 7,
I, : C°([0,T]; H) — &_, 5(J,)

IT: 1 (In) — 1 (In)

IS an operator mapping polynomials of degree ¢ to polynomials of degree /.

We seek U € 7,7 satisfying the initial condition U(0) = 1" as well as the
pointwise equation

U'(t)+ M, (F(t,IIU(t)) =0Vt € Jj.



relation to Continuous Galerkin method (cG)

Recall that the continuous Galerkin method is : We seek U & 7/qC such that

/Jn [<U”v>—|—(F(t,U(t)),v>} dt =0 WYWwe¥,_1(n),

The Galerkin formulation of our schemes is
W)+ 1 P U @)) | di =0 v e (),

forn=1,...,N.

l.e., Il,_; := P,_;, with P, denoting the (local) L? orthogonal projection
operator onto .7¢;(J,), for each n,

/Jn (Pyw,v)ds = /Jn (wy,vyds Yve 3 (J,).

The pointwise formulation of cG is

U'(t)+P,1F(t,U(t)) =0 Vi€,



One step methods = cG + numer. integration The continuous Galerkin
method is indeed the simplest method described in the above form with
I, =P, |, II=1

One thus may view the class of methods (1) as a sort of numerical integration
applied to the continuous Galerkin method.

We will see that this formulation covers all important implicit single-step time
stepping methods. In particular

the cG method with IT, | := P, 1, and IT =1,

the RK collocation methods with I1,_; :=1,_;, with I,_; denoting the
Interpolation operator at the collocation points, and I1 =1,

all other interpolatory RK methods with I1,_; :=I,_;, and appropriate I1

the dG method with IT, | := P, | and IT =, |, where I, ; is the
interpolation operator at the Radau points.



RK and collocation methods

For g € N, a g—stage RK method is described by the constants «;;,b;, 7,
i,j=1,...,q, arranged in a Butcher tableau,

arl dlg | U1
aql Agg | Tq
b1 b,

Given an approximation U ! to u(r*~ '), the n-th step of the RK method is

f q

U™ =U""" —ky Y aF (™, U™), i=1,...,q,
j=1
q : :
U"=U""~k, Y bF (™, U™);
=1

\

here U™ are the intermediate stages, which are approximations to u(¢').



Collocation Methods
It is well known that the collocation method: find U & ”ch such that

U’(t”’i)+F(t”’i,U(t”’i)) —0, i=1,...,q,

forn=1,...,N, is equivalent to the RK method with

Ti 1
ajj I:/ Lj(’L')dT, b; ;:/ Li(t)dt, i,j=1,....q,
0 0
with L;,...,L, the Lagrange polynomials of degree ¢ — 1 associated with the
nodes 1y,...,17,, in the sense that U(¢"') = U™, i=1,...,q,and U (") = U™:.

Then, since U’ and I, F are polynomials of degree ¢ — 1 in each interval J,,
IS written as

U't)+1,1Ft,U(t)) =0 Ve,

with 7,_; denoting the (local) interpolation operator onto J7,_(J,,) at the
points t'.i=1,....q,

I, 1v e %_1(Jn) ; (Iq_lv)(tn’i) = v(tn’i), i=1,...,q.



RKC = cG + Numer. Integration

U'(t)+1,_1F(t,U()) =0 Ve,

Thus the RK Collocation (RK-C) class is a subclass of the general methods
with IT, | =1, ; and IT = 1.

Note the relation to cG:

/J [<U’7v>—|—<Iq_1F(t,U(t)),v> dt =0 WYWwe¥,_1(n),



Interpolatory RK and perturbed collocation methods

It is known, that a g—stage RK method with pairwise different 7;,...,7, Is
equivalent to a collocation method with the same nodes, if and only if its
stage order is at least g.

Norsett and Wanner 1981:

~

I : Ay(Jn) — HyJ), by

Hv +ZN(

n—l

) YD Nih, ted,.

n

Here N; are given polynomials of degree g.

Each interpolatory RK method with pairwise different 7y,..., 7, is equivalent to
a perturbed collocation method of the form: find U € 7 such that

U+ F (i (U ) () =0, i=1,....q,



For a given RK method, the polynomials N; needed in the construction of I1
can be explicitly constructed. It then follows, since U’ and I, F are
polynomials of degree ¢ — 1 in each interval J,, is written as

U'(t)+1, (F(t,IIU(t)) =0 Vt € Jy,

Thus : IT, | =1, ; and IT



The dG method

The time discrete dG(g) approximation V to the solution « is defined as
follows: we seek V € 79 | such that V(0) = «(0), and

/Jn [<v’,v> + <F(t,V),v>} dt + (Vi _ynl gy 0 e ¥ (),

n=1,...,N.

The approximations in the unified formulation are continuous piecewise
polynomials; in contrast, the dG approximations may be discontinuous.

We need to associate discontinuous piecewise polynomials to continuous
ones. To thisend, we let 0 < 7 <--- <7, =1 be the abscissae of the Radau
quadrature formula in the interval |0, 1]; this formula integrates exactly
polynomials of degree at most 2¢ — 2. These points are transformed to the
Radau nodes in the interval J,, as 1 := "' + 1ik,, i=1,...,q.



dG Reconstruction

We introduce an invertible linear operator I, : ”//qd_l — ”ﬂqc as follows: To every
ve 7%, we associate an element 7 := I,v € 7° defined by locally
interpolating at the Radau nodes and at "~ ! in each subinterval J,, i.e.,

|;, € ¥4(Jn) is such that

(") = v,

P =v(e™), i=1,...,q.

\

We will call v a reconstruction of v ( M. and Nochetto 2008 )

Using the exactness of the Radau integration rule, we easily obtain
/ Govw)dt=0 Wowe ¥_i(J),
In

l.e.,

/J<v’,w>dt+<v”_1+—v”_l,w”_H} Yo, w e Y1 (Jn);

/ (5w d
Jn



Conversely, if v € 7/qC is given and /,_; is the interpolation operator at the
Radau nodes "', i.e., (I,—19)(t"") = @(¢*"), i=1,...,q, We can recover v
locally via interpolation, i.e., v = I, ;v in J,; furthermore, v(0) = v(0). Thus,
Ten=i

Using the dG reconstruction V € 7% of vV e 72 |

| [+ Fav)n]ar=0 we i),
n=1,...,N. Therefore

/Jn (V) + (F (g V) )| di =0 v e Hy ()



Pointwise formulation
V() +Pq_1F(t, (Iq_1‘7)(t)) —0 Ve,
Here IT, | =P, yand [T =1, |, with [,
We denote by U = V the continous in time approximation associated to the

dG method:
U' (1) +Pq_1F(t, (Iq_lU)(t)) —0 Ve,

where P,_jand I,_; as above.



