
Problem Regularized Problem Semi-discrete Problem Error Analysis

Error Analysis of an Evolution Equation for
Microstructure

Richard Norton

Thursday 20/Friday 21 May 2010

Richard Norton

Error Analysis of an Evolution Equation for Microstructure



Problem Regularized Problem Semi-discrete Problem Error Analysis

Consider the problem

∆ut + div(σ(∇u)) = 0 in Ω = (0, 1)2

u = 0 on ∂Ω

u = u0 when t = 0

σ = DW where W is a double well potential such that
σ : R2 → R2 globally Lipschitz, and σ(p) · p ≥ c |p|2 − d for c > 0,
d ≥ 0.
For example, W (∇u) = 1

2
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This problem is the H1
0 (Ω) gradient flow of I (u) :=

∫
Ω W (∇u)dx .

i.e.
ut = −∇I (u) in H1

0 (Ω).

The direction chosen by the dynamics is the direction of steepest
descent.

In our example, the solution would like to satisfy ux = ±1, uy = 0.
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Questions

I What can we say about the long-time behaviour of solutions
and the appearance of microstructure?

I Is microstructure a numerical artifact and can we approximate
the solution with FEM?
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What can we prove?
Rewrite as

ut = F (u) in H1
0 (Ω)

where F (u) := −∆−1 div(σ(∇u)). F : H1
0 (Ω)→ H1

0 (Ω) is
Lipschitz
Standard theory and energy estimates (eg. Henry and Temam) ⇒
∃! solution

u(t) = u0 +

∫ t

0
F (u(s))ds,

u ∈ C ([0,∞),H1
0 (Ω)) ∩ L∞([0,∞),H1

0 (Ω)),
ut ∈ C ((0,∞),H1

0 (Ω))∩ L∞((0,∞),H1
0 (Ω)) (both Lipschitz), and∫

Ω
W (∇u(t))dx +

∫ t

0
‖∇us(s)‖2

L2(Ω)ds = const. t ≥ 0,

⇒ ut ∈ L2((0,∞),H1
0 (Ω)) and ut → 0 in H1

0 (Ω) as t → 0.
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What can’t we prove?

I No additional regularity or compactness (only H1
0 (Ω)) . This

limits what we can say about the long-time behaviour of
solutions. ‖u(t)‖H1(Ω) ≤ C for all t ≥ 0 only implies weak
convergence.

I Question remains: Are all solutions minimising sequences for∫
Ω W (∇u(x))dx , or are some solutions attracted to rest

points, for which
∫

Ω W (∇u(x))dx > 0?
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Numerics?

Can we approximate the solution with FEM?

Up to finite time it is possible to prove that uh → u in H1
0 (Ω) as

h→ 0 but we do not get a rate of convergence (due to lack of
additional regularity).

Modify problem to create additional regularity...
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Regularized Problem

Consider the problem

∆ut − ε∆2u + div(σ(∇u)) = 0 in Ω = (0, 1)2

∆u = u = 0 on ∂Ω

u = u0 ∈ H1
0 (Ω) at t = 0.

Rewrite as

ut − ε∆u = F (u) in H1
0 (Ω)

F (u) := −∆−1 div(σ(∇u)).
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In the gradient flow representation the additional term is bending
energy

I (u) =

∫
Ω

W (∇u) +
ε

2
(∆u)2.
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Using same techniques as before we can prove similar results, e.g.
∃! solution u ∈ C ([0,∞),H1

0 (Ω)) ∩ C ((0,∞),V )

u(t) = eε∆t u0 +

∫ t

0
eε∆(t−s) F (u(s))ds

and . . .

(V := {v ∈ H1
0 (Ω) : ∆v ∈ H1

0 (Ω)}).
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. . . it is also possible to prove that

‖u‖H1 ≤ C t ∈ [0,∞)

‖u‖H2 ≤

{
Cε−1/2t−1/2 t ∈ (0,T ]

Cε−1/2 t ∈ (T ,∞)

‖ut‖H1 ≤

{
Ct−1 t ∈ (0,T ]

C t ∈ (T ,∞)

... and other results eg. higher regularity, ∃ Lyapunov function,
ut → 0 in H1, ∃ compact attractor of finite dimension...
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Semi-discrete Problem
Vh ⊂ H1

0 (Ω). Define ∆h : Vh → Vh

(∆huh, φh)L2 = −(∇uh,∇φh)L2 ∀uh, φh ∈ Vh.

Also define elliptic projection operator R = R(h) and L2

projection operator P = P(h) by

(∇(Ru − u),∇φh)L2 = 0 ∀φh ∈ Vh, u ∈ H1
0 (Ω)

(Pu − u, φh)L2 = 0 ∀φh ∈ Vh, u ∈ H1
0 (Ω).

We have ∆hR = P∆. Assume

‖u − Ru‖L2 + h‖u − Ru‖H1 . hs‖u‖Hs

‖u − Pu‖L2 + h‖u − Pu‖H1 . hs‖u‖Hs s = 1, 2.
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Apply the Galerkin method: Find uh ∈ C ([0,∞),Vh) such that
u = u0h := Ru0 at t = 0 and

uh,t − ε∆huh = Fh(uh) in Vh for t > 0

where Fh(uh) := RF (uh) = −∆−1
h div(σ(∇uh).

Same theory ⇒ ∃! solution uh such that

uh(t) = eε∆ht u0h +

∫ t

0
eε∆h(t−s) Fh(uh(s))ds

Same regularity results as before (except H2 norm replaced with
‖∆huh‖L2).
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Error Analysis

To analyse the error we follow standard theory (eg. Larsson for
short time error), but pay particular attention to the dependence
on ε,

to show that

‖uh − u‖H1 . hε−1/2t−1/2 t ∈ (0,T ].
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Split the error into 2 parts

e = uh − u = uh − Ru︸ ︷︷ ︸
θ(t)∈Vh

+ Ru − u︸ ︷︷ ︸
ρ(t)

.

ρ(t) is just the elliptic projection error,

‖ρ(t)‖H1 . h‖u(t)‖H2 . hε−1/2t−1/2 for t ∈ (0,T ].

θ(t) satisfies the following equation,

θt − ε∆hθ = Fh(uh)− Fh(u) + (P − R)(ut − F (u)).

θh(t) = eε∆ht θ0h +

∫ t

0

eε∆h(t−s)
[
Fh(uh)−Fh(u) + (P −R)(us −F (u))

]
ds
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θ(t) = eε∆ht θ0

+

∫ t

0
eε∆h(t−s) [Fh(uh(s))− Fh(u(s))] ds (T1)

−
∫ t

0
eε∆h(t−s)(P − R)F (u(s))ds (T2)

+ eε∆ht/2(P − R)u( t
2 )− eε∆ht(P − R)u0 (T3-4)

+ ε

∫ t
2

0
∆h eε∆h(t−s)(P − R)u(s)ds (T5)

+

∫ t

t
2

eε∆h(t−s)(P − R)us(s)ds (T6)

Now take ‖ · ‖H1 of each term separately and use our regularity
estimates to get the result.

Richard Norton

Error Analysis of an Evolution Equation for Microstructure



Problem Regularized Problem Semi-discrete Problem Error Analysis

‖uεh − uε‖H1 . hε−1/2t−1/2 t ∈ (0,T ].

If we choose h2−2δ < ε for some δ > 0 then

‖uεh − uε‖H1 . hδt−1/2

independent of ε.
Unfortunately we can only prove that up to finite time uε → u in
H1

0 (Ω) as ε→ 0. We do not have a rate of convergence for the
regularization error.
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left: ε = 0.001, right: ε = 0.0001. h = 0.02.
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Further Work

I Long-time convergence result . . . convergence of attractors.

I Error in L2.

I Regularization error? How does regularization change the
long-time behaviour of the PDE?

I Existence of rest points for the original PDE.
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